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Abstract

Let a compact Hausdorff spaceX be the limit of a cofinite inverse system of compact Hausdorff
spacesXλ, X = limλ Xλ. Then it is possible to express everyXλ as the limit of an inverse system of
compact polyhedraYµλ , Xλ = limµ Y

µ
λ , in such a way that the spacesYν = Y

µ
λ can be organized in

an inverse system with limν Yν = limλ limµ Y
µ
λ . Using ANR-resolutions, the result is generalized to

non-compact spaces. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let X = (Xλ,pλλ′,Λ) be an inverse system of topological spaces, indexed by a directed
setΛ, and letp :X → X be a mapping of a topological spaceX to X, i.e., a collection of
mappingspλ :X →Xλ, λ ∈Λ, such that

pλλ′pλ′ = pλ, λ� λ′. (1)

Moreover, for everyλ ∈ Λ, let Y λ = (Y
µ
λ , q

µµ′
λ ,Mλ) be an inverse system and let

qλ :Xλ → Y λ be a mapping consisting of mappingsqµλ :Xλ → Y
µ
λ . There is no loss of

generality in assuming that the index setsMλ andMλ′ are disjoint, forλ �= λ′, and thus,
every elementν of the set

N =
⋃
λ∈Λ

Mλ (2)
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admits a uniqueλ ∈Λ such thatν ∈ Mλ. Consequently, elementsν ∈ N can be identified
with pairs(λ,µ), whereλ ∈ Λ andµ ∈ Mλ. For a directed ordering� of N , we will say
that it is compatiblewith the orderings� of Λ andMλ, λ ∈ Λ, provided the following
conditions hold:

(i) If ν = (λ,µ) andν′ = (λ′,µ′), thenν � ν′ impliesλ� λ′.
(ii) For everyλ ∈ Λ, the ordering� of N restricted toMλ coincides with the original

ordering� of Mλ.
Let q = (qν) :X → Y be a mapping, whereY = (Yν, qνν ′,N) is an inverse system and

N is given by (2). We will say thatq is compatiblewith p andqλ, λ ∈ Λ, provided the
ordering ofN is compatible with the orderings ofΛ andMλ, λ ∈ Λ, and the following
conditions hold:

(iii) Yν = Y
µ
λ , ν = (λ,µ).

(iv) q
µ
λ pλλ′ = qνν ′qµ

′
λ′ , for ν = (λ,µ)� (λ′,µ′)= ν′.

(v) qνν ′ = q
µµ′
λ , for ν = (λ,µ)� (λ,µ′)= ν′.

(vi) qν = q
µ
λ pλ, for ν = (λ,µ).

In this paper we will prove the following result.

Theorem 1. Let X = (Xλ,pλλ′,Λ) be a cofinite inverse system of compact Hausdorff
spaces and letp :X → X be its limit. Then there exist cofinite inverse systems of compact
polyhedraY λ with limits qλ :Xλ → Y λ, λ ∈ Λ, which admit a cofinite inverse systemY ,
whose limitq :X → Y is compatible withp andqλ, λ ∈Λ.

The question whether such an assertion holds was raised during a talk, given by
Yu.T. Lisitsa, at the 1998 Dubrovnik Conference on Geometric Topology.

We call a directed setΛ cofiniteif it is ordered (anti-symmetry holds) and every element
has a finite number of predecessors. Cofinite systems play an important role in shape theory
(see [6,5]).

To realize that Theorem 1 states a non-trivial assertion, we will first prove the following
result.

Theorem 2. There exists a cofinite inverse system of compact metric spacesX =
(Xλ,pλλ′,Λ) with limit p :X → X and there exist inverse sequences of compact polyhedra

Y λ = (Y
µ
λ , q

µµ′
λ ,Mλ) with limits qλ :Xλ → Y λ, λ ∈ Λ, such that there is no inverse

systemY , which is formed by polyhedraYµ
λ and X is its limit. Consequently, there is

no inverse systemY with limit q :X → Y , which is compatible withp andqλ, λ ∈Λ.

Our main result is Theorem 3, which is a version of Theorem 1, valid for arbitrary
spaces. The role of limits is taken up by resolutions (see I.6 of [6]) and the role of compact
polyhedra is taken up by ANR’s (for metric spaces).

Theorem 3. LetX = (Xλ,pλλ′,Λ) be a cofinite inverse system of topological spaces and
let p :X → X be a resolution. Then there exist cofinite ANR-resolutionsqλ :Xλ → Y λ,
λ ∈Λ, which admit a cofinite resolutionq :X → Y compatible withp andqλ, λ ∈Λ.
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2. An example which proves Theorem 2

Let X be a compact Hausdorff space, whose covering dimension dimX = 1 and whose
inductive dimension indX = 2. Such spaces were constructed in 1949 by Lunc [3] and
Lokucievskĭı [2]. By a result from [4], dimX = 1 implies the existence of a cofinite
systemX = (Xλ,pλλ′,Λ) of metric compacta such that dimXλ = 1 andX = lim X. On
the other hand, by a classical result of Freudenthal [1] (also see [4]), dimXλ = 1 implies
thatXλ is the limit of an inverse sequenceY λ of compact polyhedraYµ

λ of dimension
dimY

µ
λ = 1. However, the polyhedraYµ

λ cannot be organized in an inverse systemY with
limit lim Y =X, because no compact Hausdorff spaceX with dimX = 1 and indX = 2 is
obtainable as the limit of an inverse system formed by compact 1-dimensional polyhedra
(see [7,4]).

3. Resolutions of spaces

Resolutions of a spaceX are mappingsp = (pλ) :X → X = (Xλ,pλλ′,Λ), which
satisfy two additional conditions:

(B1) For every normal (numerable) coveringU of X, there is aλ ∈ Λ and there is
a normal coveringUλ of Xλ such that the coveringp−1

λ (Uλ) refinesU ; this is
denoted by

p−1
λ (Uλ)� U . (3)

(B2) For everyλ ∈Λ and every normal coveringUλ of Xλ, there is aλ′ � λ such that

pλλ′(Xλ′)⊆ St
(
pλ(X),Uλ

)
. (4)

If all Xλ are normal spaces, condition (B2) can be replaced by the equivalent condition:
(B2)′ For everyλ ∈ Λ and every open neighborhoodU of the closurepλ(X) in Xλ,

there is aλ′ � λ such that

pλλ′(Xλ′)⊆U. (5)

It is well known that, forXλ Tychonoff andX topologically complete (e.g., forX
paracompact), every resolutionp :X → X is an inverse limit. Furthermore, ifX andXλ

are compact Hausdorff spaces, also the converse holds, i.e., ifp :X → X is an inverse
limit, then p is a resolution. It is also known that every topological spaceX admits an
ANR-resolutionp :X → X, i.e., a resolution where allXλ are ANRs (for metric spaces).
Similarly, every compact Hausdorff spaceX admits a resolutionp :X → X, where allXλ

are compact polyhedra, i.e.,X is the limit of an inverse system of compact polyhedra. For
the proofs of these results see, for instance, the books [6,5].

There is a construction which associates with every inverse systemX = (Xλ,pλλ′,Λ),
indexed by a directed ordered setΛ, a cofinite systemX∗ = (X∗

α,p
∗
αα′,Λ∗) and it

associates with every mappingp = (pλ) :X → X a mappingp∗ = (p∗
α) :X → X∗. By

definition,Λ∗ consists of all finite subsetsα of Λ, with the ordering inherited fromΛ,
and such that they have a terminal element, denoted byα. Because of anti-symmetry,α is
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uniquely determined byα. The ordering� of Λ∗ is just the inclusion⊆. Note thatα1 � α2

implies α1 � α2. By definition,X∗
α = Xα and, forα1 � α2, p∗

α1α2
= pα1α2. Moreover,

p∗
α = pα . Note that every term fromX∗ is a term fromX.

Lemma 1. If p :X → X is a resolution, then alsop∗ :X → X∗ is a resolution. Moreover,
if X consists of ANR’s(of compact polyhedra), then so doesX∗.

The proof is easy (see Lemma 6.31 of [5]) and we omit it.

4. Some technical lemmas on resolutions

To state the first of these lemmas, we describe a construction which applies to any
mappingp = (pλ) :X → X = (Xλ,pλλ′,Λ). Let Γ be the set which consists of all pairs
γ = (λ,G), whereλ ∈Λ andG is an open neighborhood of the closurepλ(X) in Xλ. We
orderΓ by puttingγ � γ ′ = (λ′,G′) providedλ� λ′ and

pλλ′(G′)⊆G. (6)

Note thatΓ is directed and ordered providedΛ has these properties. Forγ = (λ,G),
let Yγ =G and, forγ � γ ′, let qγ γ ′ :Yγ ′ → Yγ be the restrictionpλλ′ |G′ :G′ →G, which
is well defined, because of (6). Clearly,Y = (Yγ , qγ γ ′,Γ ) is an inverse system. We also
define a mappingq = (qγ ) :X → Y . If γ = (λ,G), qγ :X → Yγ = G is the restriction
X →G⊆Xλ of pλ :X →Xλ.

Lemma 2. If p :X → X has property(B1) and all Xλ are ANRs, thenq :Y → Y is an
ANR-resolution.

Proof. First note that the spacesYγ = G are ANRs, because they are open subsets of
ANRs Xλ. If U is a normal covering ofX, then (B1) forp yields aλ ∈ Λ and a normal
coveringV of Xλ such thatp−1

λ (V) refinesU . However, the pairγ = (λ,Xλ) belongs to
Γ , Yγ = Xλ andqγ = pλ. Therefore,V is an open covering ofYγ andq−1

γ (V) refinesU ,
which proves (B1) forq . Now assume thatγ = (λ,G) ∈ Γ andU is an open neighborhood
of the closure ofqγ (X) in Yγ = G. Clearly, this closure coincides with the closure of
pλ(X) in Xλ. Therefore,γ ′ = (λ,U) belongs toΓ andγ � γ ′, becausepλλ(U)=U ⊆G.
However,Yγ ′ =U andqγ γ ′(Yγ ′)=U , which shows thatq also has property(B2)′. ✷

If X is a compact Hausdorff space andX = (Xλ,pλλ′,Λ) is an inverse system of
compact polyhedra, we modify the above construction by taking forΓ all pairs (λ,P ),
whereP is a compact polyhedron which is also a neighborhood ofpλ(X) in Xλ. Denoting
the resulting objects byY ′ andq ′, we have the following lemma.

Lemma 3. If X andXλ are compact Hausdorff spaces andp :X → X has property(B1),
thenY ′ is an inverse system of compact polyhedra andq ′ :X → Y ′ is its limit.
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In the next section we will also need the following lemma (only property (B1) will be
used).

Lemma 4. Let (Xλ,λ ∈ Λ) be a family of topological spaces. Then the spacesXλ admit

ANR-resolutionsqλ :Xλ → Y λ = (Y
µ
λ , q

µµ′
λ ,M), λ ∈ Λ, all indexed by the same ordered

setM. If all Xλ are compact Hausdorff spaces, one can achieve that allY
µ
λ are compact

polyhedra and thus,qλ :Xλ → Y λ, λ ∈Λ, are inverse limits.

Proof. For λ ∈ Λ, there exist a cofinite inverse systemXλ = (X
µ
λ ,p

µµ′
λ ,Mλ), consisting

of ANRs, and a resolutionpλ = (p
µ
λ ) :Xλ → Xλ. Let the set

M = ⊔

λ∈Λ
Mλ (7)

be endowed with the product ordering. Recall thatm,m′ ∈ M are functionsm,m′ :Λ →⋃
λ∈ΛMλ such thatm(λ),m′(λ) ∈ Mλ, λ ∈ Λ, and one hasm � m′ if and only if

m(λ)�m′(λ) in Mλ, for all λ ∈Λ. Since the setsMλ, λ ∈Λ, are directed and ordered, so
is M. Consider an arbitraryλ ∈ Λ. We define an inverse systemY λ = (Ym

λ , q
mm′
λ ,M) by

putting

Ym
λ =X

m(λ)
λ , (8)

qmm
′

λ = p
m(λ)m′(λ)
λ . (9)

Moreover, we define a mappingqλ = (qmλ ) :Xλ → Y λ by putting

qmλ = p
m(λ)
λ :Xλ → Ym

λ . (10)

Let us verify thatqλ has properties (B1) and(B2)′ and thus, it is an ANR-resolution.
If U is a normal covering ofXλ, then, by (B1) forpλ, there is an indexµ ∈ Mλ

and there is an open coveringV of Xµ
λ such that(pµλ )

−1(V) refinesU . Let m ∈ M

be a function withm(λ) = µ, having arbitrary valuesm(λ′) ∈ Mλ′ , for λ′ �= λ. Then
Ym
λ = X

m(λ)
λ = X

µ
λ andV is an open covering ofYm

λ . Moreover,qmλ = p
m(λ)
λ = p

µ
λ and

thus,(qmλ )
−1(V) = (p

µ
λ )

−1(V) refinesU . This establishes property (B1). To verify(B2)′,
assume thatm ∈M andU is an open neighborhood of the closure

qmλ (Xλ)= p
m(λ)
λ (Xλ)

in Ym
λ =X

m(λ)
λ . By property(B2)′, for pλ, there is an indexµ′ �m(λ) fromMλ such that

p
m(λ)µ′
λ (X

µ′
λ ) ⊆ U . Choose a functionm′ ∈ M such thatm′(λ) = µ′ andm′(λ′) � m(λ′),

for λ′ �= λ. Thenm′ �m and

qmm
′

λ

(
Ym′
λ

) = p
m(λ)m′(λ)
λ

(
X
m′(λ)
λ

) = p
m(λ)µ′
λ

(
X
µ′
λ

) ⊆U. (11)

In the compact case one chooses forY λ inverse systems of compact polyhedra and one
proceeds as in the general case.✷
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5. Proof of Theorem 3 (Step 1)

The proof of Theorem 3 proceeds in several steps. LetX = (Xλ,pλλ′,Λ) be a cofinite
inverse system of topological spaces and letp = (pλ) :X → X be a mapping. By Lemma 4,
there exists a directed ordered setM such that everyXλ, λ ∈Λ, admits an ANR-resolution

pλ = (p
µ
λ ) :Xλ → Xλ = (X

µ
λ ,p

µµ′
λ ,M), indexed by the setM. For everyλ ∈Λ, we define

a new inverse systemZλ = (Z
µ
λ , r

µµ′
λ ,M) as follows. Put

Z
µ
λ = ⊔

ζ�λ
X
µ
ζ , λ ∈Λ, µ ∈M. (12)

SinceΛ is cofinite,Zµ
λ is the product of a finite collection of ANRs, hence, it is an ANR.

Forµ�µ′, definerµµ
′

λ :Zµ′
λ → Z

µ
λ as the mapping

r
µµ′
λ = ⊔

ζ�λ
p
µµ′
ζ : ⊔

ζ�λ
X
µ′
ζ → ⊔

ζ�λ
X
µ
ζ . (13)

We also define a mappingrλ = (r
µ
λ ) :Xλ → Zλ, where r

µ
λ :Xλ → Z

µ
λ , λ ∈ Λ, is

determined by the coordinate mappingsp
µ
ζ pζλ :Xλ →X

µ
ζ , ζ � λ.

Lemma 5. For everyλ ∈Λ, the mappingrλ :Xλ → Zλ has property(B1).

Proof. Let U be a normal covering ofXλ. By property (B1) forpλ, there exist an index
µ ∈ M and an open coveringV of Xµ

λ such that(pµλ )
−1(V) refinesU . Consider the open

coveringW of Zµ
λ , consisting of the sets

W =
(

⊔

ζ<λ
X
µ
ζ

)
× V, (14)

whereV ∈ V . Clearly,
(
r
µ
λ

)−1
(W)= (

p
µ
λ

)−1
(V), (15)

and thus,(rµλ )
−1(W) refinesU . ✷

The advantage of the mappingsrλ over the mappingspλ lies in the fact thatp
and rλ, λ ∈ Λ, admit a systemZ and a compatible mappingr :X → Z. Indeed, let
Z = (Zν, rνν ′,N), whereN = Λ × M is ordered coordinatewise, i.e., ifν = (λ,µ) and
ν′ = (λ′,µ′), thenν � ν′ if and only if λ � λ′ andµ � µ′. Note thatN = ⋃

λ∈ΛNλ,
whereNλ = {λ} ×M is a copy ofM. Clearly, the ordering� of N is compatible with the
orderings� onΛ andNλ. Forν = (λ,µ) we put

Zν = Z
µ
λ , (16)

and for ν � ν′ = (λ′,µ′), we definerνν ′ :Zν ′ → Zν as the composition of the natural
projection

Zν ′ =Z
µ′
λ′ = ⊔

ζ�λ′ X
µ′
ζ → ⊔

ζ�λ
X
µ′
ζ =Z

µ′
λ (17)
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with the mappingrµµ
′

λ :Zµ′
λ →Z

µ
λ . It is readily verified thatZ is indeed an inverse system.

Note that, forµ= µ′, rνν ′ is a surjection. We definer = (rν) :X → Z by putting

rν = r
µ
λ pλ, ν = (λ,µ). (18)

Again it is easy to verify thatr is a mapping.

Lemma 6. The mappingr :X → Z is compatible with the mappingsp :X → X and
rλ :Xλ → Zλ, λ ∈Λ. Moreover, ifp has property(B1), then so doesr .

Proof. Condition (iii) coincides with (16). Condition (iv) assumes the form

r
µ
λ pλλ′ = rνν ′rµ

′
λ′ . (19)

It holds because, forζ � λ, the coordinate mappings of the left side of (19) equal
p
µ
ζ pζλpλλ′ = p

µ
ζ pζλ′ , while the corresponding coordinate mappings of the right side

equalpµµ
′

ζ p
µ′
ζ pζλ′ = p

µ
ζ pζλ′ . If λ = λ′, thenrνν ′ = r

µµ′
λ , which is condition (v). Finally,

(vi) assumes the form (18).
Now assume thatp has property (B1), and letU be a normal covering ofX. There exist

aλ ∈Λ and a normal coveringV of Xλ such thatp−1
λ (V) refinesU . By Lemma 5, there is

aµ ∈M and there is an open coveringW of Zµ
λ such that(rµλ )

−1(W) refinesV and thus,

(
r
µ
λ pλ

)−1
(W)� U . (20)

However, forν = (λ,µ), Zν =Z
µ
λ andrν = r

µ
λ pλ and thus,r−1

ν (W)� U . ✷

6. Proof of Theorem 3 (Step 2)

We will now improve the construction described in Section 5 and obtain ANR-
resolutionssλ :Xλ → Sλ, λ ∈ Λ, and an ANR-resolutions :X → S, compatible withp

andsλ, λ ∈ Λ. Forλ ∈ Λ, let Γλ consist of all pairsγ = (µ,G), whereµ ∈ M andG is
an open neighborhood of the closure ofr

µ
λ (Xλ) in Z

µ
λ . Put γ � γ ′ = (µ′,G′) provided

µ� µ′ and

r
µµ′
λ (G′)⊆G. (21)

Moreover, putSγλ = G and letsγ γ
′

λ :Sγ
′

λ → S
γ
λ be the restrictionrµµ

′
λ |G′ :G′ → G. It is

well defined because of (21). ThenSλ = (S
γ
λ , s

γ γ ′
λ ,Γλ) is an inverse system of ANR’s. We

also define a mappingsλ = (s
γ
λ ) :Xλ → Sλ, where the mappingssγλ :Xλ → S

γ
λ , λ ∈Λ, are

obtained by restricting the codomain ofrµλ :Xλ → Z
µ
λ to G. An immediate consequence

of Lemma 2 is the following lemma.

Lemma 7. For every λ ∈ Λ, sλ :Xλ → Sλ is an ANR-resolution, whose index set is
directed and ordered.
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We will now embed the systemsSλ in a systemS = (Sδ, sδδ′,∆) as follows. Let

∆=
⋃
λ∈Λ

Γλ. (22)

Then every elementδ of ∆ can be identified with a pair(ν,G), whereν = (λ,µ) ∈Λ×M

and(µ,G)= γ ∈ Γλ. Putδ � δ′ providedν � ν′ and

rνν ′(G′)⊆G. (23)

Clearly, the ordering of∆ is compatible with the orderings ofΛ andΓλ, λ ∈ Λ. For
δ = (ν,G), put Sδ = G and, forδ � δ′, let sδδ′ :Sδ′ → Sδ be the mapping obtained from
rνν ′ by restricting its domain toG′ and its codomain toG. We also consider a mapping
s = (sδ) :X → S, where sδ :X → Sδ is obtained fromrν :X → Zν by restricting its
codomain toG. Notice that, by (18),

rν(X)= r
µ
λ pλ(X)⊆ r

µ
λ (Xλ)⊆G.

Lemma 8. The mappings :X → S is compatible withp :X → X and the ANR-resolutions
sλ :Xλ → Sλ, λ ∈ Λ. Moreover, if p :X → X is a resolution, thens :X → S is an
ANR-resolution.

Proof. Compatibility ofs is easily verified. In particular, condition (iv) assumes the form

s
γ
λ pλλ′ = sδδ′sγ

′
λ′ and it holds because of (19). Forλ= λ′, (v) assumes the formsδδ′ = s

γ γ ′
λ

and it holds becauserνν ′ = r
µµ′
λ . Finally, (vi) holds, i.e.,sδ = s

γ
λ pλ, because of (18).

Now assume thatp is a resolution. LetU be a normal covering ofX. By Lemma 6,r has
property (B1). Therefore, there exist aν ∈N and an open coveringV of Zν =Z

µ
λ such that

r−1
ν (V)� U . ForG=Z

µ
λ , we see thatδ = (ν,G) ∈∆, Sδ =Z

µ
λ andsδ = rν . Therefore,V

is an open covering ofSδ such thats−1
δ (V)� U .

To verify condition (B2), consider an indexδ = (ν,G) ∈ ∆, an open coveringV of
Sδ = G ⊆ Zν = Z

µ
λ and St(sδ(X),V). Let V ′ be an open covering ofG, which is a star-

refinement ofV . Sincerµλ (Xλ)⊆G, we conclude that

U = (
r
µ
λ

)−1
(V ′) (24)

is a normal covering ofXλ. By property (B2) forp, there is aλ′ � λ such that

pλλ′(Xλ′)⊆ St
(
pλ(X),U

)
. (25)

Now consider the pairν′ = (λ′,µ), the mappingrνν ′ :Zν ′ → Zν and the open set

G′ = r−1
νν ′ (G)⊆Zν ′ . (26)

By (19), one has

rνν ′( rµ
λ′(Xλ′) )⊆ rνν ′rµ

λ′(Xλ′)= r
µ
λ pλλ′(Xλ′)⊆ r

µ
λ (Xλ)⊆G (27)

and thus,

r
µ

λ′(Xλ′)⊆ r−1
νν ′ (G)=G′. (28)
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Therefore,δ′ = (ν′,G′) ∈ ∆ andδ � δ′. Now consider the open coveringW of G′, given
by

W = r−1
νν ′ (V ′). (29)

Recall thatsγ
λ′ is a restriction ofrµ

λ′ andSγ
λ′ =G′, for γ = (µ,G′) ∈ Γλ′ . Sincesλ′ :Xλ′ →

Sλ′ is a resolution, there exist an indexµ′ � µ and an open setG′ ⊆ Z
µ′
λ′ such that

δ′ = (ν′,G′) ∈∆, whereν′ = (λ′,µ′). Moreover,

r
µµ′
λ′ (G′′)⊆ St

(
r
µ

λ′(Xλ′),W
)
. (30)

Consequently, by (29),

rνν ′rµµ
′

λ′ (G′′)⊆ St
(
rνν ′rµ

λ′(Xλ′),V ′). (31)

However, by (19) (forµ′ = µ), by (25) and by (24), one has

rνν ′rµ
λ′(Xλ′)= r

µ
λ pλλ′(Xλ′)⊆ r

µ
λ

(
St

(
pλ(X),U

)) ⊆ St
(
r
µ
λ pλ(X),V

′). (32)

Sincesδδ′ = rνν ′rµµ
′

λ′ , Sδ′ =G′′ andsδ = r
µ
λ pλ, (30) and (32) yield

sδδ′(Sδ′)⊆ St
(
St

(
sδ(X),V ′),V ′) ⊆ St

(
sδ(X),V

)
, (33)

which finally verifies (B2) fors. ✷
Note that Lemma 8 comes very close to proving Theorem 3. Indeed, only cofiniteness

of the resolutionssλ ands is missing.

7. Proof of Theorem 3 (Step 3)

In this section we will establish additional properties of the resolutionssλ and s,
needed in the final step of the proof. First observe that, in the above construction, we
have associated with every indexγ = (µ,G) ∈ Γλ an indexγ ′ = (µ,G′) ∈ Γλ′ , where
G′ = r−1

νν ′ (G), ν = (λ,µ) and ν′ = (λ′,µ). This defines a functionρλλ′ :Γλ → Γλ′ ,
ρλλ′(γ )= γ ′.

Lemma 9. The functionρλλ′ :Γλ → Γλ′ is strictly increasing. For everyγ ∈ Γλ, ρλλ′(γ )�
γ in ∆. Moreover,ρλλ = id and, forλ� λ′ � λ′′,

ρλ′λ′′ρλλ′ = ρλλ′′ . (34)

Proof. Let γ1, γ2 ∈ Γλ and let γ1 = (µ1,G1) � (µ2,G2) = γ2. Then µ1 � µ2 and
r
µ1µ2
λ (G2) ⊆ G1. Therefore,ρλλ′(γi) = γ ′

i , i = 1,2, whereγ ′
i = (µi,G

′
i ), G′

i =
r−1
νiν

′
i

(Gi), νi = (λ,µi), ν′
i = (λ′,µi), i = 1,2. Note thatν1 � ν2 � ν′

2 andν1 � ν′
1 � ν′

2.

Therefore,rν1ν2rν2ν
′
2

= rν1ν
′
2

= rν1ν
′
1rν ′

1ν
′
2. Sincerν1ν2 = r

µ1µ2
λ and rν ′

1ν
′
2 = r

µ1µ2
λ′ , we

conclude that

r
µ1µ2
λ rν2ν

′
2 = rν1ν

′
1r

µ1µ2
λ′ . (35)
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Sincerν2ν
′
2(G

′
2)⊆G2 andrµ1µ2

λ (G2)⊆G1, we conclude that

rν1ν
′
1r

µ1µ2
λ′

(
G′

2

) = r
µ1µ2
λ rν2ν

′
2

(
G′

2

) ⊆ r
µ1µ2
λ (G2)⊆G1, (36)

and thus,

r
µ1µ2
λ′

(
G′

2

) ⊆ r−1
ν1ν

′
1
(G1)=G′

1, (37)

which shows thatγ ′
1 � γ ′

2, i.e., the functionρλλ′ is increasing. Now assume that
γ1, γ2 ∈ Γλ andρλλ′(γ1) = ρλλ′(γ2) = γ ′ = (µ,G′). Thenµ1 = µ2 = µ andr−1

ν1ν2
(G1) =

r−1
ν1ν2

(G2) = G′. However, in this caserν1ν2 is a surjection and thus,G1 = G2, i.e.,
γ1 = γ2, which shows thatρλλ′ is injective. If γ = (µ,G) ∈ Γλ and ρλλ′(γ ) = γ ′ =
(µ,G′) ∈ Γλ′ , thenG′ = r−1

νν ′ (G) and thus, (23) holds. Consequently,γ � ρλλ′(γ ) in
∆. Next note thatρλλ = id is obviously fulfilled. To prove (34), letγ = (µ,G) ∈ Γλ,
let ρλλ′(γ ) = γ ′ and letρλ′λ′′(γ ′) = γ ′′. Thenγ ′ = (µ,G′) ∈ Γλ′ , γ ′′ = (µ,G′′) ∈ Γλ′′ ,
whereG′ = r−1

νν ′ (G), G′′ = r−1
ν ′ν ′′(G′) and ν = (λ,µ), ν′ = (λ′,µ), ν′′ = (λ′′,µ). Note

that rνν ′rν ′ν ′′ = rνν ′′ becauseν � ν′ � ν′′. Therefore,G′′ = r−1
νν ′′(G), which shows that

ρλλ′′(γ )= γ ′′ = ρλ′λ′′ρλλ′(γ ). ✷
Remark 1. For λ � λ′ we can define a mappingpλλ′ :Sλ′ → Sλ as follows. For the

index function we takeρλλ′ :Γλ → Γλ′ . For pγ
λλ′ :S

ρλλ′ (γ )
λ′ → S

γ
λ , γ = (µ,G), we take

rνν ′ :G′ → G, whereν = (λ,µ) and ν′ = (λ′,µ). By (35), rµ1µ2
λ p

γ2
λλ′ = p

γ1
λλ′r

µ1µ2
λ′ , for

γ1 � γ2, which implies thatpλλ′ = (ρλλ′,pγ
λλ′) is indeed a mapping of systems. Note that,

for λ� λ′,

sλpλλ′ = pλλ′sλ′ . (38)

Moreover, forλ� λ′ � λ′′,

pλλ′pλ′λ′′ = pλλ′′ . (39)

Formula (38) shows thatpλλ′ is an ANR-resolution ofpλλ′ .

8. Proof of Theorem 3 (Step 4)

Let p = (pλ) :X → X = (Xλ,pλλ′,Λ) be a cofinite resolution of topological spaces.

Consider the ANR-resolutionssλ = (s
γ
λ ) :Xλ → Sλ = (S

γ
λ , s

γ γ ′
λ ,Γλ), λ ∈ Λ, and the

ANR-resolutions = (sδ) :X → S = (Sδ, sδδ′,∆) from Lemmas 7 and 8. Moreover, con-
sider the functionsρλλ′ :Γλ → Γλ′ from Lemma 9. Application of the∗-construction from
Lemma 1 tosλ yields cofinite ANR-resolutionsqλ = (qαλ ) :Xλ → Y λ = (Y α

λ , q
αα′
λ ,Aλ).

HereAλ are disjoint copies ofΓ ∗
λ and thus, consist of finite subsetsα ⊆ Γλ having a termi-

nal elementα ∈ Γλ, whileYα
λ = Sαλ , qαα

′
λ = sαα

′
λ andqαλ = sαλ . PutB = ⋃

Aλ and note that
every elementβ ∈ B can be viewed as a pairβ = (λ,α), whereλ ∈ Λ, α ∈ Γ ∗

λ . OrderB
by puttingβ � β ′ = (λ′, α′), wheneverλ� λ′ and

ρλλ′(α)⊆ α′. (40)
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That � is indeed an ordering is an immediate consequence of Lemma 9. Antisymmetry
and directedness of� are also easily verified. To prove cofiniteness, consider an element
β ′ = (λ′, α′) ∈ B and assume thatβ = (λ,α) � β ′. Thenλ � λ′ and cofiniteness ofΛ
implies that there are only finitely many possible indicesλ. Now fix such aλ. Sinceα′ is
a finite set, and by Lemma 9,ρλλ′ is an injection, there are only finitely many subsetsα

satisfying (40).
For β = (λ,α) ∈ B put Yβ = Sα and qβ = sα . Moreover, forβ � β ′ = (λ′, α′), put

qββ ′ = s
αα′ . Note that (40) implies

ρλλ′( α )= ρλλ′(α)� α′. (41)

Moreover, by Lemma 9,α � ρλλ′(α) and thus,α � α′. Therefore,qββ ′ is well defined. It
is now easy to see thatY = (Yβ, qββ ′,B) is an inverse system andq = (qβ) :X → Y is a
mapping. Moreover,q :X → Y is an ANR-resolution, which is compatible withp andqλ,
λ ∈Λ.

9. Proof of Theorem 1

This proof is a variation of the proof of Theorem 3. In the first step of the proof one uses
the compact version of Lemma 4. Note that a product of finitely many compact polyhedra
is a compact polyhedron. Therefore, the spacesZ

µ
λ are compact polyhedra. In the second

step, instead of Lemma 2, one uses Lemma 3. All other steps remain unchanged.
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