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Abstract

Let a compact Hausdorff spacebe the limit of a cofinite inverse system of compact Hausdorff
spacesX;, X =limy X,. Then itis possible to express evexy as the limit of an inverse system of
compact polyhedr&”, X, = lim,, Yf, in such a way that the spacis = qu can be organized in
an inverse system with ligy, = limy lim,, YA“. Using ANR-resolutions, the result is generalized to
non-compact spaces. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let X = (X;, pyv, A) be an inverse system of topological spaces, indexed by a directed
setA, and letp: X — X be a mapping of a topological spaketo X, i.e., a collection of
mappingp;, : X — X, A € A, such that

PPy =pr, ASA. (1)

Moreover, for everyx € A, let ¥, = (Y“,qf“/,M,\) be an inverse system and let
q, : X, — Y, be a mapping consisting of mapping%:XA — YA“. There is no loss of
generality in assuming that the index séfs and M, are disjoint, fora = A’, and thus,
every element of the set

N = UMA 2

reA
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admits a unique. € A such that € M,. Consequently, elementse N can be identified
with pairs(A, ), wherex € A andu € M, . For a directed ordering of N, we will say
that it is compatiblewith the orderings< of A and M, , A € A, provided the following
conditions hold:

@A) If v=(, p) andv' =@/, 1), thenv <v' impliesa < A/.

(i) For everyi € A, the ordering< of N restricted toM, coincides with the original

ordering< of M;,.

Letg = (¢qv): X — Y be a mapping, wherE = (Y,, g,,», N) is an inverse system and
N is given by (2). We will say thag is compatiblewith p andg,, A € A, provided the
ordering of N is compatible with the orderings of and M;, 1 € A, and the following
conditions hold:

@iy Yo=Y/, v=(,pn).

V) ¢ prr = qug  forv=0u, ) < W, 1) = 1.

V) qur =i forv= () < G ) =v'.

(Vi) gv=q; pa, forv=(x, ).

In this paper we will prove the following result.

Theorem 1. Let X = (Xy, p,v, A) be a cofinite inverse system of compact Hausdorff
spaces and lep : X — X be its limit. Then there exist cofinite inverse systems of compact
polyhedraY;, with limitsq, : X, — Y, A € A, which admit a cofinite inverse systdm
whose limitg : X — Y is compatible withp andg,, A € A.

The question whether such an assertion holds was raised during a talk, given by
Yu.T. Lisitsa, at the 1998 Dubrovnik Conference on Geometric Topology.

We call a directed seA cofiniteif it is ordered (anti-symmetry holds) and every element
has a finite number of predecessors. Cofinite systems play an important role in shape theory
(see [6,5]).

To realize that Theorem 1 states a non-trivial assertion, we will first prove the following
result.

Theorem 2. There exists a cofinite inverse system of compact metric spices
(X, pa, A) with limit p: X — X and there exist inverse sequences of compact polyhedra
Y, = (Y",qi‘“’,Mx) with limits ¢, : X, — Y, A € A, such that there is no inverse
systemY, which is formed by polyhedr#* and X is its limit. Consequently, there is
no inverse syster# with limit ¢ : X — Y, which is compatible witlp andgq;, A € A.

Our main result is Theorem 3, which is a version of Theorem 1, valid for arbitrary
spaces. The role of limits is taken up by resolutions (see 1.6 of [6]) and the role of compact
polyhedrais taken up by ANR’s (for metric spaces).

Theorem 3. LetX = (X;, pyy, A) be a cofinite inverse system of topological spaces and
let p: X — X be a resolution. Then there exist cofinite ANR-resolutippsX, — Y,
A € A, which admit a cofinite resolutiog: X — Y compatible withp andg,, A € A.
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2. An example which proves Theorem 2

Let X be a compact Hausdorff space, whose covering dimensioXdiid and whose
inductive dimension ind = 2. Such spaces were constructed in 1949 by Lunc [3] and
Lokucievski [2]. By a result from [4], dimX = 1 implies the existence of a cofinite
systemX = (X;, p,., A) of metric compacta such that dixh =1 andX = lim X. On
the other hand, by a classical result of Freudenthal [1] (also see [4]Xdinl implies
that X;, is the limit of an inverse sequendg, of compact polyhedrd;" of dimension
dim YA“ = 1. However, the polyhedr}é,{‘ cannot be organized in an inverse systémith
limit lim Y = X, because no compact Hausdorff spaceith dimX =1 and indX =2 is
obtainable as the limit of an inverse system formed by compact 1-dimensional polyhedra
(see [7,4]).

3. Resolutions of spaces

Resolutions of a spac& are mappingy = (py): X — X = (X, p,., A), which
satisfy two additional conditions:
(B1) For every normal (numerable) coveribgof X, there is ax € A and there is
a normal coverind/, of X, such that the covering;l(uk) refinesi(; this is
denoted by

Pt <U. ®)
(B2) For everyx € A and every normal coveririg, of X;, there is a’ > A such that

pan (X)) S St(pa(X), Uy). (4)

If all X, are normal spaces, condition (B2) can be replaced by the equivalent condition:
(B2) For everyr € A and every open neighborhodd of the closurep; (X) in X;,
there is a»’ > A such that

v (X)) CU. (%)

It is well known that, forX, Tychonoff andX topologically complete (e.g., fok
paracompact), every resolutign X — X is an inverse limit. Furthermore, X and X,
are compact Hausdorff spaces, also the converse holds, ig: Xif— X is an inverse
limit, then p is a resolution. It is also known that every topological spAcadmits an
ANR-resolutionp: X — X, i.e., a resolution where ak; are ANRs (for metric spaces).
Similarly, every compact Hausdorff spa&eadmits a resolutiop : X — X, where allX;,
are compact polyhedra, i.€X, is the limit of an inverse system of compact polyhedra. For
the proofs of these results see, for instance, the books [6,5].

There is a construction which associates with every inverse sykten(X;, p,., A4),
indexed by a directed ordered sdt, a cofinite systemX* = (X, p ., A*) and it
associates with every mapping= (p,): X — X a mappingp* = (p}): X — X*. By
definition, A* consists of all finite subsets of A, with the ordering inherited from,
and such that they have a terminal element, denoted Because of anti-symmetry, is
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uniquely determined by. The ordering< of A* is just the inclusiorc. Note thatv; < a2
implies &1 < 2. By definition, X} = Xz and, fora; < ap, Pfilaz = pma,- Moreover,
P = pa. Note that every term fronlX* is a term fromX.

Lemmal. If p: X — X is aresolution, then alsp*: X — X* is a resolution. Moreover,
if X consists of ANR’sof compact polyhediathen so doeX *.

The proof is easy (see Lemma 6.31 of [5]) and we omit it.

4. Sometechnical lemmason resolutions

To state the first of these lemmas, we describe a construction which applies to any
mappingp = (py): X — X = (X;, pav, A). Let I' be the set which consists of all pairs
y = (A, G), wherei € A andG is an open neighborhood of the closyrg X) in X, . We
orderI” by puttingy <y’ = (1, G’) providedi < A" and

pu(G) S G. (6)

Note thatl” is directed and ordered providetl has these properties. For= (4, G),
letY, =G and, fory <y’, letg,, .Y, — Y, be the restriction;, |G’ : G’ — G, which
is well defined, because of (6). Clearly,= (Y), q,,, I') is an inverse system. We also
define a mapping = (¢,): X = Y. If y =(,G), ¢, : X — Y, = G is the restriction
X—>GCX,of pp: X— X,.

Lemma2. If p: X — X has property(B1) and all X, are ANRs, theg:Y — Y is an
ANR-resolution.

Proof. First note that the spacd§ = G are ANRs, because they are open subsets of
ANRSs X,. If U is a normal covering ok, then (B1) forp yields ax € A and a normal
coveringV of X, such tham;l(V) refinesl/. However, the paiy = (i, X,) belongs to
I',Y, =X, andg, = p,. Therefore) is an open covering of, andq;l(V) refinesi/,
which proves (B1) fog. Now assume that = (A, G) € I" andU is an open neighborhood

of the closure ofg, (X) in Y, = G. Clearly, this closure coincides with the closure of
p(X) in X;. Thereforey’ = (A, U) belongs tal” andy < y’, because;, (U) =U C G.
HoweverY, = U andg,,(Y,/) = U, which shows thag also has propert§B2)’. O

If X is a compact Hausdorff space add= (X;, pyy/, A) is an inverse system of
compact polyhedra, we modify the above construction by takingfall pairs (1, P),
whereP is a compact polyhedron which is also a neighborhoogh@¥) in X, . Denoting
the resulting objects by’ andg’, we have the following lemma.

Lemma3. If X and X, are compact Hausdorff spaces apdX — X has propertyBl),
thenY’ is an inverse system of compact polyhedra ahd( — Y’ is its limit.
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In the next section we will also need the following lemma (only property (B1) will be
used).

Lemma4. Let(X,, A € A) be a family of topological spaces. Then the spakgsadmit
ANR-resolutiong, : X, — Y, = (¥}, qf“ M), ) € A, all indexed by the same ordered
setM. If all X, are compact Hausdorff spaces, one can achieve tha‘&tk’élhre compact
polyhedra and thugy; : X5 — Y, A € A, are inverse limits.

Proof. For € A, there exist a cofinite inverse systetn = (X}, pk” , M,), consisting
of ANRs, and a resolutiop, = (pﬁf) : X, — X,. Let the set

M = I_I M, (7)

reA

be endowed with the product ordering. Recall thain’ € M are functionsn, m’: A —
Usea My such thatm(r), m’'(x) € My, » € A, and one hasn < m’ if and only if
m(A) <m’(A) in My, forall A € A. Since the setdf;, A € A, are directed and ordered, so
is M. Consider an arbitrary € A. We define an inverse systel) = (¥}", q;"’”’, M) by
putting

Y/ =xr%, (8)
! Am' (A
q;nm :p;"( ym'( ). (9)

Moreover, we define a mapping = (¢;") : X;,. — Y, by putting
q; —pk()X—>Ym (10)

Let us verify thalg, has properties (B1) an@®2)’ and thus, it is an ANR-resolution.

If U is a normal covering ofX,, then, by (B1) forp,, there is an indexx € M,
and there is an open covering of X‘A‘ such that(p’;)‘l(V) refinesid. Let m e M
be a function withm(L) = u, having arbitrary values: (1)) € My, for A’ # A. Then
Y = x"™ = x/* andV is an open covering of". Moreover,g”" = pi"® = p/* and
thus, (¢/)~1(V) = (pi)~1(V) refinests. This establishes property (B1). To verif2)’,

assume that: € M andU is an open neighborhood of the closure

(X)) = pi'P(xy)

inYy" = X;”(”. By property(B2)’, for p,, there is an index’ > m (1) from M, such that
p;"(”“ (X}') C U. Choose a functiom’ € M such thatn’(A) = &/ andm’ (X)) > m(1'),
for A £ A. Thenm’ > m and

qmm (Ym ) _ p;n(k)m’(k) (X;n’(k)) _ p;n(k)u’ (X;kt’) cu. (11)

In the compact case one chooses¥grinverse systems of compact polyhedra and one
proceeds as in the general casel
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5. Proof of Theorem 3 (Step 1)

The proof of Theorem 3 proceeds in several stepsX_ et (X;, p,y, A) be a cofinite
inverse system of topological spaces anglet (p,) : X — X be amapping. By Lemma4,
there exists a directed ordered 8€such that every;, , A € A, admits an ANR-resolution
Py =P Xn— X = (XY}, pf“/, M), indexed by the sg¥. For everyx € A, we define
anew inverse system, = (2", ", M) as follows. Put

ZAM:;DAX?’ reEA, weM. (12)

SinceA is cofinite, Z{’ is the product of a finite collection of ANRs, hence, it is an ANR.

Forp </, definer! : " — 7!* as the mapping
rf“/zﬂp““/:HX“,ﬁﬂX“ (13)

< S e e Y

We also define a mapping, = (r}'): X, — Z;, wherer} 1 X, — Z}', 1 € A, is
determined by the coordinate mappingsp¢,.: X, — X}, ¢ <.

Lemmab5. For everyi € A, the mapping-, : X, — Z, has propertyB1).

Proof. Letl/ be a normal covering ok, . By property (B1) forp,, there exist an index
w € M and an open covering of X‘A‘ such that(pi‘)‘l(V) refinesl/. Consider the open
coveringV of Z!, consisting of the sets

W= (DA X?) x V, (14)
whereV € V. Clearly,
()" om =() "o, (15)

and thus(ri)~t(W) refinesd. O

The advantage of the mappings over the mappingyp, lies in the fact thatp
andr,, A € A, admit a systemZ and a compatible mapping: X — Z. Indeed, let
Z=(Z, r,,N), whereN = A x M is ordered coordinatewise, i.e.nif= (A, u) and
v =, 1), thenv <V if and only if A < X" and u < p’. Note thatN = (J, ., Na,
whereN, = {1} x M is a copy ofM. Clearly, the ordering< of N is compatible with the
orderings< on A andN,,. Forv = (&, u) we put

zZ,=1Z}, (16)

and forv <v' = (\/, '), we definer,, : Z,, — Z, as the composition of the natural
projection

i w wo_ o
Zy =27l —{|:|NX§ —>§|:|AX§ =zl (17)



S. Mardedi; N. Uglest’/ Topology and its Applications 120 (2002) 157-167 163

with the mapping** : " — z!*. Itis readily verified thaZ is indeed an inverse system.
Note that, foru = i/, r,,,/ is a surjection. We define= (r,,) : X — Z by putting

rl):r)lfp)u V:()\,, ,bL) (18)

Again it is easy to verify that is a mapping.

Lemma 6. The mappingr: X — Z is compatible with the mappings: X — X and
r,: Xy — Z,, . € A. Moreover, ifp has propertyB1), then so does.

Proof. Condition (iii) coincides with (16). Condition (iv) assumes the form

r)lfp)\)L’er’r){l/‘ (19)

It holds because, for < A, the coordinate mappings of the left side of (19) equal
pé‘pup,w = pé‘pw, while the corresponding coordinate mappings of the right side
equalp’g“/p’{‘/pw = py pew- If =2, thenr,, = r)lf“/, which is condition (v). Finally,
(vi) assumes the form (18).

Now assume thgp has property (B1), and |ét be a normal covering of. There exist
ai € A and a normal coveriny of X; such thatn;l(V) refines/. By Lemma 5, there is
au € M and there is an open coveriiy of Zi‘ such tha(r){‘)‘l()/v) refinesy and thus,

(r“p2) Fov) <UL (20)

However, forv = (&, ), Z, = Z}" andr, = rl' p; and thus;; 1OV) <U. O

6. Proof of Theorem 3 (Step 2)

We will how improve the construction described in Section 5 and obtain ANR-
resolutionss; : X, — S,, A € A, and an ANR-resolutios: X — §, compatible withp
ands;, A € A. Fora € A, let I, consist of all pairyy = (u, G), whereuw € M andG is
an open neighborhood of the closurergf(X;) in Z}'. Puty <y’ = (&, G’) provided
pn<p and

F(Gh S G. (21)

Moreover, puts! = G and lets!” :s?" — 7 be the restriction" |G': G’ — G. It is
well defined because of (21). Théq = (57, s;”’/, I}) is an inverse system of ANR’s. We
also define a mapping = (s} ) : X;, — S, where the mappingg : X, — S/, > € A, are
obtained by restricting the codomaingf: X; — Z' to G. An immediate consequence
of Lemma 2 is the following lemma.

Lemma 7. For every A € A, s,: X, — S, is an ANR-resolution, whose index set is
directed and ordered.
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We will now embed the systen$, in a systemS = (Ss, ss57, A) as follows. Let

A= U . (22)

Then every elemerstof A can be identified with a pa{w, G), wherev = (A, u) € A x M
and(u, G) = y € I,. Puts < 8’ providedv < v' and

rvv’(G/) cG. (23)

Clearly, the ordering ofA is compatible with the orderings of and I, » € A. For
8= (v,G), putSs =G and, fors <&, letsss : Sy — Ss be the mapping obtained from
ryw by restricting its domain t@’ and its codomain t@;. We also consider a mapping
s = (s5): X — S, wheress: X — S; is obtained fromr,: X — Z, by restricting its
codomain toG. Notice that, by (18),

ro(X) =r} pa(X) Sr)(X3) CG.

Lemma8. The mapping : X — S is compatible withp : X — X and the ANR-resolutions
$,:X, — S,, L € A. Moreover, if p: X — X is a resolution, thers: X — S is an
ANR-resolution.

Proof. Compat|b|I|ty ofs is easily verified. In particular, condition (iv) assumes the form
sy paw = sss's;, and it holds because of (19). Fbe= A/, (v) assumes the formy = s”’

and it holds becausg, =r; H . Finally, (vi) holds, i.e.ss = sA P, because of (18).

Now assume that is a resolution. Let/ be a normal covering of. By Lemma 67 has
property (B1). Therefore, there exist@& N and an open covering of Z, = Z}' such that
roY(V) <U.ForG = ZI', we see that = (v, G) € A, S5 = Z}' andss =r,. Therefore)
is an open covering ofs such thatva‘l(V) <U.

To verify condition (B2), consider an indek= (v, G) € A, an open coveringy of
Ss=GCZ,= Zf{ and Sts;(X), V). Let V' be an open covering af, which is a star-
refinement ofy. Sincerf(XA) C G, we conclude that

U=t (24)
is a normal covering ok ;. By property (B2) forp, there is a’ > A such that
P (Xo) € St(pa(X), U). (25)

Now consider the paiv’ = (1’, u), the mapping,.. : Z,» — Z,, and the open set

G'=rHG)C Zy. (26)
By (19), one has

rov (5, (X)) S rywrs (Xor) =1 par (X)) Srif(X3) € G (27)
and thus,

(X Sro(G) =G (28)
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Therefores’ = (v/, G') € A ands < §’. Now consider the open coverigy of G’, given
by
W=r V). (29)

Recall thats;, is a restriction of}, andS), = G’, for y = (1, G') € I';y. Sinces; : X0 —
S,/ is a resolution, there exist an indeX > u and an open set’ C Zf\‘,, such that

8 =@, G") e A, wherev' = (), u'). Moreover,

(G S (X, W), (30)
Consequently, by (29),

rowri (G") € St{rwrfy(Xa), V). (31)
However, by (19) (fo’ = w), by (25) and by (24), one has

rovry (X)) =1 e (Xo0) S rif (St(pa(X), U)) € Sty pr(X), V). (32)
Sincessy = ro !, Sy = G” andss = r!* p;, (30) and (32) yield

555 (Ss) € SH(St(s5(X), V'), V') € St(ss(X), V), (33)

which finally verifies (B2) fors. O

Note that Lemma 8 comes very close to proving Theorem 3. Indeed, only cofiniteness
of the resolutions; ands is missing.

7. Proof of Theorem 3 (Step 3)

In this section we will establish additional properties of the resolutignsnd s,
needed in the final step of the proof. First observe that, in the above construction, we
have associated with every index= (i, G) € I, an indexy’ = (u, G) € I'y/, where
G' =r;}G), v=(,p andv = (\,p). This defines a function,; : Iy — Iy,

o (V) =vy'.

Lemma9. The functiorp,, : I'. — I is strictly increasing. For every € I, oy (y) =
y in A. Moreover,p;; =id and, foraA <A’ <",

PR PAN = PAA - (34)

Proof. Let y1,y2 € I, and lety; = (u1, G1) < (u2, G2) = y2. Then ug < pz and
r*2(G2) € Gi1. Therefore,p,/ (i) = v';, i = 1,2, wherey/; = (i, G'y), G'i =
”V_.Vl;(Gi), vi = (A, mi), v = (M, i), i =1,2. Note thatvy < vz <5 andvy < vy < v,

Therefore’rvlvzrvwé = rvlvé = Ty Fv'qv/s- Sincervlvz = r}lfl#z and Fuiqvy = r)/f,lp“zl we

conclude that

w12 _ pip2
Py 7 o'y = Fopug Iy e (35)
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Sincer,,,,(G5) € G2 andr;**2(G2) € G1, we conclude that

Vvlv’lr);f/luz (G/z) )lf 1z Fuov'y (G/z) - V)lfluz (G2) € Gy, (36)
and thus,

51#2 (G2) = vlv 1(G1) - (37)
which shows thaty’; < v/5, i.e., the functionp,; s is increasing. Now assume that
y1.v2 € Iy andpyu (y1) = paw (v2) =y’ = (n, G'). Thenuy = pp = p andr; L (G1) =

vlvz(GZ) G’. However, in this casevle is a surjection and thusyi = G, i.e.,
y1 = y2, which shows thaip,,  is injective. If y = (1, G) € I, and py(y) =y’ =
(u,G") € Iy, thenG' = r, ;(G) and thus, (23) holds. Consequently,< p;;/(y) in
A. Next note thatp,, = id is obviously fulfilled. To prove (34), Iej/ =(u,G) e I,
let ;. (y) =y and letp;, M(V’) =y”. Theny' = (u,G") e Iy, y" = (n,G") € Ny,
whereG' =r (G), G" =r), ,,(G) andv =, w), vV =0, w, v =0", u. Note
thatr,,ryyr = rypr because) <V <’ Therefore,G” = r ,(G), which shows that
o (V) =y" = pyar o (y). O

Remark 1. For A < A’ we can define a mapping,,.: S,y — S, as follows. For the
index function we takep,, : I, — I For p/}{k,'SpW(Y) — 8V, ¥ = (1, G), we take

.G — G, wherev = (A, n) andv’ = (M, u). By (35), r“”‘zpﬁ, = pl5r 2, for
y1 < y2, which implies thatp,,» = (o, pM,) is indeed a mapping of systems. Note that,
fora <A/,

$3Pw = PoSi- (38)

Moreover, forh <A <17,

PPy = Puy- (39)

Formula (38) shows tha, ;. is an ANR-resolution op; ;.

8. Proof of Theorem 3 (Step 4)

Let p=(py):X - X = (Xy, ppyv, A) be a cofinite resolution of topological spaces.
Consider the ANR-resolutions, = (s} ): X, — S, = (5], s} vy’ , 1), » € A, and the
ANR-resolutions = (ss) : X — S = (S;s, 555, A) from Lemmas 7 and 8. Moreover, con-
sider the functiong;, : I — I, from Lemma 9. Application of the-construction from
Lemma 1 tos; yields cofinite ANR-resolutiong; = (¢¥): X, — Y, = (YY. ¢ "“"', Ay).
HereA,, are disjoint copies of ;" and thus, consist of finite subsets- I, having a termi-
nal elemen® € I, while Y2 = 57, g% = 57 andq? = s7. PutB = | A, and note that
every elemeng € B can be V|ewed as a par= (A, «), wherer € A, « € I';'. OrderB
by putting8 < 8’ = (), «’), wheneven < A’ and

P () Ca'. (40)
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That < is indeed an ordering is an immediate consequence of Lemma 9. Antisymmetry
and directedness &f are also easily verified. To prove cofiniteness, consider an element
B = (\,a') € B and assume that = (A, a) < B’. Theni < A’ and cofiniteness oft
implies that there are only finitely many possible indizge®ow fix such ai. Sincea’ is
a finite set, and by Lemma 9y, is an injection, there are only finitely many subsets
satisfying (40).

For 8 = (A, «) € B put Yg = Sy andgg = sg. Moreover, forg < g’ = (A, «’), put
qpp’ = S5~ Note that (40) implies

P (@) = p (@) <o (41)

Moreover, by Lemma % < p,v (@) and thusw < o'. Thereforeggg is well defined. It
is now easy to see that = (Y, ggg’, B) is an inverse system ad= (¢g): X — Y isa
mapping. Moreovey : X — Y is an ANR-resolution, which is compatible wighandg, ,

L e A

9. Proof of Theorem 1

This proof is a variation of the proof of Theorem 3. In the first step of the proof one uses
the compact version of Lemma 4. Note that a product of finitely many compact polyhedra
is a compact polyhedron. Therefore, the spe@?sare compact polyhedra. In the second
step, instead of Lemma 2, one uses Lemma 3. All other steps remain unchanged.
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