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Abstract 

Within the framework of Vector Controlled Concurrent Systems a concurrent system consists 
of a fixed number of sequential processes together with a vector synchronization mechanism 
controlling their mutual synchronization. The behaviour of a VCCS is described by a vector 
language consisting of those combinations of individual sequential computations that observe the 

synchronization constraints. 
In this paper VCCS submodels are studied that are obtained by putting certain restrictions 

on the sequential components or on the control mechanism. First, the inclusion diagram relating 

the resulting families of vector languages is established. Next, the effect of certain operations 
on these families is investigated. This leads to representation results characterizing differences 
between the combinations of restrictions. 
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0. Introduction 

In a Vector Controlled Concurrent System (VCCS) a fixed number of sequential 

processes operate concurrently subject to the control of a vector synchronization mech- 

anism, which imposes constraints on their mutual synchronization. The behaviours of 

the sequential processes are specified as languages (over alphabets of actions). The 

synchronization constraints are given in the form of a language over an alphabet of 

vectors; these vectors express synchronization of actions from the sequential compo- 

nents, while the language gives all permitted sequences of such synchronizations. 

The behaviour of the VCCS is described by a vector language consisting of those 

combinations of computations (i.e. sequences of actions) of the components of the 

system that satisfy the synchronization constraints. 

Vector Controlled Concurrent Systems have been introduced in [ 151 and were further 

investigated in [16-181. The original idea underlying the VCCS model comes from the 

theory of path expressions (the COSY variant), and its vector firing sequence semantics. 

Path expressions were introduced in [7], while the COSY approach has its starting 

point in [ 193. Vector firing sequences were introduced in [22] as a semantics of COSY 

systems. See also the book [ 131 and its list of references. Also in [3,20, l] models 

closely related to the VCCS model have been studied. 

Vector Controlled Concurrent Systems have been introduced with the aim of pro- 

viding a general uniform framework for the investigation of systems in which a fixed 

number of sequential processes work concurrently but synchronize on certain events. 

This framework is flexible in the sense that it allows to specify separately the com- 

ponent processes and the synchronization mechanism. By imposing restrictions on the 

components and/or the control of the synchronization, one obtains different VCCS 

submodels. For instance, the path expression model itself and the concurrent systems 

studied in [l] can directly be interpreted as instances of the VCCS model. Various 

submodels have also been defined in [ 151 and have been further investigated in [ 161. 

In [ 171, for a whole range of VCCS submodels, the effect of vector synchronization 

on the behaviour of the sequential components has been investigated. 

The aim of this paper is to compare various natural restrictions both on the be- 

haviour of the sequential processes and on the control languages used. In particular, 

regularity and prejix-closedness are properties that arise in the context of concur- 

rent systems. Regularity corresponds to having an underlying finite state device, while 

prefix-closedness reflects the idea of having ongoing computations. In COSY both re- 

strictions are assumed most of the time (see, e.g., [ 131) and they also frequently occur 

in the theory presented by Nivat and Arnold. 
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In addition, we consider the use of monoids, both as component languages and as 

control languages. These monoids are languages containing all possible sequences of 

letters (vectors respectively) from their alphabets. They are interesting as they are 

permissive in the sense that they provide all opportunities and cannot exclude certain 

events (synchronizations) from happening. Thus, when used as component languages 

they allow to focus on the study of the control mechanism, and when used as a control 

language they lead to more insight in the interplay between the components and pure 

vector synchronization. 

Finally, we consider control languages satisfying the completeness property. This 

property originates from a net-based synchronization mechanism (the Individual Token 

Net Controller, or ITNC for short) introduced in [15] which formalizes the idea of a 

distributed finite state control for the synchronization of the components. In [18] this 

mechanism is compared with the finite state control from [l] and given a characteri- 

zation in language theoretic terms. 

For all combinations of these restrictions on sequential components and control mech- 

anisms, we investigate the differences and similarities of the resulting VCCS submodels. 

An obvious first step is to compare the expressive power of these VCCS submodels 

in terms of the vector languages they define. This leads to an inclusion diagram de- 

scribing equalities, strict inclusions, and incomparabilities between the various families 

of vector languages. 

Next, we investigate the effect of certain operations when applied to vector languages 

from the families of the diagram. These operations transform vector languages into vec- 

tor languages. Thus, for each family of vector languages application of an operation of 

a certain type leads to a new family of vector languages. The operations we consider 

are such that each new family extends the original family. If the new family coincides 

with a family from the diagram which properly includes the original family, then the 

behavioural difference between the two underlying VCCS models is characterized by 

this type of operation. 

This approach of relating different systems by representing the larger class of be- 

haviours in terms of the smaller one using a perferably simple type of operation is a 

well-known technique and has for specific VCCS submodels already been applied in 

[l, 161. 
For instance, in [16] it has been shown that the application of multi codings, i.e., 

products of letter-to-letter homomorphisms, to the vector languages defined by VCCSs 

with regular components and a monoid control yields precisely the vector languages 

of the VCCSs with regular components and ITNCs as control mechanism. Such multi 

codings have also been used in [l] to relate different families of vector languages. 

In [l] it is also shown that the behaviour of a VCCS with prefix-closed regular 

components and a prefix-closed regular control language can be obtained as the vector 

language of a VCCS with prefix-closed regular components and a monoid control 

language from which one (auxiliary) component has been hidden. 

Two of the operations we consider are again the multi codings and the hiding oper- 

ator of [l]. Multi codings can be used to erase state information from actions: different 

symbols may be mapped to the same symbol, thus they can be viewed as being 
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different incarnations of one action. Hiding serves to get rid of an extra component 

used in the computations of the systems to enhance the effect of the control mechanism. 

The third operation we involve in our considerations has features in common with 

both hiding and multi codings: a multi weak coding allows to map different symbols 

to the same symbol, but it can also hide symbols by mapping them to the empty 

string. 

The paper is organized as follows. After the preliminaries of Section 1, where we 

introduce the VCCS model formally as well as our notational conventions with respect 

to vectors and vector languages, Section 2 discusses the VCCS submodels considered 

in the paper, together with a first overview of their mutual relationships in terms of the 

vector languages they define. Then, in Section 3, the complete inclusion diagram of the 

various VCCS vector language families is presented. In Section 4, the investigation of 

the relationships expressed in terms of operations is started by formally introducing the 

three chosen operations with background and motivations. In Section 5, the main part 

of the paper, we present the relations obtained between our families by using those 

operations. The results here include results from [ 1, 161, and answer a number of open 

questions from [l]. Finally, in a concluding section we briefly discuss the general ideas 

emerging from the systematic set-up of our representation results as well as a number 

of topics for further research. 

1. Preliminaries 

Throughout this paper the reader is assumed to be familiar with the basic concepts 

and terminology of formal language theory as presented in, e.g, [12]. From the theory 

of rational relations some basic results are used. For these results we use [4] as a 

general reference. 

In this preliminary section we fix some terminology and notation that may not be 

familiar to all readers. In particular, in Section 1.1, the terminology concerning vectors, 

vector languages, etc., is explained. Basic terminology concerning Vector Controlled 

Concurrent Systems is recalled in Section 1.2. 

1.1. Basic terminology and notations 

For each positive integer n, [n] denotes the set { 1,. . . , n}. Function composition is 

denoted by 0. The set difference between two sets V and W is denoted V - W. 
Let f be a function and let A and B be sets. Then f [B] = {f(b) 1 b E B} and 

f -‘[A] = {u 1 f(a) E A}. Ob serve that f [f -‘[A] fl B] = A 17 f [B]. This observation, 

to which we refer as the function-intersection rule, will be used often. If no confusion 

arises, we write f(B) instead of f [B] and f-'(A) instead of f -‘[A]. 
Alphabets are finite. The empty word is denoted by /i. 

Let C and A be two alphabets. A homomorphism p : C* 4 A* is called a weak 

coding if p(C) C A U {A}. It is called a coding if p(C) C A. 
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The reverse of a word al . . . a,,,, where m 20, and al,. . . ,a,,, are letters, is the word 

a,...al. 

A word v is a prefix of a word w if w = vu for some word u. If u # A, then v 

is called a proper prefix of w. For a language K, pref(K) = {v 1 v is a prefix of a 

word from K}. Clearly, for all languages K, K C pref(K). If K = pref(K), then K is 

called prefix-closed. A family of languages K is closed under pref if pref(K) E K for 

all K E od. For any family K of languages, pob C K will denote the subfamily of all 

prefix-closed languages from 06. 

An element of a Cartesian product of sets is called a vector. Vectors are denoted either 

horizontally or vertically. For a set I’, the set of l-dimensional vectors {(x) )x E V} 

is denoted by Xv. For an n-dimensional vector w = (WI,. . , wn), where IZ > 1, and for 

i E [n], proji(w) denotes the projection of w on its ith component, i.e., proji(w) = wi. 

Let fi : Ai -+ Bi be functions for i E [n], where n > 1. Then fi x . . x fn : 

A, x,..xA,-+B, x... x B, is the function defined by (ft x . . x _&)((a,, . . . , a,)) = 

(fi(al), . . . ,fn(a,)), for all (at,. . .,a,) E AI x . x A,. Thus, fi x . . . x fn may be 

viewed as the product of j-1,. . . , fn. 
Let nal. 

An (n-dimensional) vector v having words as components is called an (n-dimensional) 

word vector. A component of v consisting of the empty word n is called a ,4- 

component or empty component of v. The position of the A-components of v de- 

termines its A-structure; formally the ~-structure of v is identified with the set {i E 

inI I Pro&(a) = A). 
The (n-dimensional) empty word vector is the n-dimensional word vector (A,. . . , A), 

which is denoted by /I if its dimension is clear from the context. 

Two n-dimensional word vectors v and w are dependent, if they have a common 

non-empty component, i.e., there is an i E [n], such that both proj,(v) # A and 

proj,(w) # A. Word vectors that are not dependent, are called independent. Note that 

the A-structure of v and w determines whether v and w are independent or dependent. 

The component-wise concatenation of v and w is denoted by v o w. If v and w are 

independent, then v o w = w o v. 

As an illustration of some of the notions introduced above, consider the word vectors 

U = (:), n = (“j), and w = (k) . Then v and w are independent and v o w = (ii) = 

w 0 v. In contrast to this u and v are dependent, as well as u and w. Note that 

u(~~w#wou, but u~v=vou= (ay). 

A set of (n-dimensional) word vectors is called an (n-dimensional) vector language. 

For n-dimensional vector languages V and W, we extend the operation 0 in the usual 

way: V o W = {v o w ( v E V, w E W}. The iterated component-wise concatenation of 

a vector language I’ is the set V@ = {wt0...0w,Irn>l, wt,...,w,E V}U{/i}. 

Let C I,. . , C, be alphabets. Any vector CI E ((Cl U {A}) x . . . x (C, U {A})) - {/i} is 

called an (n-dimensional) vector letter (over Cl,. . , C,). A finite and possibly empty set 

of (n-dimensional) vector letters is called an (n-dimensional) vector alphabet. The set of 

all vector letters over C 1,. . . , C, is called the total vector alphabet over Cl,. . . , C,. It is 

denoted by Tot(C1, . . . , C,). Vector alphabets are alphabets. Therefore, all terminology 
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and notations for alphabets, words and languages apply. Sometimes a language over 

an n-dimensional vector alphabet 0 is called shortly an n-language (over 0). Note that, 

for vector letters CI, /I E 8, the word c@ E 8* differs from the word vector CI 0 fi E f3@. 

Thus, e.g. given the vector letters c( = (:), and fi = (i), the word IX/? = (4) (3 comes 

from a 2-language over {a, /I}, and the word vector CI o fi = (,t) from a 2-dimensional 

vector language over {cI, j?}. 

Let 8 be an n-dimensional vector alphabet. The canonical homomorphism from 8* 

to O@ collapses words over 8 to word vectors in tI@ and is denoted tolls or co11 if no 

confusion arises. 

Thus, e.g., 

coII((t)($(i)) = (t) o(l) o (3 = ($ and coll(A)=/I. 

For i E [n], we denote by proje,,i the homomorphic extension of proji to words over 

0, i.e., proj,,,i : 6* -+ proji(8)*. Note that projO,,i is a weak coding. We will also 

write proji instead of projO*,i if no confusion arises. 

Thus, e.g., given the vector letters CI and /I as above, we have that proj,,,~~,,(c$) = 

proj,(a)proj,(B) = h = a. Note that COW@) = (proj,,,>.,,(aB),proj{,,>*,,(ap)) = 

c”b>. 
The following fact is used occasionally. For all languages Kl, . . . , K,, 

COllS’(Xr=,Ki) = ny=, projO*,i -‘(Ki). Using this fact and the function-intersection 

rule we obtain the following observation. 

Observation 1.1.1. For all n-languages A4 and all languages Kl , . . . , K, we have that 

)(L, Ki f~ colle(M) = ~01le(& projO-,j-‘(Ki) n M). 

For a family M of languages and an n > 1, we denote by [I(n-Ml ) the subfamily of 

n-languages from M and by V(n-M) = (coll(A4) IA4 E L(n-Ml)} the associated family 

of vector languages. 

1.2. Vector controlled concurrent systems 

In this subsection we briefly recall the notion of a Vector Controlled Concurrent 

System and its vector language as introduced in [15] and studied in [16-181. Here we 

give an algebraic definition which is equivalent to the more operational definition from 

[151. 

Definition 1.2.1. A Vector Controlled Concurrent System, or VCCS for short, is a 

construct Y = (Kl,..., K,,;M), where n>l, K1 , . . . ,K,, are languages and M is an 

n-language. The languages KI , . . . ,K,, are called the component languages of Y, and 

the n-language M is called the control language of Y. 

The vector language of “Y-, is the vector language V(Y) = Xy=,Ki f~ toll(M). 
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Thus, a VCCS r = (Ki, . . . , K,,;M) models a concurrent system consisting of n 

sequential subsystems, represented by the n languages K1, . . . , K,,, that are synchronized 

by a single control mechanism, represented by the n-language M. The behaviour of 

^y_ is represented by its vector language I’(?); it consists of those word vectors 

(WI 3. . . , w,) from K1 x... x K,, that have a decomposition into synchronization vectors 

forming a word from M. Observe that we use the vector language colI(A4) rather than 

its specification, the language M, to determine the behaviour of the system v. 

2. The vector language families 

In this section we introduce the various VCCS submodels by discussing the restric- 

tions imposed on component and control languages. This leads to the families of vector 

languages considered in the rest of this paper. Our approach is the following. 

In Section 2.1, first the control mechanisms and their vector languages are discussed. 

Next we turn to the component languages. In Section 2.2 we discuss the relationships 

between the families of VCCS vector languages obtained by combining the various 

types of control languages and component languages. Here, for the sake of reference, 

we also add some independently defined families of vector languages. 

2.1. Families 

In all our VCCS submodels we assume that the control languages are defined by 

some finite state device. Thus, each family of control languages (of dimension n) will 

be a subset of U_(n-Reg), the family of regular n-languages, i.e., regular languages over 

n-dimensional vector alphabets. The family L(n-Reg) itself is the largest family of n- 

languages we use for defining n-dimensional control languages. Its associated family of 

vector languages V(n-Reg) = {coII(L) ] L E IL(n-Reg)} 1s in fact the family of rational 
relations or rational vector languages of dimension n (see [ 181). In [l] this family (or 

rather the union Una, ‘V(n-LReg)) occurs as Rat, the family of all rational relations. 

In [ 181 it is shown that the family V(n-[Weg) coincides with the family of vector 

languages defined by a generalized version of Individual Token Net Controllers. An 

Individual Token Net Controller (ITNC for short) is a particular type of Petri Net used 

as a control mechanism with distributed states and transitions. See [ 151 for a formal 

definition of ITNCs and see, e.g., [21] for an introduction of Petri Nets-including 

nets with individual tokens. In fact, Individual Token Net Controllers can be seen 

as a particular version of so-called state-machine decomposable nets. Such nets have 

occurred in Petri Net theory since [lo]. A recent survey of such nets has been given in 

[5], and in [13] they have been used to give a semantics of COSY. Our approach differs 

slightly from the nets presented in the literature, because in an ITNC the separate state- 

machines are represented by individual tokens. Moreover, the transitions are labelled 

with synchronization vectors. 
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In [ 181 the rational vector languages defined by ITNCs are shown to be characterized 

by a property called completeness: 

An n-dimensional vector language V, where n 2 1, is called complete, if 

(1) whenever v, w E V are such that v and w are independent, then v 0 w E V as 

well, and 

(2) if n E proj,(V) for all i E [n], then/i E V as well. 

For a family V(n-Ml) of n-dimensional vector languages, we let V(n-CM) = {V E 

V(n-M) ( V is complete} be the subfamily of complete vector languages, and we let 

lL(n-CM) be the associated family of n-languages, R(n-CM) = {L 1 coU(L) E V(n-CM)}. 

The first condition of completeness expresses that a concatenation of independent 

computation vectors is also a computation vector, i.e. is in the vector language. The 

second condition expresses that, if for each position i there is a computation vector hav- 

ing an empty ith component, then also the empty word vector is a computation vector. 

Note that the intersection of two complete vector languages is complete again, and 

that any Cartesian product of languages is a complete vector language. (*) 
In addition to completeness we also use /l-completeness: 

An n-dimensional vector language V is called n-complete, if condition (2) above is 

satisfied, i.e., if n E proj,( V) for all i E [n], then /i E V. 

For a family V(n-M) of n-dimensional vector languages, we write V(n-3,/M) = 

{I’ E V(n-Ml) 1 V is n-complete) and we let lL(n-IM) be the associated family of 

n-languages, that is [L(n-&Q) = {L 1 toll(L) E V(n-Zbtl)}. 

Note that, as for completeness, the intersection of two /l-complete vector languages 

is /i-complete again, and that any Cartesian product of languages is a /i-complete vector 

language. (**) 
The property of n-completeness is an almost trivial property, because any vector 

language can be made /l-complete by adding /i. It turns out to be technically useful, 

because it appears as a weak version of prefix-closedness, our next restriction. 

Prefix-closed languages often occur as descriptions of the ongoing behaviours of 

(concurrent) systems. In the context of concurrency, systems without acceptance condi- 

tions or final states frequently occur, giving rise to prefix-closed behaviour descriptions 

(see, e.g., [21] or [14] for examples from the theory of Petri Nets). 

Prefixes may also be used as approximations of infinite computations, e.g., through 

adherences (see, e.g. [6]). 

In case of accepting systems prefixes may represent all possible observations of 

(successful) computations. This approach is followed in, e.g., [2]. Also the theory of 

COSY may be seen as a representative (see, e.g., [13]), while its original motivation 

comes from systems without acceptance conditions. 

In this paper we do not distinguish between the various uses of prefix-closedness, but 

simply use it as a restriction on languages in the context of concurrent and sequential 

systems. 

Let IL(n-pM) = {L E U_(n-M) ]I, is prefix-closed}, for a family il(n-Ml) of n- 

languages, and let V(n-pM) be its associated family of vector languages, V(n-pM) = 

{toll(L) 1 L E rL(n-PM)}. 
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Since prefix-closedness implies n-completeness, we have that V(n-p8Ml)= V(n-pM ), 

and Il(n-plM) = [L(n-PM), for any family of vector languages V(n-Ml) and family of 

n-languages L(n-Ml ). Hence, using all combinations of the three types of restrictions 

on V(n-[Weg), we obtain the following five families of vector languages V(n-[Weg), 

V(n-I[Weg), V(n-cReg), V(n-plWeg), and V(n-cplWeg). 

In addition to the above five families, we also investigate the family of control lan- 

guages based upon monoids: O-(n-Mon) = {8* ( 9 IS an n-dimensional vector alphabet}, 

and its associated family of vector languages, V(n-Mon). 

The control mechanism represented by IL(n-Mlon) has been used in [ 151 in the VCCS 

submodel of Vector Synchronized Systems. Also in [l] systems with this type of 

monoid control have been studied. In the theory of COSY control is implicitly also of 

this type, though there it is even more restricted. The control represented by IL(n-Man) 

can be termed static: at each moment during the history of such a VCCS the allowed 

synchronizations, represented by a set of vector letters, is the same. In contrast with 

this the control mechanisms represented by V(n-[Weg) are dynamic: here the allowed 

set of synchronization vectors may change during computations, i.e., with the state of 

the system. 

Note that all languages in L(n-Man) are prefix-closed, and that the vector languages 

in V(n-Mon) are complete and hence A-complete as well. Hence, applying the three 

restrictions of prefix-closedness, n-completeness, and completeness does not lead to 

new families. 

Now we turn to families of component languages. 

Starting with All, the family of all languages, and applying the restrictions of reg- 

ularity and prefix-closedness, we obtain the families IWeg, the family of all regular 

languages, p/Ml, the family of all prefix closed languages, and p[Weg, the family of all 

prefix closed regular languages. 

Regularity and prefix-closedness are again considered, because they stand for re- 

spectively, finiteness of the underlying state model and ongoing computations. In [ 151 

and [16], VCCSs were studied having component languages without restrictions, i.e., 

from All, and with the regularity restriction, i.e., from [Weg. In [l] prefix-closedness is 

assumed throughout. 

For component languages the restrictions of completeness or n-completeness are 

void. These restrictions are only non-trivial in case of vector languages of dimension 

greater than one. 

To the above four families of component languages, we add the family of (finitely 

generated) monoids, Mon = {C* 1 C is an alphabet}. Vector Controlled Concurrent 

Systems with component languages from Mon exhibit the behaviour of their control 

mechanism. For this reason we include this type of component languages into our 

investigations. 

Combining the families of control languages and the families of component languages 

introduced above, a considerable number of VCCS models are obtained. In this paper 

we investigate the resulting families of vector languages of these VCCSs, that is, we 

investigate the families V(W; n-M) = {V ) V is the vector language of a VCCS with 
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component languages from K and a control language from %(n-h4l)}, i.e. 

where 

06 = Mon, pReg, Reg, pAl1, or All, and 

Ml = iVllon, cpWeg, pReg, cReg, 1Reg, or Reg. 

2.2. Inclusions and equalities 

The families of VCCS vector languages introduced in the previous subsection can 

be directly related using the following observation. 

Let n denote an arbitrary but fixed positive integer. 

Observation 2.2.1. V(Ki;n-Mi)c V(K 2;n-RJl2) whenever [Mi G 062 and V(n&tli)c 

V(n-R&). 

Since, for component languages, by definition, 

hAIon C plReg C Reg & All, and 

pReg C pAl1 & All, 

and since similarly, for control languages, 

V(n-Mon) g V(n-CpReg) & V(n-pReg) C V(n-AReg) & V(n-Reg), and 

V(n-cpReg) C V(n-cReg) C V(n-1lReg), 

this yields an initial inclusion diagram, Fig. 1, given in the form of a matrix. A 

particular family o/(06; n-Ml) is the entry in the row marked by K to the left and the 

column marked by lUl at the bottom. In the matrix each entry V( K; n-M) is represented 

by a dot and an arrow from a family W 1 to a family n/2 denotes that W 1 C n/2. 

Not all inclusions in the diagram are strict as will become clear below. 

In addition to the VCCS vector languages introduced in Section 2.1, also a number of 

other families of vector languages is included in our study. They are included because 

they turn out to characterize a number of VCCS vector language families or arise as 

the result of application of one of the operations and as such form reference points for 

these families. Moreover, they are defined directly and thus are simpler than VCCS 

vector languages and easier to handle technically. 

They are, first of all, the families V(n-All), V(n-Reg), and V(n-Mlon), where 

V(n-All) is the family of all n-dimensional vector languages. By adding the restric- 

tions of A-completeness, completeness, and prefix-closedness, we arrive at the following 
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I , I I I 

Reg AReg cReg pWeg cpWeg Mon 

Fig. 1. (Non-strict) inclusion diagram of the families of the form V(K;n-M) for n> 1. 

families: 

V(n-All), V(n-IAll), V(n-CAll), V(n-pAll), V(n-cpAll), 

V(n-[Weg), V(n-I[Weg), V(n-c[Weg), V(n-p[Weg), V(n-cp[Weg), and V(n-Mon). 

The last six families have already been introduced in Section 2.1, as families of control 

vector languages. The first five are new. They can be seen as counterparts of the 

five regular families. They capture precisely the combinations of restrictions of /1- 

completeness, completeness, and prefix-closedness. 

The following lemma gives a number of inclusions and equalities that relate these 

families to Fig. 1 

Lemma 2.2.2. (1) V(~-C~A~~)~V(~-CA~~)~V(~-~A~~)W(~-A~~), and V(n-cpAl1) 2 

V(n-pAl1) C V(n-IAll). 

(2) V(All; n-[Weg) G V(n-All), V(A11; n-Il%eg) C V(n-AAll), V(A11; n-cReg) c 

V(n-cAll), V(pA11; n-plWeg) C V(n-pAll), and V(pAl1; n-cpReg) G V(n-cpAl1). 

(3) V([Weg;n-M)=V(p[Weg;n-M)=V(Mon;n-Ml)=V(n-M)), for M = Reg, AlReg, 

cReg, V(plWeg; n-M) = V(Mon;n-M) = V(n-M), for M = pReg, cpReg, and 
V( Mot-r; n-Mon) = V(n-Mon). 

Proof. 
( 1) Obvious. 

(2) The first inclusion is obvious. The other inclusions follow from Observation 

1.1.1, the preservation of prefix-closedness by inverse weak codings and intersections, 

and the basic properties (*) and (**) of completeness and n-completeness (see Sec- 

tion 2.1), stating that the intersection of two (A-)complete vector languages is again 

(A-)complete and that a Cartesian product of languages is complete and hence A- 

complete. 
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(3) The inclusions > are obvious. So it remains to prove that V(Reg; n-M)~V(n-Ml) 

for Ml = Reg, 1Reg, cReg, V(p~eg;n-~) C V(~-~) for M = plReg, cplReg, and 

V(~o~;~-~} 2 V’(n-Mm> for M = Mon. As in (2) above these inclusions follow 

from Observation 1.1.1, the preservation properties of prefix-closedness, and the basic 

properties (*) and (**) from Section 2.1. In addition, the preservation of regularity by 

inverse weak codings and intersection is used. Cl 

Combining the results proved in Lemma 2.2.2 we obtain an extended inclusion di- 

agram, Fig. 2. In this diagram the families introduced in Section 2.1 are depicted 

together with the five new families V(n-Ml) for Ml = All, Mll, cAl1, pAl1, cpAl1. 

Again the families of the form V(W; n-M) are depicted in a matrix form, where the 

KS are denoted at the left of the matrix and the MS are depicted at the bottom of the 

matrix. Each family of the form V(W; n-M) is represented by a dot (as in Fig. 1). 

The families proved equal in Lemma 2.2.2(3) are adjacent and their corresponding 

dots have been merged into one another, with dashed lines showing the equalities 

between different entries. 

Each family of the form V(n-Ml) is denoted by a small circle. They have been 

marked by their co~esponding fM. 

Since the families V(n-M), where m/o = Reg, &Peg, cReg, pReg, cpReg, or Mlon, 

coincide with some of the families of the form V( K; n-M) circled dots have been used 

here. 

The arrows again denote inclusion, but as will be shown in the next section these 

inclusions are strict now (at least for n > 2). 

Fig. 2. Inclusion diagram of the families of the form V(K;n-Ml) and V(n-M) for na2, 
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3. The inclusion diagram 

Now we prove that the inclusion diagram (Fig. 2) is complete, i.e, any inclusion 

holding between any of the families presented can be derived from the diagram as a 

(directed) path between these families. This is done, for the case n 2 2, in Section 3.1 

by giving particular example vector languages contained in one family but not another. 

The family containing such an example vector language is chosen as small as possible, 

while the family that does not contain the example vector language is chosen as large 

as possible. In this way we establish with a small number of example vector languages 

all non-inclusions needed, and thus the strictness of the inclusions in the diagram and 

the incomparability of the families not connected by a directed path. 

As shown in Section 3.2, however, for n = 1 additional equalities and inclusions 

hold, because, e.g., completeness and n-completeness are trivial for one-dimensional 

vector languages. The resulting complete diagram is presented in that subsection. 

3. I. The more-dimensional case 

In the proof of the following lemma we present the first set of example vector 

languages. The resulting non-inclusions also hold for the case n = 1. 

Lemma 3.1.1. (1) V(pReg;n-Mon) - V(n-Mon) # 0 for all n> 1. 

(2) V( [Weg; n-Mon) - V(n-pAl1) # 0 for all n 2 1. 

(3) V(pAll;n-Mon) - V(n-[Weg) # 0 for all na 1. 

(4) V(A11; n-Mon) - V(pAl1; n-Reg) # 0 for all n 2 1. 

Proof. Each of the four non-inclusions can be proved using l-dimensional vector lan- 

guages. For n > 1, the lemma follows by extending these vector languages with LI- 

components, i.e. replacing l-dimensional vectors of the form (w) with n-dimensional 

vectors of the form (w, A,. . . ,A). 

The first 3 non-inclusions are easy. The fourth needs a more careful consideration. 

(1) Vi = {;i,(@)} E V(pReg; 1-Mlon) - V(l-Mon). 

(2) V2 = {(ab)} E V(iWeg; 1-Mon) - V(l-pAl1). 

(3) V3 = {(akb’) 1 k > 120) E V(pAl1; 1-Man) - V( 1-Reg). 

(4) V, = {(akbk) 1 kaO} E V(Al1; 1-Mon) - V(pA11; 1-Reg). 

That Vd E V(Al1; 1-Mon) is easy to see. That n/4 +Z V(pAl1; 1-Reg) is shown in the 

following way. If Vd = X(K n R) where K is a prefix-closed language and R is a 

regular language, then, by the pumping lemma for regular languages, akbk E R for a 

large enough k, implies that ambk E R for an m > k. Since ambk $ V4, we then have 

that a”bk @ K, and since K is prefix-closed also ambm # K. This is in contradiction 

with ambm E V4. 0 

In the following lemma we present the remaining non-inclusions. These only hold 

for the case n 3 2. 
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Lemma 3.1.2. (1) V(n-cpReg) - V(AlI;a-Mon) # 0 fir all ~32. 

(2) V(~-p~eg) - V(~-cAl1) # 0 fir all n22. 

(3) V(~-c~eg) - V(Al1; n-pReg) # 0 for all n 3 2. 

(4) V(n-Reg) - V(n-IAll) # 0 for all n>2. 

(5) V(n-cpAl1) - V(All;n-Reg) # 0 for all n>2. 

Proof. We use 2-dimensional vector languages to prove the lemma. For the higher 

dimensions these vector languages are again extended with A-components. 

(1) Vs = (1)” U (r)@ U {(t), (t)}” E a/(2-cpReg) - V’(All;2-Mon). 

It is easy to see that V’s is rational, prefix-closed and complete, hence Vs E V(2- 

CpReg). 
Now, suppose that Vs = (Ki xK~)flW, for some Ki,Kz E All and a W E D/(2-Man). 

Then (;) 0 (;) E W, b ecause (i), (z> E VS C W. F~he~ore, aa E proj, ( F’s) C Kt and 

be E proj#‘s) C&. This implies that (i) 0 (z) = f’) E Vs, a contradiction. Thus it 

follows that Vs @ n/(,011; 2-fkllon). 

(2) V6 = {j, ($, (i)} E a/(2-pWeg) - V(2-cAl1). Follows directly from the defini- 

tions, because clearly V6 is prefix closed and rational, but not complete. 

(3) V7 = {(zz), (3, (t>} = V(2-c~eg) - V(All;2-p~eg). 

It is easy to see that V7 E V(2-cReg). 

Now, suppose that VT = (K, x K2) il toll(M), for some K1, I& E All and an 

M E U-(2-pReg). Since M is prefix closed and (z) E toll(M), it follows that (,:) E 

co&M ), (“,“) E toll(M), or (z) E toll(M). Since furthermore {a,aa} C K1 and 

(c,cc} C I&, at least one of these three word vectors must be in VT as well, which is 

a contradiction. Thus, it follows that VT $ V(Al1; 2-pReg). 

(4) Vs = { (:), (i)} E V(2-Reg) - V(2-AAll). Follows directly from the definitions, 

because clearly Vs is rational and not n-complete. 

(5)V9-{(~~~)~O~k$h}U{(~)~~~1,wE{c,d}*}EV(2-cpW11)-V(W11;2-Reg). 

It is easy to see that V9 f V(2-cpAll), because in the first place VS = colI(L), where 

L = {(~)~~~)~ ~O~kbh}U{(~)}((~)}*((~),(~)}* is prefix-closed, and in the second 

place V9 is complete - the only word vector having an empty first component is A. 

Suppose that V9 = (Kr xK2)ncoll(M), for some K,,K2 E All and an M E Il(2-Reg). 

Then a* U e* C KI and {c,d}* CK2. Set V’ = ({a}* x {c,d}*) n VS. Then V’ = 

((Kl ~{a}*)x(K~~~c,d}*)~co~~(~) = ({a}* x {c,d}*)f~oll(M) E V(~on;2-beg), 

By Lemma 2.2.2 (3) V(~on;2-leg) = V(2-leg) and hence there exists a regular 

M’ over a vector alphabet 6, such that coll(M’) = V’. Then proj0.,2(M’) is reg- 

ular, because proje*,2 is a homomorphism. A contradiction, because proje*,2(A4’) = 
proj,(coll(M’)) = {chdk 106 k <h} which clearly is not regular. Thus it follows that 

V9 $ V(Al1; 2-Reg). q 

The following lemma shows that the 9 non-inclusion results of Lemma 3.1.1 and 

Lemma 3.1.2 are sufficient for proving the completeness of Fig. 2 (as stated in Corol- 

lary 3.1.4). Moreover, it shows how this completeness can be proved: for each pair 

of families for which non-inclusion is to be shown, an auxiliary non-inclusion result 
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given in Lemma 3.1.1 or Lemma 3.1.2 can be found. The straightforward checking 

of each pair of families, thus amounts to a simple inspection of Fig. 2, but due to 

the large number of pairs this is a tedious process. The proof is therefore left to the 

reader. 

Lemma 3.1.3. Let WI and n/2 be two families occurring in Fig. 2. Assume n>,2. If 
there is no directed path from W 1 to n/2 in the diagram, then there exist families 

n/l, C Wr and n/i 2 n/2, such that n/l, - n/i # 0 has been proved in Lemma 3.1.1 or 

in Lemma 3.1.2. 

Hence, there is a path from a family W 1 to a family n/2 if and only if W 1 c n/2. In 

other words: 

Corollary 3.1.4. Fig. 2 is complete, for n > 2. 

3.2. The one-dimensional case 

In the previous subsection some of the non-inclusions were shown to hold for all 

n b 1, whereas others were shown to hold only if n > 2. The latter non-inclusion results 

cannot be extended to the case n = 1, as is shown next. 

Several families that are distinct for n > 2, coincide for n = 1. 

First of all, every l-dimensional vector language is complete and hence also 

n-complete. Thus, for families of l-dimensional vector languages completeness and A- 

completeness form no restriction. Hence, e.g., W(l-cReg) = W(l-IReg) = W(l-Reg) 

and W(A11; 1-cReg) = W(Al1; 1-IReg) = W(Al1; 1-Reg). 

Secondly, we observe that the vector languages of one-dimensional VCCSs are noth- 

ing but the vector counterparts of intersections of ordinary languages. This means that 

we can use the intersection closure results of ordinary languages. 

Lemma 3.2.1. Let K and M be such that W(K;n-M) is an entry in Fig. 2. Then 
l If [L(l-K)G IL(l-Ml), then W(W; 1-M) = n/(1-M). 

l Zf IL( 1-M) C [L( l-M), then W(K; 1-M) = W( 1-K). 

Proof. The statement follows directly from the definition of W(K; 1-M) = {XK n 
toll(M) JK E 116, M E [L(l-M)}, since each of the families 116 and each of the families 

lL(l-M) is closed under intersection and contains Mon or [L(l-Mon), respectively. 0 

As a consequence, we have, e.g., W(A11; 1-pReg) = W( l-All), and W(pReg; 1-Reg) = 

W( 1-Reg). 

By the above observations, it follows that almost all families of the form W( U6; 1-M) 

coincide with one of the families of the form n/(1-M), where M = All, pAl1, Reg, 

pReg, or Mon. The only exception is the family W(pA11; 1-Reg). 

Summarizing the above, we obtain Fig. 3, a simplified inclusion diagram for the case 

n = 1. We use the drawing conventions of Fig. 2. Thus, again the families W(W; 1-M) 
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Fig. 3. Inclusion diagram of the families of the form V(W; 1-M) and n/(1-m/o). 

are represented as entries in the row marked by K and the column marked by 

dashed lines between adjacent entries show that the corresponding 

For each group of coinciding families only a single dot is drawn. 

From Lemma 3.1.1, we obtain: 

Corollary 3.2.2. Fig. 3 is complete. 

4. The operations 

families 

M, while 

coincide. 

Having completed the direct comparison of the VCCS submodels, we now turn to an 

indirect approach. Rather than considering inclusions of families of vector languages, 

we use operations as a means for comparison. That is, we look at relations of the form 

V = O(W), where 43, is a class of operations and O(V’) = {O(V) IO E 0, V E V’, V 

in the domain of 0). 

Note that the relation obtained between families using an operation is rather strong. 

Not only is it proved that the larger family can be obtained from the smaller one 

with the help of the operation, i.e. V c O(W), but also the converse is shown: the 

combination does not exceed the larger family, i.e. 0(V’) C V. 

The use of operations for relating families of languages is well established in the 

theory of formal languages. A classical example is the representation of the family of 

recursively enumerable languages: each recursively enumerable language can be ob- 

tained from a context-sensitive language using a weak coding. There is a range of 

representation results, where a family of languages is shown to be generated from 

a single generator language using one or more operations like homomorphisms, in- 

verse homomorphisms, intersection with regular languages, etc. Famous results for the 
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family of context-free languages are the theorems of Chomsky-Schiitzenberger [8], 

and Greibach [9]. In [ 1 I] a number of representation results have been collected con- 

cerning homomorphisms and rational transductions. Operations on families of lang- 

uages have also been studied in the framework of Abstract Families of Languages, see, 

e.g. [4]. 
Here we consider the families of vector languages from Sections 2 and 3 and we 

focus on the operations of multi coding, hiding, and multi weak coding. These are 

vector operations and as such well suited for relating families of vector languages. 

Moreover, they are relatively simple and, as we have seen from [ 16, l] they can be 

used to relate at least some of the VCCS families of vector languages leading to 

representations of one family in terms of a smaller one. 

In this section we formally introduce these three operations and provide some more 

background and motivation for their use. In the next section we consider each of these 

operations in turn and investigate its effects. 

A multi coding (of dimension n) is a mapping @ = cpi x . . . x qn, where cpi , . . . , (P,, 

are codings. Thus, if (Pi : CT + A) for alphabets Ci and Ai, i = 1,. . ,n, then @ : 

.Z; x . . x CT + AT x . . . x A,* is defined by @((WI,. . . , w,)) = (cpl(wl), . . . , q,(w,)). 

As an illustration let cpl(a) = b, q,(b) = b, cpz(a) = d, and cpz(b) = a, then 

@ = cpi x 472 satisfies @((nit) ) = (yi). 

Note that multi codings are not special instances of the multi-morphisms of 

Nivat (see, e.g., [20]), as the latter are mappings from languages to vector languages: 

(cp,,...,cp,) : C* -+ AT x ... x AZ is a multi-morphism according to Nivat, if vi : 

C* 4 A* is a homomorphism for all i E [n]. 
Thus, e.g., with cpi and (~2 as above, the multi-morphism (cpi, (~2) satisfies (cpi, (~2) 

(aba) = (iii). 

In many respects multi codings resemble ordinary codings. They map (vector) letters 

onto (vector) letters. They are, however, more refined in the sense that they act on 

the components of vector letters and not simply on the vector letters themselves. In 

general, an (ordinary) coding - defined on a vector alphabet - is not a multi coding, 

because, e.g., they can arbitrarily change the dimension of vector letters. Thus, e.g. a 

coding $ may satisfy $((i)) = [a],$(($) = (I), and $<(t)> = (:). 

The families of vector languages (and their associated n-languages) studied in this 

paper are closed under multi injective codings, i.e. products of injective codings. 

In general, families of n-languages are not closed under general injective codings, 

as those may change dimensions. A family like R(n-cReg) is not even closed un- 

der dimension-preserving injective codings, because such codings do not necessarily 

preserve the ~-structure of word vectors. Note that multi codings do preserve ,4- 

structure. 

Note that the multi coding @ defined above is not a multi injective coding, because 

cp1 is not injective. However, Cp restricted to the domain { (3, (f), (i)} is injective. 

Multi codings may be seen as labellings leading to an identification of originally 

different symbols (actions). Note, however, that the labelling is applied to the behaviour 
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of a system, i.e. its vector language, and not to the underlying model itself, i.e. to 

the specification by component languages and control language. Since the component 

languages and the control languages are ordinary languages, the latter way of applying 

the labelling would make it a simple matter of ordinary formal language theory to 

determine the type of the resulting VCCS. 

In [16] multi codings have been used to relate the families V(Reg; n-Man) and 

V( Reg; n-cReg). 

The class of all n-dimensional multi codings will be denoted n-MCod. 

For a family V of n-dimensional vector languages, we let n-M@od(V) = {Q(V) 1 @E 

n-MCod, V E V, V in the domain of @}. 

It is easy to see that n-MCod is an operator (on families of vector languages) that 

is 

monotonic: a/ C V’ implies n-M @od( V) G n-MCod( V’), 

extensive: V S n-M Cod( V), and 

idempotent: n-MlCod(n-MlCod(V)) = n-MCod(V), 

where V and V’ are families of n-dimensional vector languages. Since it is extensive 

and idempotent, it is a closure operator. 

By its idempotency, a repeated application of multi codings has the same effect as 

a single application: the family has been closed with respect to the operator. Families 

that are not enlarged by a closure operator are already closed; such families turn out 

to be important in our investigations. 

A hiding applied to a word vector removes the last component. Thus, it is a mapping 

from word vectors to word vectors. In fact, it is a particular type of projection. Denoting 

hiding by hid, we have hid((wl,. . . ,wn+l)) = (WI,. . . ,w,). 

If V is a family of vector languages, then hid(V) = {hid(V) 1 V E V, V has dimen- 

sion at least 2). Note that we consider here families of, possibly, mixed dimensions 

and that hid is not defined for l-dimensional vector languages. 

Hiding is an operator that is monotonic. On families of n-dimensional vector lan- 

guages, n > 2, it is neither extensive, nor idempotent, due to the change in dimension. 

It is, however, extensive for the families V(W; M) = Una, V(H; n-M) and V(M) = 

lJnBl V(n-M), where V(D6; n-M) and V(n-Ml) are the families from Fig. 2. This can be 

seen by noting that for each vector language W from such a family W, the A-extension 

Kl = {(WI,. . ., wn, A) I (WI,. . . T IV,) E V} belongs to V as well, while V = hid(&). 

Hence V C hid(V). 

By repeated application of hid, in combination with permutation of components more 

general hiding operators can be obtained. Since the vector language families studied 

in this paper are invariant under permutation of components, it is sufficient for our 

purposes to consider the simple hiding operator defined above. 

The hiding operation hid has been used in [l] for relating families of vector lan- 

guages. For instance, it has been proved in [l] that hid(V(pReg; n + l-Mon)) = 

V(pReg;n-plReg), see also Section 5.2 in this paper. 

As this example shows, also the hiding operation is able to enlarge (modulo a 

change of dimension) the families it operates on. The ‘extra’ component that is hidden 
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is crucial for this enlargement power. To prove the example above it is shown how the 

simple control languages from [L(n-Mon) can be used in combination with the hidden 

component to simulate the larger family [L(n-pReg) of control languages. 

In contrast to multi codings the hiding operation is capable of changing dependent 

word vectors (like ( j) and (C) 2 ) into independent word vectors (like ($ and ($) ). 

Thus, properties like completeness and A-completeness, that are based on the notion 

of dependency, can be changed by hiding. 

When considered as operation on n-languages the operation hid acts as a weak 

coding: it can map different vector letters onto the same vector letter, and it can 

remove vector letters. For instance, 
(!) and (!) 

are both mapped to (i), and 
0 

! 

is mapped to A. 

We now formally introduce the third and last operation. 

A multi weak coding (of dimension n) is a mapping @ = cpi x .. . x (P,,, where 

cpi,. . . , qn are weak codings. Let n-MWCod denote the class of all n-dimensional 

multi weak codings. 

For any family V of n-dimensional vector languages, n-MIW@od(V) will be the 

family n-MlYvVCod(V) = {G(V) I@ E n-MWCod, V E V, V in the domain of @}. 

The operator n-MlIWCod is monotonic, extensive, and idempotent (and hence a clo- 

sure operator). Moreover, n-MWCod(n-MCod(V)) = n-M@od(n-MW@od(V)) = 

n-MN/Cod(V) for any family V of n-dimensional vector languages. 

In the terminology of [4] n-M@od<n-MlVVCod, i.e. n-hAlCod s n-MW@od(V) 

for all families V of n-dimensional vector languages. Thus, any family enlarged by 

the application of n-MlCod may be even further enlarged by the application of 

n-MVVCod. 

In contrast to multi codings, multi weak codings are capable of changing the 

,4-structure of vectors, namely by replacing non-empty components by empty ones. 

Thus, properties like completeness and n-completeness, that are dependent on the 

n-structure of vectors, can be changed by the application of multi weak codings. In 

this paper this is expressed by a result like n-MWCod(V(n-cReg)) = V(n-Reg) (see 
Section 5.3). As said before, multi codings keep the n-structure of vectors and hence 

the last result cannot be obtained for multi codings. 

In [l] multi weak codings have been used to relate families of vector languages. For 

instance, in that paper - and here again, it has been proved that n-MW@od(V(pReg; 

n-Mlon)) = V(plReg; n-pReg). Using multi weak codings is essential: 

n-MCod(V(ptReg; n-Mon)) C V(plReg; n-pReg) as is shown in Section 5.1. 

The crucial property of multi weak codings used in the above equality result, is 

the fact that each vector alphabet can be obtained as the image of a multi weak 

coding applied to a set of vector letters each of the form (b, b, . . , b), i.e. vector letters 

containing one and the same letter in each component. Thus, every vector language 

can be obtained from an ordinary language by first coding each letter b as a vector 

letter (b, b, . . . , b) and then applying a multi weak coding. 
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Multi weak codings applied to n-languages act as weak codings: vector letters are 

mapped to vector letters or the empty word vector. However, as for multi codings, not 

every weak coding on vector letters can be extended to a multi weak coding on word 

vectors. 

5. The representations 

In this section we study the effect of multi codings, hidings, and multi weak cod- 

ings, i.e. the relations of the form V = n-M@od(V’), V = hid(V), and V = 

n-MVVCod(V’), where V and V’ are families of vector languages. The families V’ 

considered are those represented in Fig. 2, i.e. the families V(K;n-IUI) and V(n-Ml), 

where K E {All, p/U, Reg,pReg, Mon} and M E {All, LAll, cAll,pAll, cpAl1, Reg, 

AlBeg, cReg,pReg, cpReg, WIon}. 

Emphasis is on multi codings. They are the most elementary of the three types 

of operations we consider, as they do not affect the n-structure of the vectors to 

which they are applied. Because of the relatively little effect of multi codings, the 

application of n-MCod to the families of Fig. 2 leads to more different families than 

the applications of n-MVVCod and hid. These latter operations have more effect on the 

structure of vectors leading to more identifications of families of vector languages. For 

our technical presentation this means that more proofs and more involved proofs are 

needed to establish the representation results based on multi codings. The observations 

on multi codings also form a basis for the results concerning n-MWCod: each multi 

coding is also a multi weak coding. 

The results are presented in graphical form for each of the three operations by 

the use of so-called operation diagrams. They are simply the graphs representing the 

relations above: in the operation diagram for 0, an arrow will be drawn from V’ to V 

whenever O(V’) = V, where 0 = n-fUCod, hid, or n-MVVCod. For the families the 

same drawing convention will be used as in Fig. 2: dots represent families of the form 

V(K;n&I), circles represent families of the form V(n-WI), and circled dots represent 

families for which such forms coincide. 

5.1. Multi codings 

In order to facilitate the understanding of our approach to establish the results needed 

to complete the operation diagram for n-MCod, we first present this diagram as Fig. 4. 

Each relation, i.e. each arrow, is labelled with the corresponding result. This allows 

for a quick lookup of results. The diagram only gives the results for n 3 2. For n = 1, 

the results can be easily derived from Fig. 4 by using the additional equalities holding 

for the l-dimensional families (see Fig. 3). 

Since n-FUlCod is a closure operator, the families resulting after a single application 

of n-MlCod are not affected by another application. Hence, it is sufficient to consider 

only the effect of a single application. 
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Mon 

XReg cReg pReg cpReg Mon 

Fig. 4. Operation diagram of n-bACod for the families V(W; n-ISA) and V(n-%A) for ~~32. 

Preceding the technical details needed to prove the results summarized in this diagram, 
an overview of our approach and the ordering of the results is given. 

Six main steps can be distinguished. 
(I) First we argue that all families V(~-~) are closed with respect to n-MCod. 

This proves the self-loops in the diagram. Because of the equa~ties established in 
Section 2, this implies that we are also done for almost half of the entries V( K; n-Ml) 
in the diagram. 

(II) For the families V(All;n-M) with M = Reg, iReg, or cReg, we prove in 
Lemma 5.12 that the application of multi codings leads to the families V(n-All), 
V(~-~~ll), and V(n-cAli), respectively. By Fig. 2 each of these resulting families 
strictly includes the original family and hence the original families are not closed with 
respect to n-MCod. Still we may compare this result with the effect of multi codings in 
case the underlying VCCSs have regular component languages: since V(Reg; n-M) = 
V(n-Ml) for M = Reg, AReg, or cReg, we have n-MCod(V(Reg;n-Reg))=V(n-Reg), 
~-~Cod(V( Reg; n-J.R!eg))= V(~-Greg), and ~-~~od(V( IWeg; n-cReg))= V(~-c~eg). 
Thus, replacing in Lemma 5.12 each occurrence of All by an occurrence of lI%eg leads 
to valid equalities. 

(III) At this stage one is tempted to believe that also the representation of the fami- 
lies V(n-pReg) and V(n-cpReg) in terms of multi codings and the families V(plReg; 
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n-pReg) and V(pReg;n-cpReg), respectively, can be lifted to the level of arbitrary 

languages. 

However, as we show next V(n-pAl1) and V(n-cpAl1) do not have such representa- 

tions. By Lemma 5.1.4, the families n-WlCod(V(pAl1; n-plReg)) and n-MCod(V(pAl1; 

n-cpWeg)) are strictly included in V(n-pAl1) and V(n-cpAll), respectively. In fact, as 

further supported by Lemma 5.1.6, none of the families of Fig. 2 is representable as 

n-MCod(V(pAl1; n-pReg)) or n-MlCod(V(pAl1; n-cpReg)). 

(IV) Imposing the restriction of prefix-closedness on the component languages only, 

does not diminish the effect of multi codings. Thus, as stated in Corollary 5.1.9, n- 

MCod(V(pAll;n-Ml)) = n-MlCod(V(All;n-Ml)) for M = Reg, IEReg, or cReg which 

leads to new representations of V(n-All), V(n-AAll), and V(n-cAll), respectively. 

(V) In Lemma 5.1.10 conditions are given under which multi codings reduce the ef- 

fect of prefix-closed control languages. As a consequence, we have in Corollary 5.1.11 

the observations that n-M@od(V(K; n-pReg)) = n-MCod(V( K; n-%!eg)) for K = All 

or Reg. Thus, n-MCod(V(Al1; n-pReg)) = V(n-IAll) and n-MlCod( V( Reg; n-pWeg)) = 

V(n-&!eg). 

(VI) This leaves us to consider the entries V(W; n-Man), V(pK;n-Mon), and V(W; 

n-cpReg) with K=All or Reg. Using results from [16, 181, we relate vector monoids and 

complete vector languages. This leads to the results mentioned in Corollary 5.1.14. For 

K=All or Reg, n-~Cod(V(K;n-~on))=n-~~od(V(Db;n-cpWeg))=n-M@od(V(Od; 

n-cWeg)) which by Lemma 5.1.2 and Fig. 2, respectively, equals V(n-cK); similarly, 

n-MCod(V(pM; n-Mlon)) = n-MCod(V(pK; n-cpWeg)). Since V(pReg; n-cpReg) = 

V(n-cpReg) is closed with respect to n-MCod, we conclude n-MCod(V(pReg; 

n-Man)) = V(n-cpReg). 

Hence, except for the families V(pAl1; n-pReg), V(pAl1; n-cpReg), and V(pAl1; 

n-Mlon), we find for all families that multi codings lead to one of the families V(n-Ml). 

Now we turn to the full technical proofs of the results claimed above. 

The first step is an easy one. 

Lemma 5.1.1. V(n-M)=n-MCod(V(&Ml)) for M =All, xAl1, Reg, xReg, or Mon, 

where x = A, c, p, or cp. 

Proof. V g n-MCod(V) for any family V of n-dimensional vector languages. 

The inclusions “2” follow directly from the fact that multi codings preserve com- 

pleteness and ,4-completeness and the fact that the families All, pAl1, Reg, pReg, Mon 

are closed under codings. 0 

The second step is quite involved. 

Lemma 5.1.2. (1) V(n-All) = n-MlCod(V(Al1; n-Reg)). 

(2) V(n-AAll) = n-MCod(V(Al1; n-AReg)). 

(3) V(n-cAl1) = n-MCod(V(Al1; n-cReg)). 
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The proof shows how to construct a vector language V in V(n-All) from a vector 

language in V(A11; n-Reg) using multi codings. It is based on the following idea. 

First, the information contained in a word vector from V is put into one of its 

components; for different word vectors different components may be used. After having 

synchronized the other components using the relative weak control languages from 

il(n-Reg), a multi coding is used to remove the extra information from the special 

components. 

Before giving the proof with all formal details we discuss an example. 

Example 5.1.3. Let V = {(z) 1 u,u,w,x E {a,b}*, u is the reverse of w, and (u = n 

or x = A)}. 

Then V # V(A11; 2-Reg), which can be seen as follows. Suppose V = (Ki x Ki) n 

toll(M) for some K,‘,Ki E All and an M E Reg. Then, since {a,b}* = proj,( V) = 

proj,( V), we may assume without loss of generality that Ki = Ki = {a,b}*. Thus, it 

follows that V = ({a,b}* x {a,b}*) n toll(M) E V(Reg;2-Reg) = V(2-Reg). Using 

the pumping lemma for regular languages (see [12]), it can easily be shown that 

V $i V(2-Reg), which gives a contradiction. Hence V $! V(Al1; 2-Reg). 

We now show that V E 2-MlCod(V(Al1; 2-Reg)) by constructing KI, K2 E All, all 

ME Reg and a GE 2-M@od, such that V = @[(K1 x K2) n toll(M)]. 
Let~=Tot(~a,b~,~u,b~),let~~=~(~)~~~a#~~,andlet~~=~(~)~~~~#~~, 

i.e. 

and 

Next let 4 = { (P;) E 0,) and fi = { i ( (t) E &}, i.e. 
0 

and 

Set M = 4” U I?: U {A}. 
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Let @ : (Ii U fi)@ + l3@ be the 2-dimensional coding @ = 40~ x (p2, where cpi and 

cpz are the codings defined by cpi(a) = a, qi(b) = b, and (pi(S) = proj,(d) for all 

29E8, i= 1,2. Thus, 

and 

@(( (!) (8, (i))) = GI)- 
Let L = 4 U-h where -h = {u E ((3, (i),(z), ($}*{($, ($}* Iprojo8,,(u) is a 

prefix of the reverse of proj c3*,1(~)~ and L2 = 10 E {(3? (;I? (3, (3>*{(3, (;>I* I 
proj,,, 1(u) is a prefix of the reverse of pro] ‘e.,2(u)}. Here L;, i = 1,2, is chosen such 

that coll(Li) is the set of all word vectors from V having an ith component longer than 

or at least as long as the other component. Moreover, Li is built from vector letters all 

having a non-empty ith component. 

Clearly, V = toll(L). Note that colI(Li ) and coII(L2) are incomparable, but not 

disjoint. For instance, (2) E coll(L1) - coII(L2), whereas (sz) E coll(L1) fl coII(L2). 

Let K1 = LlUproj,,,,(L) = LI U{a,b}* and let K2 = L2Uproj,.,,(L) = LZU{a,b}*. 

Thus, e.g., (3 (t) (i) E KI and bba E KI. 
It is not very difficult to see that V = @[(K, x K2) n toll(M)]. All formalities can 

be found in the proof of Lemma 5.1.2. 0 

Proof of Lemma 5.1.2 From Lemma 5.1.1 we know that V(n-All) = n-IUCod(V(n- 

All)) and by the inclusion diagram Fig. 2 we have V(Al1; n-Reg) C V(n-All). This 

proves that V(n-All) > n-MCod(V(Al1; n-Reg)). Similar reasoning, again using Lemma 

5.1.1 and Fig. 2 shows that V(n-I1All)>n-k4Cod(V(All;n-JReg)) and V(n-cAll)> 

n&UCod(V(All; n-cReg)). This leaves us to prove the converse inclusions. 

With this aim we start out with an arbitrary language V E V(n-All). After some 

consideration about the alphabets involved, we define an n-dimensional coding @, n 

languages K,, . . . , K,,, and a regular language M such that @[X&,Ki f+ toll(M)] = 

V - {/I}. Finally, we show how to extend A4 to a regular M’ such that @[XyylKi n 

coll(M’)] = V, and such that coII(M’) is n-complete or complete if V is n-complete 

or complete, respectively. 

So let V E V(n-All). Let 8 be a total vector alphabet such that V C 00 and let 

&={tiEe(proj,(ti) # n}, for i = l,..., n. Without loss of generality, we may assume 

that 8 n proji(B) = 0 for all i E [n], i.e. vector letters of 6 do not occur as components 

in (other) vector letters from 8. For each i E [n] and each 6 = (6i,. . . ,19,) E Bi, the 

vector letter ~29,~ is defined by ~29,~ = (91,. . . , l9_1,?9,6i+~ )..., 6,). SO “/tB,i is equal t0 

8 except for the ith component, where 6 itself is occurring as a component. Note that 

yG,i and 6 have the same /l-structure due to the definition of Bi. Let 4 = (~19,~ 16 E &} 
for i = l,...,n. 
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Let @ : (U:=, c)@ -+ fl@ be the homomorphism defined by @(yti,i) = 19, for all 

i E [n] and all 6 E 8i. Then it is easy to see that @ = cpi x . . . x cpn, where, for all 

i E [n], Cpi : (0, U proj,(O))* + proj,(ti)* is the coding defined by: Cpi(29) = proji(t9) 

if 19 E f3i and vi(S) = 6 if 6 E proji(8). Hence, @ E n-MCod. Note that @(toll(v)) = 

colloproji ocoll(u) for all in [n] and all VEX*. 

Next we define the component languages Ki , . . . , K,, and the control language M. 

For this, we first choose a language L with toll(L) = V, such that L = Li U. . . U L, 
where Li C_ 0: for all i E [n]. In other words, L is chosen in such a way that, 

for each word u E L, there is an i E [n], such that each vector letter from u has 

a non-empty ith component. Such an L can be chosen because 8 is a total vector 

alphabet. 

Next, set Ki = proj,,,i(L) ULi, for all i E [n], and set M = lJ:=, c+. Note that A4 is 

regular. 

It is now easy to see that w E X:=lKi n toll(M) if and only if there is a j E [n] such 

that w E ‘;.@ and projj(w) E OTnL,. Consequently, whenever w E )(:,,KifICOll(M), then 

@J(w) E COll(Lj)_{A} c V-{/i}. c onversely, whenever w E V - {A}, then w = coll( u) 

for some v E L/ - {A} and j E [n]. Thus, u = 191 . . . 8, for some m 2 1 and 61 E Qj, for all 

I E [ml. Then w = @(COll(ys,,j . . . Y.LY,,,,)) and COI~(Y~,,~ . * . yti,,,j) E( )(y=,Ki) n toll(M). 
From this we may now conclude that V - {/i} = @[ X~=,Ki n toll(M)]. 

The last part of the proof concentrates on the extension of M in order to take care 

of the case that /1 E V and of A-completeness and completeness. 

If /i @’ V and V is not A-complete, we leave M as it is. In that case we already 

have V = @[Xy=,Ki n toll(M)]. 
If 2 E V or V is A-complete, we add A to M. In this way we obtain M’ = 

U;=, I;+ u {A} w IC IS a regular language, and coll(M’) is A-complete. If /1 E V, h’ h . 

then A E L, and hence A E Ki for all i E [n]. (#) 
Thus, it follows that @[X&,Ki n coll(M’)] = @[O(~=,K~ n toll(M)) U {/I}] = (V - 

(2)) u (2) = v. 

If /i $ V and V is A-complete, then A $Z L and A 6 projj( V) for some j E [n]. Hence, 

for this j,,4 @proje,,i(L) and A @Lj. Hence, A $ Kj. (##) 
Consequently, /1 tif XF=,K,. Thus, it follows that @[Xy=,Ki ncoll(M’)] = @[)(!=,Ki n 
toll(M)] = v - {A} = v. 

This leaves us with the case that V is complete. Now we extend M to M’ = 

{u~...u,~m~1,v~~M,coll(u~)andcoU(v~)areindependentifj#k,j,k~[n]}U{~}. 

Clearly, M’ is complete and it is not difficult to see that M’ is regular. Using the 

reasoning given at (#) above it follows easily that /1 E V implies /i E X~=,Ki~coll(M’), 
and hence V 2 @[X:=1 Ki n coll(M’)]. 

The last thing to prove is that @[Xy=,Ki n coll(M’)] C V, or equivalently that, for 

all u EM’ -M, @[Xy=,Ki n CO~~({V})] C V. 
If u = A, then we can apply the reasonings given at (#) and (###) above which tell us 

that, since V is A-complete, /1 E X~=,K, if and only if /T E V. Hence, @[X~=,K, n 
coll({n})] c v. 
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SO assume that v # A and that coll( V) E Xy=,Ki. (If coll( v) # )(e,~i, there is noth- 

ing to prove.) Since u # A and v E MI-M, there is an m 3 2 such that v = VI . . . v,,, with 

uj E M for all j E [m] and cOll(vi) and coll(vk ) are independent if i # k. By the defini- 

tion of M, for each j E [m] there is an ij E [n] such that Vj E 4,‘. By the independence of 

the COll(Vj), we know that ij # ik for all j, k E [m] with j # k. Since Ki = proj,,,i(l) U 

Li, for all i E [n] and coll(vl . . . v,) E )(r=,Ki, we have that proji,(coll(vl . ..v.)) = 
proj,,(coll(vj)) E Li,. Thus, @(COll(Vj)) = coll(projii(coll(vj)) E COll(Li,) C Y. More- 

over, {i E [n] 1 @(COll(Vj)) # A} = {i E [n] ) COll(Vj) # A} and @(~oll(v, . . .v,)) = 

@(coll(v,))@. . .@@(coll(v,)). Combining all this leads to @(X~=rKinCOll(ur . . . v,)) = 

WI 0 ... 0 w,, where Wj E V for j E [m] and wi is independent from Wk if i # k. 
Since V is complete, this leads to the desired conclusion that wr o . . . o w,,, E V. 

As already pointed out under (III) above, in case of prefix-closedness the situation 

changes. 

Lemma 51.4. Let n 22. 
(1) V(n-pAl1) 2 n-MCod(V(pAl1; n-pReg)). 

(2) V(n-cpAl1) 2 n&lCod(V(pAll; n-cpReg)). 

In an auxiliary lemma we first consider the example vector language to be used in the 

proof of Lemma 5.1.4. 

Lemma 5.1.5. Let V = { (Ei) E {a,b}* x {a,b}* ) w2 is a prejx of the reverse of WI )}. 

Then V E V(n-cpAl1) - 2JU@od(V(pAll; 2-pReg)). 

Proof of Lemma 51.5 Let K = (qv2 1 VI E { (;), (:)}*,Q E {(t), (t)}*, proj,(vz) is 

a prefix of the reverse of proj,(vl)}. Then V = toll(K). Since K is prefix-closed and 

V is complete, this shows that V E V(2-cpAl1). 

In order to prove that V 6 2-MCod(V(pAl1; 2-pReg)), we assume to the contrary 

that V = @[@‘I where @ = qr x 472 E 2-MlCod and W = (K1 x K2) fl toll(M) with 

K,, K2 E pAl1 and M E [I(2-p[Weg). 

Then we can make the following technical observation: for all word vectors w = 

(1%) E W where qi(c) = cpz(e) = a, q,(d) = I = b, and where v and x are 

words such that (p2(x) is a prefix of the reverse of qi (v), there exist words Y and s 

such that toll(r) = (“F), toll(s) = (;‘,) and YS EM. (&) 
This can be seen as follows. As w E coil(M), it follows that there exists a word 

POEM such that w = toll(i). Clearly, there exist a prefix i of t^ such that con(;) = (E) 

where u is a prefix of vdc. If u is a prefix of vd, then clearly r^ can be extended to 

the prefix s^ of t^ satisfying con(i) = (i’) where y is a prefix of fx. Since K,, K2 and 

M are prefix-closed this leads to the conclusion that ($) E W and hence (J’$F$) E V. 

The latter is a contradiction, because acp2(y) is not a prefix of the reverse of cpr(v)b. 
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Consequently, u = udc which proves (8~). 

Now consider the sequence of word vectors (2’9:) E V, i 3 0. Hence, by our assump- 

tion, there is a sequence of word vectors Wi = ($$ E W, i>O, such that qi(ni)=ba’, 

Vi(ci) = qz(ei) = Q, ~pl(di) = (~2(fi) = b9 and (P2(xi) = a’b, for all i20. Since 

cp;‘(a) is finite, it follows that there exists an e E q;‘(a) such that ei = e infinitely 

often. 

Hence, by our observation (&) above, there are infinitely many rj, sj with COll(rj) = 
(uJ$ci) and coU(sj) = (,:‘,) such that rjsj E M and ej = e. Since M is regular, there 

exist k # I, such that rksl E M. Now cofl(rksl) E W, because proj,(Cofl(rksl)) = 
vkdkck = proj,(wk) E KI and proj2(eoll(?-ks[)) = efjxl = proj,(w,) E K2. However, 

@(col&-ksl)) = (f$;) $ v, b ecause a’b is not a prefix of a ukb since k # 1. 

This contradiction proves that V @ 2-M@od(V(pAll; 2-pReg)). 0 

Proof of Lemma 5.1.4 From Lemma 5.1.1 we know that V(n-pAl1) = n-MCod 

(V(n-pAl1)) and by the inclusion diagram (Fig. 2) we have V(pAll;n-pReg) C 

V(n-pAl1). This proves that V(n-pAl1) > n-MCod(V(pAl1; n-pReg)). Similar reason- 

ing, again using Lemma 5.1.1 and Fig. 2, shows that V(n-cpAl1) > n-MCod(V(pAl1; 

n-cp Weg)). 

In order to prove both inclusions to be strict, we show that V(n-cpAl1) - n-MlCod 

(V(pAll;n-pWeg)) # 0 if n22. This is sufficient, because V(n-cpAl1) & V(n-pAl1) 

and n-MCod(V(pAl1; n-pReg) 2 n-FMlCod(V(pAll;n-cpReg). 

For n = 2, the above follows from Lemma 5.1.5. For dimensions greater than 2, the 

example can be obtained from Lemma 5.1.5 by adding n-components to the vectors 

involved. 0 

The following lemma shows that the two families n-MCod(V(pAll;n-ylReg)), 

y E {p, cp}, are not closed with respect to n-MCod. Combining this with Lemma 5.1.4 

and Fig. 2 shows that they do not correspond to any of the families of the diagram. 

Lemma 5.1.6. Let n 2 2. 

(1) n-MCod(V(pAl1; n-pReg)) 2 V(pAl1; n-plReg). 

(2) n-MCod(V(pAl1; n-cpReg)) 2 V(pAl1; n-cpReg). 

Proof. The lemma is proved by proving the single non-inclusion result n-MCod 

(V(pAl1; n-cpReg)) - V(pA11; n-plReg) # 8 for n 22. From the proof of Lemma 3.1.2 

(5) we know that v={(~~~~)IO~k~h}U{(“WP) Ip>l,w~ {c,d}*}$V(A11;2-Reg) 

and hence V 6 V(pA11; 2-plReg). After proving that V E 2-MlCod(V(pAl1; 2-cpReg)), 

we are done, because the same vector language with additional A-components can be 

used for the case that n > 2. 

Let KI E pAl1, K2 E pAl1, and M E lL(2-cpReg) be given by: K1 = {uhbk 1 O<k dh}U 

{e}*, K2 = {c,d}*, ad ~4 = (z)*(i)* U (${($, (t), ($>*. Set @ = PI x 92 E 
2-MCod, where cpi(u) = cpl(b) = a, q,(e) = e, (Pi = c, and cpz(d) = d. Then 

V = Qi[(Kl x K2) f’ coIl( and hence V E 2-MCod(V(pAl1; 2-cpReg)). Cl 
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In the next step we turn to a general lemma showing when prefix-closedness of com- 

ponent languages can be “overcome” with the help of multi codings. The construction 

in the proof makes use of an endmarking technique. 

Lemma 5.1.7. V(Od;n-M) Cn-M@od(V(pOd;n-Ml)) provided the families K and M 

of languages satisfy the following properties: 

- K is closed under inverse codings, under intersection with regular languages, and 

under pref, 

- W(n-MI) is closed under inverse n-dimensional codings and under intersection with 

n-fold Cartesian products of regular languages. 

Proof. Let K, E K for all i E [n] and let V E V(n-Ml). We construct, for all i E [n], 

a language K,! E p[M, a vector language V’ E V(n-Ml), and an n-dimensional coding 

GE n-MCod, such that ()(F=,Ki) n V = @[(Xy=,K;) n V’]. 
Let C be an alphabet such that Ki C C*, for all i E [n], and such that V C C* x . . x 

.Z*. Let 2 be a disjoint copy of C and define the endmarking p : C* + Z*,f u {A} 

by p(A) = A and u(wa) = wa for all w E C* and a E C. Then we set, for all i E [n], 

K: = pref{p(w) 1 w E K,}, and V’ = ((4~ ), . . , Awn)) I (WI,. . . , w,) E V n X;=‘=,h}, 
where, for all i E [n], Li = C* if ,4 E Ki and Li = Cf if A $ Ki. Since in the K,! 

all and only the original non-empty words from the Ki have an endmarking and all 

non-empty components of words from V have an endmarking, it is easy to see that 

X;==,K: n V’ = {(p(w,),. . .,p(wn)) 1 (w, ,..., w,) E X;=,Ki n V}. Hence, X;=,Kj n V = 
@[X;=,K: fl V’], where @ = cp x ... x cp E n-MiCod removes the endmarkings through 

the coding cp defined by cp(i) = q(b) = b for all b E C. Note that the intersection by 

Xyz,Li is necessary to handle the empty words: if, for an i E [n], ,4 E K,! - K;, then 

,4 6 proj,( V’), because of this intersection. 

The only things left to prove are that K,! E pM, for all i E [n], and that V’ E 
V(n-Ml). Clearly, {p(w) 1 w E K} = cp-‘(K)n(Z*~U{A}), for K C C”. The properties 

n 
of K now guarantee that pref(cp-‘(K) n (C*C U {A})) E 06 whenever KC C* is in 

K. Since, for each i E [n], K,! = pref(cp-‘(Ki) n (C*,J? U {A}) is prefix-closed and 

Ki E 06, we have K,! E pDb for all i E [n]. Similarly, V’ can be written as V’ = 
~-‘(V)nX:=,(C*~U{n})nX~=,~i, which - due to the closure properties of V(n-M) 

- shows that V’ E V(n-Ml). !I 

In order to apply the above lemma we need to verify that the conditions are satisfied. 

In particular, we want to apply the lemma for the cases that M = Reg, IReg, cReg. 

From Proposition 5.1.8 below, it follows that V(n-Reg) satisfies the required closure 

properties. 

Proposition 5.1.8. (1) V(n-Reg) is closed under inverse n-dimensional multi codings. 

(2) V(n-Reg) is closed under intersection with n-fold Cartesian products of regular 

languages. 
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Proof. (1) Let V = colI(L) where L is a regular n-language. Let @J = cpl x . . . x qh 

where cpt,..., (P,, are codings. Then rp,‘, . . . , cp;’ are finite substitutions mapping letters 

to finite sets of letters. If (bt, . . . , b,) is a vector letter, then clearly @-‘((bt,. . . , b,)) = 

{(Cl,..', Cn) 1 Cpi(Ci 1 = bi, i E [aI} is a finite set of vector letters. For vector letters /I = 

(bt,..., b,) and y = (cl,...,~,), we have that @-‘(/IoY) = {(Wt,...,Wn)Iqi(Wi) = 

bici, i E [n]} = @-‘(/I) 0 @-l(y). Thus, it follows that @-'(COAX) = COu(@-l(L)). 

Since the family of regular languages is closed under finite substitutions, it follows 

that @-‘(I’) E V(n-Reg). 

(2) Follows from V(Reg;n-Reg) = V(n-Reg) (see Lemma 2.2.2(3)). 0 

Corollary 5.1.9. (1) n-MCod(V(Al1; n-Reg)) = n-MCod(V(pAl1; n-Reg)). 

(2) n-MCod(V(G11; n-1Reg)) = n-MCod(V(pAl1; n-XReg)). 

(3) n-M@od(V(All; n-cReg)) = n-MCod(V(pAl1; n-cReg)). 

Proof. The inclusions “2” follow directly from the results presented in Fig. 2. 

The converse inclusions “G” can be deduced from Lemma 5.1.7 and Proposition 5.1.8 

in the following way. Clearly, All is closed under inverse codings, under intersection 

with regular languages and under pref. Proposition 5.1.8 shows that V(n-Reg) sat- 

isfies the required closure properties. From the basic properties of completeness and 

/l-completeness - marked (*) and (**) in Section 2.1 - it follows that V(n-LReg) 

and V(n-cReg) are closed under intersection with n-fold Cartesian product of regular 

languages. Finally, since inverse multi codings do not alter the ~-structure of word 

vectors, Proposition 5.1.8 also proves that V(n-,UReg) and V(n-cReg) are closed under 

inverse n-dimensional multi codings. 

The conditions of Lemma 5.1.7 are satisfied and hence the inclusions “c” can be 

inferred from this lemma, using the idempotency of multi codings. 0 

In step V, it is shown that prefix-closedness of control languages can also be 

“overcome” with the help of multi codings. In contrast to Lemma 5.1.7, we end up 

in this case with a /i-complete vector language, which is caused by the fact that 

prefix-closedness implies n-completeness and the fact that multi codings preserve ,4- 

completeness. 

Lemma 5.1.10. V( K; n-IReg) C n-M@od(V( K; n-pReg)) provided the family M is 

closed under inverse codings and under intersection with regular languages. 

Proof. Let Ki E K for all i E [n] and let M E L(n-AReg). We construct, for all i E [n], 

a language K,! E I6, a language M’ E lL(n-pReg), and a multi coding @ E n-MCod, 

such that (XF=,Ki) n coll(A4) = @[( Xy=,K,‘) n ~0ll(A4’)]. 
As in the proof of Lemma 5.1.7 we use here endmarkings to distinguish original 

words from prefixes. Now, however, we have to be more careful, because we are 

dealing with more dimensions. We concentrate first on the construction of M’ from A4 

and its properties. 
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Let C be an alphabet such that Ki C C”, for all i E [n], and such that M 2 Tot 

C‘?..., C)*. Let J? = {ci 1 CJ E E} be a disjoint copy of 6. Let qi : (I: U i)* -+ E* 
be the coding defined by q;(6) = y’(b) = 6, for all i E [n] and all b E C, and let 
@ = ~1 x - - . x cpn. Consider the vector language V = Qi-‘(coll(M))~X~~,(Z*~U{A}), 
i.e. V corresponds to the vector language coll(h4) in which each non-empty component 
of each word vector has been endmarked. It is not difficult to see that V E V(n-Reg), 

because V(n-Reg) is closed under inverse multi codings and under intersection with 
Cartesian product of regular languages (see Proposition 5.13). 

From Lemma 2.6 of [18] and its proof it follows that we can find an M” = !L(n-Reg) 
with coll(M”) = V, which satisfies the property that 

ubcw EM” implies b and c are dependent, tt) 

for any words n, w and any vector letters b and c. Thus, M’” is a language co~esponding 

to the endmarked V and satisfying the special property (t). 
Let M’ = pref(M”). The M’ E IL(n-pEWeg) and - by property (t) - M’ satisfies, as 

we prove next, the property 

&*i- u Lj) n coU(M’) = colI(M”), 
i=l 

where L’ = {.4} if A E proj,(coll(M)) and Li = 8 otherwise, for all i E [n]. Thus non- 
empty proper prefixes of M” can be distinguished from original words from M” as 
intended. Property (t) is necessary, since in general a proper ‘prefix’ of an endmarked 
word vector from coU(M”) can have the same form as an original endmarked word 
vector from coIl(M”) in which some components are empty. 

The proof of property ($) is as follows: 
“2” follows directly from M” L M’ and coll(M”) C(Xy=,(C*f U L’)). 
“c” Let w E X:=, (Z* 2 U L’) n coll(M’). Then there exist words u, v’ such that 

cell(u) = w and vv’ E M”. Now 1; and v’ must be independent, because if, for any 
i E [n], proj,(v) # A, then proj,(v) E C*z - because u E X~=,(C*~ U Li). Since also 
proji(uv’) E Z*e - because vu’ E M” - it follows that proj,(v’) = A for this i. By 
property (t), the independence of v and v’ implies that either v = ,4 or v’ = A. 
If v = A and hence w = /i, then, for all i E [n], L; = {A}. This implies, by the 
A-completeness of toll(M), that 3 E toll(M) and hence w = /1 E coU(M”). If v’ = .4, 
then v = vu’ EM” and thus w E Lou. 

This proves the relation between M’ and M” formulated above. 
Finally, we define, for all i E [n], K,! = (~6 / wb E Ki, w E E*, b E C} U (L’ n Ki) = 

v’:‘(&) n (.Z*,f u Li). By the closure properties of It6, K(, . . . ,KL E Dd. 

Now, 

2 K; fl toll(M) = ,s Ki n ~[co~(~“)~ (by the unction-inte~ection rule) 
i=l 

= $ Ki n CB [$ (c*.I? U Li) n COUQW)] 
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(again by the function-intersection rule) 

and we are done. 0 

Corollary 5.1.11. (1) n-MCod(V(Al1; n-IReg)) = n-M@od(V(All; n-pReg)). 

(2) n-M@od(V(Reg; n-iReg)) = n-M@od(V(Reg; n-pReg)). 

Proof. The inclusions “2” follow directly from the results presented in Fig. 2. 

The families All and Reg satisfy the closure properties of Lemma 5.1.10 and hence 

the inclusions “c” follow from this lemma, using the idempotency of multi codings. 

0 

Our last main step focusses on monoid control languages. 

The following lemma is a generalization of a result from [16], mentioned in Sec- 

tion 4. It is based on the theory of Individual Token Net Controllers developed in that 

paper, and on the characterization of the vector languages of ITNCs given in [ 181. 

Lemma 5.1.12. (1) V(W; n-cReg) & n-MCod(V( K; n-Man)) provided the family 56 
of languages is closed under inverse codings and under intersection with regular 
languages. 

(2) V(W; n-cpReg) C n-M@od(V( lt6; n-Mon)) provided the famiZy od of languages 
is closed under inverse codings and under intersection with prejx-closed regular 
languages, 

The proof of Lemma 5.1.12 makes use of the following auxiliary lemma. 

Lemma 5.1.13. (1) Let V E V(n-cReg). Then there exist regular languages RI,. . . , R,, 
a vector alphabet r, and a multi-coding @, such that V = @[X%, Ri n To]. 

(2) Let V = V(n-cpReg). Then there exist prefix-closed regular languages RI,. . . , 

R,, a vector alphabet T, and a multi-coding Qi, such that V = @[& Ri n Y@]. 

The proof of this lemma uses some results from [ 181. The notations used there 

however relate to different underlying concepts. In order to make that paper more 

accessible as a reference, we briefly explain the relations between the different notations. 

In [ 181 the family of n-dimensional rational relations is denoted by n-Rat. As already 

stated in Section 2 of this paper and as also observed in Section 2 of [ 181 we have 

n-Rat = V(n-[Weg). 
The notation n-@P in [ 181 is used for the family of all n-dimensional complete vector 

languages. Thus, V(n-cReg)= V(n-[Weg)rln-CP, and V(n-cpReg)= V(n-p[Weg)nn-CP. 
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In [ 181, the families V(n-GITNC) and V(n-ITNC) denote the families of n-dimensional 

vector languages of, respectively, Generalized ITNCs and (ordinary) ITNCs. Similarly, 

the families V(n-pGlTNC) and V(n-plTNC) denote the families of n-dimensional vec- 

tor languages of, respectively, Generalized ITNCs with prefix-closed languages and 

ITNCs with prefix-closed languages. (For the purpose of this paper it is not necessary 

to precisely describe the ITNC and generalized ITNC models.) 

Proof of Lemma 5.1.13. (1) Let V E V(n-[Weg). From Theorems 2.10 and 3.29 of 

[ 181, it follows that V = toll(L) for an ITNC language L (see also the remark in 

Section 2). Let 0 be a vector alphabet such that L C 8*. 

From Lemmas A.3 and A.7 of [16], it follows that there exist a regular language 

F over an alphabet T - i.e. F C T*-, a coding cp : T* ---) t3*, and regular languages 

Fl,..., F,, over T, such that L = q(F) and such that F = {w E T* 1 presz(w) E E 
for all i E [n]}, where Ti = {t E T 1 proj,(q(t)) # A}. Here pres,> is the weak coding 

defined by pres,(t) = t if t E c and presz(t) = _4 otherwise. In terms of [18] F is 

a set of firing sequences of an ITNC and the associated L is the set of labelled firing 

sequences of this ITNC, i.e. the ITNC language. 

Let 

v’ = 

pres,, (4 

{( i Pres,, (4 1 1. 
s follows. and Ri = pres,,(F) for all E [n]. We prove that V’ = Xy=lRi n r@ a 

The inclusion V’ C Xy=, Ri rl r@ is easily shown, so we only need to prove the 

reverse inclusion. To that aim, let (VI,. . . , v, ) E X~=,Ri n r@. Then, there is an m 2 0, 

and tl . . tm E T, such that vi = presz(tl . . . t,,,) for all i E [n]. Furthermore, since 

pres,,(F) & Fi, for all i E [n], we have that Ui E Ri implies that vi E Fi for all i E [n]. 

From the relation between F and the F; given above it follows that tl . . . tm E F, 

and hence (VI,..., v,) E V’. This proves the inclusion and hence the equality V’ = 

Xi”,,Ri n r@. 

Finally, let @ = ~1 x . . . x q,,, where Cpi = proji o cp, for all i E [n]. Then V = 

toll(L) = coll(q(F)) = @[V’] = @[Xy=lRi fl Y@], because 

proh 0 cp(w) 

i ! 1 = 

r-W, 0 cp(w) 

pres,, (w> 
=@ : i( . )) presrz (4 

for all w E F. 

Note that the definition of 7; implies that qoi = cpi o pres,,, for all i E [n]. 

(2) is proved analogously to (1). We only check the role of prefix-closedness here. 
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Firstly, by Theorems 4.7 and 4.10 of [18], it follows that any V E V(n-cp[Weg) is 
equal to coII(L) for a prefix-closed ITNC language L. 

Secondly, by Remark 4.9(3) of [18], it folfows that the associated regular language 
F can be assumed to be prefix-closed as well. 

Finally, since the mapping presT, are homomorphisms, also the languages Ri = 
pres,(F) are prefix- closed. I3 

Proof of Lemma 5.1.12. (1) Let V = (X:=,Ki)ilU, where Ki E K, for all i E [n], and 
U E V(n-cReg). By Lemma 5.1.13( 1 ), there exist regular languages RI,. . . , R,, a vector 
alphabet r, and a multi-co~ng @‘, such that U = @p(X%,Rinr@]. Set 6, = cpi X. - a x qpI. 

Then I’ = Qr[@-‘(Xy==,Ki) n Xy=,Ri fl P] = @[X~==,((P~‘(Ki) fI Ri) i’l P]. From the 
closure properties of K it now follows directly that V E n-M@od(K; n-Mon), which 
concludes the proof. 

(2) is proved analogously to (1). In this case the regular languages R1, . . . , R, are 
also prefix-closed and the closure properties of K take this into account. 0 

CoroUary 5.1.14. (1) ~-~Cod(V(All; n-ciReg)) = ~-~~od(V(All; n-cpReg)) = n- 
MCod(V(Al1; n-Mon)). 

(2) n-MCod(V(IWeg; n-cReg)) = n-M@od(V(IWeg; n-cpIWeg)) = n-MCod(V(IWeg; 
n-Men)). 

(3) ~-~~od(V(pAll; n-cplReg)) = ~-~Cod(V(pAll; n-M/on)). 
(4) n-M@od(V(pReg; n-cplWeg)) = n-MCod(V(p[Weg; n-Man)). 

Proof. The inclusions “2” follow directly from the results presented in Fig. 2. 
The converse inclusions “c” - between the leftmost and rightmost parts - follow 

from Lemma 5.1.12, using the idempotency of multi codings. 
(I) and (2) follow from Lemma 5.1.12( 1 ), because All and lWeg satisfy the required 

closure properties. 
(3) and (4) follow from Lemma 5.1.12(2), because p/all and pReg satisfy the re- 

quired closure properties. 0 

5.2. Hiding 

Again we first present the operation diagram. In Fig. 5 the results are summarized 
for hid for n 32, i.e. the graph of the relation V = hid(V) for (n + l)-dimensional 
V’ is depicted. As before for it = 1, the results can be derived from the diagram for 
n 3 2 by using the additional equalities holding for n = 1. 

Again the arrows are marked with the numbers of the co~esponding results. Note 
that we have been a little sloppy as we have ignored in the diagram the change in 
dimension caused by hid. 

In spite of the fact that hid is not a closure operator for families of vector lan- 
guages of a fixed dimension, the follo~ng lemma shows we have closure results when 
disregarding dimensions. The five self-loops in Fig. 5 reflect this idea. 
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P Rag --I ........ ........ 

:Reg .._. 

PM cp Reg 

@ 
29 

MOfl 

clReg pReg cpReg Mon 

Fig. 5. Operation diagram of hid for the families V(W; n-M) and L/(&b!) for n 23. 

Lemma 52.1. V(n-Ml) = hid(V((n + 1) - Ml)) for all M E {All,pAll,Reg,plReg, 

Man). 

Proof. “G”: Follows from the fact that the n-extension mapping (mapping n-dimen- 

sional vector letters (al, . . . , a,,) to (n + 1 )-dimensional vector letters (al, . . . , a,, A)) is 

an injective coding; and the observation that All, p/411, Reg,pReg, and Mon are closed 

under injective codings, 

“>“: Follows from the fact that hid is in essence a weak coding when restricted to 

vector letters. Thus the inclusion results follow, from the closure under weak codings 

of the families All, pAlI, Reg,pReg, and Mon. q 

The following general lemma is the basis of most of the results concerning hiding. Its 

proof uses “transfer” of control from the control language to the hidden last component. 

Lemma 5.2.2. V(n-M) G hid(V(M; (n + l)-Man)) provided the fin+ of languages 
LA contains Mon. 

Proof. Let V = toll(L) where L E IL(n-Ml) and let 8 be a vector alphabet such that 

LcB*. Let Z be the (n + 1 )-dimensional vector alphabet {(proj, (8), . . . , proj,(d), 6) 1 

19 E f3). Then, with &+I = L and Ki = proj,(O)* for all i E [n], we have that 
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V = hid((Xyz;Ki) n E@). Since L E m/o and s@ E ‘V((n + I)-Man), this proves the 

lemma. Cl 

Corokq 5.2.3. Let n 32. 

(1) 

(2) 

(3) 

(4) 

hid(V(n-All)) = hid(V’(n-/All)) = hid(V(n-cinll)) 

= ~d(V(All;~-~)) 

far all M E (Reg, BReg, cReg, pReg, cpReg, Won}. 

hid(V(n-Reg)) = hid(V(n-1Reg)) = hid(V(n-cReg)) 

= hid(V( Reg; n-Ml)) 

fir all M E { Reg, AReg, cReg, pReg, cpReg, Mlon}. 

hid(V(n-p/Ill)) = bid(V(n-cpAl1)) 

= hid(V(pAl1; n-M)) 

for all M E {pReg,cpReg, Uon). 

hid(V(~-p~eg)) = ~d(V(~-cp~eg)) 

= hid(V(pReg; n-Ml)) 

for all M E {pReg,cpReg, Mlon}. 

For the remaining cases we use the following lemma. 

Lemma 5.2.4. V(n-Ml) C hid(V(pM; (n + 1)-cReg)) provided the family of languages 

M is closed under inverse codings, under intersection with regular languages, under 
pref, and contains Mon. 

Proof. Let Y = co&L) where L E Il_(n-M) and let 8 be a vector alphabet such 
that L C Ox. Let 6 = {I.! 129 E f3) be a disjoint copy of 0. Let &+I = pref({w& 1 wb E 

L}) = pref(cp-l(L)n(B*&J{A})), where q is the coding defined by ~(8) = ~(6) = 6, 
for all r9 = 8. Set Ki = proj,(@)* for all i E [n]. Let 2 = {(proj,(G), . . . , proj,(fi),i3) 1 

6 E 8) and let fi = ((proj,(G),. . . ,proj,(S),$) / t!? f 0). Set M = E*8 U N where 
N = (A} if /i E V and N = 8 otherwise. Then Y = ~d((X~~~~~) n toll(M)), which 
follows directly from the observation that proj,+,(M) n &+I = (0*6 UN) fl K,+I = L 

and the definitions of E and fi. Now toll(M) is complete, because proj,+,(w) # A 
for all non-empty w E M. Hence, toll(M) E V((n + I)-cReg), because clearly A4 E 
IL((n+ I)-Reg). Combined with the fact that Ki E PM, for all i E [n+ I], this proves the 
lemma. rl 

Corollary 5.2.5. Let n >, 2. 

hid(V(n-All)) = hid(VCpAl1; n-M)) for all Ml E { Reg,IZlReg, cReg}. 



96 N. W Keesmaat, H.C.M. Klezjnl Theoretical Computer Science I79 (1997) 61-102 

J.Reg cReg 

PReg CP%l . . . . . .._......_ 

Fig. 6. Operation diagram of n-MWCod for the families V(W; n-M) and V(n-M) for n>2. 

5.3. Multi-weak codings 

In Fig. 6 we present an overview of the results of this section in the form of the 

operation diagram of n-MVVCod for n > 2. Clearly, Figs. 5 and 6 are very similar. We 

come back to this in the discussion. 

Again, the arrows are marked with the numbers of the corresponding results and for 

n = 1, the diagram can be obtained from the diagram for n > 2 using the additional 

equalities holding for n = 1 (see Fig. 3). 

The operator n-MVVCod is a closure operator and the families closed under n-MWCod 

correspond to the families closed for hid. This is shown in the following lemma. 

Clearly, the families closed under multi weak codings are also closed under multi 

codings. However, not all of the families closed under multi codings are closed under 

multi weak codings. 

Also in contrast to multi codings, all families of the form V( K; n-M)) from Fig. 2, 

yield under n-MVVlCod one of the families closed under multi weak codings. 

Lemma 5.3.1. V(n-Ml) = n-MWCod(V(n-M)) for all M E {All,pAll,Reg,pReg, 

Man}. 

Proof. “C”: Obvious, since V 2 n-MVVCod(V) for any family V of n-dimensional 

vector languages. 
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“Z”: This follows directly from the fact that.the families All,pAll, Reg,pReg, Man 

are closed under weak codings. 0 

Together with the results concerned with multi codings, the following lemma forms 

the basis of most of the results concerned with multi weak codings. 

Lemma 5.3.2. V(n-M) C n-MW@od(V(n-CM)) provided the family of languages M 
is closed under injective codings. 

Proof. Let V = colI(L) where L E iL(n-MI). Let eps be the injective coding, mapping 

n-dimensional vector letters to n-dimensional vector letters, that replaces in every vector 

letter every ,4-component by the new letter E (leaving the other components unchanged). 

Then co11 o eps(L) E V(n-&I), because /T is the only possible word vector in co11 o 
eps(L) having an empty component. If Y is the n-dimensional weak coding that erases 

all occurrences of E in word vectors, then V = Y(col1 o eps(L)), which proves that 

V(n-M) C n-MWCod(V(n-CM)). 0 

Corollary 5.3.3. 

(1) n-MWCod(V(n-All)) = n-MWCod(V(n-AAll)) = n-MW@od(V(n-cAl1)). 

(2) n-MVVCod(V(n-Reg)) = n-MWCod(V(n-IReg)) = n-MWCod(V(n-cReg)). 
(3) n-MW@od(V(n-pAl1)) = n-MlW@od(V(n-cpAl1)). 

(4) n-MWCod(V(n-pReg)) = n-MWCod(V(n-cpReg)). 

The following corollary combines the previous one and some of the results of 

Section 5.1. 

Corollary 5.3.4. (1) n-MW@od(V(n-All)) = n-MWCod(V(All;n-M)) for all M E 

{ Reg, AlReg, cReg, pReg, cpReg, Mlon}. 

(2) n-MWCod(V(n-All)) = n-MWCod(V(pAll;n-Ml)) for al2 m/o E {Reg,i,Reg, 
cReg}. 

(3) n-MWCod(V(n-Reg)) = n-MWi@od(V(Reg;n-m/O)) for all m/o E {Reg,AReg, 
cReg,pReg, cpReg, Man}. 

(4) n-MWCod(V(n-pReg)) = n-MWlCod(V(pReg;n-M)) for all M E {pReg, 

cpReg, Mon}. 

The final results concerning multi weak codings are obtained using the following 

lemma. 

Lemma 5.3.5. n-MW@od(V(n-pAl1)) = n-MWi@od(V(pAll;n-MI)) for all Ml E 

WQeg, cpReg, Man}. 

Proof. The inclusions “2” follow directly from the results presented in Fig. 2. The 

converse inclusions follow from the idempotency of multi weak codings and the fact 

that V(n-pAl1) C n-MWCod(pAl1; n-Mon)), which is proved as follows. 
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Let V = toll(L) where L E [L(n-pAl1) and let 8 be a vector alphabet such that L g 8*. 

Let E be the n-dimensional vector alphabet ((r9,. . . ,8) 1 t9 E 0) and let A4 = 8*. Then, 

with Y = projz*,, x . . . x projE*,n, we have that V = Y((Xy==,L) fl toll(M)). Since 

L E pGll,coll(M) E V(n-Mon), and Y E n-MVVCod, this proves the inclusion. 0 

6. Discussion 

Within the framework of Vector Controlled Concurrent Systems different models of 

concurrent systems based on vector synchronization can be studied in a uniform way. 

In [ 15, 16, l] several such models have been investigated. Each of these models is 

formulated using regularity, prefix-closedness, or completeness as restrictions on the 

component languages or the control language. In this paper we have not singled out 

one or a few specific submodels as the focus of our interest. The aim here has been 

to investigate the effect of these restrictions and their combinations. This has led to a 

whole range of different VCCS submodels not all of which are individually interesting 

as a model for concurrent systems. Together, however, they lead to insight in the effect 

the restrictions have on the behaviour of the systems. 

The effect of the restrictions has been measured in two different ways. Firstly, a direct 

comparison of the resulting behaviours in terms of families of vector languages has led 

to an inclusion diagram showing the equalities, strict inclusions and incomparabilities. 

Secondly, a more indirect approach has been followed. Each family of vector languages 

has been subjected to three types of operations with the aim of enlarging the family to 

one of the other families of the diagram. Each such representation of a larger family 

in terms of the smaller and one of the operations, corresponds to a characterization of 

the difference in effect between the combinations of restrictions involved. 

In the inclusion diagram, the inclusions and equalities have been established on the 

basis of observations on the nature of the restrictions and on the interplay between 

component languages and control languages. For the non-inclusions and the incompa- 

rabilities a relatively small set of example vector languages has been used. Thus, here, 

it is efficient to consider the whole range of submodels rather than proving inequalities 

between certain specific submodels. 

From the inclusion diagram we see that in a VCCS the control language has a strong 

influence on the resulting VCCS vector language. For VCCS families with a regular 

control language, regular, prefix-closed regular and monoidal component languages can 

be absorbed by the control: V(n-[Weg) = V(K; n-[Weg) for K = [Weg,p[Weg, Mon. On 

the other hand, even general component languages are not able to absorb the control 

language: V(A11; n-IWeg) s V(n-All). Regular control languages cannot absorb arbitrary 

component languages: V([Weg; n-[Weg) s V(Al1; n-[Weg). Similarly, prefix-closedness of 

the control language only guarantees a prefix-closed behaviour if also the compo- 

nent languages are prefix-closed: V(pAl1; n-[Weg) c V(n-pAll), but V(Al1; n-pReg) and 

V(n-pAl1) are incomparable. Non-prefix-closed component languages again cannot fully 

overcome the prefix-closeness of the control language: V([Weg; n-plReg) C V(n-[Weg). 
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Completeness is a property that is only applicable to control languages, though one 

could argue that the component languages are trivially complete. It leads to the com- 

pleteness of the resulting vector languages: V(Al1; n-cReg) C V(n-cA11). 

To prove the representation results has required more technical effort. Of the three 

types of operations considered (multi codings, hiding, and multi weak codings) the 

multi codings are the weakest and, by the variety of results, also the most revealing. 

A number of interesting representation results have been obtained, using a variety of 

proof techniques. Still a number of generic results could be derived. 

On the one hand, multi codings bridge the gap between V(A11; n-Reg) and V(n-All), 

thus enhancing the relative weakness of the component languages mentioned above. 

On the other hand, however, they are not sufficiently powerful to bridge a seemingly 

similar gap between the prefix-closed versions V(pAll;n-pReg) and V(n-pAl1). A 

closer examination of the proofs of Lemmas 5.1.2 and 5.1.5 shows that here it is crucial 

that prefix-closedness basically is a language property instead of a vector language 

property. 
In the cases that prefix-closedness is required only of the component languages or 

only of the control language, a multi coding can assist the absorption of this restriction. 

The basic techniques used to get these types of results are similar: an endmarking is 

used to distinguish proper prefixes from original words and a multi coding is used to 

remove the marking. However, the occurrence of the empty word in the control lan- 

guage in combination with the independent choice of component languages to include 

or exclude the empty word may prevent the full absorption of prefix-closedness. Then 

/1-completeness, as a residual of prefix-closedness, is the best we can get. 

Using a generic result (Lemma 5.1.12), the characterization n-MCod(V( Reg; it- 

Man)) = V(Reg; n-cReg) = V(n-cReg) from [16] has been reproved, but now also its 

prefix-closed version could be shown to hold: n-mlOCod(V(pReg; n-Mon)) = V(pReg; 

n-cpReg) = V(n-cpReg). For the case of non-regular component languages, the same 

lemma has led to the equalities n-MCod(V(Al1; n-Mon)) = V(n-cAl1) and n-MCod(V 

(p/All; n-Mon)) = n-RJlCod(V(pAl1; n-cpReg)). This confirms completeness as a char- 

acterizing property for the combination of monoidal control languages and multi 

codings. 

Multi codings preserve completeness (and n-completeness), but both hiding and 

multi weak coding do not preserve these properties: for each family of vector languages 

the image under either multi weak codings or hidings is equal to the image of its 

complete (or n-complete) subfamily under this operation. Thus, for multi codings a 

larger number of closed families was obtained, than for the other two operations. 

When comparing in Figs. 5 and 6 the effects of hidings and of multi weak codings, 

we see that - ignoring dimensions - they are essentially the same: in both situations the 

same five families are closed under the operation, and in both situations these families 

are precisely the families that we end up with when applying the operations to one of 

the other families. Moreover, similar representations are obtained in both situations. 

For hiding, these representations results are obtained by the combination of a generic 

result (Lemma 5.2.2) applicable to most of the cases and a more specific result 
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(Lemma 5.2.4) for the remaining cases. The first result is based on a technique by 

which the role of the control languages is taken over by a component language. In 

fact, a similar situation exists for the multi weak codings, i.e. the role of the control 

language may be taken over by (one or more) component languages. We have not fully 

exploited this here however, because many of the multi weak coding results are already 

a consequence of multi coding results. Only for the remaining cases this technique was 

used (Lemma 5.3.5). 

The gap left by multi codings when starting with a prefix closed control language - 

yielding A-completeness - is bridged by both hidings and multi weak codings: hid(V 

(lReg;n-pReg)) = n-MVQ’@od(V(Reg;n-pReg)) = V(n-Reg), whereas n-M@od(V 

(Reg; n-pReg)) = V(n-IReg) C V(n-Reg). 

Hidings and multi weak codings also bridge the gaps between V(pAll;n-p!Reg) and 

V(n-pAl1) and between V(pAl1; n-cpReg) and V(n-cpAl1) that could not be closed by 

multi codings. 

When considering the three restrictions regularity, prefix-closedness, and complete- 

ness, we observe that both regularity and prefix-closedness are strong restrictions on 

the vector language level: all three operations preserve these. Completeness is weaker, 

because it is only preserved by multi codings. 

When restrictions are used in only a part of a VCCS, i.e., only for component 

languages or only for control languages, then they can mostly be absorbed, though 

sometimes not fully. Using hidings and multi weak codings, the effect of these restric- 

tions always disappears. 

Completeness is a pure vector language property, regularity is a language property 

that can be extended to vector languages - in the form of rationality, whereas prefix- 

closedness is a pure language based property. For multi codings this distinction has 

turned out to be crucial. 

The systematic approach of this paper has enabled us to not only repeat a number 

of results occurring in [l], it has also answered the open questions of [l] concerning 

the VCCS submodels included in our study. Thus, we have proved the strictness of 

the inclusions V(pReg; n-Men) C V(pReg; n-pReg), and n-MCod(V(pReg; n-Man)) C 

V(pReg; n-pReg). In fact, we have even obtained a characterization of the last strict 

inclusion, namely completeness: n-MCod(V(pReg; n-Mon)) = V(plReg; n-cpReg) g 

V(plReg; n-pReg). 

One of the models that has been studied in [ 11, but has not been considered here, 

is the COSY model. The main reason for this is that COSY does not fit in the set-up 

of this paper with its systematic combination of restrictions on independently defined 

component and control languages. 

For component languages, COSY uses the additional and particular restriction of 

cyclicity in addition to regularity and prefix-closedness. Adding this extra restriction 

would have increased the set of models. 

More importantly, COSY uses monoids as control languages and in addition imposes 

restrictions on the synchronization vectors themselves. This contrasts with the VCCS 

models studied in this paper: restrictions have only been used for component languages 
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and control languages, never for their vector letters. A consequence of the additional 

vector letter restrictions in COSY systems is that behaviours of COSY systems are not 

closed under multi injective codings, whereas the VCCSs behaviours in this paper are. 

In other words, the component languages are mutually related in ways that go farther 

than in our VCCSs. 

Next, the component languages are not defined independently of the control lan- 

guage of a COSY system. COSY systems demand that the set of letters occurring in 

component languages equals the set of letters occurring in the control languages. 

Thus, COSY does not fit easily in the set-up of this paper. A preliminary study of 

the effect of the three operations on COSY systems given further proof of the special 

character of COSY vector languages. Let V(n-COSY) denote the family of vector lan- 

guages of n-dimensional COSY systems. It can be shown that V(n-COSY) C: hid(V(n+ 

l-COSY)) g hid(hid(V(n + 2-COSY))) = hid3(V(n + 3-COSY)). Thus, for COSY sys- 

tems a single application of hid does not lead to a family closed under hid. For multi 

codings and multi weak codings the situation is also different: n-MlCod(V(n-COSY)) = 

V(n-cpReg), and n-MVVCod(V(n-COSY)) = V(n-pReg), for n32, but the family 

V( l-COSY) is closed under multi codings, and multi weak codings: n-MCod( V( l- 

COSY)) = n-MW@od(V(l-COSY)) = V(l-COSY), whereas n/(1-COSY)CV(l-p 

Reg). Thus, for COSY systems, we get a decrease of the number of equalities for 

n = 1, instead of the usual increase. 

We conclude this section by pointing out some topics for further research. 

In the first place, as mentioned above, the COSY model has been been fully in- 

vestigated, although we have obtained some results. A more thorough investigation 

of the COSY model within the VCCS framework may be worthwhile. The remain- 

ing open issues from [l] all concern the COSY model (and a variant). A deeper 

investigation of the COSY model along the lines of this paper may lead to an- 

swers to these open questions. Our preliminary investigations seem to confirm this 

idea. 

As observed above, in a VCCS the control exercised by the control languages 

is rather strong. This had led us to exclude VCCSs with control languages from 

[L(n-All), lL(n-cGll), or [L(n-pAl1) from our investigations. Intuitively, VCCS submod- 

els having such powerful families of control languages would hardly be interest- 

ing as the influence of additional component languages would probably be 

negligible. 

In this paper our aim has been to study certain restrictions in the framework of 

VCCSs. Three specific operations have been used to investigate the effects of these 

restrictions. It is conceivable that other operations may also prove useful in these 

investigations. Dually, one could also argue that we have studied certain operations by 

applying these to different families of VCCS vector languages. From this point of view 

it may be worthwhile to consider more families of vector languages to which to apply 

the operations. 

Both approaches may lead to further insight in the underlying fundamental properties 

of restrictions, operations, and their mutual relationships. 
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