

Available online at www.sciencedirect.com

FINITE FIELDS AND THEIR APPLICATIONS

Finite Fields and Their Applications 14 (2008) 390-409

http://www.elsevier.com/locate/ffa

Weight distribution of some reducible cyclic codes

Keqin Feng¹, Jinquan Luo*

Department of Mathematics, Tsinghua University, Beijing 100084, China Received 10 September 2006; revised 13 March 2007 Available online 30 March 2007 Communicated by Jacques Wolfmann

Abstract

Let $q = p^m$ where p is an odd prime, $m \ge 3$, $k \ge 1$ and gcd(k, m) = 1. Let Tr be the trace mapping from \mathbb{F}_q to \mathbb{F}_p and $\zeta_p = e^{\frac{2\pi i}{p}}$. In this paper we determine the value distribution of following two kinds of exponential sums

$$\sum_{x \in \mathbb{F}_q} \chi \left(\alpha x^{p^k + 1} + \beta x^2 \right) \quad (\alpha, \beta \in \mathbb{F}_q)$$

and

$$\sum_{x \in \mathbb{F}_q} \chi \left(\alpha x^{p^k + 1} + \beta x^2 + \gamma x \right) \quad (\alpha, \beta, \gamma \in \mathbb{F}_q),$$

where $\chi(x) = \zeta_p^{\text{Tr}(x)}$ is the canonical additive character of \mathbb{F}_q . As an application, we determine the weight distribution of the cyclic codes C_1 and C_2 over \mathbb{F}_p with parity-check polynomial $h_2(x)h_3(x)$ and $h_1(x)h_2(x)h_3(x)$, respectively, where $h_1(x)$, $h_2(x)$ and $h_3(x)$ are the minimal polynomials of π^{-1} , π^{-2} and $\pi^{-(p^k+1)}$ over \mathbb{F}_p , respectively, for a primitive element π of \mathbb{F}_q . © 2007 Elsevier Inc. All rights reserved.

Keywords: Exponential sum; Cyclic code; Galois group; Quadratic form; Weight distribution

1071-5797/\$ – see front matter $\hfill \ensuremath{\mathbb{C}}$ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.ffa.2007.03.003

^{*} Corresponding author.

E-mail addresses: kfeng@math.tsinghua.edu.cn (K. Feng), luojq01@mails.tsinghua.edu.cn (J. Luo).

¹ Supported by the National Fundamental Research Project of China, No. 2004CB3180004, and the NSFC Grant No. 60433050.

1. Introduction

For a cyclic code C with length *n* over a finite field \mathbb{F}_p where *p* is an odd prime, let A_i be the number of codewords in C with Hamming weight *i*. The weight distribution $\{A_0, A_1, \ldots, A_n\}$ is an important research object in coding theory. If C is irreducible which means that the parity-check polynomial of C is irreducible in $\mathbb{F}_p[x]$, the weight of each codeword can be expressed by Gaussian sums so that the weight distribution of C can be determined if the corresponding Gaussian sums (or their certain combinations) can be calculated explicitly (see [3,8] and the references therein).

For a reducible cyclic code, the Hamming weight of each codeword can be expressed by more general exponential sums. More exactly speaking, let $q = p^m$, C be the cyclic code over \mathbb{F}_p with length n = q - 1 and parity-check polynomial

$$h(x) = h_1(x) \cdots h_l(x) \quad (l \ge 2),$$

where $h_i(x)$ $(1 \le i \le l)$ are distinct irreducible polynomials in $\mathbb{F}_p[x]$ with the same degree d $(1 \le i \le l)$, then $k = \dim_{\mathbb{F}_p} \mathcal{C} = ld$. Let π be a primitive element of \mathbb{F}_q and π^{-s_i} be a zero of $h_i(x)$, $1 \le s_i \le q - 2$ $(1 \le i \le l)$. Then the codewords in \mathcal{C} can be expressed by

$$c(\alpha_1,\ldots,\alpha_l)=(c_0,c_1,\ldots,c_{n-1}) \quad (\alpha_1,\ldots,\alpha_l\in\mathbb{F}_q),$$

where $c_i = \sum_{\lambda=1}^{l} \operatorname{Tr}(\alpha_{\lambda} \pi^{is_{\lambda}})$ $(0 \leq i \leq n-1)$ and $\operatorname{Tr}: \mathbb{F}_q \to \mathbb{F}_p$ is the trace mapping from \mathbb{F}_q to \mathbb{F}_p . Therefore the Hamming weight of the codeword $c = c(\alpha_1, \ldots, \alpha_l)$ is:

$$w_{H}(c) = \#\{i \mid 0 \leq i \leq n-1, c_{i} \neq 0\}$$

= $n - \#\{i \mid 0 \leq i \leq n-1, c_{i} = 0\}$
= $n - \frac{1}{p} \sum_{i=0}^{n-1} \sum_{a=0}^{p-1} \zeta_{p}^{a \cdot \operatorname{Tr}(\sum_{\lambda=1}^{l} \alpha_{\lambda} \pi^{is_{\lambda}})}$
= $n - \frac{n}{p} - \frac{1}{p} \sum_{a=1}^{p-1} \sum_{x \in \mathbb{F}_{q}^{*}} \zeta_{p}^{\operatorname{Tr}(af(x))}$
= $n - \frac{n}{p} + \frac{p-1}{p} - \frac{1}{p} \sum_{a=1}^{p-1} S(a\alpha_{1}, \dots, a\alpha_{l})$
= $p^{m-1}(p-1) - \frac{1}{p} \sum_{a=1}^{p-1} S(a\alpha_{1}, \dots, a\alpha_{l}),$ (1)

where $f(x) = \alpha_1 x^{s_1} + \alpha_2 x^{s_2} + \dots + \alpha_l x^{s_l} \in \mathbb{F}_p[x], \mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}, n = q - 1$ and

$$S(\alpha_1,\ldots,\alpha_l)=\sum_{x\in\mathbb{F}_q}\zeta_p^{\operatorname{Tr}(\alpha_1x^{s_1}+\cdots+\alpha_lx^{s_l})}.$$

In this way, the weight distribution of cyclic code C can be derived from the value distribution of the exponential sum

$$S(\alpha_1,\ldots,\alpha_l) \quad (\alpha_1,\ldots,\alpha_l \in \mathbb{F}_q).$$

Recently, the weight distribution of linear codes constructed from perfect nonlinear function over \mathbb{F}_q have been determined. A function $\varphi(x)$ on \mathbb{F}_q is called perfect nonlinear if for each $a \in \mathbb{F}_q^*$, the function $\Delta_a \varphi : \mathbb{F}_q \to \mathbb{F}_q$ defined by $(\Delta_a \varphi)(x) = \varphi(x + a) - \varphi(x)$ is a permutation on \mathbb{F}_q . For all known power perfect nonlinear function $\varphi(x) = x^s$ over \mathbb{F}_q , the exponential sums

$$\sum_{x \in \mathbb{F}_q} \zeta_p^{\operatorname{Tr}(\alpha \varphi(x) + \beta x)} \quad (\alpha, \beta \in \mathbb{F}_q)$$

has been calculated with variety of techniques in [1,2,6,9] and then the weight distribution of cyclic code over \mathbb{F}_p with parity-check polynomial $h_1(x)h_2(x)$ is determined where $h_1(x)$ and $h_2(x)$ are minimal polynomials of π^{-1} and π^{-s} over \mathbb{F}_p , respectively.

Let $m \ge 3$, $k \ge 1$ and gcd(k, m) = 1. Let $h_1(x)$, $h_2(x)$ and $h_3(x)$ be the minimal polynomials of π^{-1} , π^{-2} and $\pi^{-(p^k+1)}$ over \mathbb{F}_p , respectively. Then deg $h_i(x) = m$ for i = 1, 2, 3. Let C_1 and C_2 be the cyclic codes over \mathbb{F}_p with length n = q - 1 and parity-check polynomial $h_2(x)h_3(x)$ and $h_1(x)h_2(x)h_3(x)$, respectively. Then the dimensions of C_1 and C_2 over \mathbb{F}_p are 2m and 3m, respectively. (If m = 2, then deg $h_3(x) = 1$; the dimensions of C_1 and C_2 are 3 and 5, respectively.) In this paper we determine the weight distribution of C_1 and C_2 . For doing this we should determine the value distribution of the multi-sets

$$\left\{ T(\alpha,\beta) = \sum_{x \in \mathbb{F}_q} \chi\left(\alpha x^{p^k+1} + \beta x^2\right): \alpha, \beta \in \mathbb{F}_q \right\}$$
(2)

and

$$\left\{S(\alpha,\beta,\gamma) = \sum_{x \in \mathbb{F}_q} \chi\left(\alpha x^{p^k+1} + \beta x^2 + \gamma x\right): \alpha, \beta, \gamma \in \mathbb{F}_q\right\},\tag{3}$$

where $\chi(x) = \zeta_p^{\text{Tr}(x)}$.

Here we present a uniform treatment to determine the values $T(\alpha, \beta)$ and $S(\alpha, \beta, \gamma)$ by using quadratic form theory, and their multiplicities by giving some moment identities on $T(\alpha, \beta)$ and $S(\alpha, \beta, \gamma)$. We introduce some preliminaries and give auxiliary results in Section 2 and prove our main results in Sections 3 and 4.

2. Preliminaries

The first machinery to determine the values of exponential sums $T(\alpha, \beta)$ $(\alpha, \beta \in \mathbb{F}_q)$ defined in (2) is quadratic form theory over \mathbb{F}_p .

Let H be an $m \times m$ symmetric matrix over \mathbb{F}_p and $r = \operatorname{rank} H$. Then there exists $M \in \operatorname{GL}_m(\mathbb{F}_p)$ such that $H' = MHM^T$ is a diagonal matrix and $H' = \operatorname{diag}(a_1, \ldots, a_r, 0, \ldots, 0)$ where $a_i \in \mathbb{F}_p^*$ $(1 \leq i \leq r)$. Let $\Delta = a_1 \cdots a_r$ (we assume $\Delta = 1$ when r = 0). Then the Legendre symbol $(\frac{\Delta}{p})$ is an invariant of *H* under the action of $M \in GL_m(\mathbb{F}_p)$. For $\zeta_p = e^{\frac{2\pi i}{p}}$ and the quadratic form

$$F: \mathbb{F}_p^m \to \mathbb{F}_p, \quad F(x) = XHX^T \quad \left(X = (x_1, \dots, x_m) \in \mathbb{F}_p^m\right), \tag{4}$$

we have the following result (see [5, Exercises 6.27 and 6.28] for the case r = m).

Lemma 1.

(i) For the quadratic form $F = XHX^T$ defined in (4),

$$\sum_{X \in \mathbb{F}_p^m} \zeta_p^{F(X)} = \begin{cases} (\frac{\Delta}{p}) p^{m-r/2} & \text{if } p \equiv 1 \pmod{4}, \\ i^r(\frac{\Delta}{p}) p^{m-r/2} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

(ii) For $A = (a_1, ..., a_m) \in \mathbb{F}_p^m$, if 2YH + A = 0 has solution $Y = B \in \mathbb{F}_p^m$, then $\sum_{X \in \mathbb{F}_p^m} \zeta_p^{F(X) + AX^T} = \zeta_p^c \sum_{X \in \mathbb{F}_p^m} \zeta_p^{F(X)}$ where $c = \frac{1}{2}AB^T \in \mathbb{F}_p$. Otherwise $\sum_{X \in \mathbb{F}_p^m} \zeta_p^{F(X) + AX^T} = 0$.

Proof. (i) From the formula of quadratic Gaussian sum over \mathbb{F}_p we know that for $a \in \mathbb{F}_p^*$, $\sum_{x \in \mathbb{F}_p} \zeta_p^{ax^2} = (\frac{a}{p})\sqrt{p^*}$ where $p^* = (-1)^{\frac{p-1}{2}} p$ (see [5, Theorem 5.15]). Therefore

$$\sum_{X \in \mathbb{F}_p^m} \zeta_p^{F(X)} = \sum_{x_1, \dots, x_m \in \mathbb{F}_p} \zeta_p^{a_1 x_1^2 + \dots + a_r x_r^2} = \left(\frac{\Delta}{p}\right) p^{m-r} \left(p^*\right)^{\frac{r}{2}}$$
$$= \begin{cases} \left(\frac{\Delta}{p}\right) p^{m-r/2} & \text{if } p \equiv 1 \pmod{4}, \\ i^r \left(\frac{\Delta}{p}\right) p^{m-r/2} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

(ii) If there is no $Y \in \mathbb{F}_p^m$ such that 2YH + A = 0, then

$$\begin{split} &\sum_{X \in \mathbb{F}_p^m} \zeta_p^{-F(X)} \sum_{X' \in \mathbb{F}_p^m} \zeta_p^{F(X') + AX'^T} \\ &= \sum_{X, Y \in \mathbb{F}_p^m} \zeta_p^{F(X+Y) + A(X+Y)^T - F(X)} \\ &= \sum_{Y \in \mathbb{F}_p^m} \zeta_p^{YHY^T + AY^T} \sum_{X \in \mathbb{F}_p^m} \zeta_p^{2YHX^T + AX^T} \\ &= 0. \end{split}$$

Therefore $\sum_{X \in \mathbb{F}_p^m} \zeta_p^{F(X) + AX^T} = 0$. If 2BH + A = 0 for some $B \in \mathbb{F}_p^m$, then

$$\sum_{X \in \mathbb{F}_p^m} \zeta_p^{F(X) + AX^T} = \sum_{X \in \mathbb{F}_p^m} \zeta_p^{F(X+B) + A(X+B)^T} = \sum_{X \in \mathbb{F}_p^m} \zeta_p^{F(X) + c},$$

where $c = BHB^T + AB^T = \frac{1}{2}AB^T \in \mathbb{F}_p$. \Box

The field \mathbb{F}_q is a vector space over \mathbb{F}_p with dimension *m*. We fix a basis v_1, \ldots, v_m of \mathbb{F}_q over \mathbb{F}_p . Then each $x \in \mathbb{F}_q$ can be uniquely expressed as

$$x = x_1 v_1 + \dots + x_m v_m \quad (x_i \in \mathbb{F}_p).$$

Thus we have the following \mathbb{F}_p -linear isomorphism:

$$\mathbb{F}_q \xrightarrow{\sim} \mathbb{F}_p^m, \quad x = x_1 v_1 + \dots + x_m v_m \mapsto X = (x_1, \dots, x_m).$$

With this isomorphism, a function $f: \mathbb{F}_q \to \mathbb{F}_p$ induces a function $F: \mathbb{F}_p^m \to \mathbb{F}_p$ where for $X = (x_1, \ldots, x_m) \in \mathbb{F}_p^m$, F(X) = f(x) where $x = x_1v_1 + \cdots + x_mv_m$. In this way, function $f(x) = \operatorname{Tr}(\gamma x)$ for $\gamma \in \mathbb{F}_q$ induces a linear form $F(X) = \sum_{i=1}^m \operatorname{Tr}(\gamma v_i)x_i = A_{\gamma}X^T$ where $A_{\gamma} = (\operatorname{Tr}(\gamma v_1), \ldots, \operatorname{Tr}(\gamma v_m))$, and function $f_{\alpha,\beta}(x) = \operatorname{Tr}(\alpha x^{p^k+1} + \beta x^2)$ induces a quadratic form

$$F_{\alpha,\beta}(X) = \operatorname{Tr}\left(\alpha \left(\sum_{i=1}^{m} x_i v_i\right)^{p^k+1} + \beta \left(\sum_{i=1}^{m} x_i v_i\right)^2\right)$$
$$= \operatorname{Tr}\left(\alpha \left(\sum_{i=1}^{m} x_i v_i^{p^k}\right) \left(\sum_{i=1}^{m} x_i v_i\right) + \beta \left(\sum_{i=1}^{m} x_i v_i\right)^2\right)$$
$$= \sum_{i,j=1}^{m} \operatorname{Tr}\left(\alpha v_i^{p^k} v_j + \beta v_i v_j\right) x_i x_j = X H_{\alpha,\beta} X^T,$$

where

$$H_{\alpha,\beta} = (h_{ij})$$
 and $h_{ij} = \frac{1}{2} \operatorname{Tr} \left(\alpha v_i^{p^k} v_j + \alpha v_i v_j^{p^k} \right) + \operatorname{Tr} (\beta v_i v_j)$ for $1 \le i, j \le m$

Let m and k be co-prime positive integers. In order to determine the values of

$$T(\alpha,\beta) = \sum_{x \in \mathbb{F}_q} \zeta_p^{\operatorname{Tr}(\alpha x^{p^{k+1}} + \beta x^2)} = \sum_{X \in \mathbb{F}_p^m} \zeta_p^{XH_{\alpha,\beta} X^T}$$

and

$$S(\alpha, \beta, \gamma) = \sum_{x \in \mathbb{F}_q} \zeta_p^{\operatorname{Tr}(\alpha x^{p^k+1} + \beta x^2 + \gamma x)} = \sum_{X \in \mathbb{F}_p^m} \zeta_p^{XH_{\alpha,\beta} X^T + A_{\gamma} X^T} \quad (\alpha, \beta, \gamma \in \mathbb{F}_q).$$

we need to determine the rank of $H_{\alpha,\beta}$ over \mathbb{F}_p and the solvability of \mathbb{F}_p -linear equation $2XH_{\alpha,\beta} + A_{\gamma} = 0$.

Lemma 2.

- (i) For $(\alpha, \beta) \in \mathbb{F}_q^2 \setminus \{(0, 0)\}, r_{\alpha, \beta} = \operatorname{rank} H_{\alpha, \beta} \text{ is } m, m 1 \text{ or } m 2.$
- (ii) Let n_i be the number of $H_{\alpha,\beta}$ with $r_{\alpha,\beta} = m i$ for $(\alpha,\beta) \in \mathbb{F}_q^2 \setminus \{(0,0)\}$ and $0 \leq i \leq 2$. Then

$$n_2 = \frac{(p^m - 1)(p^{m-1} - 1)}{p^2 - 1}, \qquad n_1 = (p^m - 1)p^{m-1}, \qquad n_0 = p^{2m} - 1 - n_1 - n_2.$$

Proof. (i) For $Y = (y_1, \ldots, y_m) \in \mathbb{F}_p^m$, $y = y_1v_1 + \cdots + y_mv_m \in \mathbb{F}_q$, we have

$$F_{\alpha,\beta}(X+Y) - F_{\alpha,\beta}(X) - F_{\alpha,\beta}(Y) = 2Y H_{\alpha,\beta} X^T$$

and

$$f_{\alpha,\beta}(x+y) - f_{\alpha,\beta}(x) - f_{\alpha,\beta}(y) = \operatorname{Tr}\left(y^{p^{k}}\left(\alpha^{p^{k}}x^{p^{2k}} + 2\beta^{p^{k}}x^{p^{k}} + \alpha x\right)\right).$$

Let $\phi_{\alpha,\beta}(x) = \alpha^{p^k} x^{p^{2k}} + 2\beta^{p^k} x^{p^k} + \alpha x$. Therefore,

 $\begin{aligned} r_{\alpha,\beta} &= r \quad \Leftrightarrow \quad \text{the number of common solutions of } YH_{\alpha,\beta}X^T = 0 \quad \text{for all } Y \in \mathbb{F}_p^m \text{ is } p^{m-r}, \\ \Leftrightarrow \quad \text{the number of common solutions of } \operatorname{Tr}(y^{p^k}\phi_{\alpha,\beta}(x)) = 0 \\ \quad \text{for all } y \in \mathbb{F}_q \text{ is } p^{m-r}, \\ \Leftrightarrow \quad \phi_{\alpha,\beta}(x) = 0 \text{ has } p^{m-r} \text{ solutions in } \mathbb{F}_q. \end{aligned}$

Fix an algebraic closure $\mathbb{F}_{p^{\infty}}$ of \mathbb{F}_{p} , then the zeroes of $\phi_{\alpha,\beta}(x)$ in $\mathbb{F}_{p^{\infty}}$, say *V*, form an $\mathbb{F}_{p^{k}}$ -vector space of dimension 2. Note that gcd(m,k) = 1. Then $V \cap \mathbb{F}_{p^{m}}$ is a vector space on $\mathbb{F}_{p^{gcd}(m,k)} = \mathbb{F}_{p}$ with dimension at most 2 since any elements in \mathbb{F}_{q} which are linear independent over \mathbb{F}_{p} are also linear independent over $\mathbb{F}_{p^{k}}$ (see [7, Lemma 4]). Therefore $r_{\alpha,\beta}$ is not less than m-2 for $(\alpha,\beta) \in \mathbb{F}_{q}^{2} \setminus \{(0,0)\}$.

(ii) Let
$$N_i = \#\{(\alpha, \beta) \in \mathbb{F}_q^2 \setminus \{(0, 0)\}: r_{\alpha, \beta} = m - i\}$$
 for $i = 0, 1, 2$. Then

$$n_0 + n_1 + n_2 = q^2 - 1 = p^{2m} - 1.$$
 (5)

Suppose that $(\alpha, \beta) \in \mathbb{F}_q^2 \setminus \{(0, 0)\}$ and rank $H_{\alpha,\beta} = m - 2$ which means that the set V' of zeros of $\phi_{\alpha,\beta}(x) = \alpha^{p^k} x^{p^{2k}} + 2\beta^{p^k} x^{p^k} + \alpha x$ is a 2-dimensional subspace of \mathbb{F}_q over \mathbb{F}_p . Let $\{v_1, v_2\}$ be a fixed basis of V' over \mathbb{F}_p , then $v_1, v_2 \in \mathbb{F}_q^*$ and $v_1 v_2^{-1} \notin \mathbb{F}_p$. From $\phi_{\alpha,\beta}(v_1) = \phi_{\alpha,\beta}(v_2) = 0$ we get

$$\alpha^{p^{k}} \left(v_{1}^{p^{2k}} v_{2}^{p^{k}} - v_{1}^{p^{k}} v_{2}^{p^{2k}} \right) = \alpha \left(v_{1}^{p^{k}} v_{2} - v_{1} v_{2}^{p^{k}} \right).$$
(6)

Let $w = \alpha (v_1^{p^k} v_2 - v_1 v_2^{p^k})$. Then $w^{p^k} = w$ so that $w \in \mathbb{F}_{p^k} \cap \mathbb{F}_q = \mathbb{F}_p$. We claim that $w \neq 0$. In fact, if w = 0, then either $\alpha = 0$ so that $\beta \neq 0$ and $\phi_{0,\beta}(x) = 2\beta^{p^k} x^{p^k}$ has unique solution x = 0, or $v_1^{p^k} v_2 - v_1 v_2^{p^k} = 0$ so that $(v_1 v_2^{-1})^{p^k - 1} = 1$ and $v_1 v_2^{-1} \in \mathbb{F}_{p^k} \cap \mathbb{F}_q = \mathbb{F}_p$. Therefore $w \in \mathbb{F}_p^*$ which means that $\alpha = w(v_1^{p^k} v_2 - v_1 v_2^{p^k})^{-1}$ is determined by V' up to a factor in \mathbb{F}_p^* . Then β is determined by

$$\beta = -\frac{1}{2}v_1^{-1} \left(\alpha v_1^{p^k} + \alpha^{p^{m-k}} v_1^{p^{m-k}} \right).$$
⁽⁷⁾

Conversely, if $\omega = \alpha (v_1^{p^k} v_2 - v_1 v_2^{p^k}) \in \mathbb{F}_p^*$ and $\beta = -\frac{1}{2} v_1^{-1} (\alpha v_1^{p^k} + \alpha^{p^{m-k}} v_1^{p^{m-k}})$, then $v_1 v_2^{-1} \notin \mathbb{F}_p^*$ and we get from (6) and (7) that $\phi_{\alpha,\beta}(v_1) = \phi_{\alpha,\beta}(v_2) = 0$. Therefore the set of zeros of

 $\phi_{\alpha,\beta}(x) = 0$ is the \mathbb{F}_p -linear space spanned by v_1 and v_2 . The number of 2-dimensional subspaces of \mathbb{F}_q over \mathbb{F}_p is

$$\begin{bmatrix} m \\ 2 \end{bmatrix}_p = \frac{(q-1)(q-p)}{(p^2-1)(p^2-p)}$$

Therefore

$$n_2 = (p-1) \begin{bmatrix} m \\ 2 \end{bmatrix}_p = \frac{(p^m - 1)(p^{m-1} - 1)}{(p^2 - 1)}.$$
(8)

Now consider the following map:

$$\psi: \mathbb{F}_q^* \times \mathbb{F}_q^* \to \mathbb{F}_q, \quad (\alpha, s) \mapsto \psi(\alpha, s) = -\frac{1}{2}s^{-1} \left(\alpha s^{p^k} + \alpha^{p^{m-k}} s^{p^{m-k}}\right).$$

Then for $\alpha, s \in \mathbb{F}_q^*$ and $\beta \in \mathbb{F}_q$,

$$\alpha^{p^k} s^{p^{2k}} + 2\beta^{p^k} s^{p^k} + \alpha s = 0 \quad \Leftrightarrow \quad \psi(\alpha, s) = \beta$$

For $\alpha \in \mathbb{F}_{q}^{*}$, let

$$N_{\alpha 1} = \big\{ \beta \in \mathbb{F}_q \mid \text{the number of } s \in \mathbb{F}_q^* \text{ satisfying } \psi(\alpha, s) = \beta \text{ is } p - 1 \big\},\$$
$$N_{\alpha 2} = \big\{ \beta \in \mathbb{F}_q \mid \text{the number of } s \in \mathbb{F}_q^* \text{ satisfying } \psi(\alpha, s) = \beta \text{ is } p^2 - 1 \big\}.$$

Then

$$(p-1)|N_{\alpha 1}| + (p^2 - 1)|N_{\alpha 2}| = \sum_{s \in \mathbb{F}_q^*} 1 = q - 1$$

so that

$$(p^m - 1)^2 = \sum_{\alpha \in \mathbb{F}_q^*} (q - 1) = (p - 1) \sum_{\alpha \in \mathbb{F}_q^*} |N_{\alpha 1}| + (p^2 - 1) \sum_{\alpha \in \mathbb{F}_q^*} |N_{\alpha 2}|$$

= $(p - 1)n_1 + (p^2 - 1)n_2.$ (9)

The conclusion of Lemma 2(ii) is derived from (5), (8) and (9). \Box

In order to determine the multiplicity of each value of $T(\alpha, \beta)$ and $S(\alpha, \beta, \gamma)$ for $\alpha, \beta, \gamma \in \mathbb{F}_q$, we need the following result on moments of $T(\alpha, \beta)$ and $S(\alpha, \beta, \gamma)$.

Lemma 3. For the exponential sum $T(\alpha, \beta)$ and $S(\alpha, \beta, \gamma)$,

(i)
$$\sum_{\alpha,\beta\in\mathbb{F}_q} T(\alpha,\beta) = p^{2m};$$

(ii)
$$\sum_{\alpha,\beta\in\mathbb{F}_q} T(\alpha,\beta)^2 = \begin{cases} (2p^m-1)\cdot p^{2m} & \text{if } p \equiv 1 \pmod{4}, \\ p^{2m} & \text{if } p \equiv 3 \pmod{4}; \end{cases}$$

(iii) if m is even (so that k is odd), then

$$\sum_{\alpha,\beta\in\mathbb{F}_q} T(\alpha,\beta)^3 = \left(p^m + p^{m-1} - 1\right) \cdot p^{2m+1};$$

(iv) let N be a subset of \mathbb{F}_q^2 , then

$$\sum_{\substack{(\alpha,\beta)\in N\\\gamma\in\mathbb{F}_q}} S(\alpha,\beta,\gamma) = q \cdot |N|.$$

Proof. (i) We can calculate:

$$\sum_{\alpha,\beta\in\mathbb{F}_q} T(\alpha,\beta) = \sum_{\alpha,\beta\in\mathbb{F}_q} \sum_{x\in\mathbb{F}_q} \chi(\alpha x^{p^k+1} + \beta x^2)$$
$$= \sum_{x\in\mathbb{F}_q} \sum_{\alpha\in\mathbb{F}_q} \chi(\alpha x^{p^k+1}) \sum_{\beta\in\mathbb{F}_q} \chi(\beta x^2) = q \cdot \sum_{\substack{\alpha\in\mathbb{F}_q\\x=0}} \chi(\alpha x^{p^k+1}) = q^2.$$

(ii) We observe that

$$\sum_{\alpha,\beta\in\mathbb{F}_q} T(\alpha,\beta)^2 = \sum_{\alpha,x,y\in\mathbb{F}_q} \chi\left(\alpha\left(x^{p^k+1} + y^{p^k+1}\right)\right) \sum_{\beta\in\mathbb{F}_q} \chi\left(\beta\left(x^2 + y^2\right)\right)$$
$$= T \cdot p^{2m},$$

where

$$T = \#\{(x, y) \in \mathbb{F}_q^2 \mid x^2 + y^2 = 0, \ x^{p^{k+1}} + y^{p^{k+1}} = 0\}$$

= $\#\{(x, y) \in \mathbb{F}_q^2 \mid x^2 + y^2 = 0, (1 + (-1)^{\frac{p^{k+1}}{2}})x^{p^{k+1}} = 0\}.$

If $p \equiv 1 \pmod{4}$, there exists $t \in \mathbb{F}_q^*$ such that $t^2 = -1$. Since $\frac{p^k + 1}{2}$ is odd, we have

$$T = \#\{(x, y) \in \mathbb{F}_q^2 \mid x^2 + y^2 = 0\} = \#\{(x, y) \in \mathbb{F}_q^2 \mid y = \pm tx\}$$

= 1 + 2(q - 1) = 2q - 1. (10)

Suppose that $p \equiv 3 \pmod{4}$. If k is even so that m is odd and $q = p^m \equiv 3 \pmod{4}$. There is no $t \in \mathbb{F}_q$ such that $t^2 = -1$. Therefore

$$T = \#\{(x, y) \in \mathbb{F}_q^2 \mid y^2 = -x^2\} = \#\{(x, y) \in \mathbb{F}_q^2 \mid y^2 = -x^2, x = 0\} = 1.$$
(11)

If k is odd, then $\frac{p^k+1}{2}$ is even and $1 + (-1)^{\frac{p^k+1}{2}} = 2$ so that we also have

$$T = \#\{(x, y) \in \mathbb{F}_q^2 \mid y^2 = -x^2, \ x = 0\} = 1.$$
(12)

(iii) We have

$$\sum_{\alpha,\beta\in\mathbb{F}_q} T(\alpha,\beta)^3 = M \cdot q^2, \quad \text{where}$$

$$M = \#\{(x, y, z) \in \mathbb{F}_q^3 \mid x^2 + y^2 + z^2 = 0, \ x^{p^k+1} + y^{p^k+1} + z^{p^k+1} = 0\}$$

$$= T + T' \cdot (q-1) \tag{13}$$

and

$$T' = \#\{(x, y) \in \mathbb{F}_q^2 \mid x^2 + y^2 + 1 = 0, \ x^{p^k + 1} + y^{p^k + 1} + 1 = 0\}$$

= $\#\{(x, y) \in \mathbb{F}_q^2 \mid x^{p^k + 1} + (-1)^{\frac{p^k + 1}{2}} (x^2 + 1)^{\frac{p^k + 1}{2}} + 1 = 0, \ y^2 = -(1 + x^2)\}.$

For each $x \in \mathbb{F}_q$, let $\theta = 2x^2 + 1 + 2x\sqrt{x^2 + 1} \in \mathbb{F}_{q^2}^*$. Then $4x^2 + 2 = \theta + \theta^{-1}$. If $p \equiv 1 \pmod{4}$, then

$$\begin{aligned} x^{p^{k}+1} + (-1)^{\frac{p^{k}+1}{2}} (x^{2}+1)^{\frac{p^{k}+1}{2}} + 1 &= \left(\frac{1}{4}(\theta + \theta^{-1} - 2)\right)^{\frac{p^{k}+1}{2}} - \left(\frac{1}{4}(\theta + \theta^{-1} + 2)\right)^{\frac{p^{k}+1}{2}} + 1 \\ &= \frac{1}{4} \cdot \theta^{-\frac{p^{k}+1}{2}} \cdot \left[(\theta - 1)^{p^{k}+1} - (\theta + 1)^{p^{k}+1} + 4\theta^{\frac{p^{k}+1}{2}}\right] \\ &= \frac{1}{4} \cdot \theta^{-\frac{p^{k}+1}{2}} \cdot \left(-2\theta^{p^{k}} - 2\theta + 4\theta^{\frac{p^{k}+1}{2}}\right) \\ &= -\frac{1}{2} \cdot \theta^{\frac{-p^{k}+1}{2}} \cdot \left(\theta^{\frac{p^{k}-1}{2}} - 1\right)^{2}. \end{aligned}$$

Note that $gcd(\frac{p^k-1}{2}, p^{2m}-1) = \frac{p-1}{2}$ since k is odd and gcd(k, m) = 1. Therefore

$$x^{p^{k}+1} + (-1)^{\frac{p^{k}+1}{2}} (x^{2}+1)^{\frac{p^{k}+1}{2}} + 1 = 0 \quad \Leftrightarrow \quad \theta^{\frac{p^{k}-1}{2}} = 1 \quad \Leftrightarrow \quad \theta \in \left(\mathbb{F}_{p^{k}}^{*}\right)^{2} \cap \mathbb{F}_{q^{2}}^{*} = \left(\mathbb{F}_{p}^{*}\right)^{2}.$$

Let $\theta \in (\mathbb{F}_p^*)^2$ so that $\theta = \tau^2$ where $\tau \in \mathbb{F}_p^*$, then $1 + x^2 = \frac{1}{4}(\theta + \theta^{-1} + 2) = \frac{1}{4}(\tau + \tau^{-1})^2$. Therefore T' = |S| where

$$S = \{(x, y) \in \mathbb{F}_q^2 \mid \text{there exists } \tau \in \mathbb{F}_p^* \text{ such that } 4x^2 = (\tau - \tau^{-1})^2, \ 4y^2 = -(\tau + \tau^{-1})^2 \}.$$

Since $p \equiv 1 \pmod{4}$, we have $t \in \mathbb{F}_p^*$ such that $t^2 = -1$. Then $\tau = \pm 1$ gives x = 0 and $y = \pm t$ in S, $\tau = \pm t$ gives y = 0 and $x = \pm t$ in S. For remaining p - 5 elements in \mathbb{F}_p^* , $\tau = \pm a$ and $\pm a^{-1}$ gives four (x, y) in S: $x = \pm \frac{1}{2}(a - a^{-1})$, $y = \pm \frac{1}{2}t(a + a^{-1})$. Therefore $T' = 2 + 2 + 4 \cdot \frac{p - 5}{4} = p - 1$ and by (10) and (13), $\sum_{\alpha,\beta\in\mathbb{F}_q} T(\alpha,\beta)^3 = q^2(T + T'(q - 1)) = q^2(2q - 1 + (p - 1)(q - 1)) = (p^m + p^{m-1} - 1)p^{2m+1}$.

If $p \equiv 3 \pmod{4}$, then $p^k + 1 \equiv 0 \pmod{4}$ so that

$$\begin{aligned} x^{p^{k}+1} + (-1)^{\frac{p^{k}+1}{2}} (x^{2}+1)^{\frac{p^{k}+1}{2}} + 1 &= \left(\frac{1}{4}(\theta + \theta^{-1} - 2)\right)^{\frac{p^{k}+1}{2}} + \left(\frac{1}{4}(\theta + \theta^{-1} + 2)\right)^{\frac{p^{k}+1}{2}} + 1 \\ &= \frac{1}{4} \cdot \theta^{-\frac{p^{k}+1}{2}} \cdot \left[(\theta - 1)^{p^{k}+1} + (\theta + 1)^{p^{k}+1} + 4\theta^{\frac{p^{k}+1}{2}}\right] \\ &= \frac{1}{4} \cdot \theta^{-\frac{p^{k}+1}{2}} \cdot \left(2\theta^{p^{k}+1} + 2 + 4\theta^{\frac{p^{k}+1}{2}}\right) \\ &= \frac{1}{2} \cdot \theta^{-\frac{p^{k}+1}{2}} \cdot \left(\theta^{\frac{p^{k}+1}{2}} + 1\right)^{2}. \end{aligned}$$

Therefore

$$\begin{aligned} x^{p^{k}+1} + (-1)^{\frac{p^{k}+1}{2}} (x^{2}+1)^{\frac{p^{k}+1}{2}} + 1 &= 0 \\ \Leftrightarrow \quad \theta^{\frac{p^{k}+1}{2}} &= -1 \\ \Leftrightarrow \quad \theta^{\frac{p+1}{2}} &= -1 \quad \left(\text{since } \theta^{q^{2}-1} = 1, k \text{ is odd and } \gcd\left(\frac{p^{k}+1}{2}, q^{2}-1\right) = \frac{p+1}{2} \right) \\ \Leftrightarrow \quad \theta &= g^{(2j+1)(p-1)} \quad \left(0 \leqslant j \leqslant \frac{p-1}{2} \text{ and } g \text{ is a primitive element of } \mathbb{F}_{p^{2}} \right). \end{aligned}$$

For $\theta = g^{(2j+1)(p-1)}$, $\tau = \sqrt{\theta} = \pm g^{(2j+1)\frac{p-1}{2}} \in \mathbb{F}_{p^2}^*$. Since *m* is even, then $-1 = t^2$ for some $t \in \mathbb{F}_{p^2}^* \subset \mathbb{F}_q^*$. Hence we have T' = |R| where

$$R = \left\{ (x, y) \in \mathbb{F}_q^2 \mid x = \pm \frac{1}{2} (\tau - \tau^{-1}), \ y = \pm \frac{1}{2} t (\tau + \tau^{-1}) \right\}$$

for $\tau = \pm g^{(2j+1)\frac{p-1}{2}}, 0 \le j \le \frac{p-1}{2} \right\}.$

Define

$$L = \left\{ \tau = \pm g^{(2j+1)\frac{p-1}{2}} \mid 0 \le j \le \frac{p-1}{2} \right\}$$

If $\tau \in L$ and $\tau = \pm g^{(2j+1)\frac{p-1}{2}}$ for some $j, 0 \leq j \leq \frac{p-1}{2}$, then $-\tau = \mp g^{(2j+1)\frac{p-1}{2}}, \tau^{-1} = \mp g^{(p-2j)\frac{p-1}{2}}$ and $-\tau^{-1} = \pm g^{(p-2j)\frac{p-1}{2}}$ are all in L. Note that $\frac{1}{2}(-\tau - (-\tau)^{-1}) = \frac{1}{2}(\tau^{-1} - \tau) = -\frac{1}{2}(\tau - \tau^{-1})$ and $\frac{1}{2}(-\tau + (-\tau)^{-1}) = -\frac{1}{2}(\tau^{-1} + \tau)$. Then four different elements $\pm \tau, \pm \tau^{-1}$ with $\tau = \pm g^{(2j+1)\frac{p-1}{2}}$ for some $j, 0 \leq j \leq \frac{p-1}{2}$, give four different pairs (x, y) with $x = \pm \frac{1}{2}(\tau - \tau^{-1}), y = \pm \frac{1}{2}t(\tau + \tau^{-1})$ in R. We have $T' = 2 \cdot \frac{p+1}{2} = p + 1$. By (12) and (13) we obtain

$$\sum_{\alpha,\beta\in\mathbb{F}_q} T(\alpha,\beta)^3 = q^2 (1 + (p+1)(q-1)) = (p^m + p^{m-1} - 1) p^{2m+1}$$

(iv) We can calculate

K. Feng, J. Luo / Finite Fields and Their Applications 14 (2008) 390-409

$$\sum_{\substack{(\alpha,\beta)\in N\\\gamma\in\mathbb{F}_q}} S(\alpha,\beta,\gamma) = \sum_{\substack{(\alpha,\beta)\in N\\\gamma\in\mathbb{F}_q}} \sum_{x\in\mathbb{F}_q} \chi\left(\alpha x^{p^k+1} + \beta x^2\right) \sum_{\substack{\gamma\in\mathbb{F}_q\\\gamma\in\mathbb{F}_q}} \chi(\gamma x)$$
$$= q \cdot \sum_{\substack{(\alpha,\beta)\in N\\x=0}} \chi\left(\alpha x^{p^k+1} + \beta x^2\right) = q \cdot |N|. \quad \Box$$

Remark. For case *m* is odd, $\sum_{\alpha,\beta\in\mathbb{F}_q} T(\alpha,\beta)^3$ can also be determined, but it is not necessary in this paper.

At the end of this section, we state a well-known fact on Galois group of the cyclotomic field $\mathbb{Q}(\zeta_p)$ since $T(\alpha, \beta)$ and $S(\alpha, \beta, \gamma)$ are elements in $\mathbb{Q}(\zeta_p)$ (see [4], for example).

Lemma 4. The Galois group of $\mathbb{Q}(\zeta_p)$ over \mathbb{Q} is $\{\sigma_a \mid 1 \leq a \leq p-1\}$ where the automorphism σ_a of $\mathbb{Q}(\zeta_p)$ is determined by $\sigma_a(\zeta_p) = \zeta_p^a$. The unique quadratic subfield of $\mathbb{Q}(\zeta_p)$ is $\mathbb{Q}(\sqrt{p^*})$ where $p^* = (\frac{-1}{p})p$ and $\sigma_a(\sqrt{p^*}) = (\frac{a}{p})\sqrt{p^*}$ $(1 \leq a \leq p-1)$.

3. Results on exponential sums $T(\alpha, \beta)$ and cyclic code C_1

In this section we prove the following results.

Theorem 1. For $m \ge 3$ and gcd(m, k) = 1, the value distribution of the multi-set $\{T(\alpha, \beta) \mid \alpha, \beta \in \mathbb{F}_q\}$ is shown as following.

- (i) For case m is odd, Table 1 holds.
- (ii) For case m is even, Table 2 holds.

Proof. According to the possible values of $T(\alpha, \beta)$ given by Lemma 1, we define that for $\varepsilon = \pm 1$ and $i \in \{0, 1, 2\}$

$$N_{\varepsilon,i} = \begin{cases} \{(\alpha,\beta) \in \mathbb{F}_q^2 \setminus \{(0,0)\} \mid T(\alpha,\beta) = \varepsilon p^{\frac{m+i}{2}} \} & \text{if } m-i \text{ is even} \\ \{(\alpha,\beta) \in \mathbb{F}_q^2 \setminus \{(0,0)\} \mid T(\alpha,\beta) = \varepsilon \sqrt{p^*} p^{\frac{m+i-1}{2}} \} & \text{if } m-i \text{ is odd,} \end{cases}$$

and $n_{\varepsilon,i} = |N_{\varepsilon,i}|$.

Table 1	
Values	Multiplicity
$ \frac{\sqrt{p^*p} \frac{m-1}{2}, -\sqrt{p^*p} \frac{m-1}{2}}{p \frac{m+1}{2}} - p^{\frac{m+1}{2}} \sqrt{p^*p} \frac{m+1}{2} \sqrt{p^*p} \frac{m+1}{2}, -\sqrt{p^*p} \frac{m+1}{2}}{p^m} $	$\frac{\frac{1}{2}p^{2}(p^{m}-p^{m-1}-p^{m-2}+1)(p^{m}-1)/(p^{2}-1)}{\frac{1}{2}p^{\frac{m-1}{2}}(p^{\frac{m-1}{2}}+1)(p^{m}-1)}$ $\frac{\frac{1}{2}p^{\frac{m-1}{2}}(p^{\frac{m-1}{2}}-1)(p^{m}-1)}{\frac{1}{2}(p^{m}-1)(p^{m-1}-1)/(p^{2}-1)}$

Values	Multiplicity
$p^{\frac{m}{2}}$	$\frac{1}{2}p^2(p^m - p^{m-1} - p^{m-2} + p^{\frac{m}{2}} - p^{\frac{m}{2}-1} + 1)(p^m - 1)/(p^2 - 1)$
$-p^{\frac{m}{2}}$	$\frac{1}{2}p^2(p^m - p^{m-1} - p^{m-2} - p^{\frac{m}{2}} + p^{\frac{m}{2}-1} + 1)(p^m - 1)/(p^2 - 1)$
$\sqrt{p^*}p^{\frac{m}{2}}, -\sqrt{p^*}p^{\frac{m}{2}}$	$\frac{1}{2}p^{m-1}(p^m-1)$
$p^{\frac{m}{2}+1}$	$\frac{1}{2}(p^{\frac{m}{2}}-1)(p^{\frac{m}{2}-1}+1)(p^{m}-1)/(p^{2}-1)$
$-p^{\frac{m}{2}+1}$	$\frac{1}{2}(p^{\frac{m}{2}}+1)(p^{\frac{m}{2}-1}-1)(p^m-1)/(p^2-1)$
p^m	1

Then from Lemma 2 we have

$$n_{1,i} + n_{-1,i} = \begin{cases} (p^m - 1)(p^{m-1} - 1)/(p^2 - 1) & \text{for } i = 2, \\ (p^m - 1)p^{m-1} & \text{for } i = 1, \\ p^{2m} - 1 - n_1 - n_2 & \text{for } i = 0. \end{cases}$$
(14)

If m-i is odd, and $T(\alpha,\beta) = \varepsilon(p^*)^{\frac{m-i}{2}}p^i$, by Lemma 4 we know that for $1 \le a \le p-1$,

$$T(a\alpha, a\beta) = \sigma_a \left(T(\alpha, \beta) \right) = \varepsilon \left(\sigma_a \left(\sqrt{p^*} \right) \right)^{m-i} p^i = \varepsilon \left(\frac{a}{p} \right) \left(\sqrt{p^*} \right)^{m-i} p^i = \left(\frac{a}{p} \right) T(\alpha, \beta).$$

Therefore

Table 2

$$n_{1,i} = n_{-1,i} = \frac{1}{2}n_i$$
 for $m - i$ odd. (15)

(i) For case *m* is odd, by (14) and (15) we know that

$$n_{1,0} = n_{-1,0} = \frac{1}{2}n_0 = \frac{1}{2}p^2 \left(p^m - p^{m-1} - p^{m-2} + 1\right) \frac{p^m - 1}{p^2 - 1},$$
(16)

$$n_{1,2} = n_{-1,2} = \frac{1}{2}n_2 = \frac{1}{2}(p^m - 1)\frac{p^{m-1} - 1}{p^2 - 1},$$
(17)

$$n_{1,1} + n_{-1,1} = n_1 = (p^m - 1)p^{m-1}.$$
(18)

Moreover, from Lemma 3 we have

$$p^{2m} = \sum_{\alpha,\beta \in \mathbb{F}_q} T(\alpha,\beta) = p^m + (n_{1,1} - n_{-1,1})p^{\frac{m+1}{2}}.$$

Thus

$$n_{1,1} - n_{-1,1} = p^{\frac{m-1}{2}} (p^m - 1).$$
⁽¹⁹⁾

From (18) and (19) we get

$$n_{\pm 1,1} = \frac{1}{2} p^{\frac{m-1}{2}} \left(p^{\frac{m-1}{2}} \pm 1 \right) \left(p^m - 1 \right).$$
⁽²⁰⁾

The value distribution of $T(\alpha, \beta)$ for *m* odd is obtained from (16), (17) and (20).

(ii) For case m is even, by (14) and (15) we know that

$$n_{1,0} + n_{-1,0} = n_0 = p^2 \left(p^m - p^{m-1} - p^{m-2} + 1 \right) \frac{p^m - 1}{p^2 - 1},$$
(21)

$$n_{1,2} + n_{-1,2} = n_2 = \left(p^{m-1} - 1\right) \frac{p^m - 1}{p^2 - 1},$$
(22)

$$n_{1,1} = n_{-1,1} = \frac{1}{2}n_1 = \frac{1}{2}(p^m - 1)p^{m-1}.$$
(23)

Moreover, from Lemma 3(i) and (iii) we have

$$p^{2m} = \sum_{\alpha,\beta\in\mathbb{F}_q} T(\alpha,\beta) = p^m + (n_{1,0} - n_{-1,0})p^{\frac{m}{2}} + (n_{1,2} - n_{-1,2})p^{\frac{m}{2}+1},$$
 (24)

$$(p^{m} + p^{m-1} - 1)p^{2m+1} = \sum_{\alpha,\beta\in\mathbb{F}_{q}} T(\alpha,\beta)^{3} = p^{3m} + (n_{1,0} - n_{-1,0})p^{\frac{3m}{2}} + (n_{1,2} - n_{-1,2})p^{\frac{3m}{2}+3}.$$

$$(25)$$

From (24) and (25) we get

$$n_{1,0} - n_{-1,0} = p^{\frac{m}{2}+1} \cdot \frac{p^m - 1}{p+1},$$
(26)

$$n_{1,2} - n_{-1,2} = p^{\frac{m}{2} - 1} \cdot \frac{p^m - 1}{p + 1}.$$
(27)

Then from (21), (22), (26) and (27) we have

$$n_{\pm 1,0} = \frac{1}{2} p^2 \left(p^m - p^{m-1} - p^{m-2} + 1 \pm \left(p^{\frac{m}{2}} - p^{\frac{m}{2}-1} \right) \right) \frac{p^m - 1}{p^2 - 1},$$
(28)

$$n_{\pm 1,2} = \frac{1}{2} \left(p^{\frac{m}{2}} \mp 1 \right) \left(p^{\frac{m}{2}-1} \pm 1 \right) \frac{p^m - 1}{p^2 - 1}.$$
(29)

The value distribution of $T(\alpha, \beta)$ for *m* even is obtained by (23), (28) and (29). This completes the proof of Theorem 1. \Box

Theorem 2. For $m \ge 3$ and gcd(m, k) = 1, the weight distribution $\{A_0, A_1, \dots, A_n\}$ of the cyclic code C_1 over \mathbb{F}_p $(p \ge 3)$ with length n = q - 1 and $\dim_{\mathbb{F}_p} C_1 = 2m$ is shown as following.

- (i) For case m is odd, $A_i = 0$ except for values indicated in Table 3.
- (ii) For case m is even, $A_i = 0$ except for values indicated in Table 4.

Table 3

i	A_i
$(p-1)(p^{m-1}-p^{\frac{m-1}{2}})$	$\frac{1}{2}p^{\frac{m-1}{2}}(p^{\frac{m-1}{2}}+1)(p^m-1)$
$(p-1)p^{m-1}$	$(p^m - 1)(p^m - p^{m-1} + 1)$
$(p-1)(p^{m-1}+p^{\frac{m-1}{2}})$	$\frac{1}{2}p^{\frac{m-1}{2}}(p^{\frac{m-1}{2}}-1)(p^m-1)$
0	ĩ

Table 4

i	A_i
$(p-1)(p^{m-1}-p^{\frac{m}{2}})$	$\frac{1}{2}(p^{\frac{m}{2}}-1)(p^{\frac{m}{2}-1}+1)(p^m-1)/(p^2-1)$
$(p-1)(p^{m-1}-p^{\frac{m}{2}-1})$	$\frac{1}{2}p^2(p^m - p^{m-1} - p^{m-2} + p^{\frac{m}{2}} - p^{\frac{m}{2}-1} + 1)(p^m - 1)/p^2 - 1$
$(p-1)p^{m-1}$	$p^{m-1}(p^m-1)$
$(p-1)(p^{m-1}+p^{\frac{m}{2}-1})$	$\frac{1}{2}p^2(p^m - p^{m-1} - p^{m-2} - p^{\frac{m}{2}} + p^{\frac{m}{2}-1} + 1)(p^m - 1)/(p^2 - 1)$
$(p-1)(p^{m-1}+p^{\frac{m}{2}})$	$\frac{1}{2}(p^{\frac{m}{2}}+1)(p^{\frac{m}{2}-1}-1)(p^m-1)/(p^2-1)$
0	1

Proof. From (1) we know that for each non-zero codeword $c(\alpha, \beta) = (c_0, \ldots, c_{n-1})$ $(n = p^m - 1, c_i = \text{Tr}(\alpha \pi^{(p^k+1)i} + \beta \pi^{2i}), 0 \le i \le n-1$, and $(\alpha, \beta) \in \mathbb{F}_q^2 \setminus \{(0, 0)\}$, the Hamming weight of $c(\alpha, \beta)$ is

$$w_H(c(\alpha,\beta)) = p^{m-1}(p-1) - \frac{1}{p} \cdot R(\alpha,\beta),$$
(30)

where

$$R(\alpha,\beta) = \sum_{a=1}^{p-1} T(a\alpha,a\beta) = \sum_{a=1}^{p-1} \sigma_a \big(T(\alpha,\beta) \big).$$

If $T(\alpha, \beta) = \varepsilon p^l$ ($\varepsilon = \pm 1, l \in \mathbb{Z}$), then $R(\alpha, \beta) = (p - 1)\varepsilon p^l$. If $T(\alpha, \beta) = \varepsilon \sqrt{p^*} p^l$, then $R(\alpha, \beta) = T(\alpha, \beta) \cdot \sum_{a=1}^{p-1} (\frac{a}{p}) = 0$. Thus the weight distribution of C_1 can be derived from Theorem 1 and (30) directly. \Box

Remark. Since $2 = \gcd(p^m - 1, 2) | \gcd(p^m - 1, p^k + 1)$, the first $n' = \frac{n}{2} = \frac{p^m - 1}{2}$ coordinates of each codeword of C_1 form a cyclic code C'_1 over \mathbb{F}_p with length $n' = \frac{p^m - 1}{2}$ and dimension 2m. Let $(A'_0, \ldots, A'_{n'})$ be the weight distribution of C'_1 , then $A'_i = A_{2i}$ $(0 \le i \le n')$.

4. Results on exponential sums $S(\alpha, \beta, \gamma)$ and cyclic code C_2

In this section we prove the following results.

Theorem 3. For $m \ge 3$ and gcd(m,k) = 1, the value distribution of the multi-set $\{S(\alpha, \beta, \gamma) \mid \alpha, \beta, \gamma \in \mathbb{F}_q\}$ is shown as following.

(i) For case m is odd, Table 5 holds.

Value	Multiplicity
$\sqrt{p^*p^{\frac{m-1}{2}}}, -\sqrt{p^*p^{\frac{m-1}{2}}}$	$\frac{1}{2}p^{m+1}(p^m - p^{m-1} - p^{m-2} + 1)(p^m - 1)/(p^2 - 1)$
$\zeta_p^j \sqrt{p^*} p^{\frac{m-1}{2}}$, for $1 \leq j \leq p-1$	$\frac{1}{2}p^{\frac{m+3}{2}}(p^{\frac{m-1}{2}} + (\frac{-j}{p}))(p^m - p^{m-1} - p^{m-2} + 1)\frac{p^m - 1}{p^2 - 1}$
$-\zeta_p^j \sqrt{p^*} p^{\frac{m-1}{2}}$, for $1 \leq j \leq p-1$	$\frac{1}{2}p^{\frac{m+3}{2}}(p^{\frac{m-1}{2}}-(\frac{-j}{p}))(p^m-p^{m-1}-p^{m-2}+1)\frac{p^m-1}{p^2-1}$
$p^{\frac{m+1}{2}}$	$\frac{1}{2}p^{m-2}(p^{\frac{m-1}{2}}+1)(p^{\frac{m-1}{2}}+p-1)(p^m-1)$
$-p^{\frac{m+1}{2}}$	$\frac{1}{2}p^{m-2}(p^{\frac{m-1}{2}}-1)(p^{\frac{m-1}{2}}-p+1)(p^m-1)$
$\zeta_p^j p^{\frac{m+1}{2}}$, for $1 \leq j \leq p-1$	$\frac{1}{2}p^{m-2}(p^{m-1}-1)(p^m-1)$
$-\zeta_p^j p^{\frac{m+1}{2}}$, for $1 \leq j \leq p-1$	$\frac{1}{2}p^{m-2}(p^{m-1}-1)(p^m-1)$
$\sqrt{p^*}p^{\frac{m+1}{2}}, -\sqrt{p^*}p^{\frac{m+1}{2}}$	$\frac{1}{2}p^{m-3}(p^{m-1}-1)(p^m-1)/(p^2-1)$
$\zeta_p^j \sqrt{p^*} p^{\frac{m+1}{2}}$, for $1 \leq j \leq p-1$	$\frac{1}{2}p^{\frac{m-3}{2}}(p^{\frac{m-3}{2}} + (\frac{-j}{p}))(p^{m-1} - 1)\frac{p^m - 1}{p^2 - 1}$
$-\xi_p^j \sqrt{p^*} p^{\frac{m+1}{2}}$, for $1 \leq j \leq p-1$	$\frac{1}{2}p^{\frac{m-3}{2}}(p^{\frac{m-3}{2}}-(\frac{-j}{p}))(p^{m-1}-1)\frac{p^m-1}{p^2-1}$
0	$(p^m - 1)(p^{2m-1} - p^{2m-2} + p^{2m-3} - p^{m-2} + 1)$
p^m	1

Table 6

Value	Multiplicity
$p^{\frac{m}{2}}$	$\frac{1}{2}p^{\frac{m}{2}+1}(p^{\frac{m}{2}}+p-1)(p^m-p^{m-1}-p^{m-2}+p^{\frac{m}{2}}-p^{\frac{m}{2}-1}+1)\frac{p^{m-1}}{p^{2}-1}$
$-p^{\frac{m}{2}}$	$\frac{1}{2}p^{\frac{m}{2}+1}(p^{\frac{m}{2}}-p+1)(p^m-p^{m-1}-p^{m-2}-p^{\frac{m}{2}}+p^{\frac{m}{2}-1}+1)\frac{p^{m-1}}{p^{2}-1}$
$\zeta_p^j p^{\frac{m}{2}}$, for $1 \leq j \leq p-1$	$\frac{1}{2}p^{\frac{m}{2}+1}(p^{\frac{m}{2}}-1)(p^m-p^{m-1}-p^{m-2}+p^{\frac{m}{2}}-p^{\frac{m}{2}-1}+1)\frac{p^m-1}{p^2-1}$
$-\zeta_p^j p^{\frac{m}{2}}$, for $1 \leq j \leq p-1$	$\frac{1}{2}p^{\frac{m}{2}+1}(p^{\frac{m}{2}}+1)(p^m-p^{m-1}-p^{m-2}-p^{\frac{m}{2}}+p^{\frac{m}{2}-1}+1)\frac{p^m-1}{p^{2}-1}$
$\sqrt{p^*}p^{\frac{m}{2}}, -\sqrt{p^*}p^{\frac{m}{2}}$	$\frac{1}{2}p^{2m-3}(p^m-1)$
$\zeta_p^j \sqrt{p^*} p^{\frac{m}{2}}$, for $1 \leq j \leq p-1$	$\frac{1}{2}p^{\frac{3}{2}m-2}(p^{\frac{m}{2}-1}+(\frac{-j}{p}))(p^m-1)$
$-\zeta_p^j \sqrt{p^*} p^{\frac{m}{2}}$, for $1 \leq j \leq p-1$	$\frac{1}{2}p^{\frac{3}{2}m-2}(p^{\frac{m}{2}-1}-(\frac{-j}{p}))(p^m-1)$
$p^{\frac{m}{2}+1}$	$\frac{1}{2}p^{\frac{m}{2}-2}(p^{\frac{m}{2}-1}+1)(p^{\frac{m}{2}}-1)(p^{\frac{m}{2}-1}+p-1)(p^{m}-1)/(p^{2}-1)$
$-p^{\frac{m}{2}+1}$	$\frac{1}{2}p^{\frac{m}{2}-2}(p^{\frac{m}{2}-1}-1)(p^{\frac{m}{2}}+1)(p^{\frac{m}{2}-1}-p+1)(p^{m}-1)/(p^{2}-1)$
$\zeta_p^j p^{\frac{m}{2}+1}$, for $1 \leq j \leq p-1$	$\frac{1}{2}p^{\frac{m}{2}-2}(p^{\frac{m}{2}}-1)(p^{m-2}-1)(p^m-1)/(p^2-1)$
$-\zeta_p^j p^{\frac{m}{2}+1}$, for $1 \leq j \leq p-1$	$\frac{1}{2}p^{\frac{m}{2}-2}(p^{\frac{m}{2}}+1)(p^{m-2}-1)(p^m-1)/(p^2-1)$
0	$(p^m - 1)(p^{2m-1} - p^{2m-2} + p^{2m-3} - p^{m-2} + 1)$
p^m	1

(ii) For case m is even, Table 6 holds.

Proof. According to the possible values of $S(\alpha, \beta, \gamma)$ given by Lemma 1, we define for $\varepsilon = \pm 1$, $0 \le i \le 2$ and $j \in \mathbb{F}_p^*$ that

$$n_{\varepsilon,i,j} = \begin{cases} \#\{(\alpha,\beta,\gamma) \in \mathbb{F}_q^3 \mid S(\alpha,\beta,\gamma) = \varepsilon \zeta_p^j p^{\frac{m+i}{2}}\} & \text{if } m-i \text{ is even,} \\ \#\{(\alpha,\beta,\gamma) \in \mathbb{F}_q^3 \mid S(\alpha,\beta,\gamma) = \varepsilon \zeta_p^j \sqrt{p^*} p^{\frac{m+i-1}{2}}\} & \text{if } m-i \text{ is odd,} \end{cases}$$

and

$$\omega = \# \{ (\alpha, \beta, \gamma) \in \mathbb{F}_q^3 \mid S(\alpha, \beta, \gamma) = 0 \}$$

Recall n_i , $H_{\alpha,\beta}$, $r_{\alpha,\beta}$, A_{γ} in Section 2 and $N_{\varepsilon,i}$, $n_{\varepsilon,i}$ in Section 3 for $i \in \{0, 1, 2\}$. From Lemma 2(i) we know that if $(\alpha, \beta) \neq (0, 0)$, then $r_{\alpha,\beta} = m - i$ for some $i \in \{0, 1, 2\}$. Therefore there are exactly p^{m-i} many $\gamma \in \mathbb{F}_q$ such that $2XH_{\alpha,\beta} + A_{\gamma} = 0$ is solvable. From Lemma 1 we have

$$\sum_{j=0}^{p-1} n_{\varepsilon,i,j} = p^{m-i} n_{\varepsilon,i}.$$
(31)

Since $2XH_{0,0} + A_{\gamma} = 0$ is solvable if and only if $\gamma = 0$, then we have

$$\omega = p^{m} - 1 + (p^{m} - p^{m-1})n_{1} + (p^{m} - p^{m-2})n_{2}$$

= $(p^{m} - 1)(p^{2m-1} - p^{2m-2} + p^{2m-3} - p^{m-2} + 1).$ (32)

If m-i is odd and $S(\alpha, \beta, \gamma) = \varepsilon \zeta_p^j \sqrt{p^*} p^{\frac{m+i-1}{2}}$ for $i \in \{0, 1, 2\}$ and $j \in \mathbb{F}_p^*$, from Lemma 4 we know that for $a \in \mathbb{F}_p^*$,

$$S(a\alpha, a\beta, a\gamma) = \sigma_a \left(S(\alpha, \beta, \gamma) \right) = \varepsilon \zeta^{aj} \left(\frac{a}{p} \right) \sqrt{p^*} p^{\frac{m+i-1}{2}}.$$

Therefore

$$n_{\varepsilon,i,aj} = \begin{cases} n_{\varepsilon,i,j} & \text{if } \left(\frac{a}{p}\right) = 1, \\ n_{-\varepsilon,i,j} & \text{if } \left(\frac{a}{p}\right) = -1. \end{cases}$$
(33)

By (31) and (33) we know that for $\varepsilon \in \{\pm 1\}$ and $i \in \{0, 1, 2\}$,

$$n_{\varepsilon,i,0} + \frac{p-1}{2} (n_{\varepsilon,i,1} + n_{-\varepsilon,i,1}) = p^{m-i} n_{\varepsilon,i}.$$
(34)

Substituting $N_{\varepsilon,i}$ for N in Lemma 3(iv), by Lemma 1(ii) we have

$$qn_{\varepsilon,i} = \varepsilon \sqrt{p^*} p^{\frac{m+i-1}{2}} \sum_{j=0}^{p-1} n_{\varepsilon,i,j} \zeta_p^j.$$
(35)

By (33) and (35) we have

$$\varepsilon\left(\frac{-1}{p}\right)\sqrt{p^*}p^{\frac{m-i-1}{2}}n_{\varepsilon,i} = n_{\varepsilon,i,0} + n_{\varepsilon,i,1} \cdot \sum_{j=1, (\frac{j}{p})=1}^{p-1} \zeta_p^j + n_{-\varepsilon,i,1} \cdot \sum_{j=1, (\frac{j}{p})=-1}^{p-1} \zeta_p^j$$
$$= n_{\varepsilon,i,0} + \frac{1}{2}(\sqrt{p^*} - 1)n_{\varepsilon,i,1} + \frac{1}{2}(-\sqrt{p^*} - 1)n_{-\varepsilon,i,1}$$

K. Feng, J. Luo / Finite Fields and Their Applications 14 (2008) 390-409

$$= \left[n_{\varepsilon,i,0} - \frac{1}{2} (n_{\varepsilon,i,1} + n_{-\varepsilon,i,1}) \right] + \frac{1}{2} \sqrt{p^*} (n_{\varepsilon,i,1} - n_{-\varepsilon,i,1}).$$

Then we get

$$n_{\varepsilon,i,0} = \frac{1}{2} (n_{\varepsilon,i,1} + n_{-\varepsilon,i,1}),$$
(36)

$$n_{\varepsilon,i,1} - n_{-\varepsilon,i,1} = 2\varepsilon \left(\frac{-1}{p}\right) p^{\frac{m-i-1}{2}} n_{\varepsilon,i}.$$
(37)

By (33), (34), (36) and (37) we have that for $\varepsilon \in \{\pm 1\}, i \in \{0, 1, 2\}$ and $j \in \mathbb{F}_p^*$,

$$n_{\varepsilon,i,0} = p^{m-i-1} n_{\varepsilon,i}, \tag{38}$$

$$n_{\varepsilon,i,j} = \left(p^{m-i-1} + \varepsilon \left(\frac{-j}{p}\right) p^{\frac{m-i-1}{2}}\right) n_{\varepsilon,i}.$$
(39)

If m - i is even and $S(\alpha, \beta, \gamma) = \varepsilon \zeta_p^j p^{\frac{m+i}{2}}$ for $j \in \mathbb{F}_p^*$, by Lemma 4 we know that for $a \in \mathbb{F}_p^*$,

$$S(a\alpha, a\beta, a\gamma) = \sigma_a \left(S(\alpha, \beta, \gamma) \right) = \varepsilon \zeta^{aj} p^{\frac{m+i}{2}}$$

Therefore for $\varepsilon \in \{\pm 1\}$ and $i \in \{0, 1, 2\}$, we get

$$n_{\varepsilon,i,1} = n_{\varepsilon,i,2} = \dots = n_{\varepsilon,i,p-1}.$$
(40)

Let $n_{\varepsilon,(i)} = n_{\varepsilon,i,j}$ for $j \in \mathbb{F}_p^*$. Then by (31) and (40) we have

$$n_{\varepsilon,i,0} + (p-1)n_{\varepsilon,(i)} = p^{m-i}n_{\varepsilon,i}.$$
(41)

Substituting $N_{\varepsilon,i}$ for N in Lemma 3(iv), by Lemma 1(ii) we have

$$p^{m} n_{\varepsilon,i} = \varepsilon p^{\frac{m+i}{2}} \sum_{j=0}^{p-1} n_{\varepsilon,i,j} \zeta_p^j.$$

$$\tag{42}$$

Since $\sum_{j=1}^{p-1} \zeta_p^j = -1$, by (40) and (42) we get

$$n_{\varepsilon,i,0} - n_{\varepsilon,(i)} = \varepsilon p^{\frac{m-i}{2}} n_{\varepsilon,i}.$$
(43)

By (41) and (43) we obtain

$$n_{\varepsilon,i,0} = \left(p^{m-i-1} + \varepsilon(p-1)p^{\frac{m-i-2}{2}}\right)n_{\varepsilon,i},\tag{44}$$

$$n_{\varepsilon,(i)} = \left(p^{m-i-1} - \varepsilon p^{\frac{m-i-2}{2}}\right) n_{\varepsilon,i}.$$
(45)

From Theorem 1, combining (38), (39), (44) and (45) we get the results of (i) and (ii). \Box

Recall $n_{\varepsilon,i,j}$ and ω in the proof of Theorem 3, we have the following result.

Tal	ble	7

i	A _i
$(p-1)p^{m-1} - (p-1)p^{\frac{m}{2}}$	<i>n</i> 1,2,0
$(p-1)p^{m-1} - p^{\frac{m}{2}}$	$(p-1)n_{(\frac{-1}{p}),1,1} + (p-1)n_{-1,2,1}$
$(p-1)p^{m-1} - (p-1)p^{\frac{m}{2}-1}$	<i>n</i> _{1,0,0}
$(p-1)p^{m-1} - p^{\frac{m}{2}-1}$	$(p-1)n_{-1,0,1}$
$(p-1)p^{m-1}$	$\omega + 2n_{1,1,0}$
$(p-1)p^{m-1} + p^{\frac{m}{2}-1}$	$(p-1)n_{1,0,1}$
$(p-1)p^{m-1} + (p-1)p^{\frac{m}{2}-1}$	$n_{-1,0,0}$
$(p-1)p^{m-1} + p^{\frac{m}{2}}$	$(p-1)n_{-(\frac{-1}{p}),1,1} + (p-1)n_{1,2,1}$
$(p-1)p^{m-1} + (p-1)p^{\frac{m}{2}}$	$n_{-1,2,0}$
0	1

Table 8

14010 0	
i	A _i
$(p-1)p^{m-1} - p^{\frac{m+1}{2}}$	$(p-1)n_{(\frac{-1}{p}),2,1}$
$(p-1)p^{m-1} - (p-1)p^{\frac{m-1}{2}}$	<i>n</i> _{1,1,0}
$(p-1)p^{m-1} - p^{\frac{m-1}{2}}$	$(p-1)n_{(\frac{-1}{p}),0,1} + (p-1)n_{-1,1,1}$
$(p-1)p^{m-1}$	$\omega + 2n_{1,0,0} + 2n_{1,2,0}$
$(p-1)p^{m-1} + p^{\frac{m-1}{2}}$	$(p-1)n_{-(\frac{-1}{p}),0,1} + (p-1)n_{1,1,1}$
$(p-1)p^{m-1} + (p-1)p^{\frac{m-1}{2}}$	$n_{-1,1,0}$
$(p-1)p^{m-1} + p^{\frac{m+1}{2}}$	$(p-1)n_{-(\frac{-1}{p}),2,1}$
0	1

Theorem 4. For $m \ge 3$ and gcd(m, k) = 1, the weight distribution $\{A_0, A_1, \ldots, A_n\}$ of the cyclic code C_2 over \mathbb{F}_p $(p \ge 3)$ with length n = q - 1 and $\dim_{\mathbb{F}_p} C_1 = 3m$ is shown as following.

- (i) In the case m is even, Table 7 holds.
- (ii) In the case m is odd, Table 8 holds.

Proof. From (1) we know that for each non-zero codeword $c(\alpha, \beta, \gamma) = (c_0, \ldots, c_{n-1})$ $(n = p^m - 1, c_i = \text{Tr}(\alpha \pi^{(p^k+1)i} + \beta \pi^{2i} + \gamma \pi^i), 0 \le i \le n-1$, and $(\alpha, \beta, \gamma) \in \mathbb{F}_q^3 \setminus \{(0, 0, 0)\})$, the Hamming weight of $c(\alpha, \beta, \gamma)$ is

$$w_H(c(\alpha,\beta,\gamma)) = p^{m-1}(p-1) - \frac{1}{p} \cdot R(\alpha,\beta,\gamma), \tag{46}$$

where

$$R(\alpha, \beta, \gamma) = \sum_{a=1}^{p-1} S(a\alpha, a\beta, a\gamma) = \sum_{a=1}^{p-1} \sigma_a (S(\alpha, \beta, \gamma)).$$

For $\varepsilon \in \{\pm 1\}, 0 \leq i \leq 2$ and $j \in \mathbb{F}_p^*$,

• if m - i is even and $S(\alpha, \beta, \gamma) = \varepsilon p^{\frac{m+i}{2}}$, then

$$R(\alpha,\beta,\gamma) = \varepsilon(p-1)p^{\frac{m+i}{2}};$$

• if m - i is even and $S(\alpha, \beta, \gamma) = \varepsilon \zeta_p^j p^{\frac{m+i}{2}}$, then

$$R(\alpha,\beta,\gamma) = \varepsilon p^{\frac{m+i}{2}} \sum_{a=1}^{p-1} \zeta_p^{aj} = -\varepsilon p^{\frac{m+i}{2}};$$

• if m - i is odd and $S(\alpha, \beta, \gamma) = \varepsilon \sqrt{p^*} p^{\frac{m+i-1}{2}}$, then

$$R(\alpha, \beta, \gamma) = \varepsilon \sqrt{p^*} p^{\frac{m+i-1}{2}} \sum_{a=1}^{p-1} \left(\frac{a}{p}\right) = 0;$$

• if m - i is odd and $S(\alpha, \beta, \gamma) = \varepsilon \zeta_p^j \sqrt{p^*} p^{\frac{m+i-1}{2}}$, then

$$R(\alpha,\beta,\gamma) = \varepsilon \sqrt{p^*} p^{\frac{m+i-1}{2}} \sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta_p^{aj} = \varepsilon \left(\frac{-j}{p}\right) p^{\frac{m+i+1}{2}}.$$

Thus the weight distribution of C_2 can be derived from Theorem 3 and (46) directly. \Box

5. Further study

If gcd(k, m) is odd, these machineries we have developed can also work with some modifications if necessary.

If gcd(k, m) is even, then $T(\alpha, \beta)$ for $(\alpha, \beta) \in \mathbb{F}_q^2$ are integers. Therefore Galois theory tells us nothing on $n_{\varepsilon,i}$ for $\varepsilon = \pm 1, 0 \le i \le 2$, and the moment identities in Lemma 3 is not enough to determine $n_{\varepsilon,i}$.

Denote by d = gcd(k, m). For general d, we need to develop more machineries to determine the weight distributions of C_1 and C_2 . Furthermore, we can generalize the cyclic codes to the field \mathbb{F}_{p^s} with $s \mid d$ and determine their weight distributions. These methods and results will be presented in a following paper.

Acknowledgements

The authors thank the anonymous referees for their helpful comments.

References

- [1] R.S. Coulter, Further evaluation of some Weil sums, Acta Arith. 86 (1998) 217–226.
- [2] K. Feng, J. Luo, Value distribution of exponential sums from perfect nonlinear functions and their applications, preprint, 2006.

- [3] R.W. Fitzgerald, J.L. Yucas, Sums of Gauss sums and weights of irreducible codes, Finite Fields Appl. 11 (2005) 89–110.
- [4] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, second ed., Grad. Texts in Math., vol. 84, Springer-Verlag, 1990.
- [5] R. Lidl, H. Niederreiter, Finite Fields, Encyclopedia Math. Appl., vol. 20, Addison-Wesley, 1983.
- [6] G. Ness, T. Helleseth, A. Kholosha, On the correlation distribution of the Coulter–Matthews decimation, IEEE Trans. Inform. Theory 52 (2006) 2241–2247.
- [7] H.M. Tranchtenberg, On the cross-correlation function of maximal linear sequences, PhD dissertation, University of Southern California, Los Angeles, 1970.
- [8] M. Van Der Vlugt, Hasse–Davenport curve, Gauss sums and weight distribution of irreducible cyclic codes, J. Number Theory 55 (1995) 145–159.
- [9] J. Yuan, C. Carlet, C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions, IEEE Trans. Inform. Theory 52 (2006) 712–717.