

brought to you by

Topology and its Applications 120 (2002) 157-167

www.elsevier.com/locate/topol

On iterated inverse limits

S. Mardešić^{a,*}, N. Uglešić^b

^a Department of Mathematics, University of Zagreb, Bijenička cesta 30, P.O. Box 335, 10.002 Zagreb, Croatia
 ^b Department of Mathematics, University of Split, Teslina ulica 12/III, 21.000 Split, Croatia

Received 13 September 1999; received in revised form 6 June 2000

Abstract

Let a compact Hausdorff space X be the limit of a cofinite inverse system of compact Hausdorff spaces X_{λ} , $X = \lim_{\lambda} X_{\lambda}$. Then it is possible to express every X_{λ} as the limit of an inverse system of compact polyhedra Y_{λ}^{μ} , $X_{\lambda} = \lim_{\mu} Y_{\lambda}^{\mu}$, in such a way that the spaces $Y_{\nu} = Y_{\lambda}^{\mu}$ can be organized in an inverse system with $\lim_{\nu} Y_{\nu} = \lim_{\lambda} \lim_{\mu} Y_{\lambda}^{\mu}$. Using ANR-resolutions, the result is generalized to non-compact spaces. © 2002 Elsevier Science B.V. All rights reserved.

AMS classification: 54B35

Keywords: Inverse limit; Resolution; ANR; Compact polyhedron

1. Introduction

Let $X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ be an inverse system of topological spaces, indexed by a directed set Λ , and let $p: X \to X$ be a mapping of a topological space X to X, i.e., a collection of mappings $p_{\lambda}: X \to X_{\lambda}, \lambda \in \Lambda$, such that

$$p_{\lambda\lambda'}p_{\lambda'} = p_{\lambda}, \quad \lambda \leqslant \lambda'. \tag{1}$$

Moreover, for every $\lambda \in \Lambda$, let $Y_{\lambda} = (Y_{\lambda}^{\mu}, q_{\lambda}^{\mu\mu'}, M_{\lambda})$ be an inverse system and let $q_{\lambda}: X_{\lambda} \to Y_{\lambda}$ be a mapping consisting of mappings $q_{\lambda}^{\mu}: X_{\lambda} \to Y_{\lambda}^{\mu}$. There is no loss of generality in assuming that the index sets M_{λ} and $M_{\lambda'}$ are disjoint, for $\lambda \neq \lambda'$, and thus, every element ν of the set

$$N = \bigcup_{\lambda \in \Lambda} M_{\lambda} \tag{2}$$

* Corresponding author.

E-mail addresses: smardes@math.hr (S. Mardešić), uglesic@mapmf.pmfst.hr (N. Uglešić).

^{0166-8641/02/}\$ – see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0166-8641(01)00013-X

admits a unique $\lambda \in \Lambda$ such that $\nu \in M_{\lambda}$. Consequently, elements $\nu \in N$ can be identified with pairs (λ, μ) , where $\lambda \in \Lambda$ and $\mu \in M_{\lambda}$. For a directed ordering ≤ 0 of N, we will say that it is *compatible* with the orderings \leq of Λ and M_{λ} , $\lambda \in \Lambda$, provided the following conditions hold:

- (i) If $\nu = (\lambda, \mu)$ and $\nu' = (\lambda', \mu')$, then $\nu \leq \nu'$ implies $\lambda \leq \lambda'$.
- (ii) For every $\lambda \in \Lambda$, the ordering ≤ 0 of N restricted to M_{λ} coincides with the original ordering $\leq of M_{\lambda}$.

Let $q = (q_{\nu}): X \to Y$ be a mapping, where $Y = (Y_{\nu}, q_{\nu\nu'}, N)$ is an inverse system and N is given by (2). We will say that q is *compatible* with p and q_{λ} , $\lambda \in \Lambda$, provided the ordering of N is compatible with the orderings of Λ and M_{λ} , $\lambda \in \Lambda$, and the following conditions hold:

- (iii) $Y_{\nu} = Y_{\lambda}^{\mu}, \nu = (\lambda, \mu).$
- (iv) $q_{\lambda}^{\mu} p_{\lambda\lambda'} = q_{\nu\nu'} q_{\lambda'}^{\mu'}$, for $\nu = (\lambda, \mu) \leq (\lambda', \mu') = \nu'$.
- (v) $q_{\nu\nu'} = q_{\lambda}^{\mu\mu'}$, for $\nu = (\lambda, \mu) \leq (\lambda, \mu') = \nu'$. (vi) $q_{\nu} = q_{\lambda}^{\mu} p_{\lambda}$, for $\nu = (\lambda, \mu)$.

In this paper we will prove the following result.

Theorem 1. Let $X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ be a cofinite inverse system of compact Hausdorff spaces and let $p: X \to X$ be its limit. Then there exist cofinite inverse systems of compact polyhedra Y_{λ} with limits $q_{\lambda}: X_{\lambda} \to Y_{\lambda}, \lambda \in \Lambda$, which admit a cofinite inverse system Y, whose limit $q: X \to Y$ is compatible with p and q_{λ} , $\lambda \in \Lambda$.

The question whether such an assertion holds was raised during a talk, given by Yu.T. Lisitsa, at the 1998 Dubrovnik Conference on Geometric Topology.

We call a directed set A cofinite if it is ordered (anti-symmetry holds) and every element has a finite number of predecessors. Cofinite systems play an important role in shape theory (see [6,5]).

To realize that Theorem 1 states a non-trivial assertion, we will first prove the following result.

Theorem 2. There exists a cofinite inverse system of compact metric spaces X = $(X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ with limit $\mathbf{p}: X \to X$ and there exist inverse sequences of compact polyhedra $Y_{\lambda} = (Y_{\lambda}^{\mu}, q_{\lambda}^{\mu\mu'}, M_{\lambda})$ with limits $q_{\lambda} : X_{\lambda} \to Y_{\lambda}$, $\lambda \in \Lambda$, such that there is no inverse system Y, which is formed by polyhedra Y^{μ}_{λ} and X is its limit. Consequently, there is no inverse system Y with limit $q: X \to Y$, which is compatible with p and q_{λ} , $\lambda \in \Lambda$.

Our main result is Theorem 3, which is a version of Theorem 1, valid for arbitrary spaces. The role of limits is taken up by resolutions (see I.6 of [6]) and the role of compact polyhedra is taken up by ANR's (for metric spaces).

Theorem 3. Let $X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ be a cofinite inverse system of topological spaces and let $p: X \to X$ be a resolution. Then there exist cofinite ANR-resolutions $q_{\lambda}: X_{\lambda} \to Y_{\lambda}$, $\lambda \in \Lambda$, which admit a cofinite resolution $q: X \to Y$ compatible with p and q_{λ} , $\lambda \in \Lambda$.

2. An example which proves Theorem 2

Let *X* be a compact Hausdorff space, whose covering dimension dim X = 1 and whose inductive dimension ind X = 2. Such spaces were constructed in 1949 by Lunc [3] and Lokucievskiĭ [2]. By a result from [4], dim X = 1 implies the existence of a cofinite system $X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ of metric compacta such that dim $X_{\lambda} = 1$ and $X = \lim X$. On the other hand, by a classical result of Freudenthal [1] (also see [4]), dim $X_{\lambda} = 1$ implies that X_{λ} is the limit of an inverse sequence Y_{λ} of compact polyhedra Y_{λ}^{μ} of dimension dim $Y_{\lambda}^{\mu} = 1$. However, the polyhedra Y_{λ}^{μ} cannot be organized in an inverse system Y with limit lim Y = X, because no compact Hausdorff space X with dim X = 1 and ind X = 2 is obtainable as the limit of an inverse system formed by compact 1-dimensional polyhedra (see [7,4]).

3. Resolutions of spaces

Resolutions of a space X are mappings $p = (p_{\lambda}): X \to X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$, which satisfy two additional conditions:

(B1) For every normal (numerable) covering \mathcal{U} of X, there is a $\lambda \in \Lambda$ and there is a normal covering \mathcal{U}_{λ} of X_{λ} such that the covering $p_{\lambda}^{-1}(\mathcal{U}_{\lambda})$ refines \mathcal{U} ; this is denoted by

$$p_{\lambda}^{-1}(\mathcal{U}_{\lambda}) \leqslant \mathcal{U}. \tag{3}$$

(B2) For every $\lambda \in \Lambda$ and every normal covering \mathcal{U}_{λ} of X_{λ} , there is a $\lambda' \ge \lambda$ such that

$$p_{\lambda\lambda'}(X_{\lambda'}) \subseteq \operatorname{St}(p_{\lambda}(X), \mathcal{U}_{\lambda}).$$
(4)

- If all X_{λ} are normal spaces, condition (B2) can be replaced by the equivalent condition: (B2)' For every $\lambda \in \Lambda$ and every open neighborhood U of the closure $\overline{p_{\lambda}(X)}$ in X_{λ} ,
 - there is a $\lambda' \ge \lambda$ such that

$$p_{\lambda\lambda'}(X_{\lambda'}) \subseteq U. \tag{5}$$

It is well known that, for X_{λ} Tychonoff and X topologically complete (e.g., for X paracompact), every resolution $p: X \to X$ is an inverse limit. Furthermore, if X and X_{λ} are compact Hausdorff spaces, also the converse holds, i.e., if $p: X \to X$ is an inverse limit, then p is a resolution. It is also known that every topological space X admits an ANR-resolution $p: X \to X$, i.e., a resolution where all X_{λ} are ANRs (for metric spaces). Similarly, every compact Hausdorff space X admits a resolution $p: X \to X$, where all X_{λ} are compact polyhedra, i.e., X is the limit of an inverse system of compact polyhedra. For the proofs of these results see, for instance, the books [6,5].

There is a construction which associates with every inverse system $X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$, indexed by a directed ordered set Λ , a cofinite system $X^* = (X^*_{\alpha}, p^*_{\alpha\alpha'}, \Lambda^*)$ and it associates with every mapping $p = (p_{\lambda}): X \to X$ a mapping $p^* = (p^*_{\alpha}): X \to X^*$. By definition, Λ^* consists of all finite subsets α of Λ , with the ordering inherited from Λ , and such that they have a terminal element, denoted by $\overline{\alpha}$. Because of anti-symmetry, $\overline{\alpha}$ is uniquely determined by α . The ordering \leq of Λ^* is just the inclusion \subseteq . Note that $\alpha_1 \leq \alpha_2$ implies $\overline{\alpha}_1 \leq \overline{\alpha}_2$. By definition, $X^*_{\alpha} = X_{\overline{\alpha}}$ and, for $\alpha_1 \leq \alpha_2$, $p^*_{\alpha_1\alpha_2} = p_{\overline{\alpha}_1\overline{\alpha}_2}$. Moreover, $p^*_{\alpha} = p_{\overline{\alpha}}$. Note that every term from X^* is a term from X.

Lemma 1. If $p: X \to X$ is a resolution, then also $p^*: X \to X^*$ is a resolution. Moreover, if X consists of ANR's (of compact polyhedra), then so does X^* .

The proof is easy (see Lemma 6.31 of [5]) and we omit it.

4. Some technical lemmas on resolutions

To state the first of these lemmas, we describe a construction which applies to any mapping $\mathbf{p} = (p_{\lambda}): X \to X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$. Let Γ be the set which consists of all pairs $\gamma = (\lambda, G)$, where $\lambda \in \Lambda$ and G is an open neighborhood of the closure $\overline{p_{\lambda}(X)}$ in X_{λ} . We order Γ by putting $\gamma \leq \gamma' = (\lambda', G')$ provided $\lambda \leq \lambda'$ and

$$p_{\lambda\lambda'}(G') \subseteq G. \tag{6}$$

Note that Γ is directed and ordered provided Λ has these properties. For $\gamma = (\lambda, G)$, let $Y_{\gamma} = G$ and, for $\gamma \leq \gamma'$, let $q_{\gamma\gamma'}: Y_{\gamma'} \to Y_{\gamma}$ be the restriction $p_{\lambda\lambda'}|G': G' \to G$, which is well defined, because of (6). Clearly, $\mathbf{Y} = (Y_{\gamma}, q_{\gamma\gamma'}, \Gamma)$ is an inverse system. We also define a mapping $\mathbf{q} = (q_{\gamma}): X \to \mathbf{Y}$. If $\gamma = (\lambda, G), q_{\gamma}: X \to Y_{\gamma} = G$ is the restriction $X \to G \subseteq X_{\lambda}$ of $p_{\lambda}: X \to X_{\lambda}$.

Lemma 2. If $p: X \to X$ has property (B1) and all X_{λ} are ANRs, then $q: Y \to Y$ is an ANR-resolution.

Proof. First note that the spaces $Y_{\gamma} = G$ are ANRs, because they are open subsets of ANRs X_{λ} . If \mathcal{U} is a normal covering of X, then (B1) for p yields a $\lambda \in \Lambda$ and a normal covering \mathcal{V} of X_{λ} such that $p_{\lambda}^{-1}(\mathcal{V})$ refines \mathcal{U} . However, the pair $\gamma = (\lambda, X_{\lambda})$ belongs to Γ , $Y_{\gamma} = X_{\lambda}$ and $q_{\gamma} = p_{\lambda}$. Therefore, \mathcal{V} is an open covering of Y_{γ} and $q_{\gamma}^{-1}(\mathcal{V})$ refines \mathcal{U} , which proves (B1) for q. Now assume that $\gamma = (\lambda, G) \in \Gamma$ and U is an open neighborhood of the closure of $q_{\gamma}(X)$ in $Y_{\gamma} = G$. Clearly, this closure coincides with the closure of $p_{\lambda}(X)$ in X_{λ} . Therefore, $\gamma' = (\lambda, U)$ belongs to Γ and $\gamma \leq \gamma'$, because $p_{\lambda\lambda}(U) = U \subseteq G$. However, $Y_{\gamma'} = U$ and $q_{\gamma\gamma'}(Y_{\gamma'}) = U$, which shows that q also has property (B2)'. \Box

If X is a compact Hausdorff space and $X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ is an inverse system of compact polyhedra, we modify the above construction by taking for Γ all pairs (λ, P) , where P is a compact polyhedron which is also a neighborhood of $p_{\lambda}(X)$ in X_{λ} . Denoting the resulting objects by Y' and q', we have the following lemma.

Lemma 3. If X and X_{λ} are compact Hausdorff spaces and $p: X \to X$ has property (B1), then Y' is an inverse system of compact polyhedra and $q': X \to Y'$ is its limit.

In the next section we will also need the following lemma (only property (B1) will be used).

Lemma 4. Let $(X_{\lambda}, \lambda \in \Lambda)$ be a family of topological spaces. Then the spaces X_{λ} admit ANR-resolutions $\boldsymbol{q}_{\lambda}: X_{\lambda} \to \boldsymbol{Y}_{\lambda} = (Y_{\lambda}^{\mu}, q_{\lambda}^{\mu\mu'}, M), \lambda \in \Lambda$, all indexed by the same ordered set M. If all X_{λ} are compact Hausdorff spaces, one can achieve that all Y_{λ}^{μ} are compact polyhedra and thus, $\boldsymbol{q}_{\lambda}: X_{\lambda} \to \boldsymbol{Y}_{\lambda}, \lambda \in \Lambda$, are inverse limits.

Proof. For $\lambda \in \Lambda$, there exist a cofinite inverse system $X_{\lambda} = (X_{\lambda}^{\mu}, p_{\lambda}^{\mu\mu'}, M_{\lambda})$, consisting of ANRs, and a resolution $p_{\lambda} = (p_{\lambda}^{\mu}) : X_{\lambda} \to X_{\lambda}$. Let the set

$$M = \prod_{\lambda \in \Lambda} M_{\lambda} \tag{7}$$

be endowed with the product ordering. Recall that $m, m' \in M$ are functions $m, m' \colon \Lambda \to \bigcup_{\lambda \in \Lambda} M_{\lambda}$ such that $m(\lambda), m'(\lambda) \in M_{\lambda}, \lambda \in \Lambda$, and one has $m \leq m'$ if and only if $m(\lambda) \leq m'(\lambda)$ in M_{λ} , for all $\lambda \in \Lambda$. Since the sets $M_{\lambda}, \lambda \in \Lambda$, are directed and ordered, so is M. Consider an arbitrary $\lambda \in \Lambda$. We define an inverse system $Y_{\lambda} = (Y_{\lambda}^{m}, q_{\lambda}^{mm'}, M)$ by putting

$$Y_{\lambda}^{m} = X_{\lambda}^{m(\lambda)},\tag{8}$$

$$q_{\lambda}^{mm'} = p_{\lambda}^{m(\lambda)m'(\lambda)}.$$
(9)

Moreover, we define a mapping $\boldsymbol{q}_{\lambda} = (q_{\lambda}^m) : X_{\lambda} \to Y_{\lambda}$ by putting

$$q_{\lambda}^{m} = p_{\lambda}^{m(\lambda)} \colon X_{\lambda} \to Y_{\lambda}^{m}.$$
⁽¹⁰⁾

Let us verify that q_{λ} has properties (B1) and (B2)' and thus, it is an ANR-resolution.

If \mathcal{U} is a normal covering of X_{λ} , then, by (B1) for p_{λ} , there is an index $\mu \in M_{\lambda}$ and there is an open covering \mathcal{V} of X_{λ}^{μ} such that $(p_{\lambda}^{\mu})^{-1}(\mathcal{V})$ refines \mathcal{U} . Let $m \in M$ be a function with $m(\lambda) = \mu$, having arbitrary values $m(\lambda') \in M_{\lambda'}$, for $\lambda' \neq \lambda$. Then $Y_{\lambda}^{m} = X_{\lambda}^{m(\lambda)} = X_{\lambda}^{\mu}$ and \mathcal{V} is an open covering of Y_{λ}^{m} . Moreover, $q_{\lambda}^{m} = p_{\lambda}^{m(\lambda)} = p_{\lambda}^{\mu}$ and thus, $(q_{\lambda}^{m})^{-1}(\mathcal{V}) = (p_{\lambda}^{\mu})^{-1}(\mathcal{V})$ refines \mathcal{U} . This establishes property (B1). To verify (B2)', assume that $m \in M$ and U is an open neighborhood of the closure

$$\overline{q_{\lambda}^{m}(X_{\lambda})} = p_{\lambda}^{m(\lambda)}(X_{\lambda})$$

in $Y_{\lambda}^{m} = X_{\lambda}^{m(\lambda)}$. By property (B2)', for p_{λ} , there is an index $\mu' \ge m(\lambda)$ from M_{λ} such that $p_{\lambda}^{m(\lambda)\mu'}(X_{\lambda}^{\mu'}) \subseteq U$. Choose a function $m' \in M$ such that $m'(\lambda) = \mu'$ and $m'(\lambda') \ge m(\lambda')$, for $\lambda' \ne \lambda$. Then $m' \ge m$ and

$$q_{\lambda}^{mm'}(Y_{\lambda}^{m'}) = p_{\lambda}^{m(\lambda)m'(\lambda)}(X_{\lambda}^{m'(\lambda)}) = p_{\lambda}^{m(\lambda)\mu'}(X_{\lambda}^{\mu'}) \subseteq U.$$
(11)

In the compact case one chooses for Y_{λ} inverse systems of compact polyhedra and one proceeds as in the general case. \Box

5. Proof of Theorem 3 (Step 1)

The proof of Theorem 3 proceeds in several steps. Let $X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ be a cofinite inverse system of topological spaces and let $p = (p_{\lambda}) : X \to X$ be a mapping. By Lemma 4, there exists a directed ordered set M such that every $X_{\lambda}, \lambda \in \Lambda$, admits an ANR-resolution $p_{\lambda} = (p_{\lambda}^{\mu}) : X_{\lambda} \to X_{\lambda} = (X_{\lambda}^{\mu}, p_{\lambda}^{\mu\mu'}, M)$, indexed by the set M. For every $\lambda \in \Lambda$, we define a new inverse system $Z_{\lambda} = (Z_{\lambda}^{\mu}, r_{\lambda}^{\mu\mu'}, M)$ as follows. Put

$$Z^{\mu}_{\lambda} = \prod_{\zeta \leqslant \lambda} X^{\mu}_{\zeta}, \quad \lambda \in \Lambda, \ \mu \in M.$$
⁽¹²⁾

Since Λ is cofinite, Z_{λ}^{μ} is the product of a finite collection of ANRs, hence, it is an ANR. For $\mu \leq \mu'$, define $r_{\lambda}^{\mu\mu'} : Z_{\lambda}^{\mu'} \to Z_{\lambda}^{\mu}$ as the mapping

$$r_{\lambda}^{\mu\mu'} = \prod_{\zeta \leqslant \lambda} p_{\zeta}^{\mu\mu'} : \prod_{\zeta \leqslant \lambda} X_{\zeta}^{\mu'} \to \prod_{\zeta \leqslant \lambda} X_{\zeta}^{\mu}.$$
(13)

We also define a mapping $\mathbf{r}_{\lambda} = (r_{\lambda}^{\mu}) : X_{\lambda} \to \mathbf{Z}_{\lambda}$, where $r_{\lambda}^{\mu} : X_{\lambda} \to Z_{\lambda}^{\mu}$, $\lambda \in \Lambda$, is determined by the coordinate mappings $p_{\zeta}^{\mu} p_{\zeta\lambda} : X_{\lambda} \to X_{\zeta}^{\mu}$, $\zeta \leq \lambda$.

Lemma 5. For every $\lambda \in \Lambda$, the mapping $\mathbf{r}_{\lambda} : X_{\lambda} \to \mathbf{Z}_{\lambda}$ has property (B1).

Proof. Let \mathcal{U} be a normal covering of X_{λ} . By property (B1) for p_{λ} , there exist an index $\mu \in M$ and an open covering \mathcal{V} of X_{λ}^{μ} such that $(p_{\lambda}^{\mu})^{-1}(\mathcal{V})$ refines \mathcal{U} . Consider the open covering \mathcal{W} of Z_{λ}^{μ} , consisting of the sets

$$W = \left(\prod_{\zeta < \lambda} X^{\mu}_{\zeta}\right) \times V, \tag{14}$$

where $V \in \mathcal{V}$. Clearly,

$$\left(r_{\lambda}^{\mu}\right)^{-1}(\mathcal{W}) = \left(p_{\lambda}^{\mu}\right)^{-1}(\mathcal{V}),\tag{15}$$

and thus, $(r_{\lambda}^{\mu})^{-1}(\mathcal{W})$ refines \mathcal{U} . \Box

The advantage of the mappings r_{λ} over the mappings p_{λ} lies in the fact that pand r_{λ} , $\lambda \in \Lambda$, admit a system Z and a compatible mapping $r: X \to Z$. Indeed, let $Z = (Z_{\nu}, r_{\nu\nu'}, N)$, where $N = \Lambda \times M$ is ordered coordinatewise, i.e., if $\nu = (\lambda, \mu)$ and $\nu' = (\lambda', \mu')$, then $\nu \leq \nu'$ if and only if $\lambda \leq \lambda'$ and $\mu \leq \mu'$. Note that $N = \bigcup_{\lambda \in \Lambda} N_{\lambda}$, where $N_{\lambda} = \{\lambda\} \times M$ is a copy of M. Clearly, the ordering \leq of N is compatible with the orderings \leq on Λ and N_{λ} . For $\nu = (\lambda, \mu)$ we put

$$Z_{\nu} = Z_{\lambda}^{\mu}, \tag{16}$$

and for $\nu \leq \nu' = (\lambda', \mu')$, we define $r_{\nu\nu'} \colon Z_{\nu'} \to Z_{\nu}$ as the composition of the natural projection

$$Z_{\nu'} = Z_{\lambda'}^{\mu'} = \prod_{\zeta \leqslant \lambda'} X_{\zeta}^{\mu'} \to \prod_{\zeta \leqslant \lambda} X_{\zeta}^{\mu'} = Z_{\lambda}^{\mu'}$$
(17)

162

with the mapping $r_{\lambda}^{\mu\mu'}: Z_{\lambda}^{\mu'} \to Z_{\lambda}^{\mu}$. It is readily verified that **Z** is indeed an inverse system. Note that, for $\mu = \mu'$, $r_{\nu\nu'}$ is a surjection. We define $\mathbf{r} = (r_{\nu}): X \to \mathbf{Z}$ by putting

$$r_{\nu} = r_{\lambda}^{\mu} p_{\lambda}, \quad \nu = (\lambda, \mu). \tag{18}$$

Again it is easy to verify that *r* is a mapping.

Lemma 6. The mapping $\mathbf{r}: X \to \mathbf{Z}$ is compatible with the mappings $\mathbf{p}: X \to \mathbf{X}$ and $\mathbf{r}_{\lambda}: X_{\lambda} \to \mathbf{Z}_{\lambda}, \lambda \in \Lambda$. Moreover, if \mathbf{p} has property (B1), then so does \mathbf{r} .

Proof. Condition (iii) coincides with (16). Condition (iv) assumes the form

$$r_{\lambda}^{\mu} p_{\lambda\lambda'} = r_{\nu\nu'} r_{\lambda'}^{\mu'}.$$
(19)

It holds because, for $\zeta \leq \lambda$, the coordinate mappings of the left side of (19) equal $p_{\zeta}^{\mu} p_{\zeta\lambda} p_{\lambda\lambda'} = p_{\zeta}^{\mu} p_{\zeta\lambda'}$, while the corresponding coordinate mappings of the right side equal $p_{\zeta}^{\mu\mu'} p_{\zeta}^{\mu'} p_{\zeta\lambda'} = p_{\zeta}^{\mu} p_{\zeta\lambda'}$. If $\lambda = \lambda'$, then $r_{\nu\nu'} = r_{\lambda}^{\mu\mu'}$, which is condition (v). Finally, (vi) assumes the form (18).

Now assume that p has property (B1), and let \mathcal{U} be a normal covering of X. There exist a $\lambda \in \Lambda$ and a normal covering \mathcal{V} of X_{λ} such that $p_{\lambda}^{-1}(\mathcal{V})$ refines \mathcal{U} . By Lemma 5, there is a $\mu \in M$ and there is an open covering \mathcal{W} of Z_{λ}^{μ} such that $(r_{\lambda}^{\mu})^{-1}(\mathcal{W})$ refines \mathcal{V} and thus,

$$\left(r_{\lambda}^{\mu}p_{\lambda}\right)^{-1}(\mathcal{W}) \leqslant \mathcal{U}.$$
(20)

However, for $\nu = (\lambda, \mu)$, $Z_{\nu} = Z_{\lambda}^{\mu}$ and $r_{\nu} = r_{\lambda}^{\mu} p_{\lambda}$ and thus, $r_{\nu}^{-1}(\mathcal{W}) \leq \mathcal{U}$. \Box

6. Proof of Theorem 3 (Step 2)

We will now improve the construction described in Section 5 and obtain ANRresolutions $s_{\lambda}: X_{\lambda} \to S_{\lambda}, \lambda \in \Lambda$, and an ANR-resolution $s: X \to S$, compatible with pand $s_{\lambda}, \lambda \in \Lambda$. For $\lambda \in \Lambda$, let Γ_{λ} consist of all pairs $\gamma = (\mu, G)$, where $\mu \in M$ and G is an open neighborhood of the closure of $r_{\lambda}^{\mu}(X_{\lambda})$ in Z_{λ}^{μ} . Put $\gamma \leq \gamma' = (\mu', G')$ provided $\mu \leq \mu'$ and

$$r_{\lambda}^{\mu\mu}(G') \subseteq G. \tag{21}$$

Moreover, put $S_{\lambda}^{\gamma} = G$ and let $s_{\lambda}^{\gamma\gamma'} : S_{\lambda}^{\gamma'} \to S_{\lambda}^{\gamma}$ be the restriction $r_{\lambda}^{\mu\mu'} | G' : G' \to G$. It is well defined because of (21). Then $S_{\lambda} = (S_{\lambda}^{\gamma}, s_{\lambda}^{\gamma\gamma'}, \Gamma_{\lambda})$ is an inverse system of ANR's. We also define a mapping $s_{\lambda} = (s_{\lambda}^{\gamma}) : X_{\lambda} \to S_{\lambda}$, where the mapping $s_{\lambda}^{\gamma} : X_{\lambda} \to S_{\lambda}^{\gamma}, \lambda \in \Lambda$, are obtained by restricting the codomain of $r_{\lambda}^{\mu} : X_{\lambda} \to Z_{\lambda}^{\mu}$ to *G*. An immediate consequence of Lemma 2 is the following lemma.

Lemma 7. For every $\lambda \in \Lambda$, $s_{\lambda} : X_{\lambda} \to S_{\lambda}$ is an ANR-resolution, whose index set is directed and ordered.

We will now embed the systems S_{λ} in a system $S = (S_{\delta}, s_{\delta\delta'}, \Delta)$ as follows. Let

$$\Delta = \bigcup_{\lambda \in \Lambda} \Gamma_{\lambda}.$$
(22)

Then every element δ of Δ can be identified with a pair (ν, G) , where $\nu = (\lambda, \mu) \in \Lambda \times M$ and $(\mu, G) = \gamma \in \Gamma_{\lambda}$. Put $\delta \leq \delta'$ provided $\nu \leq \nu'$ and

$$r_{\nu\nu'}(G') \subseteq G. \tag{23}$$

Clearly, the ordering of Δ is compatible with the orderings of Λ and Γ_{λ} , $\lambda \in \Lambda$. For $\delta = (\nu, G)$, put $S_{\delta} = G$ and, for $\delta \leq \delta'$, let $s_{\delta\delta'} : S_{\delta'} \to S_{\delta}$ be the mapping obtained from $r_{\nu\nu'}$ by restricting its domain to G' and its codomain to G. We also consider a mapping $s = (s_{\delta}) : X \to S$, where $s_{\delta} : X \to S_{\delta}$ is obtained from $r_{\nu} : X \to Z_{\nu}$ by restricting its codomain to G. Notice that, by (18),

$$r_{\nu}(X) = r_{\lambda}^{\mu} p_{\lambda}(X) \subseteq r_{\lambda}^{\mu}(X_{\lambda}) \subseteq G.$$

Lemma 8. The mapping $s : X \to S$ is compatible with $p : X \to X$ and the ANR-resolutions $s_{\lambda} : X_{\lambda} \to S_{\lambda}, \lambda \in \Lambda$. Moreover, if $p : X \to X$ is a resolution, then $s : X \to S$ is an ANR-resolution.

Proof. Compatibility of *s* is easily verified. In particular, condition (iv) assumes the form $s_{\lambda}^{\gamma} p_{\lambda\lambda'} = s_{\delta\delta'} s_{\lambda'}^{\gamma'}$ and it holds because of (19). For $\lambda = \lambda'$, (v) assumes the form $s_{\delta\delta'} = s_{\lambda}^{\gamma\gamma'}$ and it holds because $r_{\nu\nu'} = r_{\lambda}^{\mu\mu'}$. Finally, (vi) holds, i.e., $s_{\delta} = s_{\lambda}^{\gamma} p_{\lambda}$, because of (18).

Now assume that p is a resolution. Let \mathcal{U} be a normal covering of X. By Lemma 6, r has property (B1). Therefore, there exist a $\nu \in N$ and an open covering \mathcal{V} of $Z_{\nu} = Z_{\lambda}^{\mu}$ such that $r_{\nu}^{-1}(\mathcal{V}) \leq \mathcal{U}$. For $G = Z_{\lambda}^{\mu}$, we see that $\delta = (\nu, G) \in \Delta$, $S_{\delta} = Z_{\lambda}^{\mu}$ and $s_{\delta} = r_{\nu}$. Therefore, \mathcal{V} is an open covering of S_{δ} such that $s_{\delta}^{-1}(\mathcal{V}) \leq \mathcal{U}$.

To verify condition (B2), consider an index $\delta = (\nu, G) \in \Delta$, an open covering \mathcal{V} of $S_{\delta} = G \subseteq Z_{\nu} = Z_{\lambda}^{\mu}$ and $\operatorname{St}(s_{\delta}(X), \mathcal{V})$. Let \mathcal{V}' be an open covering of *G*, which is a starrefinement of \mathcal{V} . Since $\overline{r_{\lambda}^{\mu}(X_{\lambda})} \subseteq G$, we conclude that

$$\mathcal{U} = \left(r_{\lambda}^{\mu}\right)^{-1}(\mathcal{V}') \tag{24}$$

is a normal covering of X_{λ} . By property (B2) for p, there is a $\lambda' \ge \lambda$ such that

$$p_{\lambda\lambda'}(X_{\lambda'}) \subseteq \operatorname{St}(p_{\lambda}(X), \mathcal{U}).$$
⁽²⁵⁾

Now consider the pair $\nu' = (\lambda', \mu)$, the mapping $r_{\nu\nu'} : Z_{\nu'} \to Z_{\nu}$ and the open set

$$G' = r_{\nu\nu'}^{-1}(G) \subseteq Z_{\nu'}.$$
(26)

By (19), one has

$$r_{\nu\nu'}(\overline{r_{\lambda'}^{\mu}(X_{\lambda'})}) \subseteq \overline{r_{\nu\nu'}r_{\lambda'}^{\mu}(X_{\lambda'})} = \overline{r_{\lambda}^{\mu}p_{\lambda\lambda'}(X_{\lambda'})} \subseteq \overline{r_{\lambda}^{\mu}(X_{\lambda})} \subseteq G$$
(27)

and thus,

$$\overline{r_{\lambda'}^{\mu}(X_{\lambda'})} \subseteq \overline{r_{\nu\nu'}^{-1}(G)} = G'.$$
(28)

164

Therefore, $\delta' = (\nu', G') \in \Delta$ and $\delta \leq \delta'$. Now consider the open covering \mathcal{W} of G', given by

$$\mathcal{W} = r_{\mathrm{uv}}^{-1}(\mathcal{V}'). \tag{29}$$

Recall that $s_{\lambda'}^{\gamma}$ is a restriction of $r_{\lambda'}^{\mu}$ and $S_{\lambda'}^{\gamma} = G'$, for $\gamma = (\mu, G') \in \Gamma_{\lambda'}$. Since $s_{\lambda'} : X_{\lambda'} \to S_{\lambda'}$ is a resolution, there exist an index $\mu' \ge \mu$ and an open set $G' \subseteq Z_{\lambda'}^{\mu'}$ such that $\delta' = (\nu', G') \in \Delta$, where $\nu' = (\lambda', \mu')$. Moreover,

$$r_{\lambda'}^{\mu\mu'}(G'') \subseteq \operatorname{St}(r_{\lambda'}^{\mu}(X_{\lambda'}), \mathcal{W}).$$
(30)

Consequently, by (29),

$$r_{\nu\nu'}r_{\lambda'}^{\mu\mu'}(G'') \subseteq \operatorname{St}(r_{\nu\nu'}r_{\lambda'}^{\mu}(X_{\lambda'}), \mathcal{V}').$$
(31)

However, by (19) (for $\mu' = \mu$), by (25) and by (24), one has

$$r_{\nu\nu'}r_{\lambda'}^{\mu}(X_{\lambda'}) = r_{\lambda}^{\mu}p_{\lambda\lambda'}(X_{\lambda'}) \subseteq r_{\lambda}^{\mu}\left(\operatorname{St}(p_{\lambda}(X),\mathcal{U})\right) \subseteq \operatorname{St}(r_{\lambda}^{\mu}p_{\lambda}(X),\mathcal{V}').$$
(32)

Since $s_{\delta\delta'} = r_{\nu\nu'}r_{\lambda'}^{\mu\mu'}$, $S_{\delta'} = G''$ and $s_{\delta} = r_{\lambda}^{\mu}p_{\lambda}$, (30) and (32) yield

$$s_{\delta\delta'}(S_{\delta'}) \subseteq \operatorname{St}\left(\operatorname{St}\left(s_{\delta}(X), \mathcal{V}'\right), \mathcal{V}'\right) \subseteq \operatorname{St}\left(s_{\delta}(X), \mathcal{V}\right), \tag{33}$$

which finally verifies (B2) for s. \Box

Note that Lemma 8 comes very close to proving Theorem 3. Indeed, only cofiniteness of the resolutions s_{λ} and s is missing.

7. Proof of Theorem 3 (Step 3)

In this section we will establish additional properties of the resolutions s_{λ} and s, needed in the final step of the proof. First observe that, in the above construction, we have associated with every index $\gamma = (\mu, G) \in \Gamma_{\lambda}$ an index $\gamma' = (\mu, G') \in \Gamma_{\lambda'}$, where $G' = r_{\nu\nu'}^{-1}(G)$, $\nu = (\lambda, \mu)$ and $\nu' = (\lambda', \mu)$. This defines a function $\rho_{\lambda\lambda'} : \Gamma_{\lambda} \to \Gamma_{\lambda'}$, $\rho_{\lambda\lambda'}(\gamma) = \gamma'$.

Lemma 9. The function $\rho_{\lambda\lambda'}: \Gamma_{\lambda} \to \Gamma_{\lambda'}$ is strictly increasing. For every $\gamma \in \Gamma_{\lambda}$, $\rho_{\lambda\lambda'}(\gamma) \ge \gamma$ in Δ . Moreover, $\rho_{\lambda\lambda} = id$ and, for $\lambda \le \lambda' \le \lambda''$,

$$\rho_{\lambda'\lambda''}\rho_{\lambda\lambda'} = \rho_{\lambda\lambda''}.\tag{34}$$

Proof. Let $\gamma_1, \gamma_2 \in \Gamma_{\lambda}$ and let $\gamma_1 = (\mu_1, G_1) \leq (\mu_2, G_2) = \gamma_2$. Then $\mu_1 \leq \mu_2$ and $r_{\lambda}^{\mu_1\mu_2}(G_2) \subseteq G_1$. Therefore, $\rho_{\lambda\lambda'}(\gamma_i) = \gamma'_i$, i = 1, 2, where $\gamma'_i = (\mu_i, G'_i)$, $G'_i = r_{\nu_i\nu'_i}^{-1}(G_i)$, $\nu_i = (\lambda, \mu_i)$, $\nu'_i = (\lambda', \mu_i)$, i = 1, 2. Note that $\nu_1 \leq \nu_2 \leq \nu'_2$ and $\nu_1 \leq \nu'_1 \leq \nu'_2$. Therefore, $r_{\nu_1\nu_2}r_{\nu_2\nu'_2} = r_{\nu_1\nu'_2} = r_{\nu_1\nu'_1}r_{\nu'_1\nu'_2}$. Since $r_{\nu_1\nu_2} = r_{\lambda}^{\mu_1\mu_2}$ and $r_{\nu'_1\nu'_2} = r_{\lambda'}^{\mu_1\mu_2}$, we conclude that

$$r_{\lambda}^{\mu_{1}\mu_{2}}r_{\nu_{2}\nu'_{2}} = r_{\nu_{1}\nu'_{1}}r_{\lambda'}^{\mu_{1}\mu_{2}}.$$
(35)

Since $r_{\nu_2\nu'_2}(G'_2) \subseteq G_2$ and $r_{\lambda}^{\mu_1\mu_2}(G_2) \subseteq G_1$, we conclude that

$$r_{\nu_1\nu'_1}r_{\lambda'}^{\mu_1\mu_2}(G_2') = r_{\lambda}^{\mu_1\mu_2}r_{\nu_2\nu'_2}(G_2') \subseteq r_{\lambda}^{\mu_1\mu_2}(G_2) \subseteq G_1,$$
(36)

and thus,

$$r_{\lambda'}^{\mu_1\mu_2}(G_2') \subseteq r_{\nu_1\nu'_1}^{-1}(G_1) = G_1', \tag{37}$$

which shows that $\gamma'_1 \leq \gamma'_2$, i.e., the function $\rho_{\lambda\lambda'}$ is increasing. Now assume that $\gamma_1, \gamma_2 \in \Gamma_{\lambda}$ and $\rho_{\lambda\lambda'}(\gamma_1) = \rho_{\lambda\lambda'}(\gamma_2) = \gamma' = (\mu, G')$. Then $\mu_1 = \mu_2 = \mu$ and $r_{\nu_1\nu_2}^{-1}(G_1) = r_{\nu_1\nu_2}^{-1}(G_2) = G'$. However, in this case $r_{\nu_1\nu_2}$ is a surjection and thus, $G_1 = G_2$, i.e., $\gamma_1 = \gamma_2$, which shows that $\rho_{\lambda\lambda'}$ is injective. If $\gamma = (\mu, G) \in \Gamma_{\lambda}$ and $\rho_{\lambda\lambda'}(\gamma) = \gamma' = (\mu, G') \in \Gamma_{\lambda'}$, then $G' = r_{\nu\nu'}^{-1}(G)$ and thus, (23) holds. Consequently, $\gamma \leq \rho_{\lambda\lambda'}(\gamma)$ in Δ . Next note that $\rho_{\lambda\lambda} = id$ is obviously fulfilled. To prove (34), let $\gamma = (\mu, G') \in \Gamma_{\lambda}$, $et \rho_{\lambda\lambda'}(\gamma) = \gamma'$ and let $\rho_{\lambda'\lambda''}(\gamma') = \gamma''$. Then $\gamma' = (\mu, G') \in \Gamma_{\lambda'}, \gamma'' = (\mu, G'') \in \Gamma_{\lambda''}$, where $G' = r_{\nu\nu'}^{-1}(G)$, $G'' = r_{\nu'\nu''}^{-1}(G')$ and $\nu = (\lambda, \mu)$, $\nu' = (\lambda', \mu)$, $\nu'' = (\lambda'', \mu)$. Note that $r_{\nu\nu'}r_{\nu'\nu''} = r_{\nu\nu''}$ because $\nu \leq \nu' \leq \nu''$. Therefore, $G'' = r_{\nu\nu''}^{-1}(G)$, which shows that $\rho_{\lambda\lambda''}(\gamma) = \gamma'' = \rho_{\lambda'\lambda''}(\gamma)$. \Box

Remark 1. For $\lambda \leq \lambda'$ we can define a mapping $p_{\lambda\lambda'}: S_{\lambda'} \to S_{\lambda}$ as follows. For the index function we take $\rho_{\lambda\lambda'}: \Gamma_{\lambda} \to \Gamma_{\lambda'}$. For $p_{\lambda\lambda'}^{\gamma}: S_{\lambda'}^{\rho_{\lambda\lambda'}(\gamma)} \to S_{\lambda}^{\gamma}$, $\gamma = (\mu, G)$, we take $r_{\nu\nu'}: G' \to G$, where $\nu = (\lambda, \mu)$ and $\nu' = (\lambda', \mu)$. By (35), $r_{\lambda}^{\mu_1 \mu_2} p_{\lambda\lambda'}^{\gamma_2} = p_{\lambda\lambda'}^{\gamma_1} r_{\lambda'}^{\mu_1 \mu_2}$, for $\gamma_1 \leq \gamma_2$, which implies that $p_{\lambda\lambda'} = (\rho_{\lambda\lambda'}, p_{\lambda\lambda'}^{\gamma})$ is indeed a mapping of systems. Note that, for $\lambda \leq \lambda'$,

$$\boldsymbol{s}_{\lambda}\boldsymbol{p}_{\lambda\lambda'} = \boldsymbol{p}_{\lambda\lambda'}\boldsymbol{s}_{\lambda'}.\tag{38}$$

Moreover, for $\lambda \leq \lambda' \leq \lambda''$,

$$\boldsymbol{p}_{\boldsymbol{\lambda}\boldsymbol{\lambda}'}\boldsymbol{p}_{\boldsymbol{\lambda}'\boldsymbol{\lambda}''} = \boldsymbol{p}_{\boldsymbol{\lambda}\boldsymbol{\lambda}''}.\tag{39}$$

Formula (38) shows that $p_{\lambda\lambda'}$ is an ANR-resolution of $p_{\lambda\lambda'}$.

8. Proof of Theorem 3 (Step 4)

Let $p = (p_{\lambda}): X \to X = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ be a cofinite resolution of topological spaces. Consider the ANR-resolutions $s_{\lambda} = (s_{\lambda}^{\gamma}): X_{\lambda} \to S_{\lambda} = (S_{\lambda}^{\gamma}, s_{\lambda}^{\gamma\gamma'}, \Gamma_{\lambda}), \lambda \in \Lambda$, and the ANR-resolution $s = (s_{\delta}): X \to S = (S_{\delta}, s_{\delta\delta'}, \Delta)$ from Lemmas 7 and 8. Moreover, consider the functions $\rho_{\lambda\lambda'}: \Gamma_{\lambda} \to \Gamma_{\lambda'}$ from Lemma 9. Application of the *-construction from Lemma 1 to s_{λ} yields cofinite ANR-resolutions $q_{\lambda} = (q_{\lambda}^{\alpha}): X_{\lambda} \to Y_{\lambda} = (Y_{\lambda}^{\alpha}, q_{\lambda}^{\alpha\alpha'}, A_{\lambda})$. Here A_{λ} are disjoint copies of Γ_{λ}^{*} and thus, consist of finite subsets $\alpha \subseteq \Gamma_{\lambda}$ having a terminal element $\overline{\alpha} \in \Gamma_{\lambda}$, while $Y_{\lambda}^{\alpha} = S_{\lambda}^{\overline{\alpha}}, q_{\lambda}^{\alpha\alpha'} = S_{\lambda}^{\overline{\alpha}}$ and $q_{\lambda}^{\alpha} = S_{\lambda}^{\overline{\alpha}}$. Put $B = \bigcup A_{\lambda}$ and note that every element $\beta \in B$ can be viewed as a pair $\beta = (\lambda, \alpha)$, where $\lambda \in \Lambda, \alpha \in \Gamma_{\lambda}^{*}$. Order B by putting $\beta \leq \beta' = (\lambda', \alpha')$, whenever $\lambda \leq \lambda'$ and

$$\rho_{\lambda\lambda'}(\alpha) \subseteq \alpha'. \tag{40}$$

166

That \leq is indeed an ordering is an immediate consequence of Lemma 9. Antisymmetry and directedness of \leq are also easily verified. To prove cofiniteness, consider an element $\beta' = (\lambda', \alpha') \in B$ and assume that $\beta = (\lambda, \alpha) \leq \beta'$. Then $\lambda \leq \lambda'$ and cofiniteness of Λ implies that there are only finitely many possible indices λ . Now fix such a λ . Since α' is a finite set, and by Lemma 9, $\rho_{\lambda\lambda'}$ is an injection, there are only finitely many subsets α satisfying (40).

For $\beta = (\lambda, \alpha) \in B$ put $Y_{\beta} = S_{\overline{\alpha}}$ and $q_{\beta} = s_{\overline{\alpha}}$. Moreover, for $\beta \leq \beta' = (\lambda', \alpha')$, put $q_{\beta\beta'} = s_{\overline{\alpha}\overline{\alpha'}}$. Note that (40) implies

$$\rho_{\lambda\lambda'}(\overline{\alpha}) = \overline{\rho_{\lambda\lambda'}(\alpha)} \leqslant \overline{\alpha'}.$$
(41)

Moreover, by Lemma 9, $\overline{\alpha} \leq \rho_{\lambda\lambda'}(\overline{\alpha})$ and thus, $\overline{\alpha} \leq \overline{\alpha'}$. Therefore, $q_{\beta\beta'}$ is well defined. It is now easy to see that $\mathbf{Y} = (Y_{\beta}, q_{\beta\beta'}, B)$ is an inverse system and $\mathbf{q} = (q_{\beta}) : X \to \mathbf{Y}$ is a mapping. Moreover, $\mathbf{q} : X \to \mathbf{Y}$ is an ANR-resolution, which is compatible with \mathbf{p} and \mathbf{q}_{λ} , $\lambda \in \Lambda$.

9. Proof of Theorem 1

This proof is a variation of the proof of Theorem 3. In the first step of the proof one uses the compact version of Lemma 4. Note that a product of finitely many compact polyhedra is a compact polyhedron. Therefore, the spaces Z_{λ}^{μ} are compact polyhedra. In the second step, instead of Lemma 2, one uses Lemma 3. All other steps remain unchanged.

References

- [2] O.V. Lokucievskiĭ, On the dimension of bicompacta, Dokl. Akad. Nauk SSSR 67 (1949) 217– 219 (in Russian).
- [3] A.L. Lunc, A bicompactum whose inductive dimension is larger than the covering dimension, Dokl. Akad. Nauk SSSR 66 (1949) 801–803 (in Russian).
- [4] S. Mardešić, On covering dimension and inverse limits of compact spaces, Illinois J. Math. 4 (1960) 278–291.
- [5] S. Mardešić, Strong Shape and Homology, Springer Monographs in Mathematics, Springer, Berlin, 2000.
- [6] S. Mardešić, J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
- [7] B.A. Pasynkov, On polyhedral spectra and dimension of bicompact and of bicompact groups, Dokl. Akad. Nauk SSSR 121 (1) (1958) 45–48 (in Russian).