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The Penultimate Rate of Growth for Graph Properties

JÓZSEFBALOGH, BÉLA BOLLOBÁS AND DAVID WEINREICH

Given a propertyP of graphs,write Pn for the set of graphs with vertex set[n] having prop-
erty P. We call |Pn

| the speedof P. Recent research has shown that the speed of a monotone or
hereditary propertyP can be a constant, polynomial, or exponential function ofn, and the structure
of the graphs inP can then be well described. Similarly,|Pn

| can be of the formn(1−1/k+o(1))n

or 2(1−1/k+o(1))n2/2 for some positive integerk > 1 and the properties can be described and have
well-behaved speeds. In this paper, we discuss the behavior of properties with speeds between these

latter bounds, i.e., betweenn(1+o(1))n and 2(1/2+o(1))n2/2.

c© 2001 Academic Press

1. INTRODUCTION

A graph propertyis a (infinite) collection of (labeled) graphs closed under isomorphism.
The property consisting of all finite graphs is thetrivial property. A property ishereditaryif
it is closed under taking induced subgraphs, and it ismonotoneif it is closed under taking
subgraphs. For example, being acyclic, planar, or perfect are hereditary properties, while only
the first two are monotone. Rather trivially, every hereditary property can be defined in terms
of forbidden induced subgraphs, and every monotone property can be defined in terms of
forbidden subgraphs.

Given a propertyP, write Pn for the set of all graphs inP with n vertices. We call this
then-levelof P. The number of graphs in then-level, |Pn

|, is called thespeedof a property.
In recent years, there has been much research into the sequence(|Pn

|)∞n=1 for hereditary
properties (see, for example, [1, 5, 9]) and for monotone properties (see, for example, [2, 6]).
The mostnatural questions about the speed of a hereditary property, which first appeared
in [9], are as follows.

(1) Does limn→∞
log |Pn

|

n existfor all hereditary propertiesP?

(2) Does limn→∞
log |Pn

|

n logn existfor all hereditary propertiesP?

(3) Does limn→∞
log log|Pn

|

logn existfor all hereditary propertiesP?

(4) Does limn→∞
log |Pn

|

n2 existfor all hereditary propertiesP?

The first question was answered affirmatively by Scheinerman and Zito in [9], and the oth-
ers wereleft by them as open questions. The fourth question was answered affirmatively by
Bollobás and Thomason in [5]. However, the second and third questions remained open. In
this paperwe answer both negatively, even under a strong condition on the structure of the
property. In doing so, we shed some light on a gap in the existing research on speeds.

While investigating the questions above, Scheinerman and Zito [9] discovered that the speed
sequence oftenhas a well-defined behavior. They presented a rough hierarchy of speeds for
hereditary properties, showing that the speed of a property must fall into certain ranges of
growth. Earlier results by Bollob́as and Thomason [5] had shown that the highest speed of
growthis also highly constrained. The present authors provided a more detailed picture of the
hierarchy of speeds for hereditary properties in [1] and furthermore described the structure
of propertiesfalling into each range of speed. Similar results for monotone properties were
shown in [2].
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These results can be briefly summarized in the following theorem, which presents four
functional rangesinto which the speed of a hereditary property may fall. The first level of
growth can be divided into three parts depending on whetherk = 0, k = 1, ork > 1.

THEOREM 1. LetP be a hereditary property of graphs. Then one of the following is true:

(1) there exists N, k ∈ N and a collection {pi (n)}ki=0 of polynomials such that for all
n > N, |Pn

| =
∑k

i=0 pi (n)i n;
(2) there exists k∈ N, k > 1 suchthat |Pn

| = n(1−1/k+o(1))n;
(3) n(1+o(1))n

≤ |Pn
| ≤ no(n2);

(4) there exists k∈ N, k > 1 suchthat |Pn
| = 2(1−1/k+o(1))n2/2.

The first two cases and a jump to the third are described and proven by the authors in [1, 3].
The lastcase and the gap between case 3 and 4 are shown by Bollobás and Thomasson in [5,
6]. Specifically, Theorem1 and the results of [1] imply that if the speed of a property falls
into eitherthe first two or the final range, the speed actually approaches a limiting function
and furthermore the structure of graphs in the property can be described. Even from the form
of the statement of Theorem1, however, it is clear that the exact behavior of properties with
speeds falling into the third range is not well understood.

For this range, even the bounds have not been fully described, although the lower bound
is understood and can be approximated using results from [2]. In Section2 of this paper, we
explorethe upper bound of this range and show, as in the other ranges (including within the
first range), that there is a discontinuous jump in the actual speeds that may occur.

In Section3 we describe a type of property, aselectively restricted property, which exists
in the penultimate range of growth. We show that some selectively restricted properties have
speeds towards the bottom of the third range of growth, while others have high speeds.

In Section4, we demonstrate particular selectively restricted properties which provide an
infinite collectionof negative examples for the second and third questions of Scheinerman and
Zito. Specifically, we describe a monotone (and hence hereditary) property with speed that
oscillates infinitely often between two functions near the upper and lower bounds respectively
on the penultimate range.

In the two subsequent sections, we discuss improvements on the construction given in Sec-
tion 4. We close with a conjecture that the results presented here are nearly the best one could
obtain.

2. BOUNDS ON THEFACTORIAL RANGE

What are the actual upper and lower limits on the penultimate range of growth? Theorem1
implies that ifP is hereditaryand for someε > 0 we have|Pn

| < n(1−ε)n for infinitely
many values ofn, then the property will fall into ranges 1 or 2. The same is true for monotone
properties, as is shown in [2]. The theorem also says that if there is ac such that|Pn

| > 2cn2

for infinitely many values ofn, then the speed of the property falls into range 4.
In fact, it is shown in [3] that the smallest property in the penultimate range is the property
Pclique = {G : every component ofG is complete}or the complementary property. These
properties have speed|Pn

clique| = b(n), whereb(n) is thenth Bell number. Hence the lower
bound on this speed range is

b(n) ∼ nn
(

n

logn

)1−1/logn

(logn)−n.
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With the lower bound known, we begin our investigation of the penultimate range at its
upper bound.What speeds of the type 2o(n2) are possible for graph properties? This question
may be answered more easily for monotone than for hereditary properties; in fact the question
is open for the latter class. We shall show that given any monotone propertyP, either there is
anε such that|Pn

| < 2n2−ε
or else the speed is at least 2(1/4+o(1))n2

.

Notation and definitions.For a graphG, we write v(G) = |V(G)| ande(G) = |E(G)|.
Further, we call a graphG ann-graphif v(G) = n, andH ⊆ G a k-subgraphif v(H) = k.
The collection of labeledn-graphs (on[n]) is denotedGn.

The following lemma is a simple observation which nonetheless provides strong informa-
tion about large graph properties.

LEMMA 2. Letε > 0 and0< c ≤ 2. There is an N such that for all n> N, if S is a set of
graphs on n vertices and|S| > 2n2−c+ε

, then there is a graph G∈ S with e(G) > n2−c.

PROOF. Let fc(n) be thenumber of graphs onn vertices with at mostn2−c edges. Then,

fc(n) ≤
n2−c∑
j=0

((n
2

)
j

)
≤ n2−c

(
en2

2n2−c

)n2−c

=

(e

2

)n2−c

n2−cncn2−c
= 2n2−c(lg (e/2)+c lg n)+(2−c) lg n

= 2n2−c+o(1)
.

Hence for allε there is anN such that for alln > N, fc(n) < 2n2−c+ε
. Thus if n > N

and there is a collectionS of n-graphs with|S| > 2n2−c+ε
, then there is a graphG ∈ S with

e(G) > n2−c. 2

We are now ready to prove the main result of this section. Note that a propertyP is mono-
tone if and only if there is a (possibly infinite) collectionH of graphs such thatP = Mon(H),
whereMon(H) is the set of all graphsG such that no subgraph ofG is isomorphic to any
H ∈ H. We also defineHer(H) as the set of all graphsG such that no induced subgraph of
G is isomorphic to anyH ∈ H.

THEOREM 3. LetP be a monotone property. If|Pn
| = 2o(n2), then there is a t≥ 1 such

that |Pn
| ≤ 2n2−1/t+o(1)

.

PROOF. Let P = Mon(H) be amonotone property with speed|Pn
| = 2o(n2). If every

graphH ∈ H has chromatic number at least 3, then{G : G is bipartite} ⊆Mon(H) = P, in
which case|Pn

| ≥ 2
(n
2

)
/2. HenceH contains a bipartite graphH . Let t be the order of the

larger set in the bipartition ofH . Assume for the sake of contradiction that|Pn
| > 2n2−1/t+o(1)

.
By Lemma2, there is then aG ∈ P such thate(G) > n2−1/t . A result of Kővári et al. [8]
says thatG containsthe graphKt,t as a subgraph. ThusG containsH as a subgraph, which
is a contradiction. 2

The result above is nearly the best result possible about the gap below 2cn2
. In the proof, we

showed that large properties must contain large complete bipartite graphs. On the other hand,
we can construct properties that nearly reach the upper bound given for which a large complete
bipartite graph is forbidden. To do so, we use the well-known fact that for anyt there exists a
bipartite graph onn vertices with at leastn2−2/t edges that contains no subgraph isomorphic
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to Kt,t (see, i.e., [4, p. 316, Theorem VI.2.10]). Hence, for example, ifP = Mon({Kt,t , K3}),
then |Pn

| = 2o(n2) and |Pn
| ≥ 2n2−2/t

. Thus Theorem3 in fact guarantees at such that
2n2−2/t

≤ |Pn
| < 2n2−1/t

. We conjecture that the same is true for hereditary properties, and
again this would be the best possible, as|Pn

| ≥ 2n2−2/t
for P = Her({Kt,t , K3}). The con-

jecture below differs from Theorem3 only in considering hereditary rather than monotone
properties.

CONJECTURE4. Let P be a hereditary property. If|Pn
| = 2o(n2), then there is a t≥ 1

such that|Pn
| ≤ 2n2−1/t

.

This conjecture is far from proven, however. While it would be surprising, it is not incon-
ceivable that there could be properties with other speeds. A result of Ruzsa and Szemerédi
about hypergraphs suggests that properties of hypergraphs do not behave so nicely, but the
calculations and considerations are completely different.

3. SOME SPECIAL PROPERTIES AND THEIRGROWTH

The results of the previous section imply that if the speed ofP is in the penultimate range,
there is an integert ≥ 1 such thatn(1+o(1))n < |Pn

| < 2n2−1/t
. This is proven for monotone

P but only conjectured for hereditaryP. We now turn our attention to the question of what
speeds are actually achieved in this range for graph properties, either monotone or hereditary.
We present a collection of properties with speeds lying in the range.

Our first property is defined in terms of the density of subgraphs. We define thec-dense
propertyQc by Qc = {G : e(H) ≤ cv(H) for all H ⊆ G}. The following assertion was
proved by Scheinerman and Zito [9].

THEOREM 5. For any c> 1, |Qn
c| = n(c+o(1))n.

The propertyQc is a monotone property, and this result shows that any speed of the type
ncn, c > 1 is achievable. The next property we describe is not monotone or hereditary, but
its n-level contains then-level ofQc. It will be useful in further proofs in this section. The
c-dense n-levelis simply Sn

c = {G ∈ Gn
: e(G) ≤ cn}. The following lemma gives a bound

on its size.

LEMMA 6. If c > 1, then|Sn
c | < f (n)ncn, with f (n) = O(1.5n).

PROOF. Note simply that

|Sn
c | ≤

cn∑
j=0

((n
2

)
j

)
≤

cn∑
j=0

(en2/2 j ) j < cn(en2/2cn)cn
= cn(en/2)cn

= f (n)ncn,

where, easily,f (n) = O(1.5n). 2

We showed in the previous section that there are properties with speeds at the top of the
third range, that is, with 2n

2−2/t
≤ |Pn

| < 2n2−1/t
. Hence, there are properties with speeds

throughout the range of the third case of Theorem1. This does not necessarily mean that
any speed can be achieved, however. We examine constraints on demonstrably achievable
functions later in this paper.

As mentioned in the Introduction, if the speed of a property falls into any but the third range,
|Pn
| can be described with a ‘nice’ function. However, we shall show that this is not the case
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for the third range. In this range, it is possible for the speed to oscillate between two different
functions infinitelyoften.

More precisely, the question we examine is as follows. Is there a propertyP so that for func-
tions f (n) < g(n), |Pn

| oscillates infinitely often between them? Clearly there are choices of
f (n) andg(n) for which it is not possible to construct such a hereditary property. In particular,
Theorem1 implies that ifg(n) ≤ n(1−1/k+o(1))n for somek or f (n) ≥ n(1−1/k+o(1))n2/2 for
somek, then|Pn

| cannot oscillate.
However, we shall show that for many choices off (n) andg(n) in a subrange of the third

range of Theorem1, we can construct such a property. Furthermore, this property is monotone
(and thereforealso hereditary). Our methods are probabilistic in nature, and we proceed in
steps, first demonstrating a property with fixed upper and lower bounds on the oscillation of
its speed, and then by adjusting the upper and lower bounds.

We begin with a technical probabilistic lemma regarding sets of graphs andGn,p (i.e., a
random graph of ordern in which edges are selected independently at random with probabil-
ity p).

LEMMA 7. Letε > 0 befixed and let p= p(n) ≤ 1/2. If n is sufficiently large and a set of
graphsT ⊂ Gn satisfiesP(Gn,p ∈ T ) ≥ 1/2+2ε, then|T | ≥ ε

√
pq N

( N
pN

)
, where N=

(n
2

)
and q= 1− p.

PROOF. If n is sufficiently large,P(e(Gn,p) ≤ pN) ≤ 1/2+ ε. HenceP(Gn,p ∈ T and
e(Gn,p) > pN) ≥ 1/2+ 2ε − (1/2+ ε) = ε. Note that for anyH ∈ Gn the probability
P(Gn,p = H) depends only on the number of edges inH . Hence, if H0, H1 ∈ Gn with
e(H0) < e(H1), thenP(Gn,p = H0) ≥ P(Gn,p = H1). Thus, ife(H) > pN, then for anyH ′

with e(H ′) = pN, we have

P(Gn,p = H) < P(Gn,p = H ′) <

(√
pq N

(
N

pN

))−1

.

Then

P(Gn,p ∈ T ande(Gn,p) > pN) ≤ |{H ∈ T ,e(H) > pN}|

(√
pq N

(
N

pN

))−1

,

so|T | ≥ ε
√

pq N
( N

pN

)
. 2

We will be applying this lemma in a specific form, expressed in the following corollary.

COROLLARY 8. Suppose p= p(n) < 1/2, p
(n
2

)
→ ∞. If n is sufficiently large and the

setT ⊂ Gn satisfiesP(Gn,p ∈ T) ≥ 2/3, then

|T | ≥

( (n
2

)
p
(n
2

)) ≥ (1/p)p(n2). (1)

This corollary will be applied to show that the oscillating properties we construct grow
as desired. The following basic construction will be used as a starting point in each of the
theorems that are to come. Letc > 1 andν = (ν1, ν2, . . . ) be an increasing (possibly finite)
sequence of natural numbers. We define aselectively restricted propertyPν,c as{G : if H ⊆ G
andv(H) = νi for somei , thene(H) ≤ cνi }. Note thatPν,c is monotone and therefore also
hereditary.

The propertyPν,c has a speed which grows in a predictable way. 2
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LEMMA 9. Let c > 1, ε > 1/c, ν = (νi )
∞

i=1 be a sequence of natural numbers and
k = sup{νi ∈ ν}. Then:

(1) |Pn
ν,c| ≥ n(c+o(1))n and|Pn

ν,c| = n(c+o(1))n whenever n= νi ,

(2) if k <∞ and nis sufficiently large,|Pn
ν,c| ≥ 2n2−ε

.

PROOF. For any sequenceν andc > 1, wehaveQc ⊂ Pν,c and, for anyi , theνi -level
Pνi
ν,c ⊆ Sνi

c . Hence we have|Pn
ν,c| ≥ n(c+o(1))n for all n and|Pνi | ≤ |Sνi

c | ≤ ν
(c+o(1))νi
i on the

set {νi } by Lemma6. Using Theorem5 for a lower bound, we obtain|Pn
ν,c| = n(c+o(1))n

whenevern = νi .

For the second part, assumek <∞. Consider the propertyP(k),c, where(k) is the sequence
(1, . . . ,k). We have|Pn

(k),c| ≤ |P
n
ν,c| for all n. Hence we would have the result if, for suff-

iciently largen, |Pn
(k),c| ≥ nn2−ε

.

Chooseδ so thatε > δ > 1/c. Let p = n−δ and considerGn,p.We consider the probability
thatGn,p /∈ Pn

(k),c. This is the probability thatGn,p has a ‘bad’ subgraph, that is,

P(Gn,p /∈ Pn
(k),c) = P(G ∈ Gn,p : there isH ⊆ G with v(H) ≤ k ande(H) > cv(H))

≤

k∑
j=1

E (number of j -subgraphs ofGn,p with more thancj edges)

≤

k∑
j=1

(
n

j

)(( j
2

)
cj

)
pcj
≤

k∑
j=1

(
en

j

) j(ej2

2cj

)cj

n−δcj

≤

k∑
j=1

(
e

j

(
ej

2c

)c

n1−δc
) j

=

k∑
j=1

(C j n
1−δc) j ,

whereC j (∼ j c−1) is a constant depending onj andc. Sinceδc > 1,we have 1− δc < 0, so
this probability goes to zero asn goes to infinity. Choosen0 minimal so that the probability
that Gn0,nδ0

has a ‘bad’ subgraph is less than 1/3. Note that this probability is monotone
decreasing inn. That is, ifP(G ∈ Gn0,nδ0

: G has a bad subgraph) < 1/3, thenP(G ∈ Gn,nδ :

G has a bad subgraph) <1/3 for alln > n0.
Now we can apply Corollary8 to the setT = P(k),c to obtainthe result

|Pn0
(k),c| ≥ (n

δ
0)

n−δ0 (
n0
2 ) > 2n0

2−δ/2.

All of the inequalities above hold wheneverP(Gn,p ∈ T) ≥ 2/3, so we have|Pn
(k),c| >

2n2−δ/2 for all n > n0. Thus we can choosen large enough to ensure 2n2−δ/2 > 2n2−ε
and ob-

tain our result. 2

4. OSCILLATING PROPERTIES: THE SECOND AND THIRD QUESTIONS

Having done the preliminary calculations in Section3, we are now ready to prove the first
of threetheorems regarding properties that oscillate. We first construct a property with a large
range of oscillation. The oscillation of this speed provides a negative answer to the third
question of Scheinerman and Zito; we shall answer the second question with Theorem11.

Lemma9 gives a property with the proper bounds on its speed, so all that remains is to
choose asequence so that the property grows as desired. We shall use sequences and their
elements significantly in the rest of the paper and shall abuse notation slightly. For a sequence
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N, we shall sayn ∈ N if the valuen appears somewhere in the sequence. IfN is a subse-
quence of sequenceM , we shall writeN ⊂ M . In other words, we shall use set notation with
sequences to mean that the relations hold for the set of elements in the sequence.

THEOREM 10. Let c > 1 and ε > 1/c. There exist sequencesν = (νi )
∞

i=1 and µ =
(µi )

∞

i=1, whereµi = νi − 1 for all i , such that:

(1) |Pn
ν,c| = n(c+o(1))n whenever n= νi ,

(2) |Pn
ν,c| ≥ 2n2−ε

whenever n= µi ,

(3) n(c+o(1))n
≤ |Pn

ν,c| < 2n2−ε
if n 6= µi .

PROOF. We chooseν1, ν2, . . . , one by one, starting withν1 = 3. Having chosenν1, . . . , νk,
we setν = (ν1, . . . , νk) and note that by Lemma9, |Pn

ν,c| ≥ 2n2−ε
for sufficiently largen.

Chooseµk+1 > νk minimal such that|Pµk+1
ν,c | ≥ µk+1

µk+1
2−ε

. Setνk+1 = µk+1+ 1.
Continuing in this way, we obtain an infinite sequence and the required property. 2

The results in Theorems3and10suggest thatncn! 2n2−1/c
is a natural range of oscillation

that may occur in the penultimate range. However, there are many other types of oscillation
possible. We first show that the upper bound of the oscillation can be any function in the range
that we choose, and, further, that the oscillation can be constrained to remain very close to the
upper bound. Choosingf (n) = n(d+o(1))n for somed > c then gives a negative answer to the
second question of Scheinerman and Zito.

With Theorem12, we shall show a similar, though slightly weaker, result for the lower
bound.

Given a function f (n) ≤ 2n2−ε
, Theorem10 gives a sequenceν which guaranteesthat

|Pn
ν,c| oscillates betweenn(c+o(1))n and some value abovef (n) infinitely often. Clearly, we

can chooseν so that the speed only goes abovef (n) whenn = νi − 1 for somei . However,
we can do better than this by carefully truncating our properties at levelµi = νi − 1 and
showing that this will not affect any aspect of the construction we perform subsequently. This
is precisely the method of the following theorem.

Note that we constrainf (n) > nc′n > n(c+o(1))n so that oscillation will actually occur.

THEOREM 11. Let c> 1, c′ > c, andε > 1/c. Let f(n) be a function such that nc
′n <

f (n) ≤ 2n2−ε
for all n. There exist sequencesν = (νi )

∞

n=1 andµ = (µi )
∞

n=1 and a monotone
propertyP such that:

(1) |Pn
| = n(c+o(1))n whenever n= νi ,

(2) |Pn
| > f (n)− n! whenevern = µi ,

(3) |Pn
| ≤ f (n) for all n,

(4) |Pn
| ≥ n(c+o(1))n.

PROOF. Choose sequencesν andµ as inTheorem10, selecting values ofµi according to
|Pn
ν,c| ≥ f (n) rather than|Pn

ν,c| ≥ 2n2−ε
.

|Pµi
ν,c| ≥ f (µi ) and|Pn

ν,c| < f (n) for all sufficiently largen 6= µi , sincen(c+o(1))n < f (n).
We will use the fact that ifP is monotone andG is ann-graph inP such thatG * H

for any other graph onn or more vertices inP, thenP \ {H : H ∼= G} is still a monotone
property. That is, removing graphs fromPk has no effect onPn and does not depend on the
graphs inPn for any n < k. Furthermore, removing a graph and all graphs isomorphic to
it from a property reduces|Pn

| by at mostn!. If we choose graphs to remove carefully, this
property will remain monotone. (N.B.: the same is true for hereditary properties.)

We shall call a graphG ∈ P eligible inP if e(G) > cv(G) and there are no graphsH ∈ P
with G ( H . For the propertyPν,c, if νi−1 ≤ v(G) < νi −1 (= µi ), G is eligible if and only
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if there are noµi -graphsH with G ⊂ H . If v(G) = µi , then we need the further condition
that noνi -graphs containG as a subgraph.

To construct a property satisfying the theorem, we removeµi -graphs fromPν,c to obtainP.
We only need to show that there is a setF, closed under isomorphism, consisting of eligible
µi -graphs inPµi

ν,c such thatf (n)− n! < |Pµi
ν,c− F| ≤ f (n). By the comment in the previous

paragraph, changing a property at theµi -level affects other levels if and only if it affects the
νi -level.

How many graphs inPµi
ν,c are subgraphs of graphs inPνi

ν,c? For any monotone propertyP,
if Dk

= {G : v(G) = k − 1 and there is anH ∈ Pk such thatG ⊂ H}, thenDk
= {G :

G ∼= H − v, H ∈ Pk, v ∈ V(H)}. SinceP is monotone the fact thatPk is closed under
taking subgraphs ensures that we get all possible subgraphs. Hence|Dk

| ≤ k · |Pk
|. Thus,

there are at mostνi · ν
(c+o(1))νi
i graphs inPµi

ν,c that are subgraphs of those inPνi
ν,c. Hence

|Dνi | ≤ µ
(c+o(1))µi
i for sufficiently largei .

Given a collection of graphs{G j } j∈A, let F({G j } j∈A) be the set of all graphs isomorphic
to G j for some j ∈ A and letP i

k = P
νi−1
ν,c \ F({G j }{ j = 1}k). We wish to build a collection

of eligible graphs so thatP i
k will be monotone andf (µi ) ≥ |P i

k| > f (µi )− µi !

As |Dνi | ≤ µ
(c+o(1))µi
i < f (µi ) ≤ |Pµi

ν,c|, there are eligible graphs inPµi
ν,c. Let G1 be an

eligible graph inPµi
ν,c. The propertyP i

1 is monotone sinceG1 eligible impliesG1 * H for
any H ∈ Pν,c − G1. Further|Pµi

ν,c| − |P i
1| ≤ µi !, so |P i

1| > f (µi ) − µi ! We proceed by
picking eligible graphs in order, stopping at the first point when|P i

k| ≤ f (µi ). Clearly, if we
have picked{Gi }

k
i=1 and|P i

k| > f (µi ), the counting argument above guarantees thatP i
k still

has an eligible graphGk+1, so this process can continue, and|P i
k| − |P

i
k+1| ≤ µi ! Thus, if

when consideringµi we stop with a set ofl i graphs,|P i
l i
| > f (µi )!

Let Pn
= Pn

ν,c for all n /∈ µ andPµi = P i
l i

for all i . As noted above,P is a monotone

property. Clearly|Pνi | = ν
(c+o(1))νi
i and f (µi ) ≥ |Pµi | > f (µi ) − µi ! Also, by our choice

of νi , |Pn
| < f (n) for all n /∈ µ. 2

5. OSCILLATION FROM BELOW

Can we produce oscillation similar to that in Section4, but which has a function other
thanncn asits lower bound? That is, given a functionf (n), is there a property with speed
that oscillates from just belowf (n) to just above 2n

2−ε
infinitely often? A modification of

the property in Theorem10 again provides a candidate for the oscillation. However, we must
relax thecondition that the oscillation stay close to the upper bound in order to make the
proof work easily. In particular, there is a range of levels for which we cannot say whether
|Pn
| < 2n2−ε

.

THEOREM 12. Let c > 1 and ε > 1/c. Let f(n) be a function such that: n(c+o(1))n
≤

f (n) < 2n2−ε
for all n. There exists a pair of sequences R= (ρi )

∞

i=1 and M= (µi )
∞

i=1 and a
monotone propertyP such that:

(1) f (ρi )− ρi ! < |Pρi | ≤ f (ρi ) for all i ,
(2) |Pµi | > 2µ

2−ε
i for all i ,

(3) |Pn
| ≥ f (n) for all n /∈ R,

(4) |Pn
| < 2n2−ε

for n ∈
⋃

i [ρi , µi+1− 1].

PROOF. The proof follows along the same lines as the proofs of Theorems10and11, only
this time we construct two sequences,R andν. We first build a sequenceν = (νi )

∞

i=1 as in
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Theorem10. Again letµi = νi −1 for all i , and considerPν,c. This satisfies conditions 2 and
4 of the theorem (for any sequenceR which does not intersectM = (µi )). Hence we need to
modifyPν,c to obtain conditions 1 and 3. However, in doing so, we need to be sure we do not
create a property contradicting conditions 2 or 4.

We choose the sequenceR as follows. For alli , letρi be the maximaln such thatνi ≤ n <
νi+1 andPn

ν,c ≤ f (n). Since|Pνi
ν,c| = ν

(c+o(1))νi
i , |Pνi+1

ν,c | > 2n2−ε
, andn(c+o(1))n

≤ f (n) <

2n2−ε
, there always will be such ann.

We shall add graphs toPρi
ν,c so that its speed is close tof (n). We know that this will not

affect then-levels of our property forn > ρi . If we can pick these graphs so that everyµi -
subgraph is inPµi

ν,c, we will not affect anyn-level for n ≤ µi either. However, adding such a
graph toPρi

ν,c will enlarge then-levels forµi < n < ρi .
If |Pρi

ν,c| > f (ρi ) − ρi !, we need not modify|Pρi
ν,c|. Otherwise, consider the sequence

N′ = (ν1, . . . , ν{i−1}). ThenPν,c ⊆ PN′,c. In particular,Pρi
ν,c ⊂ Pρi

N′,c. Since |Pρi
ν,c| <

f (ρi ) < 2n2−ε
< |Pρi

N′,c|, there is a graphG ∈ (Pρi
N′,c − P

ρi
ν,c) such that everyH ⊆ G

with v(H) ≤ µi is in Pv(H)ν,c . We call such a graphinsertable. LetG1 be an insertable graph
with a minimal number of edges. Then every properρi -subgraph ofG is in Pρi

ν,c, so |Pρi
ν,c ∪

F({G1})| ≤ |Pρi
ν,c| + ρi ! Also, if P1 is a minimal property containingPν,c ∪ F({G1}), then

Pn
1 = P

n
ν,c for n > ρi andn < νi . For νi ≤ n ≤ ρi , the speed|Pn

1 | ≤ |P
n
ν,c| + (ρi )!

(
ρi
n

)
.

We continue choosingρi -graphs in this way until we have a collection{G1, . . . ,Gl i } so that
f (ρi ) − ρi ! < |Pρi

l i
| ≤ f (ρi ). As the only condition we needed to guarantee an insertable

graph was that the property had speed belowf (n), it is clear in that case we can always find
an insertable graph. If we consider eachi in turn and construct the propertyP ′ = P{l j } in the
obvious way, we obtain a monotone property satisfying conditions 1 and 2.

However, condition 3 does not necessarily hold forP ′ on the intervals{[νi , ρi )}. Consider
each value ofi in turn and examine the interval[νi , ρi ) from the right. If, fort = ρi − 1, the
speed|(P ′)t | < f (t), we can proceed as we did for(Pρi

ν,c): add a finite collection graphs to
(P ′)t to obtain a new property with speed abovef (t). It is clear that we only affect then-
levels forn ∈ [νi , t]. So continuing for each smaller value in the interval, we obtain a property
P satisfying all of the conditions of the theorem. 2

Ideally, given any two functions in the proper range with positive difference (6=o(1)), we
would like to construct a property with speed that oscillates infinitely often between the two
functions. However, this is clearly not possible, as for any monotone or hereditary property,
|Pn+1

|/|Pn
| ≤ 2n. Thus, for example, choosing functions that increase together by more

than a factor of 2n would make it impossible to keep the speed between the bounds. With a
restriction to ‘smooth’ functions avoiding this problem, it seems that oscillation is possible.
However, as we have seen in the proof of Theorem12, even with a ‘smooth’ function the
proof would be cumbersome. In fact, even a proper definition of ‘smooth’ would be unappeal-
ing.

However, an outline of the approach we would take to prove the desired statement is as
follows. Given two such functionsf (n) < g(n), we wish to obtain a property which achieves
speeds closef (n) for infinitely manyn and close tog(n) for infinitely manyn. Rather than
finding the sequenceν from Theorem10, we would start with the sequence from Theorem11.
In the final step, when we add or remove graphs according to whether the property’s speed
is too high or too low, we need to take care that in removing graphs we do not alter later
properties. This may require adjusting our sequence so that the level for which the speed is
aboveg(n) is in the interval betweenµi andρi rather than atµi . The conditionn(c

′
−c)n f (n) <

g(n) would ensure the conditions of Theorem11 and the positive difference between the
functions.
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This, however, does not solve the problem we have discussed regarding condition 4 of
Theorem12. We believe that it is not worth the effort to describe in more detail what needs to
be done.Nevertheless, we believe the following statement to be true, and would be happy to
see an elegant proof.

Let c> 1, c′ > c, andε > 1/c. Let f(n), g(n) be ‘smooth’ functions such that

n(c+o(1))n
≤ f (n) < n(c

′
−c)n f (n) ≤ g(n) ≤ 2n2−ε

for all n. There exists a pair of sequences R= (ρi )
∞

i=1 and S= (σi )
∞

i=1 and a monotone
propertyP such that:

(1) |Pn
| ≥ f (n) and|Pn

| ≤ g(n) for all n /∈ R∪ S,
(2) f (ρi ) > |Pρi | > f (ρi )− ρi ! for all ρi ∈ R,
(3) g(σi ) < |Pσi | < g(σi )+ σi ! for all σi ∈ S.

6. A MORE NATURAL OSCILLATING PROPERTY

The aim of this section is to ‘sharpen’ our results from a different point of view. The proper-
ties given in Theorems10and11are useful for our purposes. In particular they neatly answer
the questionsof [9] mentioned in the Introduction. However, the properties we describe are
extremelyartificial, their oscillation coming, to a large degree, from ‘unnecessary’ graphs. In
particular, there are many (isomorphism classes of) graphs inPν,c that may be removed with-
out affecting the hereditary nature of the property. In fact, we have used this fact rather heavily
in the proofs of Theorems11and12. However, while the removal of the graphs would not af-
fect thehereditary nature of the properties in question, it would affect their speed. It would be
nice, therefore, to know if there is a property for which each isomorphism class is necessary
and for which the speed still oscillates.

Given a propertyP, we define thelimit of P asP∗ = {G : for all n > v(G) there is an
n-graphH ∈ P with G ≤ H}. Then every graph inP is necessary if and only ifP = P∗. In
this case, we say thatP is alimit property. Note that the limit of a property is a limit property,
that is(P∗)∗ = P∗.

In [7], Bollobás and Thomason show that if|Pn
| = 2(c+o(1))(n2) and|P∗n| = 2(c

′
+o(1))(n2),

thenc = c′. Hence for properties in the highest range of speeds, wherec > 0, a property and
its limit have the same speed. However, this is clearly not true for all properties, asP∗ν,c = Qc

for all infinite increasing sequencesν, while |Pn
ν,c|may oscillate but|Qn

c| does not. Hence we
would like to demonstrate a property that has a limit whose speed oscillates. The following
theorem provides a limit property with the same type of oscillation as that in Theorem10.

THEOREM 13. Let c > 1, ε > 1/c. There is a monotone limit propertyP and two se-
quences R= (ρi )

∞

i=1 and S= (σi )
∞

i=1 with σi < ρi < σi+1 such that:

(1) |Pn
| = n(c+o(1))n whenever n= ρi for some i,

(2) |Pn
| = 2(1+o(1))n2−ε

whenever n= σi for some i,
(3) n(c+o(1))n

≤ |Pn
| ≤ 2(1+o(1))n2−ε

for all n.

PROOF. For two sequencesR, S and apropertyP, consider the propertiesAR,S andBR,S

defined by levels as follows.An
R,S = {G : v(G) = n and for all i and for allσi < l ≤ ρi ,

every l -subgraphH ⊆ G hase(H) ≤ cl}, andBn
R,S = {G : v(G) = n andG = H ∪ Kl

whereH ∈ Pσi andl = n− σi for σi = max{s : n > s ∈ S}}. NotethatAR,S is a property
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of the typePν,c for someν ⊃ R. We will construct a propertyP ⊆ AR,S ∪ BR,S which is
monotone, limit, and has the proper speeds.

As in the proof of the previous theorems, we proceed by constructing sequencesR andS
so thatP is as described. We shall calculate values ofρi , σi based on those ofρi−1, σi−1, and
describeP incrementally by levels.

Let ρ0 = 2 and letσ1 > ρ0 be the smallest value such that|T σi | > 2σ
2−ε
1 , whereT is

the trivial property. As in the proof of Theorem11, we can remove graphs fromT σ1 so that
|T σ1| ≤ 2σ

2−ε
1 + n! Let Pσi be the collection of graphs which remain, and forn < σ1, let

Pn
= {G : v(G) = n and there isH ∈ Pσi with G ⊆ H}.

Assume we have chosen sequencesRi−1, Si whereRi = (ρ1, . . . , ρi−1), Si = (σ1, . . . , σi )

and we have defined then-level of P for n ≤ σi . We wish to findρi so that|Aρi
Ri−1,Si

∪

Bρi
Ri−1,Si

| = ρ
(c+o(1))ρi
i . By Lemma6, we know that for any choice ofρi , thespeed|Aρi

Ri−1,Si
| =

ρ
(c+o(1))ρi
i . So if we chooseρi (minimal) so that|Bρi

Ri−1,Si
| < ρ

cρi
i the desired relation will

hold. There is such aρi , since for alln > σi , |Bn
Ri−1,Si

| ≤
( n
σi

)
|Pσi

Ri−1,Si
| ≤ nσi 2σ

2
i , where the

last estimate comes from all graphs being in theσi -level ofP. Henceρi = 2σi would be more
than sufficient. Forσi < n ≤ ρi , letPn

= An
Ri ,Si
∪ Bn

Ri ,Si
.

Givenρi , let σi+1 > ρi be the smallest number such that|Aσi+1
Ri ,Si
∪ Bσi+1

Ri ,Si
| > 2σ

2−ε
i+1 . The

existence of such a number is guaranteed by Lemma9. As in the proof of Theorem11, we can
remove eligible graphs, one isomorphism class at a time, fromAσi+1

Ri ,Si
∪Bσi+1

Ri ,Si
to obtainPσi+1

with |Pσi+1
| < 2σ

2−ε
i+1 + σi+1! As we want to create a limit property, we will then remove

graphs fromPn for n < σi+1, keeping only those graphs which appear as subgraphs of those
in Pσi+1. However, we want to be sure thatP remains at the proper speed. In particular, we
will remove no graphs fromBσi+1

Ri ,Si
and no graphs inQσi+1

c (noting thatQn
c ⊆ An

R,S for all n
and any sequencesR, S). Clearly there are enough eligible graphs avoiding these collections,
as|Bσi+1

Ri ,Si
| + |Qσi+1

c | < σ
(c+o(1))σi+1
i+1 . Note that with this restriction, we will not remove any

graphs fromPn for n ≤ ρi .
In this way we construct infinite sequencesRandS. It is clear thatP is a monotone property,

and the construction guarantees thatP is limit property, since we remove all graphs that are
not contained in arbitrarily large graphs. The speeds given in conditions 1 and 2 are correct
on the elements ofR andS, respectively, by the construction. Furthermore,Qc ⊆ P, so the
lower bound given in condition 3 is correct.

For the upper bound, we split the interval(σi , σi+1) into two parts. Our choice of the se-
quenceS guarantees that forρi < n < σi+1, |Pn

| < 2n2−ε
. For σi < n ≤ ρi , we note

|Pn
| ≤ |An

R,S|+|B
n
R,S|. Hence|Pn

R.S| < n(c+o(1))n
+
( n
σi

)
|Pσi

R,S| < nσi 2n2−ε
< 2(1+o(1))n2−ε

. 2

Thus we have presented a ‘sensible’ property for which the speed oscillates over nearly the
whole interval fromn(1+o(1))n to 2n2−ε

. This property, as is true of all of the properties pre-
sented in the paper, has an infinite class of forbidden subgraphs corresponding to the infinite
sequences constructed. That is, ifP is one of our oscillating properties andF is a minimal
class of graphs such thatP = Mon(F), thenF is infinite. Is this a necessary condition for os-
cillation to occur? We believe that it is: if a monotone property has a finite class of forbidden
subgraphs, then all of the limits presented in the Introduction should exist. So far, however, a
proof of such a result is elusive.



288 J. Baloghet al.

7. TIGHT BOUNDS ON THEPENULTIMATE RANGE

The results of Sections4–6demonstrate that the penultimate range differs significantly from
the otherranges of speed. In fact, it is unclear that properties in this range need to satisfy any
well-defined behavior other than the broad bounds given in Section2. Nevertheless, based on
results involving a different measure of properties in [2], we believe that the range of oscilla-
tion demonstratedin the properties presented here is the maximum possible. The converse of
the conjecture is true for monotone properties, as shown by Theorem3 and in [2]. However,
the firstpart of the conjecture is open even for monotone properties.

CONJECTURE14. For all c > 1, there exists anε > 0 such that ifP is a hereditary
property and|Pn

| ≥ 2n2−ε
holds infinitely often, then|Pn

| ≥ n(c+o(1))n. Conversely, for all
d > 1 there exists aδ > 0such that if|Pn

| ≤ n(d+o(1))n infinitely often, then|Pn
| ≤ 2n2−δ+o(1)

.

It is clear from Lemma9 that, if Conjecture14 is true,δ ≤ 1/d. PerhapsConjecture14
even holds withε = 1/c andδ = 1/d. However, there are no results of this type known. Thus
the penultimate region of speeds remains a fertile area for further research.
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