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Abstract

Let q = pm where p is an odd prime, m � 3, k � 1 and gcd(k,m) = 1. Let Tr be the trace mapping

from Fq to Fp and ζp = e
2πi
p . In this paper we determine the value distribution of following two kinds of

exponential sums

∑
x∈Fq

χ
(
αxpk+1 + βx2)

(α,β ∈ Fq)

and

∑
x∈Fq

χ
(
αxpk+1 + βx2 + γ x

)
(α,β, γ ∈ Fq),

where χ(x) = ζ
Tr(x)
p is the canonical additive character of Fq . As an application, we determine the

weight distribution of the cyclic codes C1 and C2 over Fp with parity-check polynomial h2(x)h3(x) and
h1(x)h2(x)h3(x), respectively, where h1(x), h2(x) and h3(x) are the minimal polynomials of π−1, π−2

and π−(pk+1) over Fp , respectively, for a primitive element π of Fq .
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1. Introduction

For a cyclic code C with length n over a finite field Fp where p is an odd prime, let Ai be the
number of codewords in C with Hamming weight i. The weight distribution {A0,A1, . . . ,An}
is an important research object in coding theory. If C is irreducible which means that the parity-
check polynomial of C is irreducible in Fp[x], the weight of each codeword can be expressed
by Gaussian sums so that the weight distribution of C can be determined if the corresponding
Gaussian sums (or their certain combinations) can be calculated explicitly (see [3,8] and the
references therein).

For a reducible cyclic code, the Hamming weight of each codeword can be expressed by more
general exponential sums. More exactly speaking, let q = pm, C be the cyclic code over Fp with
length n = q − 1 and parity-check polynomial

h(x) = h1(x) · · ·hl(x) (l � 2),

where hi(x) (1 � i � l) are distinct irreducible polynomials in Fp[x] with the same degree d

(1 � i � l), then k = dimFp
C = ld . Let π be a primitive element of Fq and π−si be a zero of

hi(x), 1 � si � q − 2 (1 � i � l). Then the codewords in C can be expressed by

c(α1, . . . , αl) = (c0, c1, . . . , cn−1) (α1, . . . , αl ∈ Fq),

where ci = ∑l
λ=1 Tr(αλπ

isλ) (0 � i � n − 1) and Tr : Fq → Fp is the trace mapping from Fq

to Fp . Therefore the Hamming weight of the codeword c = c(α1, . . . , αl) is:

wH (c) = #{i | 0 � i � n − 1, ci �= 0}
= n − #{i | 0 � i � n − 1, ci = 0}

= n − 1

p

n−1∑
i=0

p−1∑
a=0

ζ
a·Tr

(∑l
λ=1 αλπisλ

)
p

= n − n

p
− 1

p

p−1∑
a=1

∑
x∈F∗

q

ζ
Tr(af (x))
p

= n − n

p
+ p − 1

p
− 1

p

p−1∑
a=1

S(aα1, . . . , aαl)

= pm−1(p − 1) − 1

p

p−1∑
a=1

S(aα1, . . . , aαl), (1)

where f (x) = α1x
s1 + α2x

s2 + · · · + αlx
sl ∈ Fp[x], F∗

q = Fq \ {0}, n = q − 1 and

S(α1, . . . , αl) =
∑
x∈F

ζTr(α1x
s1 +···+αlx

sl )
p .
q
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In this way, the weight distribution of cyclic code C can be derived from the value distribution of
the exponential sum

S(α1, . . . , αl) (α1, . . . , αl ∈ Fq).

Recently, the weight distribution of linear codes constructed from perfect nonlinear function
over Fq have been determined. A function ϕ(x) on Fq is called perfect nonlinear if for each
a ∈ F∗

q , the function Δaϕ : Fq → Fq defined by (Δaϕ)(x) = ϕ(x + a) − ϕ(x) is a permutation
on Fq . For all known power perfect nonlinear function ϕ(x) = xs over Fq , the exponential sums

∑
x∈Fq

ζTr(αϕ(x)+βx)
p (α,β ∈ Fq)

has been calculated with variety of techniques in [1,2,6,9] and then the weight distribution of
cyclic code over Fp with parity-check polynomial h1(x)h2(x) is determined where h1(x) and
h2(x) are minimal polynomials of π−1 and π−s over Fp , respectively.

Let m � 3, k � 1 and gcd(k,m) = 1. Let h1(x), h2(x) and h3(x) be the minimal polynomials
of π−1,π−2 and π−(pk+1) over Fp , respectively. Then deghi(x) = m for i = 1,2,3. Let C1 and
C2 be the cyclic codes over Fp with length n = q − 1 and parity-check polynomial h2(x)h3(x)

and h1(x)h2(x)h3(x), respectively. Then the dimensions of C1 and C2 over Fp are 2m and 3m,
respectively. (If m = 2, then degh3(x) = 1; the dimensions of C1 and C2 are 3 and 5, respec-
tively.) In this paper we determine the weight distribution of C1 and C2. For doing this we should
determine the value distribution of the multi-sets{

T (α,β) =
∑
x∈Fq

χ
(
αxpk+1 + βx2): α,β ∈ Fq

}
(2)

and {
S(α,β, γ ) =

∑
x∈Fq

χ
(
αxpk+1 + βx2 + γ x

)
: α,β, γ ∈ Fq

}
, (3)

where χ(x) = ζ
Tr(x)
p .

Here we present a uniform treatment to determine the values T (α,β) and S(α,β, γ ) by using
quadratic form theory, and their multiplicities by giving some moment identities on T (α,β) and
S(α,β, γ ). We introduce some preliminaries and give auxiliary results in Section 2 and prove
our main results in Sections 3 and 4.

2. Preliminaries

The first machinery to determine the values of exponential sums T (α,β) (α,β ∈ Fq) defined
in (2) is quadratic form theory over Fp .

Let H be an m × m symmetric matrix over Fp and r = rankH . Then there exists M ∈
GLm(Fp) such that H ′ = MHMT is a diagonal matrix and H ′ = diag(a1, . . . , ar ,0, . . . ,0)

where ai ∈ F∗ (1 � i � r). Let Δ = a1 · · ·ar (we assume Δ = 1 when r = 0). Then the Legen-
p
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dre symbol (Δ
p

) is an invariant of H under the action of M ∈ GLm(Fp). For ζp = e
2πi
p and the

quadratic form

F : Fm
p → Fp, F (x) = XHXT

(
X = (x1, . . . , xm) ∈ Fm

p

)
, (4)

we have the following result (see [5, Exercises 6.27 and 6.28] for the case r = m).

Lemma 1.

(i) For the quadratic form F = XHXT defined in (4),

∑
X∈Fm

p

ζF(X)
p =

{
(Δ

p
)pm−r/2 if p ≡ 1 (mod 4),

ir (Δ
p

)pm−r/2 if p ≡ 3 (mod 4).

(ii) For A = (a1, . . . , am) ∈ Fm
p , if 2YH + A = 0 has solution Y = B ∈ Fm

p , then∑
X∈Fm

p
ζ

F(X)+AXT

p = ζ c
p

∑
X∈Fm

p
ζ

F(X)
p where c = 1

2ABT ∈ Fp .

Otherwise
∑

X∈Fm
p

ζ
F(X)+AXT

p = 0.

Proof. (i) From the formula of quadratic Gaussian sum over Fp we know that for a ∈ F∗
p ,∑

x∈Fp
ζ ax2

p = ( a
p
)
√

p∗ where p∗ = (−1)
p−1

2 p (see [5, Theorem 5.15]). Therefore

∑
X∈Fm

p

ζF(X)
p =

∑
x1,...,xm∈Fp

ζ
a1x

2
1+···+arx

2
r

p =
(

Δ

p

)
pm−r

(
p∗) r

2

=
{

(Δ
p

)pm−r/2 if p ≡ 1 (mod 4),

ir (Δ
p

)pm−r/2 if p ≡ 3 (mod 4).

(ii) If there is no Y ∈ Fm
p such that 2YH + A = 0, then

∑
X∈Fm

p

ζ−F(X)
p

∑
X′∈Fm

p

ζF(X′)+AX′T
p

=
∑

X,Y∈Fm
p

ζF(X+Y)+A(X+Y)T −F(X)
p

=
∑

Y∈Fm
p

ζ YHYT +AYT

p

∑
X∈Fm

p

ζ 2YHXT +AXT

p

= 0.

Therefore
∑

X∈Fm
p

ζ
F(X)+AXT

p = 0. If 2BH + A = 0 for some B ∈ Fm
p , then

∑
X∈Fm

p

ζF(X)+AXT

p =
∑

X∈Fm
p

ζF(X+B)+A(X+B)T

p =
∑

X∈Fm
p

ζF(X)+c
p ,

where c = BHBT + ABT = 1ABT ∈ Fp . �
2
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The field Fq is a vector space over Fp with dimension m. We fix a basis v1, . . . , vm of Fq

over Fp . Then each x ∈ Fq can be uniquely expressed as

x = x1v1 + · · · + xmvm (xi ∈ Fp).

Thus we have the following Fp-linear isomorphism:

Fq
∼−→ Fm

p , x = x1v1 + · · · + xmvm 
→ X = (x1, . . . , xm).

With this isomorphism, a function f : Fq → Fp induces a function F : Fm
p → Fp where for

X = (x1, . . . , xm) ∈ Fm
p ,F (X) = f (x) where x = x1v1 + · · · + xmvm. In this way, function

f (x) = Tr(γ x) for γ ∈ Fq induces a linear form F(X) = ∑m
i=1 Tr(γ vi)xi = Aγ XT where Aγ =

(Tr(γ v1), . . . ,Tr(γ vm)), and function fα,β(x) = Tr(αxpk+1 + βx2) induces a quadratic form

Fα,β(X) = Tr

(
α

(
m∑

i=1

xivi

)pk+1

+ β

(
m∑

i=1

xivi

)2)

= Tr

(
α

(
m∑

i=1

xiv
pk

i

)(
m∑

i=1

xivi

)
+ β

(
m∑

i=1

xivi

)2)

=
m∑

i,j=1

Tr
(
αv

pk

i vj + βvivj

)
xixj = XHα,βXT ,

where

Hα,β = (hij ) and hij = 1

2
Tr

(
αv

pk

i vj + αviv
pk

j

) + Tr(βvivj ) for 1 � i, j � m.

Let m and k be co-prime positive integers. In order to determine the values of

T (α,β) =
∑
x∈Fq

ζTr(αxpk+1+βx2)
p =

∑
X∈Fm

p

ζ
XHα,βXT

p

and

S(α,β, γ ) =
∑
x∈Fq

ζ
Tr(αxpk+1+βx2+γ x)
p =

∑
X∈Fm

p

ζ
XHα,βXT +Aγ XT

p (α,β, γ ∈ Fq),

we need to determine the rank of Hα,β over Fp and the solvability of Fp-linear equation
2XHα,β + Aγ = 0.

Lemma 2.

(i) For (α,β) ∈ F2
q \ {(0,0)}, rα,β = rankHα,β is m, m − 1 or m − 2.

(ii) Let ni be the number of Hα,β with rα,β = m− i for (α,β) ∈ F2
q \{(0,0)} and 0 � i � 2. Then

n2 = (pm − 1)(pm−1 − 1)

p2 − 1
, n1 = (

pm − 1
)
pm−1, n0 = p2m − 1 − n1 − n2.
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Proof. (i) For Y = (y1, . . . , ym) ∈ Fm
p , y = y1v1 + · · · + ymvm ∈ Fq , we have

Fα,β(X + Y) − Fα,β(X) − Fα,β(Y ) = 2YHα,βXT

and

fα,β(x + y) − fα,β(x) − fα,β(y) = Tr
(
ypk (

αpk

xp2k + 2βpk

xpk + αx
))

.

Let φα,β(x) = αpk
xp2k + 2βpk

xpk + αx. Therefore,

rα,β = r ⇔ the number of common solutions of YHα,βXT = 0 for all Y ∈ Fm
p is pm−r ,

⇔ the number of common solutions of Tr
(
ypk

φα,β(x)
) = 0

for all y ∈ Fq is pm−r ,

⇔ φα,β(x) = 0 has pm−r solutions in Fq .

Fix an algebraic closure Fp∞ of Fp , then the zeroes of φα,β(x) in Fp∞ , say V , form an
Fpk -vector space of dimension 2. Note that gcd(m, k) = 1. Then V ∩ Fpm is a vector space on
Fpgcd(m,k) = Fp with dimension at most 2 since any elements in Fq which are linear independent
over Fp are also linear independent over Fpk (see [7, Lemma 4]). Therefore rα,β is not less than
m − 2 for (α,β) ∈ F2

q \ {(0,0)}.
(ii) Let Ni = #{(α,β) ∈ F2

q \ {(0,0)}: rα,β = m − i} for i = 0,1,2. Then

n0 + n1 + n2 = q2 − 1 = p2m − 1. (5)

Suppose that (α,β) ∈ F2
q \{(0,0)} and rankHα,β = m−2 which means that the set V ′ of zeros

of φα,β(x) = αpk
xp2k + 2βpk

xpk + αx is a 2-dimensional subspace of Fq over Fp . Let {v1, v2}
be a fixed basis of V ′ over Fp , then v1, v2 ∈ F∗

q and v1v
−1
2 /∈ Fp . From φα,β(v1) = φα,β(v2) = 0

we get

αpk (
v

p2k

1 v
pk

2 − v
pk

1 v
p2k

2

) = α
(
v

pk

1 v2 − v1v
pk

2

)
. (6)

Let w = α(v
pk

1 v2 − v1v
pk

2 ). Then wpk = w so that w ∈ Fpk ∩ Fq = Fp . We claim that w �= 0. In

fact, if w = 0, then either α = 0 so that β �= 0 and φ0,β(x) = 2βpk
xpk

has unique solution x = 0,

or v
pk

1 v2 − v1v
pk

2 = 0 so that (v1v
−1
2 )p

k−1 = 1 and v1v
−1
2 ∈ Fpk ∩ Fq = Fp . Therefore w ∈ F∗

p

which means that α = w(v
pk

1 v2 − v1v
pk

2 )−1 is determined by V ′ up to a factor in F∗
p . Then β is

determined by

β = −1

2
v−1

1

(
αv

pk

1 + αpm−k

v
pm−k

1

)
. (7)

Conversely, if ω = α(v
pk

1 v2 − v1v
pk

2 ) ∈ F∗
p and β = − 1

2v−1
1 (αv

pk

1 + αpm−k
v

pm−k

1 ), then v1v
−1
2 /∈

F∗ and we get from (6) and (7) that φα,β(v1) = φα,β(v2) = 0. Therefore the set of zeros of
p
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φα,β(x) = 0 is the Fp-linear space spanned by v1 and v2. The number of 2-dimensional subspaces
of Fq over Fp is

[
m

2

]
p

= (q − 1)(q − p)

(p2 − 1)(p2 − p)
.

Therefore

n2 = (p − 1)

[
m

2

]
p

= (pm − 1)(pm−1 − 1)

(p2 − 1)
. (8)

Now consider the following map:

ψ : F∗
q × F∗

q → Fq, (α, s) 
→ ψ(α, s) = −1

2
s−1(αspk + αpm−k

spm−k )
.

Then for α, s ∈ F∗
q and β ∈ Fq ,

αpk

sp2k + 2βpk

spk + αs = 0 ⇔ ψ(α, s) = β.

For α ∈ F∗
q , let

Nα1 = {
β ∈ Fq

∣∣ the number of s ∈ F∗
q satisfying ψ(α, s) = β is p − 1

}
,

Nα2 = {
β ∈ Fq

∣∣ the number of s ∈ F∗
q satisfying ψ(α, s) = β is p2 − 1

}
.

Then

(p − 1)|Nα1| +
(
p2 − 1

)|Nα2| =
∑
s∈F∗

q

1 = q − 1

so that

(
pm − 1

)2 =
∑
α∈F∗

q

(q − 1) = (p − 1)
∑
α∈F∗

q

|Nα1| +
(
p2 − 1

) ∑
α∈F∗

q

|Nα2|

= (p − 1)n1 + (
p2 − 1

)
n2. (9)

The conclusion of Lemma 2(ii) is derived from (5), (8) and (9). �
In order to determine the multiplicity of each value of T (α,β) and S(α,β, γ ) for α,β, γ ∈ Fq ,

we need the following result on moments of T (α,β) and S(α,β, γ ).

Lemma 3. For the exponential sum T (α,β) and S(α,β, γ ),

(i)
∑

α,β∈Fq

T (α,β) = p2m;

(ii)
∑

α,β∈F

T (α,β)2 =
{

(2pm − 1) · p2m if p ≡ 1 (mod 4),

p2m if p ≡ 3 (mod 4);

q
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(iii) if m is even (so that k is odd), then

∑
α,β∈Fq

T (α,β)3 = (
pm + pm−1 − 1

) · p2m+1;

(iv) let N be a subset of F2
q , then

∑
(α,β)∈N

γ∈Fq

S(α,β, γ ) = q · |N |.

Proof. (i) We can calculate:

∑
α,β∈Fq

T (α,β) =
∑

α,β∈Fq

∑
x∈Fq

χ
(
αxpk+1 + βx2)

=
∑
x∈Fq

∑
α∈Fq

χ
(
αxpk+1) ∑

β∈Fq

χ
(
βx2) = q ·

∑
α∈Fq

x=0

χ
(
αxpk+1) = q2.

(ii) We observe that

∑
α,β∈Fq

T (α,β)2 =
∑

α,x,y∈Fq

χ
(
α
(
xpk+1 + ypk+1)) ∑

β∈Fq

χ
(
β
(
x2 + y2))

= T · p2m,

where

T = #
{
(x, y) ∈ F2

q

∣∣ x2 + y2 = 0, xpk+1 + ypk+1 = 0
}

= #
{
(x, y) ∈ F2

q

∣∣ x2 + y2 = 0,
(
1 + (−1)

pk+1
2

)
xpk+1 = 0

}
.

If p ≡ 1 (mod 4), there exists t ∈ F∗
q such that t2 = −1. Since pk+1

2 is odd, we have

T = #
{
(x, y) ∈ F2

q

∣∣ x2 + y2 = 0
} = #

{
(x, y) ∈ F2

q

∣∣ y = ±tx
}

= 1 + 2(q − 1) = 2q − 1. (10)

Suppose that p ≡ 3 (mod 4). If k is even so that m is odd and q = pm ≡ 3 (mod 4). There is
no t ∈ Fq such that t2 = −1. Therefore

T = #
{
(x, y) ∈ F2

q

∣∣ y2 = −x2} = #
{
(x, y) ∈ F2

q

∣∣ y2 = −x2, x = 0
} = 1. (11)

If k is odd, then pk+1
2 is even and 1 + (−1)

pk+1
2 = 2 so that we also have

T = #
{
(x, y) ∈ F2

q

∣∣ y2 = −x2, x = 0
} = 1. (12)
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(iii) We have

∑
α,β∈Fq

T (α,β)3 = M · q2, where

M = #
{
(x, y, z) ∈ F3

q

∣∣ x2 + y2 + z2 = 0, xpk+1 + ypk+1 + zpk+1 = 0
}

= T + T ′ · (q − 1) (13)

and

T ′ = #
{
(x, y) ∈ F2

q

∣∣ x2 + y2 + 1 = 0, xpk+1 + ypk+1 + 1 = 0
}

= #
{
(x, y) ∈ F2

q

∣∣ xpk+1 + (−1)
pk+1

2
(
x2 + 1

) pk+1
2 + 1 = 0, y2 = −(

1 + x2)}.
For each x ∈ Fq , let θ = 2x2 + 1 + 2x

√
x2 + 1 ∈ F∗

q2 . Then 4x2 + 2 = θ + θ−1.
If p ≡ 1 (mod 4), then

xpk+1 + (−1)
pk+1

2
(
x2 + 1

) pk+1
2 + 1 =

(
1

4

(
θ + θ−1 − 2

)) pk+1
2 −

(
1

4

(
θ + θ−1 + 2

)) pk+1
2 + 1

= 1

4
· θ− pk+1

2 · [(θ − 1)p
k+1 − (θ + 1)p

k+1 + 4θ
pk+1

2
]

= 1

4
· θ− pk+1

2 · (−2θpk − 2θ + 4θ
pk+1

2
)

= −1

2
· θ −pk+1

2 · (θ pk−1
2 − 1

)2
.

Note that gcd(
pk−1

2 ,p2m − 1) = p−1
2 since k is odd and gcd(k,m) = 1. Therefore

xpk+1 + (−1)
pk+1

2
(
x2 + 1

) pk+1
2 + 1 = 0 ⇔ θ

pk−1
2 = 1 ⇔ θ ∈ (

F∗
pk

)2 ∩ F∗
q2 = (

F∗
p

)2
.

Let θ ∈ (F∗
p)2 so that θ = τ 2 where τ ∈ F∗

p , then 1 + x2 = 1
4 (θ + θ−1 + 2) = 1

4 (τ + τ−1)2.

Therefore T ′ = |S| where

S = {
(x, y) ∈ F2

q

∣∣ there exists τ ∈ F∗
p such that 4x2 = (

τ − τ−1)2
, 4y2 = −(

τ + τ−1)2}
.

Since p ≡ 1 (mod 4), we have t ∈ F∗
p such that t2 = −1. Then τ = ±1 gives x = 0 and y = ±t

in S, τ = ±t gives y = 0 and x = ±t in S. For remaining p−5 elements in F∗
p , τ = ±a and ±a−1

gives four (x, y) in S: x = ± 1
2 (a − a−1), y = ± 1

2 t (a + a−1). Therefore T ′ = 2 + 2 + 4 · p−5
4 =

p − 1 and by (10) and (13),
∑

α,β∈Fq
T (α,β)3 = q2(T + T ′(q − 1)) = q2(2q − 1 + (p − 1)(q −

1)) = (pm + pm−1 − 1)p2m+1.

If p ≡ 3 (mod 4), then pk + 1 ≡ 0 (mod 4) so that
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xpk+1 + (−1)
pk+1

2
(
x2 + 1

) pk+1
2 + 1 =

(
1

4

(
θ + θ−1 − 2

)) pk+1
2 +

(
1

4

(
θ + θ−1 + 2

)) pk+1
2 + 1

= 1

4
· θ− pk+1

2 · [(θ − 1)p
k+1 + (θ + 1)p

k+1 + 4θ
pk+1

2
]

= 1

4
· θ− pk+1

2 · (2θpk+1 + 2 + 4θ
pk+1

2
)

= 1

2
· θ− pk+1

2 · (θ pk+1
2 + 1

)2
.

Therefore

xpk+1 + (−1)
pk+1

2
(
x2 + 1

) pk+1
2 + 1 = 0

⇔ θ
pk+1

2 = −1

⇔ θ
p+1

2 = −1

(
since θq2−1 = 1, k is odd and gcd

(
pk + 1

2
, q2 − 1

)
= p + 1

2

)

⇔ θ = g(2j+1)(p−1)

(
0 � j � p − 1

2
and g is a primitive element of Fp2

)
.

For θ = g(2j+1)(p−1), τ = √
θ = ±g(2j+1)

p−1
2 ∈ F∗

p2 . Since m is even, then −1 = t2 for some

t ∈ F∗
p2 ⊂ F∗

q . Hence we have T ′ = |R| where

R =
{
(x, y) ∈ F2

q

∣∣∣ x = ±1

2

(
τ − τ−1), y = ±1

2
t
(
τ + τ−1)

for τ = ±g(2j+1)
p−1

2 ,0 � j � p − 1

2

}
.

Define

L =
{
τ = ±g(2j+1)

p−1
2

∣∣∣ 0 � j � p − 1

2

}
.

If τ ∈ L and τ = ±g(2j+1)
p−1

2 for some j , 0 � j � p−1
2 , then −τ = ∓g(2j+1)

p−1
2 , τ−1 =

∓g(p−2j)
p−1

2 and −τ−1 = ±g(p−2j)
p−1

2 are all in L. Note that 1
2 (−τ − (−τ)−1) = 1

2 (τ−1 − τ) =
− 1

2 (τ − τ−1) and 1
2 (−τ + (−τ)−1) = − 1

2 (τ−1 + τ). Then four different elements ±τ,±τ−1

with τ = ±g(2j+1)
p−1

2 for some j , 0 � j � p−1
2 , give four different pairs (x, y) with x =

± 1
2 (τ − τ−1), y = ± 1

2 t (τ + τ−1) in R. We have T ′ = 2 · p+1
2 = p + 1. By (12) and (13) we

obtain ∑
α,β∈Fq

T (α,β)3 = q2(1 + (p + 1)(q − 1)
) = (

pm + pm−1 − 1
)
p2m+1.

(iv) We can calculate
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∑
(α,β)∈N

γ∈Fq

S(α,β, γ ) =
∑

(α,β)∈N

∑
x∈Fq

χ
(
αxpk+1 + βx2) ∑

γ∈Fq

χ(γ x)

= q ·
∑

(α,β)∈N
x=0

χ
(
αxpk+1 + βx2) = q · |N |. �

Remark. For case m is odd,
∑

α,β∈Fq
T (α,β)3 can also be determined, but it is not necessary in

this paper.

At the end of this section, we state a well-known fact on Galois group of the cyclotomic field
Q(ζp) since T (α,β) and S(α,β, γ ) are elements in Q(ζp) (see [4], for example).

Lemma 4. The Galois group of Q(ζp) over Q is {σa | 1 � a � p − 1} where the automorphism
σa of Q(ζp) is determined by σa(ζp) = ζ a

p . The unique quadratic subfield of Q(ζp) is Q(
√

p∗ )

where p∗ = (−1
p

)p and σa(
√

p∗ ) = ( a
p
)
√

p∗ (1 � a � p − 1).

3. Results on exponential sums T (α,β) and cyclic code C1C1C1

In this section we prove the following results.

Theorem 1. For m � 3 and gcd(m, k) = 1, the value distribution of the multi-set {T (α,β) |
α,β ∈ Fq} is shown as following.

(i) For case m is odd, Table 1 holds.
(ii) For case m is even, Table 2 holds.

Proof. According to the possible values of T (α,β) given by Lemma 1, we define that for ε = ±1
and i ∈ {0,1,2}

Nε,i =
⎧⎨
⎩ {(α,β) ∈ F2

q \ {(0,0)} | T (α,β) = εp
m+i

2 } if m − i is even,

{(α,β) ∈ F2
q \ {(0,0)} | T (α,β) = ε

√
p∗p m+i−1

2 } if m − i is odd,

and nε,i = |Nε,i |.

Table 1

Values Multiplicity
√

p∗p
m−1

2 ,−√
p∗p

m−1
2 1

2 p2(pm − pm−1 − pm−2 + 1)(pm − 1)/(p2 − 1)

p
m+1

2 1
2 p

m−1
2 (p

m−1
2 + 1)(pm − 1)

−p
m+1

2 1
2 p

m−1
2 (p

m−1
2 − 1)(pm − 1)

√
p∗p

m+1
2 ,−√

p∗p
m+1

2 1
2 (pm − 1)(pm−1 − 1)/(p2 − 1)

pm 1
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Table 2

Values Multiplicity

p
m
2 1

2 p2(pm − pm−1 − pm−2 + p
m
2 − p

m
2 −1 + 1)(pm − 1)/(p2 − 1)

−p
m
2 1

2 p2(pm − pm−1 − pm−2 − p
m
2 + p

m
2 −1 + 1)(pm − 1)/(p2 − 1)√

p∗p
m
2 ,−√

p∗p
m
2 1

2 pm−1(pm − 1)

p
m
2 +1 1

2 (p
m
2 − 1)(p

m
2 −1 + 1)(pm − 1)/(p2 − 1)

−p
m
2 +1 1

2 (p
m
2 + 1)(p

m
2 −1 − 1)(pm − 1)/(p2 − 1)

pm 1

Then from Lemma 2 we have

n1,i + n−1,i =
⎧⎨
⎩

(pm − 1)(pm−1 − 1)/(p2 − 1) for i = 2,

(pm − 1)pm−1 for i = 1,

p2m − 1 − n1 − n2 for i = 0.

(14)

If m − i is odd, and T (α,β) = ε(p∗)m−i
2 pi , by Lemma 4 we know that for 1 � a � p − 1,

T (aα,aβ) = σa

(
T (α,β)

) = ε
(
σa

(√
p∗ ))m−i

pi = ε

(
a

p

)(√
p∗ )m−i

pi =
(

a

p

)
T (α,β).

Therefore

n1,i = n−1,i = 1

2
ni for m − i odd. (15)

(i) For case m is odd, by (14) and (15) we know that

n1,0 = n−1,0 = 1

2
n0 = 1

2
p2(pm − pm−1 − pm−2 + 1

)pm − 1

p2 − 1
, (16)

n1,2 = n−1,2 = 1

2
n2 = 1

2

(
pm − 1

)pm−1 − 1

p2 − 1
, (17)

n1,1 + n−1,1 = n1 = (
pm − 1

)
pm−1. (18)

Moreover, from Lemma 3 we have

p2m =
∑

α,β∈Fq

T (α,β) = pm + (n1,1 − n−1,1)p
m+1

2 .

Thus

n1,1 − n−1,1 = p
m−1

2
(
pm − 1

)
. (19)

From (18) and (19) we get

n±1,1 = 1

2
p

m−1
2

(
p

m−1
2 ± 1

)(
pm − 1

)
. (20)

The value distribution of T (α,β) for m odd is obtained from (16), (17) and (20).
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(ii) For case m is even, by (14) and (15) we know that

n1,0 + n−1,0 = n0 = p2(pm − pm−1 − pm−2 + 1
)pm − 1

p2 − 1
, (21)

n1,2 + n−1,2 = n2 = (
pm−1 − 1

)pm − 1

p2 − 1
, (22)

n1,1 = n−1,1 = 1

2
n1 = 1

2

(
pm − 1

)
pm−1. (23)

Moreover, from Lemma 3(i) and (iii) we have

p2m =
∑

α,β∈Fq

T (α,β) = pm + (n1,0 − n−1,0)p
m
2 + (n1,2 − n−1,2)p

m
2 +1, (24)

(
pm + pm−1 − 1

)
p2m+1 =

∑
α,β∈Fq

T (α,β)3 = p3m + (n1,0 − n−1,0)p
3m
2

+ (n1,2 − n−1,2)p
3m
2 +3. (25)

From (24) and (25) we get

n1,0 − n−1,0 = p
m
2 +1 · pm − 1

p + 1
, (26)

n1,2 − n−1,2 = p
m
2 −1 · pm − 1

p + 1
. (27)

Then from (21), (22), (26) and (27) we have

n±1,0 = 1

2
p2(pm − pm−1 − pm−2 + 1 ± (

p
m
2 − p

m
2 −1))pm − 1

p2 − 1
, (28)

n±1,2 = 1

2

(
p

m
2 ∓ 1

)(
p

m
2 −1 ± 1

)pm − 1

p2 − 1
. (29)

The value distribution of T (α,β) for m even is obtained by (23), (28) and (29). This completes
the proof of Theorem 1. �
Theorem 2. For m � 3 and gcd(m, k) = 1, the weight distribution {A0,A1, . . . ,An} of the cyclic
code C1 over Fp (p � 3) with length n = q − 1 and dimFp

C1 = 2m is shown as following.

(i) For case m is odd, Ai = 0 except for values indicated in Table 3.
(ii) For case m is even, Ai = 0 except for values indicated in Table 4.
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Table 3

i Ai

(p − 1)(pm−1 − p
m−1

2 ) 1
2 p

m−1
2 (p

m−1
2 + 1)(pm − 1)

(p − 1)pm−1 (pm − 1)(pm − pm−1 + 1)

(p − 1)(pm−1 + p
m−1

2 ) 1
2 p

m−1
2 (p

m−1
2 − 1)(pm − 1)

0 1

Table 4

i Ai

(p − 1)(pm−1 − p
m
2 ) 1

2 (p
m
2 − 1)(p

m
2 −1 + 1)(pm − 1)/(p2 − 1)

(p − 1)(pm−1 − p
m
2 −1

) 1
2 p2(pm − pm−1 − pm−2 + p

m
2 − p

m
2 −1 + 1)(pm − 1)/p2 − 1

(p − 1)pm−1 pm−1(pm − 1)

(p − 1)(pm−1 + p
m
2 −1

) 1
2 p2(pm − pm−1 − pm−2 − p

m
2 + p

m
2 −1 + 1)(pm − 1)/(p2 − 1)

(p − 1)(pm−1 + p
m
2 ) 1

2 (p
m
2 + 1)(p

m
2 −1 − 1)(pm − 1)/(p2 − 1)

0 1

Proof. From (1) we know that for each non-zero codeword c(α,β) = (c0, . . . , cn−1) (n =
pm − 1, ci = Tr(απ(pk+1)i + βπ2i ),0 � i � n − 1, and (α,β) ∈ F2

q \ {(0,0)}), the Hamming
weight of c(α,β) is

wH

(
c(α,β)

) = pm−1(p − 1) − 1

p
· R(α,β), (30)

where

R(α,β) =
p−1∑
a=1

T (aα,aβ) =
p−1∑
a=1

σa

(
T (α,β)

)
.

If T (α,β) = εpl (ε = ±1, l ∈ Z), then R(α,β) = (p − 1)εpl . If T (α,β) = ε
√

p∗pl , then
R(α,β) = T (α,β) · ∑p−1

a=1 ( a
p
) = 0. Thus the weight distribution of C1 can be derived from The-

orem 1 and (30) directly. �
Remark. Since 2 = gcd(pm − 1,2) | gcd(pm − 1,pk + 1), the first n′ = n

2 = pm−1
2 coordinates

of each codeword of C1 form a cyclic code C′
1 over Fp with length n′ = pm−1

2 and dimension 2m.
Let (A′

0, . . . ,A
′
n′) be the weight distribution of C′

1, then A′
i = A2i (0 � i � n′).

4. Results on exponential sums S(α,β,γ ) and cyclic code C2

In this section we prove the following results.

Theorem 3. For m � 3 and gcd(m, k) = 1, the value distribution of the multi-set
{S(α,β, γ ) | α,β, γ ∈ Fq} is shown as following.

(i) For case m is odd, Table 5 holds.
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Table 5

Value Multiplicity
√

p∗p
m−1

2 ,−√
p∗p

m−1
2 1

2 pm+1(pm − pm−1 − pm−2 + 1)(pm − 1)/(p2 − 1)

ζ
j
p
√

p∗p
m−1

2 , for 1 � j � p − 1 1
2 p

m+3
2 (p

m−1
2 + (

−j
p ))(pm − pm−1 − pm−2 + 1)

pm−1
p2−1

−ζ
j
p
√

p∗p
m−1

2 , for 1 � j � p − 1 1
2 p

m+3
2 (p

m−1
2 − (

−j
p ))(pm − pm−1 − pm−2 + 1)

pm−1
p2−1

p
m+1

2 1
2 pm−2(p

m−1
2 + 1)(p

m−1
2 + p − 1)(pm − 1)

−p
m+1

2 1
2 pm−2(p

m−1
2 − 1)(p

m−1
2 − p + 1)(pm − 1)

ζ
j
pp

m+1
2 , for 1 � j � p − 1 1

2 pm−2(pm−1 − 1)(pm − 1)

−ζ
j
pp

m+1
2 , for 1 � j � p − 1 1

2 pm−2(pm−1 − 1)(pm − 1)
√

p∗p
m+1

2 ,−√
p∗p

m+1
2 1

2 pm−3(pm−1 − 1)(pm − 1)/(p2 − 1)

ζ
j
p

√
p∗p

m+1
2 , for 1 � j � p − 1 1

2 p
m−3

2 (p
m−3

2 + (
−j
p ))(pm−1 − 1)

pm−1
p2−1

−ζ
j
p

√
p∗p

m+1
2 , for 1 � j � p − 1 1

2 p
m−3

2 (p
m−3

2 − (
−j
p ))(pm−1 − 1)

pm−1
p2−1

0 (pm − 1)(p2m−1 − p2m−2 + p2m−3 − pm−2 + 1)

pm 1

Table 6

Value Multiplicity

p
m
2 1

2 p
m
2 +1

(p
m
2 + p − 1)(pm − pm−1 − pm−2 + p

m
2 − p

m
2 −1 + 1)

pm−1
p2−1

−p
m
2 1

2 p
m
2 +1

(p
m
2 − p + 1)(pm − pm−1 − pm−2 − p

m
2 + p

m
2 −1 + 1)

pm−1
p2−1

ζ
j
pp

m
2 , for 1 � j � p − 1 1

2 p
m
2 +1

(p
m
2 − 1)(pm − pm−1 − pm−2 + p

m
2 − p

m
2 −1 + 1)

pm−1
p2−1

−ζ
j
pp

m
2 , for 1 � j � p − 1 1

2 p
m
2 +1

(p
m
2 + 1)(pm − pm−1 − pm−2 − p

m
2 + p

m
2 −1 + 1)

pm−1
p2−1√

p∗p
m
2 ,−√

p∗p
m
2 1

2 p2m−3(pm − 1)

ζ
j
p
√

p∗p
m
2 , for 1 � j � p − 1 1

2 p
3
2 m−2

(p
m
2 −1 + (

−j
p ))(pm − 1)

−ζ
j
p

√
p∗p

m
2 , for 1 � j � p − 1 1

2 p
3
2 m−2

(p
m
2 −1 − (

−j
p ))(pm − 1)

p
m
2 +1 1

2 p
m
2 −2

(p
m
2 −1 + 1)(p

m
2 − 1)(p

m
2 −1 + p − 1)(pm − 1)/(p2 − 1)

−p
m
2 +1 1

2 p
m
2 −2

(p
m
2 −1 − 1)(p

m
2 + 1)(p

m
2 −1 − p + 1)(pm − 1)/(p2 − 1)

ζ
j
pp

m
2 +1

, for 1 � j � p − 1 1
2 p

m
2 −2

(p
m
2 − 1)(pm−2 − 1)(pm − 1)/(p2 − 1)

−ζ
j
pp

m
2 +1

, for 1 � j � p − 1 1
2 p

m
2 −2

(p
m
2 + 1)(pm−2 − 1)(pm − 1)/(p2 − 1)

0 (pm − 1)(p2m−1 − p2m−2 + p2m−3 − pm−2 + 1)

pm 1

(ii) For case m is even, Table 6 holds.

Proof. According to the possible values of S(α,β, γ ) given by Lemma 1, we define for ε = ±1,
0 � i � 2 and j ∈ F∗

p that

nε,i,j =
⎧⎨
⎩#{(α,β, γ ) ∈ F3

q | S(α,β, γ ) = εζ
j
pp

m+i
2 } if m − i is even,

#{(α,β, γ ) ∈ F3 | S(α,β, γ ) = εζ
j
p

√
p∗p m+i−1

2 } if m − i is odd,
q
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and

ω = #
{
(α,β, γ ) ∈ F3

q

∣∣ S(α,β, γ ) = 0
}
.

Recall ni,Hα,β, rα,β,Aγ in Section 2 and Nε,i, nε,i in Section 3 for i ∈ {0,1,2}. From
Lemma 2(i) we know that if (α,β) �= (0,0), then rα,β = m − i for some i ∈ {0,1,2}. Therefore
there are exactly pm−i many γ ∈ Fq such that 2XHα,β +Aγ = 0 is solvable. From Lemma 1 we
have

p−1∑
j=0

nε,i,j = pm−inε,i . (31)

Since 2XH0,0 + Aγ = 0 is solvable if and only if γ = 0, then we have

ω = pm − 1 + (
pm − pm−1)n1 + (

pm − pm−2)n2

= (
pm − 1

)(
p2m−1 − p2m−2 + p2m−3 − pm−2 + 1

)
. (32)

If m − i is odd and S(α,β, γ ) = εζ
j
p

√
p∗p m+i−1

2 for i ∈ {0,1,2} and j ∈ F∗
p , from Lemma 4

we know that for a ∈ F∗
p ,

S(aα,aβ, aγ ) = σa

(
S(α,β, γ )

) = εζ aj

(
a

p

)√
p∗p

m+i−1
2 .

Therefore

nε,i,aj =
{

nε,i,j if ( a
p
) = 1,

n−ε,i,j if ( a
p
) = −1.

(33)

By (31) and (33) we know that for ε ∈ {±1} and i ∈ {0,1,2},

nε,i,0 + p − 1

2
(nε,i,1 + n−ε,i,1) = pm−inε,i . (34)

Substituting Nε,i for N in Lemma 3(iv), by Lemma 1(ii) we have

qnε,i = ε
√

p∗p
m+i−1

2

p−1∑
j=0

nε,i,j ζ
j
p . (35)

By (33) and (35) we have

ε

(−1

p

)√
p∗p

m−i−1
2 nε,i = nε,i,0 + nε,i,1 ·

p−1∑
j=1, (

j
p

)=1

ζ
j
p + n−ε,i,1 ·

p−1∑
j=1, (

j
p

)=−1

ζ
j
p

= nε,i,0 + 1 (√
p∗ − 1

)
nε,i,1 + 1(−√

p∗ − 1
)
n−ε,i,1
2 2
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=
[
nε,i,0 − 1

2
(nε,i,1 + n−ε,i,1)

]
+ 1

2

√
p∗(nε,i,1 − n−ε,i,1).

Then we get

nε,i,0 = 1

2
(nε,i,1 + n−ε,i,1), (36)

nε,i,1 − n−ε,i,1 = 2ε

(−1

p

)
p

m−i−1
2 nε,i . (37)

By (33), (34), (36) and (37) we have that for ε ∈ {±1}, i ∈ {0,1,2} and j ∈ F∗
p ,

nε,i,0 = pm−i−1nε,i , (38)

nε,i,j =
(

pm−i−1 + ε

(−j

p

)
p

m−i−1
2

)
nε,i . (39)

If m − i is even and S(α,β, γ ) = εζ
j
pp

m+i
2 for j ∈ F∗

p , by Lemma 4 we know that for a ∈ F∗
p ,

S(aα,aβ, aγ ) = σa

(
S(α,β, γ )

) = εζ ajp
m+i

2 .

Therefore for ε ∈ {±1} and i ∈ {0,1,2}, we get

nε,i,1 = nε,i,2 = · · · = nε,i,p−1. (40)

Let nε,(i) = nε,i,j for j ∈ F∗
p . Then by (31) and (40) we have

nε,i,0 + (p − 1)nε,(i) = pm−inε,i . (41)

Substituting Nε,i for N in Lemma 3(iv), by Lemma 1(ii) we have

pmnε,i = εp
m+i

2

p−1∑
j=0

nε,i,j ζ
j
p . (42)

Since
∑p−1

j=1 ζ
j
p = −1, by (40) and (42) we get

nε,i,0 − nε,(i) = εp
m−i

2 nε,i . (43)

By (41) and (43) we obtain

nε,i,0 = (
pm−i−1 + ε(p − 1)p

m−i−2
2

)
nε,i , (44)

nε,(i) = (
pm−i−1 − εp

m−i−2
2

)
nε,i . (45)

From Theorem 1, combining (38), (39), (44) and (45) we get the results of (i) and (ii). �
Recall nε,i,j and ω in the proof of Theorem 3, we have the following result.
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Table 7

i Ai

(p − 1)pm−1 − (p − 1)p
m
2 n1,2,0

(p − 1)pm−1 − p
m
2 (p − 1)n

( −1
p ),1,1

+ (p − 1)n−1,2,1

(p − 1)pm−1 − (p − 1)p
m
2 −1

n1,0,0

(p − 1)pm−1 − p
m
2 −1

(p − 1)n−1,0,1
(p − 1)pm−1 ω + 2n1,1,0

(p − 1)pm−1 + p
m
2 −1

(p − 1)n1,0,1

(p − 1)pm−1 + (p − 1)p
m
2 −1

n−1,0,0

(p − 1)pm−1 + p
m
2 (p − 1)n−( −1

p ),1,1
+ (p − 1)n1,2,1

(p − 1)pm−1 + (p − 1)p
m
2 n−1,2,0

0 1

Table 8

i Ai

(p − 1)pm−1 − p
m+1

2 (p − 1)n
( −1

p ),2,1

(p − 1)pm−1 − (p − 1)p
m−1

2 n1,1,0

(p − 1)pm−1 − p
m−1

2 (p − 1)n
( −1

p ),0,1
+ (p − 1)n−1,1,1

(p − 1)pm−1 ω + 2n1,0,0 + 2n1,2,0

(p − 1)pm−1 + p
m−1

2 (p − 1)n−( −1
p ),0,1

+ (p − 1)n1,1,1

(p − 1)pm−1 + (p − 1)p
m−1

2 n−1,1,0

(p − 1)pm−1 + p
m+1

2 (p − 1)n−( −1
p ),2,1

0 1

Theorem 4. For m � 3 and gcd(m, k) = 1, the weight distribution {A0,A1, . . . ,An} of the cyclic
code C2 over Fp (p � 3) with length n = q − 1 and dimFp

C1 = 3m is shown as following.

(i) In the case m is even, Table 7 holds.
(ii) In the case m is odd, Table 8 holds.

Proof. From (1) we know that for each non-zero codeword c(α,β, γ ) = (c0, . . . , cn−1) (n =
pm − 1, ci = Tr(απ(pk+1)i + βπ2i + γπi),0 � i � n − 1, and (α,β, γ ) ∈ F3

q \ {(0,0,0)}), the
Hamming weight of c(α,β, γ ) is

wH

(
c(α,β, γ )

) = pm−1(p − 1) − 1

p
· R(α,β, γ ), (46)

where

R(α,β, γ ) =
p−1∑
a=1

S(aα,aβ, aγ ) =
p−1∑
a=1

σa

(
S(α,β, γ )

)
.
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For ε ∈ {±1},0 � i � 2 and j ∈ F∗
p ,

• if m − i is even and S(α,β, γ ) = εp
m+i

2 , then

R(α,β, γ ) = ε(p − 1)p
m+i

2 ;

• if m − i is even and S(α,β, γ ) = εζ
j
pp

m+i
2 , then

R(α,β, γ ) = εp
m+i

2

p−1∑
a=1

ζ
aj
p = −εp

m+i
2 ;

• if m − i is odd and S(α,β, γ ) = ε
√

p∗p m+i−1
2 , then

R(α,β, γ ) = ε
√

p∗p
m+i−1

2

p−1∑
a=1

(
a

p

)
= 0;

• if m − i is odd and S(α,β, γ ) = εζ
j
p

√
p∗p m+i−1

2 , then

R(α,β, γ ) = ε
√

p∗p
m+i−1

2

p−1∑
a=1

(
a

p

)
ζ

aj
p = ε

(−j

p

)
p

m+i+1
2 .

Thus the weight distribution of C2 can be derived from Theorem 3 and (46) directly. �
5. Further study

If gcd(k,m) is odd, these machineries we have developed can also work with some modifica-
tions if necessary.

If gcd(k,m) is even, then T (α,β) for (α,β) ∈ F2
q are integers. Therefore Galois theory tells

us nothing on nε,i for ε = ±1,0 � i � 2, and the moment identities in Lemma 3 is not enough to
determine nε,i .

Denote by d = gcd(k,m). For general d , we need to develop more machineries to determine
the weight distributions of C1 and C2. Furthermore, we can generalize the cyclic codes to the
field Fps with s | d and determine their weight distributions. These methods and results will be
presented in a following paper.
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