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The Penultimate Rate of Growth for Graph Properties

JOZSEFBALOGH, BELA BOLLOBAS AND DAVID WEINREICH

Given a propertyP of graphs,write P" for the set of graphs with vertex sgt] having prop-
erty P. We call |P"| the speedof . Recent research has shown that the speed of a monotone or
hereditary property® can be a constant, polynomial, or exponential function,aind the structure
of the graphs irP can then be well described. Similarlg?"| can be of the forrn(—1/k+o(@)n

or 21-1/k+0(1)*/2 for some positive integek > 1 and the properties can be described and have
well-behaved speeds. In this paper, we discuss the behavior of properties with speeds between these

latter bounds, i.e., betweafl (1N ang 41/2+aL)?/2,

(© 2001 Academic Press

1. INTRODUCTION

A graph propertyis a (infinite) collection of (labeled) graphs closed under isomorphism.
The property consisting of all finite graphs is tiiwial property. A property ishereditaryif
it is closed under taking induced subgraphs, and ih@otonef it is closed under taking
subgraphs. For example, being acyclic, planar, or perfect are hereditary properties, while only
the first two are monotone. Rather trivially, every hereditary property can be defined in terms
of forbidden induced subgraphs, and every monotone property can be defined in terms of
forbidden subgraphs.

Given a propertyP, write P" for the set of all graphs i with n vertices. We call this
then-levelof P. The number of graphs in threlevel, |P"|, is called thespeedof a property.
In recent years, there has been much research into the seqU@fi¢g° ; for hereditary
properties (see, for example, [1, 5, 9]) and for monotone properties (see, for exanple, [
The mostnatural questions about the speed of a hereditary property, which first appeared
in [9], are as follows.

0gP" existfor all hereditary propertie®?
n
log |P"|

nlogn existfor all hereditary propertie®?

log log|P"|
logn

log | P"|
nZ

(1) Does lim_
(2) Does limy_ o0

(3) Does lim_ existfor all hereditary propertie®?

(4) Does lim_ existfor all hereditary propertie®?

The first question was answered affirmatively by Scheinerman and Zito in [9], and the oth-
ers werdeft by them as open questions. The fourth question was answered affirmatively by
Bollobas and Thomason in [5]. However, the second and third questions remained open. In
this papemwe answer both negatively, even under a strong condition on the structure of the
property. In doing so, we shed some light on a gap in the existing research on speeds.

While investigating the questions above, Scheinerman and Zito [9] discovered that the speed
sequence oftehas a well-defined behavior. They presented a rough hierarchy of speeds for
hereditary properties, showing that the speed of a property must fall into certain ranges of
growth. Earlier results by Bollds and Thomason [5] had shown that the highest speed of
growthis also highly constrained. The present authors provided a more detailed picture of the
hierarchy of speeds for hereditary properties in [1] and furthermore described the structure
of propertiesfalling into each range of speed. Similar results for monotone properties were
shown in [2].
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These results can be briefly summarized in the following theorem, which presents four
functional rangesnto which the speed of a hereditary property may fall. The first level of
growth can be divided into three parts depending on whétkel0, k = 1, ork > 1.

THEOREM 1. LetP be a hereditary property of graphs. Then one of the following is true:

(1) there exists Nk € N and acollection {p; (n)}i":0 of polynomials such that for all
n> N, [P =310 pimi™

(2) there exists ke N, k > 1 suchthat |P"| = n(d-1/k+o@)n.

(3) n@+obin < pr| < e,

(4) there exists ke N, k > 1 suchthat [P"| = 2(1~1/k+o@)n?/2,

The first two cases and a jump to the third are described and proven by the authors in [1, 3].
The lastcase and the gap between case 3 and 4 are shown by 8sbwld Thomasson in [5,

6]. Specifically, Theorenl and the results of [1] imply that if the speed of a property falls
into eitherthe first two or the final range, the speed actually approaches a limiting function
and furthermore the structure of graphs in the property can be described. Even from the form
of the statement of Theorefy however, it is clear that the exact behavior of properties with
speedsdlling into the third range is not well understood.

For this range, even the bounds have not been fully described, although the lower bound
is understood and can be approximated using results from [2]. In Se&ctbthis paper, we
explorethe upper bound of this range and show, as in the other ranges (including within the
first range), that there is a discontinuous jump in the actual speeds that may occur.

In Section3 we describe a type of propertyselectively estricted property, which exists
in the penultimate range of growth. We show that some selectively restricted properties have
speeds towards the bottom of the third range of growth, while others have high speeds.

In Section4, we demonstrate particular selectively restricted properties which provide an
infinite collectionof negative examples for the second and third questions of Scheinerman and
Zito. Specifically, we describe a monotone (and hence hereditary) property with speed that
oscillates infinitely often between two functions near the upper and lower bounds respectively
on the penultimate range.

In the two subsequent sections, we discuss improvements on the construction given in Sec-
tion 4. We close with a conjecture that the results presented here are nearly the best one could
obtain.

2. BOUNDS ON THEFACTORIAL RANGE

What are the actual upper and lower limits on the penultimate range of growth? Theorem
implies that if P is hereditaryand for some: > 0 we have|P"| < nd=9" for infinitely
many values of, then the property will fall into ranges 1 or 2. The same is true for monotone
properties, as is shown in [2]. The theorem also says that if there ss1eh thaiP"| > e
for infinitely many values of, then the speed of the property falls into range 4.

In fact, it is shown in [3] that the smallest property in the penultimate range is the property
Pelique = {G : every component ofs is completejor the complementary property. These
properties have spee®". | = b(n), whereb(n) is thenth Bell number. Hence the lower

) clique!
bound on this speed range is

n 1-1/logn
b(n) ~n" <@> (logn)™".
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With the lower bound known, we begin our investigation of the penultimate range at its
upper boundWhat speeds of the typ@®”) are possible for graph properties? This question
may be answered more easily for monotone than for hereditary properties; in fact the question
is open for the latter class. We shall show that given any monotone prgpeeiyher there is
ane such thaiP"| < 2™ or else the speed is at leagt/g+oan*,

Notation and definitions.For a graphG, we write v(G) = |V(G)| ande(G) = |E(G)|.
Further, we call a grap® ann-graphif v(G) = n, andH C G ak-subgraphf v(H) = k.
The collection of labeled-graphs (orin]) is denoted;".

The following lemma is a simple observation which nonetheless provides strong informa-
tion about large graph properties.

LEMMA 2. Lete > 0andO < = 2. Thereisan N such thatforalls N, if S is a set of
graphs on n vertices an@| > 2" °", then there is a graph G S with €G) > n2-C.
PROOF. Let f¢(n) be thenumber of graphs on vertices with at most?—¢ edges. Then,

n2-¢

fo(n) < j;o <(12)> - n2—0<%>”2°
-

Hence for alle there is anN such that for alln > N, f.(n) < 2 . Thusifn > N

and there is a collectioB of n-graphs with|S| > 2"2_°+€, then there is a grapB € Swith
e(G) > n?~¢, ]

2—C
n ancnan*C _ 2n2*°(lg (e/2)+clgm+(2—c)lgn _ 2n2*°+°(1).

n2—c+e

We are now ready to prove the main result of this section. Note that a prdpéstypnono-
tone if and only if there is a (possibly infinite) collectiGfiof graphs such th&® = Mon(3(),
whereMon(XH) is the set of all graph& such that no subgraph @ is isomorphic to any
H e H. We also defindder(3H) as the set of all graphs such that no induced subgraph of
G is isomorphic to amH € K.

THEOREM 3. LetP be a monotone property. |P"| = 20(”2), then there is a = 1 such
that |Pn| < 2n2—1/t+0(l>-

PROOF. Let P = Mon(H) be amonotone property with spea@"| = 2°0)_ If every
graphH € H has chromatic number at least 3, tH€&h: G is bipartite} CMon(H) = P, in
which casgP"| > 2(2)/2. HenceJH contains a bipartite grapH . Lett be the order of the
larger set in the bipartition dfi. Assume for the sake of contradiction th&f'| > gn# i),
By Lemmaz2, there is then & € P such thaie(G) > n2-1/t, A result of Kévari et al. [8]
says thats containsthe graphK;  as a subgraph. ThuS containsH as a subgraph, which
is a contradiction. a

The result above is nearly the best result possible about the gap béfounzhe proof, we
showed that large properties must contain large complete bipartite graphs. On the other hand,
we can construct properties that nearly reach the upper bound given for which a large complete
bipartite graph is forbidden. To do so, we use the well-known fact that fot #mre exists a
bipartite graph om vertices with at leagt?~2/t edges that contains no subgraph isomorphic
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to Kt t (see, i.e., [4, p. 316, Theorem VI.2.10]). Hence, for examplg,# Mon ({Kt t, K3}),
then|P"| = 200 and|P" > 2" . Thus Theoren8 in fact guarantees asuch that
on® 2 < |P" < 2 \We conjecture that the same is true for hereditary properties, and
again this would be the best possible,|BS| > n* M for p = Her({Ktt, K3}). The con-
jecture below differs from Theore® only in considering hereditary rather than monotone
properties.

CONJECTUREA4. zLFtP be a hereditary property. IfP"| = 20) then there is a t> 1
such thatP"| < 20",

This conjecture is far from proven, however. While it would be surprising, it is not incon-
ceivable that there could be properties with other speeds. A result of Ruzsa and &fiemer
about hypergraphs suggests that properties of hypergraphs do not behave so nicely, but the
calculations and considerations are completely different.

3. SOME SPECIAL PROPERTIES AND THEIRGROWTH

The results of the previous section imply that if the spee® @ in the penultimate range,
there is an integer > 1 such than@+on — P < 20" This is proven for monotone
‘P but only conjectured for hereditafy. We now turn our attention to the question of what
speeds are actually achieved in this range for graph properties, either monotone or hereditary.
We present a collection of properties with speeds lying in the range.

Our first property is defined in terms of the density of subgraphs. We define-dease
property Oc by Q. = {G : e(H) < cv(H) for all H € G}. The following assertion was
proved by Scheinerman and Zito [9].

THEOREM5. Forany c> 1,|Qp| = n¢+oin,

The propertyQ. is a monotone property, and this result shows that any speed of the type
n", ¢ > 1 is achievable. The next property we describe is not monotone or hereditary, but
its n-level contains tha-level of Q.. It will be useful in further proofs in this section. The
c-dense n-levek simply §! = {G € G" : e(G) < cn}. The following lemma gives a bound
on its size.

LEMMA 6. Ifc > 1, then|S| < f(n)n°", with f(n) = O(1.5").

PrRoOOF Note simply that

cn (n) cn .
1] < Z( ]2> < Y (er?/2j)} < cn(erf/2cn" = cnen/2)*" = f(mn°",
=0

j=0
where, easilyf (n) = O(1.5"). O

We showed in the previous section that there are properties with speeds at the top of the
third range, that is, with g2 < |P" < 2 Hence, there are properties with speeds
throughout the range of the third case of TheorenThis does not necessarily mean that
any speed can be achieved, however. We examine constraints on demonstrably achievable
functions later in this paper.

As mentioned in the Introduction, if the speed of a property falls into any but the third range,
|P"| can be described with a ‘nice’ function. However, we shall show that this is not the case
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for the third range. In this range, it is possible for the speed to oscillate between two different
functions infinitelyoften.

More precisely, the question we examine is as follows. Is there a propextythat for func-
tions f (n) < g(n), |P"| oscillates infinitely often between them? Clearly there are choices of
f (n) andg(n) for which it is not possible to construct such a hereditary property. In particular,
Theoreml implies that ifg(n) < n@~1/k+o)n for somek or f (n) > n(1-1/k+o(W)n?/2 for
somek, then|P"| cannot oscillate.

However, we shall show that for many choicesfah) andg(n) in a subrange of the third
range of Theorerth, we can construct such a property. Furthermore, this property is monotone
(and thereforaalso hereditary). Our methods are probabilistic in nature, and we proceed in
steps, first demonstrating a property with fixed upper and lower bounds on the oscillation of
its speed, and then by adjusting the upper and lower bounds.

We begin with a technical probabilistic lemma regarding sets of graphssand(i.e., a
random graph of ordar in which edges are selected independently at random with probabil-

ity p).

LEMMA 7. Lete > Obefixed and let p= p(n) < 1/2. If n is sufficiently large and a set of
graphs7 C G" satisfiesP(Gn,p € 7) > 1/2+ 2¢, then|T| > €./pq N(pNN), whee N = (3)
andg=1- p.

ProOF If nis sufficiently largeP(e(Gn,p) < pPN) < 1/2+ €. HenceP(Gy p € 7 and
e(Gn,p) > PN) > 1/2+ 2¢ — (1/2+ €) = €. Note that for anyH € G" the probability
P(Gn,p = H) depends only on the number of edgesHn Hence, ifHo, H1 € G" with
e(Ho) < e(Hy), thenP(Gp p = Ho) = P(Gp,p = H1). Thus, ife(H) > pN, then for anyH’
with e(H’) = pN, we have

N -1
]P)(Gn’p = H) < P(Gn,p = H/) < <\/ Pq N(pN)) .

Then
N 71
P(Gn,p € T ande(Gp,p) > pN) < |{H € 7, e(H) > pN}| (v qu(pN)) ,

so|7| > ev/Pq N(pNN). 0
We will be applying this lemma in a specific form, expressed in the following corollary.

COROLLARY 8. Suppose p= p(n) < 1/2, p(3) — oc. If n is sufficiently large and the
setT C G" satisfiesP(Gn,p € T) > 2/3, then

— n
p(2)
This corollary will be applied to show that the oscillating properties we construct grow
as desired. The following basic construction will be used as a starting point in each of the
theorems that are to come. Let- 1 andv = (v1, v2, ...) be an increasing (possibly finite)
sequence of natural numbers. We defiselectively restricted properfy, c as{G :if H € G
andv(H) = v; for somei, thene(H) < cv;}. Note thatP, ¢ is monotone and therefore also
hereditary.
The propertyP, ¢ has a speed which grows in a predictable way. O

) > (1/p)P@. (1)
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LEMMA Q. Letc > 1,e > 1/c,v = (v)2; be a sequence of natural numbers and
k = sup{y € v}. Then:

(1) [P}l = nCro@ingnd|Ph | = n©roin whenever n= v,
(2) ifk < oo and nis sufficiently large|P]' | > 2,

PROOF For any sequence andc > 1, wehaveQ. C P, ¢ and, for anyi, the v;-level
Pilc € §'. Hence we havgP!) | > nCoMN for all nand[PV | < || < v D on the
set{vi} by Lemma6. Using Theoren for a lower bound, we obtaifP] | = nrodn
whenevemn = v;.

For the second part, assuie: oco. Consider the propert® ) c, where(k) is the sequence
l,...,k.We have|77(”k),cl < |P}¢| for all n. Hence we would have the result if, for suff-
iciently largen, |Pf .| > e,

Chooses so thate > § > 1/c. Letp =n~—% and consideGnp, . We consider the probability
thatGp p ¢ P(nk),c' This is the probability thaG,  has a ‘bad’ subgraph, that is,

P(Gn,p ¢ P(k) o) =P(G e Gpp: thereisH € G with v(H) < kande(H) > cv(H))
k
< ZIEJ (number ofj -subgraphs o6y, p with more tharcj edges)
j=1

()@= <>
<255 = e

whereCj (~ j¢~1) is a constant depending grandc. Sincesc > 1, we have - éc < 0, so
this probability goes to zero asgoes to infinity. Choosag minimal so that the probability
that G, 0. has a ‘bad’ subgraph is less than 1/3. Note that this probability is monotone
decreasmg im. That is, ifP(G € Gno g : G has a bad subgraph< 1/3, thenP(G € G, s :
G has a bad subgraph) /3 for alln 2 No.

Now we can apply Corollar$ to the sefl = P ¢ to obtainthe result

PGl = (né)”65<"z"> > P2,

All of the inequalities above hold whenevB(Gnp € T) > 2/3, so we hav&P(”k),c| >

2—-3 ~6 2—€
2"/ for all n > ng. Thus we can chooselarge enough to ensurd2’/2 > 2" and ob-
tain our result. O

4. OSCILLATING PROPERTIES THE SECOND AND THIRD QUESTIONS

Having done the preliminary calculations in Sect®yrwe are now ready to prove the first
of threetheorems regarding properties that oscillate. We first construct a property with a large
range of oscillation. The oscillation of this speed provides a negative answer to the third
guestion of Scheinerman and Zito; we shall answer the second question with THelorem
Lemma9 gives a property with the proper bounds on its speed, so all that remains is to
choose asequence so that the property grows as desired. We shall use sequences and their
elements significantly in the rest of the paper and shall abuse notation slightly. For a sequence
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N, we shall sayn € N if the valuen appears somewhere in the sequencé\ i a subse-
guence of sequendd, we shall writeN c M. In other words, we shall use set notation with
sequences to mean that the relations hold for the set of elements in the sequence.

THEOREM10. Let ¢ > lande > 1/c. There exist sequences= (vj)2; and u =
(1i){24, whereuj = vj — Lforalli, such that:

(1) P | = ncrodIn whenever n= v,
@ 1Pl = 2" whenever n= ui,
3) p(cto@Hn < |'P‘l)1c| < 2n2*f ifn £ pi.

PROOFE We choosen, vy, ..., one by one, starting witthy = 3. Having chosenmy, .. ., v,
we setv = (v1, ..., k) and note that by Lemm8, |P]! | > 27" for sufficiently largen.
Chooseuks1 > vk minimal such thatPs™ | > a1 ™. Setvys = ke + 1.

Continuing in this way, we obtain an infinite sequence and the required property. O

The results in Theoren8and10suggest that®” «w 2" % is a natural range of oscillation

that may occur in the penultimate range. However, there are many other types of oscillation
possible. We first show that the upper bound of the oscillation can be any function in the range
that we choose, and, further, that the oscillation can be constrained to remain very close to the
upper bound. Choosing(n) = n@+oM)n for somed > c then gives a negative answer to the
second question of Scheinerman and Zito.

With Theorem12, we shall show a similar, though slightly weaker, result for the lower
bound.

Given a functionf (n) < 2”2_6, Theorem10 gives a sequence which guaranteethat
|PI | oscillates between©°)" and some value abovi(n) infinitely often. Clearly, we
can choose so that the speed only goes abdva) whenn = v; — 1 for somei. However,
we can do better than this by carefully truncating our properties at jgvet v — 1 and
showing that this will not affect any aspect of the construction we perform subsequently. This
is precisely the method of the following theorem.

Note that we constraifi (n) > n°" > n©+o)n 5o that oscillation will actually occur.

THEOREM 11. Letc> 1,c¢ > ¢, ande > 1/c. Let f(n) be a function such that® <
f(n) < 2" for all n. There exist sequences= (vj Joeq andu = (ui)pZ 1 and a monotone
propertyP such that:

(1) |P"| = nc+o@In whenever n= v,
(2) |P" > f(n) — n! wheneven = i,
(3) |P"| < f(n)foralln,

(4) |P"| = netodin,

PROOFE Choose sequencesandu as inTheoreml0, selecting values of; according to
P > f(n) rather thanP! | > on*e,

[Pl = f(wi)and| Pl | < f(n)forall sufficiently largen # i, sincen©oMN < (n).

We will use the fact that if® is monotone ands is ann-graph in? such thatG ¢ H
for any other graph on or more vertices irP, thenP \ {H : H = G} is still a monotone
property. That is, removing graphs froRf has no effect orP" and does not depend on the
graphs inP" for anyn < k. Furthermore, removing a graph and all graphs isomorphic to
it from a property reducegP"| by at mosin!. If we choose graphs to remove carefully, this
property will remain monotone. (N.B.: the same is true for hereditary properties.)

We shall call a grapls € P eligible inP if (G) > cv(G) and there are no graplis € P
with G C H. For the propertyP, ¢, if vi—1 < v(G) < vi —1 (= wi), G is eligible if and only
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if there are nquj-graphsH with G c H. If v(G) = u;, then we need the further condition
that novj-graphs contail@ as a subgraph.

To construct a property satisfying the theorem, we remagvgraphs fronP, . to obtainP.
We only need to show that there is a Setclosed under isomorphism, consisting of eligible
wi-graphs inP/’ such thatf (n) — n! < [P} — F| < f(n). By the comment in the previous
paragraph, changlng a property at melevel affects other levels if and only if it affects the
vi-level.

How many graphs P/’ are subgraphs of graphsﬁf‘ ? For any monotone propeﬂ)}
if DK = {G : v(G) = k — 1 and there is atd € P¥ such thatG c H}, thenDK = {G :

G = H-—v, H e PX v e V(H)). SinceP is monotone the fact tha®* is closed under
taking subgraphs ensures that we get all possible subgraphs. H2fice: k - |PK|. Thus,

there are at mosi (C+°(l))” graphs inP}% that are subgraphs of those R}'c. Hence

DY | < p(etobm forsufﬁmently large .

Given a collection of graph&%, },EA, Iet F({Gj}jen) be the set of all graphs isomorphic
to Gj for somej € Aand Ieth \?({G, Hj = 1J¥). We wish to build a collection
of ellglble graphs so th&ﬁ’k will be monotone and (uj) > |7>k| > f(ui) — /L|

As|DV| < uf°+°(l))“' < f(ui) < [P, there are eligible graphs iR} Let G1 be an
eligible graph inP!’.. The propertyPl is monotone sinc&; eligible mphesGl ¢ H for
anyH € P, ¢ — Gl Further|Ph%| — |7)1| < ui!, so|Pj| > f (i) — ui! We proceed by
picking eligible graphs in order, stopping at the first point Wh@lﬂ < f(ui). Clearly, if we
have picked G; }I 1 and|Pk| > f(ui), the counting argument above guaranteesmaﬂtlll
has an eligible grapksy 1, so this process can continue, amy |7?k+l| < wi! Thus, if
when consideringj we stop with a set df graphs |P| | > f(ui)!

Let P" = Pl  foralln ¢ y andP* = P for alli. As noted aboveP is a monotone

property. ClearlyP" | = v ™" and f (i) > |Pi| > f(ui) — ! Also, by our choice
of v, |P"| < f(n) foralln ¢ L. O

5. OSCILLATION FROM BELOW

Can we produce oscillation similar to that in Sectibnbut which has a function other
thann®" asits lower bound? That is, given a functidi(n), is there a property with speed
that oscillates from just below (n) to just above ¥ infinitely often? A modification of
the property in TheorerhO again provides a candidate for the oscillation. However, we must
relax thecondition that the oscillation stay close to the upper bound in order to make the
proof worzk easily. In particular, there is a range of levels for which we cannot say whether
|PN| < 20",

THEOREM12. LetC > 1 ande > 1/c. Let f(n) be a function such that; on <
f(n) < 2"*" for all n. There exists a pair of sequences=Rp;)7°; and M = (u;){2, and a
monotone propertP such that:

(1) flo) —pil <P < f(pi) foralli,
(2) [PHi| > 24 foralli,

(3) IP"| > f(n)foralln ¢ R,

@) [P" < 2¥“forne Uilpi. i1 — 11.

PROOF The proof follows along the same lines as the proofs of Theoddhasid11, only
this time we construct two sequencé&sandv. We first build a sequence = (vj){2; as in
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TheoremlO. Again letuj = vi —1 for alli, and consideP, . This satisfies conditions 2 and

4 of the theorem (for any sequenRewnhich does not intersedfl = (ui)). Hence we need to
modify P, ¢ to obtain conditions 1 and 3. However, in doing so, we need to be sure we do not
create a property contradicting conditions 2 or 4.

We choose the sequenBeas follows. For all, let p; be the maximah such that; < n <
vip1@ndPhe < f(n). Since Pl = v |piEt| > 277 andn©Hodn < f(n) <
2" there always will be such am

We shall add graphs B} so that its speed is close tfan). We know that this will not
affect then-levels of our property fon > pj. If we can pick these graphs so that every
subgraph is irP}';, we will not affect anyn-level forn < p; either. However, adding such a
graph toP}'. will enlarge then-levels foru; < n < pj.

If 1Pl > f(pi) — pi!, we need not modifyPy'|. Otherwise, consider the sequence
N = (v1,...,vi-1). ThenP, ¢ C Py c. In particular, Pl'c C Py .. Since|Plle| <
f(poi) < 27 < |73"i,’c|, there is a graplG e (79”5,c — P{'c) such that evenH < G
with v(H) < pj isin PSV(CH). We call such a grapimsertable. LetG1 be an insertable graph
with a minimal number of edges. Then every propesubgraph ofG is in P/, so|P)c U
F{G1)| < |PJ| + pi! Also, if Py is a minimal property containing, ¢ U F({G1}), then
P} = Pl forn > pj andn < v. Fory < n < pj, the speedP]| < [P} | + (o)!(}).

We continue choosing;-graphs in this way until we have a collecti¢@y, ..., Gj;} so that
f(oi) — pi! < |7?,ip‘| < f(pj). As the only condition we needed to guarantee an insertable
graph was that the property had speed befaw), it is clear in that case we can always find
an insertable graph. If we consider eadh turn and construct the proper/ = Py ;) in the
obvious way, we obtain a monotone property satisfying conditions 1 and 2.

However, condition 3 does not necessarily hold/mon the interval{[v;, p;)}. Consider
each value of in turn and examine the intervpli, p;) from the right. If, fort = p; — 1, the
speed(P')!| < f(t), we can proceed as we did fcsP,’j”‘c): add a finite collection graphs to
(P! to obtain a new property with speed abof/&). It is clear that we only affect the-
levels forn € [vj, t]. So continuing for each smaller value in the interval, we obtain a property
P satisfying all of the conditions of the theorem. a

Ideally, given any two functions in the proper range with positive difference(®s), we
would like to construct a property with speed that oscillates infinitely often between the two
functions. However, this is clearly not possible, as for any monotone or hereditary property,
|PML/|PN| < 2". Thus, for example, choosing functions that increase together by more
than a factor of 2 would make it impossible to keep the speed between the bounds. With a
restriction to ‘smooth’ functions avoiding this problem, it seems that oscillation is possible.
However, as we have seen in the proof of TheotEtneven with a ‘smooth’ function the
proof would be cumbersome. In fact, even a proper definition of ‘smooth’ would be unappeal-
ing.

However, an outline of the approach we would take to prove the desired statement is as
follows. Given two such function$ (n) < g(n), we wish to obtain a property which achieves
speeds closé (n) for infinitely manyn and close ta@(n) for infinitely manyn. Rather than
finding the sequencefrom Theoreml0, we would start with the sequence from Theotein
In the final step, when we add or remove graphs according to whether the property’s speed
is too high or too low, we need to take care that in removing graphs we do not alter later
properties. This may require adjusting our sequence so that the level for which the speed is
aboveg(n) is in the interval between; andp; rather than at; . The conditiom© 9" f (n) <
g(n) would ensure the conditions of Theoreth and the positive difference between the
functions.
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This, however, does not solve the problem we have discussed regarding condition 4 of
Theoreml2. We believe that it is not worth the effort to describe in more detail what needs to
be doneNevertheless, we believe the following statement to be true, and would be happy to
see an elegant proof.

Letc> 1,c > c,ande > 1/c. Let f(n), g(n) be ‘smooth’ functions such that
nEHMN < £y < =N f () < g(n) < 20°°

for all n. There exists a pair of sequences=R(pi)2; and S= (0j);2; and a monotone
propertyP such that:

Q) IP" = f(nyand|P"| < g(n)foralln ¢ RUS,
(@) f(pi) > PP > f(pi) — pi!forall p € R,
(3) 9(0i) < |P%| < g(5i) +oi!forall oi € S.

6. A MORENATURAL OSCILLATING PROPERTY

The aim of this section is to ‘sharpen’ our results from a different point of view. The proper-
ties given in Theorem$0and11are useful for our purposes. In particular they neatly answer
the question®f [9] mentioned in the Introduction. However, the properties we describe are
extremelyartificial, their oscillation coming, to a large degree, from ‘unnecessary’ graphs. In
particular, there are many (isomorphism classes of) grapRs irthat may be removed with-
out affecting the hereditary nature of the property. In fact, we have used this fact rather heavily
in the proofs of Theoremtl and12. However, while the removal of the graphs would not af-
fect thehereditary nature of the properties in question, it would affect their speed. It would be
nice, therefore, to know if there is a property for which each isomorphism class is necessary
and for which the speed still oscillates.

Given a propertyP, we define thdimit of P asP* = {G : for all n > v(G) there is an
n-graphH € P with G < H}. Then every graph if? is necessary if and only i = P*. In
this case, we say th@ is alimit property. Note that the limit of a property is a limit property,
that is(P*)* = P*.

In [7], Bollobas and Thomason show that®"| = 2¢+0@)(3) and|p*| = 2€+oW(G),
thenc = c’. Hence for properties in the highest range of speeds, wher@, a property and
its limit have the same speed. However, this is clearly not true for all properti®§,as O
for all infinite increasing sequenceswhile |7>{,‘,C| may oscillate butQf| does not. Hence we
would like to demonstrate a property that has a limit whose speed oscillates. The following
theorem provides a limit property with the same type of oscillation as that in Thel®em

THEOREM13. Let ¢ > 1,¢ > 1/c. There is a monotone limit proper®y and two se-
quences R= (pj)2; and S= (07){2; withoj < pi < 0j41 such that:

(1) |P"| = nctodIn whenever n= pj for somei,

2—¢ .
(2) |P"| = 2+ whenever n= o; for some i,
(3) n(C+0(1))n < |’Pn| < 2(1+0(1))n2*6 for all n.

PROOF. For two sequenceR, Sand apropertyP, consider the propertiedr s andBr, s
defined by levels as foIIowsz.l?{)S = {G : v(G) = nand for alli and for allo; < | < pj,
everyl-subgraphH C G hase(H) < cl}, andBrF‘e’S ={G:v(G) =nandG = HUK,
whereH € P andl = n — ¢j for o = max{s: n > s € S}}. Notethat. AR s is a property
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of the typeP, ¢ for somev > R. We will construct a propertfP € Ar s U Br s which is
monotone, limit, and has the proper speeds.

As in the proof of the previous theorems, we proceed by constructing sequeraresS
so thatP is as described. We shall calculate valueg;ob; based on those g¢f _1, 6i_1, and
describeP incrementally by levels.

Let po = 2 and letoy; > po be the smallest value such that’i| > 2”1276, whereT is
the trivial property. As in the proof of Theorefrl, we can remove graphs frofif! so that
|71 < 291 ¢ + n! Let P be the collection of graphs which remain, and fox o1, let
P" = {G : v(G) = nand there iH e P% with G € H}.

Assume we have chosen sequenRes, § whereR, = (o1, ..., 0i-1), § = (01, .. ai)
and we have defined thelevel of P for n < oj. We wish to findp; so that|AR| s Y
B . sl= Pt By | emma6, we know that for any choice of, thespeed AR ¢l =

p(°+°(1))p‘ So if we choosey; (minimal) so thaﬂBp' sl < pc"' the desired relation will

hold. There is such g, since for alln > ¢j, |BR 5l = ” gl =n7 2"i where the
last estimate comes from all graphs being in vel ofP Hencep. =27 would be more
than sufficient. Fos; < n < pj, letP" = A’,‘m U Ba,s-

X X 2—¢
Givenpj, letoiy1 > pi be the smallest number such thaf*L. U BR*L | > 2%+, The
existence of such a number is guaranteed by Le®ua in the proof of Theorerl, we can
remove eligible graphs one isomorphism class at a time, m@gfg Ul’;"’“f1 to obtainP?i+1

with [P+ < 2ot + oi+1! As we want to create a limit property, we will then remove
graphs fromP" for n < oy 11, keeping only those graphs which appear as subgraphs of those
in P°i+1. However, we want to be sure thBtremains at the proper speed. In particular, we
will remove no graphs froriﬁg‘% and no graphs i©¢' ** (noting thatQl < AR gforalln
and any sequencé’ S). Clearly there are enough eligible graphs avoiding these collections,
as|BR's | + 1907 < f{o(l»("“. Note that with this restriction, we will not remove any
graphs fromPn forn < pj.

In this way we construct infinite sequendeands. Itis clear thatP is a monotone property,
and the construction guarantees tiais limit property, since we remove all graphs that are
not contained in arbitrarily large graphs. The speeds given in conditions 1 and 2 are correct
on the elements oR and S, respectively, by the construction. Furthermagk, € P, so the
lower bound given in condition 3 is correct.

For the upper bound, we split the internval, oj 1) into two parts. Our choice of the se-
guenceS guarantees that fos < n < oj41, |P"] < 2nz For oj < n < pj, we note
|P"| < | AR gl+IBR gl- HencelPR gl < nCHoing ()| p3 | < n° 2N p+on T g

Thus we have presented a ‘sensible’ property for which the speed oscillates over nearly the
whole interval fromn@+eWn to 20°°°_ This property, as is true of all of the properties pre-
sented in the paper, has an infinite class of forbidden subgraphs corresponding to the infinite
sequences constructed. That isPifis one of our oscillating properties aiddis a minimal
class of graphs such th& = Mon(&), thend is infinite. Is this a necessary condition for os-
cillation to occur? We believe that it is: if a monotone property has a finite class of forbidden
subgraphs, then all of the limits presented in the Introduction should exist. So far, however, a
proof of such a result is elusive.
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7. TIGHT BOUNDS ON THEPENULTIMATE RANGE

The results of Sections-6demonstrate that the penultimate range differs significantly from
the otheranges of speed. In fact, it is unclear that properties in this range need to satisfy any
well-defined behavior other than the broad bounds given in Se2tibievertheless, based on
results ivolving a different measure of properties in [2], we believe that the range of oscilla-
tion demonstratedh the properties presented here is the maximum possible. The converse of
the conjecture is true for monotone properties, as shown by Thedeerd in [2]. However,
the firstpart of the conjecture is open even for monotone properties.

CONJECTURE14. Fozr all c > 1, thee exists are > 0 such that ifP is a hereditary
property and/P"| > 2" holds infinitely often, thefiP"| > n(¢+o@)n_ Conversely, for all
. . . e s —58+o(1
d > 1there exists @ > Osuch thatifP"| < n@+oDNinfinitely often, thenP"| < 20"V,

It is clear from Lemmad that, if Conjecturel4 is true,§ < 1/d. Perhap<onjecturel4
even holds witke = 1/cands = 1/d. However, there are no results of this type known. Thus
the penultimate region of speeds remains a fertile area for further research.
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