
ELSEVIER Theoretical Computer Science 179 (1997) 61-102

Theoretical
Computer Science

Fundamental Study

Restrictions and representations of vector controlled
concurrent system behaviours

N.W. Keesmaat a, H.C.M. Kleijn b,*

a KPN Research, St. Paulusstraat 4, P. 0. Box 421, 2260 AK Leidschendam, Netherlands
b Department of Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden, Netherlands

Received June 1995; revised February 1996

Communicated by G. Rozenberg

Abstract

Within the framework of Vector Controlled Concurrent Systems a concurrent system consists
of a fixed number of sequential processes together with a vector synchronization mechanism
controlling their mutual synchronization. The behaviour of a VCCS is described by a vector
language consisting of those combinations of individual sequential computations that observe the

synchronization constraints.
In this paper VCCS submodels are studied that are obtained by putting certain restrictions

on the sequential components or on the control mechanism. First, the inclusion diagram relating

the resulting families of vector languages is established. Next, the effect of certain operations
on these families is investigated. This leads to representation results characterizing differences
between the combinations of restrictions.

Contents

0. Introduction. ..
I. Preliminaries., ..

1.1. Basic terminology and notations ...
1.2. Vector controlled concurrent systems ..

2. The vector language families ...
2.1. Families ..
2.2. Inclusions and equalities ...

3. The inclusion diagram., ..
3.1. The more-dimensional case ..
3.2. The one-dimensional case. ...

4. The operations ..

62

64

64

66

67

67

70

73

73

75

76

* Corresponding author. Tel.: +3171277064; fax: 3171276985.

0304-3975/97/$17.00 @ 1997 -EElsevier Science B.V. All rights reserved

Z’ZZ SO304-3975(96)00105-3

62 N. W. Keesmaat, H. C.M. Kleijnl Theoretical Computer Science 179 (1997) 61-102

5. The representations .. 80

5.1. Multi cod@. .. 80

5.2. Hiding ... 93

5.3. Multi weak codings ... 96

6. Discussion ... 98

Acknowledgements ... 102

References .. 102

0. Introduction

In a Vector Controlled Concurrent System (VCCS) a fixed number of sequential

processes operate concurrently subject to the control of a vector synchronization mech-

anism, which imposes constraints on their mutual synchronization. The behaviours of

the sequential processes are specified as languages (over alphabets of actions). The

synchronization constraints are given in the form of a language over an alphabet of

vectors; these vectors express synchronization of actions from the sequential compo-

nents, while the language gives all permitted sequences of such synchronizations.

The behaviour of the VCCS is described by a vector language consisting of those

combinations of computations (i.e. sequences of actions) of the components of the

system that satisfy the synchronization constraints.

Vector Controlled Concurrent Systems have been introduced in [151 and were further

investigated in [16-181. The original idea underlying the VCCS model comes from the

theory of path expressions (the COSY variant), and its vector firing sequence semantics.

Path expressions were introduced in [7], while the COSY approach has its starting

point in [193. Vector firing sequences were introduced in [22] as a semantics of COSY

systems. See also the book [131 and its list of references. Also in [3,20, l] models

closely related to the VCCS model have been studied.

Vector Controlled Concurrent Systems have been introduced with the aim of pro-

viding a general uniform framework for the investigation of systems in which a fixed

number of sequential processes work concurrently but synchronize on certain events.

This framework is flexible in the sense that it allows to specify separately the com-

ponent processes and the synchronization mechanism. By imposing restrictions on the

components and/or the control of the synchronization, one obtains different VCCS

submodels. For instance, the path expression model itself and the concurrent systems

studied in [l] can directly be interpreted as instances of the VCCS model. Various

submodels have also been defined in [151 and have been further investigated in [161.

In [171, for a whole range of VCCS submodels, the effect of vector synchronization

on the behaviour of the sequential components has been investigated.

The aim of this paper is to compare various natural restrictions both on the be-

haviour of the sequential processes and on the control languages used. In particular,

regularity and prejix-closedness are properties that arise in the context of concur-

rent systems. Regularity corresponds to having an underlying finite state device, while

prefix-closedness reflects the idea of having ongoing computations. In COSY both re-

strictions are assumed most of the time (see, e.g., [131) and they also frequently occur

in the theory presented by Nivat and Arnold.

N. W. Keesmaat, H.C. M. Kleijnl Theoretical Computer Science 179 (1997) 61-102 63

In addition, we consider the use of monoids, both as component languages and as

control languages. These monoids are languages containing all possible sequences of

letters (vectors respectively) from their alphabets. They are interesting as they are

permissive in the sense that they provide all opportunities and cannot exclude certain

events (synchronizations) from happening. Thus, when used as component languages

they allow to focus on the study of the control mechanism, and when used as a control

language they lead to more insight in the interplay between the components and pure

vector synchronization.

Finally, we consider control languages satisfying the completeness property. This

property originates from a net-based synchronization mechanism (the Individual Token

Net Controller, or ITNC for short) introduced in [15] which formalizes the idea of a

distributed finite state control for the synchronization of the components. In [18] this

mechanism is compared with the finite state control from [l] and given a characteri-

zation in language theoretic terms.

For all combinations of these restrictions on sequential components and control mech-

anisms, we investigate the differences and similarities of the resulting VCCS submodels.

An obvious first step is to compare the expressive power of these VCCS submodels

in terms of the vector languages they define. This leads to an inclusion diagram de-

scribing equalities, strict inclusions, and incomparabilities between the various families

of vector languages.

Next, we investigate the effect of certain operations when applied to vector languages

from the families of the diagram. These operations transform vector languages into vec-

tor languages. Thus, for each family of vector languages application of an operation of

a certain type leads to a new family of vector languages. The operations we consider

are such that each new family extends the original family. If the new family coincides

with a family from the diagram which properly includes the original family, then the

behavioural difference between the two underlying VCCS models is characterized by

this type of operation.

This approach of relating different systems by representing the larger class of be-

haviours in terms of the smaller one using a perferably simple type of operation is a

well-known technique and has for specific VCCS submodels already been applied in

[l, 161.
For instance, in [16] it has been shown that the application of multi codings, i.e.,

products of letter-to-letter homomorphisms, to the vector languages defined by VCCSs

with regular components and a monoid control yields precisely the vector languages

of the VCCSs with regular components and ITNCs as control mechanism. Such multi

codings have also been used in [l] to relate different families of vector languages.

In [l] it is also shown that the behaviour of a VCCS with prefix-closed regular

components and a prefix-closed regular control language can be obtained as the vector

language of a VCCS with prefix-closed regular components and a monoid control

language from which one (auxiliary) component has been hidden.

Two of the operations we consider are again the multi codings and the hiding oper-

ator of [l]. Multi codings can be used to erase state information from actions: different

symbols may be mapped to the same symbol, thus they can be viewed as being

64 N. u! Keesmaat, H. C.M. Kleijnl Theoretical Computer Science 179 (1997) 61-102

different incarnations of one action. Hiding serves to get rid of an extra component

used in the computations of the systems to enhance the effect of the control mechanism.

The third operation we involve in our considerations has features in common with

both hiding and multi codings: a multi weak coding allows to map different symbols

to the same symbol, but it can also hide symbols by mapping them to the empty

string.

The paper is organized as follows. After the preliminaries of Section 1, where we

introduce the VCCS model formally as well as our notational conventions with respect

to vectors and vector languages, Section 2 discusses the VCCS submodels considered

in the paper, together with a first overview of their mutual relationships in terms of the

vector languages they define. Then, in Section 3, the complete inclusion diagram of the

various VCCS vector language families is presented. In Section 4, the investigation of

the relationships expressed in terms of operations is started by formally introducing the

three chosen operations with background and motivations. In Section 5, the main part

of the paper, we present the relations obtained between our families by using those

operations. The results here include results from [1, 161, and answer a number of open

questions from [l]. Finally, in a concluding section we briefly discuss the general ideas

emerging from the systematic set-up of our representation results as well as a number

of topics for further research.

1. Preliminaries

Throughout this paper the reader is assumed to be familiar with the basic concepts

and terminology of formal language theory as presented in, e.g, [12]. From the theory

of rational relations some basic results are used. For these results we use [4] as a

general reference.

In this preliminary section we fix some terminology and notation that may not be

familiar to all readers. In particular, in Section 1.1, the terminology concerning vectors,

vector languages, etc., is explained. Basic terminology concerning Vector Controlled

Concurrent Systems is recalled in Section 1.2.

1.1. Basic terminology and notations

For each positive integer n, [n] denotes the set { 1,. . . , n}. Function composition is

denoted by 0. The set difference between two sets V and W is denoted V - W.
Let f be a function and let A and B be sets. Then f [B] = {f(b) 1 b E B} and

f -‘[A] = {u 1 f(a) E A}. Ob serve that f [f -‘[A] fl B] = A 17 f [B]. This observation,

to which we refer as the function-intersection rule, will be used often. If no confusion

arises, we write f(B) instead of f [B] and f-'(A) instead of f -‘[A].
Alphabets are finite. The empty word is denoted by /i.

Let C and A be two alphabets. A homomorphism p : C* 4 A* is called a weak

coding if p(C) C A U {A}. It is called a coding if p(C) C A.

N. W. Keesmaat, H. C. M. Kleijnl Theoretical Computer Science I79 (1997) 61-102 65

The reverse of a word al . . . a,,,, where m 20, and al,. . . ,a,,, are letters, is the word

a,...al.

A word v is a prefix of a word w if w = vu for some word u. If u # A, then v

is called a proper prefix of w. For a language K, pref(K) = {v 1 v is a prefix of a

word from K}. Clearly, for all languages K, K C pref(K). If K = pref(K), then K is

called prefix-closed. A family of languages K is closed under pref if pref(K) E K for

all K E od. For any family K of languages, pob C K will denote the subfamily of all

prefix-closed languages from 06.

An element of a Cartesian product of sets is called a vector. Vectors are denoted either

horizontally or vertically. For a set I’, the set of l-dimensional vectors {(x))x E V}

is denoted by Xv. For an n-dimensional vector w = (WI,. . , wn), where IZ > 1, and for

i E [n], proji(w) denotes the projection of w on its ith component, i.e., proji(w) = wi.

Let fi : Ai -+ Bi be functions for i E [n], where n > 1. Then fi x . . x fn :

A, x,..xA,-+B, x... x B, is the function defined by (ft x . . x _&)((a,, . . . , a,)) =

(fi(al), . . . ,fn(a,)), for all (at,. . .,a,) E AI x . x A,. Thus, fi x . . . x fn may be

viewed as the product of j-1,. . . , fn.
Let nal.

An (n-dimensional) vector v having words as components is called an (n-dimensional)

word vector. A component of v consisting of the empty word n is called a ,4-

component or empty component of v. The position of the A-components of v de-

termines its A-structure; formally the ~-structure of v is identified with the set {i E

inI I Pro&(a) = A).
The (n-dimensional) empty word vector is the n-dimensional word vector (A,. . . , A),

which is denoted by /I if its dimension is clear from the context.

Two n-dimensional word vectors v and w are dependent, if they have a common

non-empty component, i.e., there is an i E [n], such that both proj,(v) # A and

proj,(w) # A. Word vectors that are not dependent, are called independent. Note that

the A-structure of v and w determines whether v and w are independent or dependent.

The component-wise concatenation of v and w is denoted by v o w. If v and w are

independent, then v o w = w o v.

As an illustration of some of the notions introduced above, consider the word vectors

U = (:), n = (“j), and w = (k) . Then v and w are independent and v o w = (ii) =

w 0 v. In contrast to this u and v are dependent, as well as u and w. Note that

u(~~w#wou, but u~v=vou= (ay).

A set of (n-dimensional) word vectors is called an (n-dimensional) vector language.

For n-dimensional vector languages V and W, we extend the operation 0 in the usual

way: V o W = {v o w (v E V, w E W}. The iterated component-wise concatenation of

a vector language I’ is the set V@ = {wt0...0w,Irn>l, wt,...,w,E V}U{/i}.

Let C I,. . , C, be alphabets. Any vector CI E ((Cl U {A}) x . . . x (C, U {A})) - {/i} is

called an (n-dimensional) vector letter (over Cl,. . , C,). A finite and possibly empty set

of (n-dimensional) vector letters is called an (n-dimensional) vector alphabet. The set of

all vector letters over C 1,. . . , C, is called the total vector alphabet over Cl,. . . , C,. It is

denoted by Tot(C1, . . . , C,). Vector alphabets are alphabets. Therefore, all terminology

66 N. W Keesmaat, H.C. M. Kleqn I Theoretical Computer Science I79 (1997) 61-102

and notations for alphabets, words and languages apply. Sometimes a language over

an n-dimensional vector alphabet 0 is called shortly an n-language (over 0). Note that,

for vector letters CI, /I E 8, the word c@ E 8* differs from the word vector CI 0 fi E f3@.

Thus, e.g. given the vector letters c(= (:), and fi = (i), the word IX/? = (4) (3 comes

from a 2-language over {a, /I}, and the word vector CI o fi = (,t) from a 2-dimensional

vector language over {cI, j?}.

Let 8 be an n-dimensional vector alphabet. The canonical homomorphism from 8*

to O@ collapses words over 8 to word vectors in tI@ and is denoted tolls or co11 if no

confusion arises.

Thus, e.g.,

coII((t)($(i)) = (t) o(l) o (3 = ($ and coll(A)=/I.

For i E [n], we denote by proje,,i the homomorphic extension of proji to words over

0, i.e., proj,,,i : 6* -+ proji(8)*. Note that projO,,i is a weak coding. We will also

write proji instead of projO*,i if no confusion arises.

Thus, e.g., given the vector letters CI and /I as above, we have that proj,,,~~,,(c$) =

proj,(a)proj,(B) = h = a. Note that COW@) = (proj,,,>.,,(aB),proj{,,>*,,(ap)) =

c”b>.
The following fact is used occasionally. For all languages Kl, . . . , K,,

COllS’(Xr=,Ki) = ny=, projO*,i -‘(Ki). Using this fact and the function-intersection

rule we obtain the following observation.

Observation 1.1.1. For all n-languages A4 and all languages Kl , . . . , K, we have that

)(L, Ki f~ colle(M) = ~01le(& projO-,j-‘(Ki) n M).

For a family M of languages and an n > 1, we denote by [I(n-Ml) the subfamily of

n-languages from M and by V(n-M) = (coll(A4) IA4 E L(n-Ml)} the associated family

of vector languages.

1.2. Vector controlled concurrent systems

In this subsection we briefly recall the notion of a Vector Controlled Concurrent

System and its vector language as introduced in [15] and studied in [16-181. Here we

give an algebraic definition which is equivalent to the more operational definition from

[151.

Definition 1.2.1. A Vector Controlled Concurrent System, or VCCS for short, is a

construct Y = (Kl,..., K,,;M), where n>l, K1 , . . . ,K,, are languages and M is an

n-language. The languages KI , . . . ,K,, are called the component languages of Y, and

the n-language M is called the control language of Y.

The vector language of “Y-, is the vector language V(Y) = Xy=,Ki f~ toll(M).

N. W. Keesmaat, H. CM. Kleij,l Theoretical Computer Science I79 (1997) 61-102 61

Thus, a VCCS r = (Ki, . . . , K,,;M) models a concurrent system consisting of n

sequential subsystems, represented by the n languages K1, . . . , K,,, that are synchronized

by a single control mechanism, represented by the n-language M. The behaviour of

^y_ is represented by its vector language I’(?); it consists of those word vectors

(WI 3. . . , w,) from K1 x... x K,, that have a decomposition into synchronization vectors

forming a word from M. Observe that we use the vector language colI(A4) rather than

its specification, the language M, to determine the behaviour of the system v.

2. The vector language families

In this section we introduce the various VCCS submodels by discussing the restric-

tions imposed on component and control languages. This leads to the families of vector

languages considered in the rest of this paper. Our approach is the following.

In Section 2.1, first the control mechanisms and their vector languages are discussed.

Next we turn to the component languages. In Section 2.2 we discuss the relationships

between the families of VCCS vector languages obtained by combining the various

types of control languages and component languages. Here, for the sake of reference,

we also add some independently defined families of vector languages.

2.1. Families

In all our VCCS submodels we assume that the control languages are defined by

some finite state device. Thus, each family of control languages (of dimension n) will

be a subset of U_(n-Reg), the family of regular n-languages, i.e., regular languages over

n-dimensional vector alphabets. The family L(n-Reg) itself is the largest family of n-

languages we use for defining n-dimensional control languages. Its associated family of

vector languages V(n-Reg) = {coII(L)] L E IL(n-Reg)} 1s in fact the family of rational
relations or rational vector languages of dimension n (see [181). In [l] this family (or

rather the union Una, ‘V(n-LReg)) occurs as Rat, the family of all rational relations.

In [181 it is shown that the family V(n-[Weg) coincides with the family of vector

languages defined by a generalized version of Individual Token Net Controllers. An

Individual Token Net Controller (ITNC for short) is a particular type of Petri Net used

as a control mechanism with distributed states and transitions. See [151 for a formal

definition of ITNCs and see, e.g., [21] for an introduction of Petri Nets-including

nets with individual tokens. In fact, Individual Token Net Controllers can be seen

as a particular version of so-called state-machine decomposable nets. Such nets have

occurred in Petri Net theory since [lo]. A recent survey of such nets has been given in

[5], and in [13] they have been used to give a semantics of COSY. Our approach differs

slightly from the nets presented in the literature, because in an ITNC the separate state-

machines are represented by individual tokens. Moreover, the transitions are labelled

with synchronization vectors.

68 N. W. Keesmaat, H.C. 44. Kleijn I Theoretical Computer Science 179 (1997) 61-102

In [181 the rational vector languages defined by ITNCs are shown to be characterized

by a property called completeness:

An n-dimensional vector language V, where n 2 1, is called complete, if

(1) whenever v, w E V are such that v and w are independent, then v 0 w E V as

well, and

(2) if n E proj,(V) for all i E [n], then/i E V as well.

For a family V(n-Ml) of n-dimensional vector languages, we let V(n-CM) = {V E

V(n-M) (V is complete} be the subfamily of complete vector languages, and we let

lL(n-CM) be the associated family of n-languages, R(n-CM) = {L 1 coU(L) E V(n-CM)}.

The first condition of completeness expresses that a concatenation of independent

computation vectors is also a computation vector, i.e. is in the vector language. The

second condition expresses that, if for each position i there is a computation vector hav-

ing an empty ith component, then also the empty word vector is a computation vector.

Note that the intersection of two complete vector languages is complete again, and

that any Cartesian product of languages is a complete vector language. (*)
In addition to completeness we also use /l-completeness:

An n-dimensional vector language V is called n-complete, if condition (2) above is

satisfied, i.e., if n E proj,(V) for all i E [n], then /i E V.

For a family V(n-M) of n-dimensional vector languages, we write V(n-3,/M) =

{I’ E V(n-Ml) 1 V is n-complete) and we let lL(n-IM) be the associated family of

n-languages, that is [L(n-&Q) = {L 1 toll(L) E V(n-Zbtl)}.

Note that, as for completeness, the intersection of two /l-complete vector languages

is /i-complete again, and that any Cartesian product of languages is a /i-complete vector

language. (**)
The property of n-completeness is an almost trivial property, because any vector

language can be made /l-complete by adding /i. It turns out to be technically useful,

because it appears as a weak version of prefix-closedness, our next restriction.

Prefix-closed languages often occur as descriptions of the ongoing behaviours of

(concurrent) systems. In the context of concurrency, systems without acceptance condi-

tions or final states frequently occur, giving rise to prefix-closed behaviour descriptions

(see, e.g., [21] or [14] for examples from the theory of Petri Nets).

Prefixes may also be used as approximations of infinite computations, e.g., through

adherences (see, e.g. [6]).

In case of accepting systems prefixes may represent all possible observations of

(successful) computations. This approach is followed in, e.g., [2]. Also the theory of

COSY may be seen as a representative (see, e.g., [13]), while its original motivation

comes from systems without acceptance conditions.

In this paper we do not distinguish between the various uses of prefix-closedness, but

simply use it as a restriction on languages in the context of concurrent and sequential

systems.

Let IL(n-pM) = {L E U_(n-M)]I, is prefix-closed}, for a family il(n-Ml) of n-

languages, and let V(n-pM) be its associated family of vector languages, V(n-pM) =

{toll(L) 1 L E rL(n-PM)}.

N. W. Keesmaat, H. C.M. Kleijnl Theoretical Computer Science 179 (1997) 61-102 69

Since prefix-closedness implies n-completeness, we have that V(n-p8Ml)= V(n-pM),

and Il(n-plM) = [L(n-PM), for any family of vector languages V(n-Ml) and family of

n-languages L(n-Ml). Hence, using all combinations of the three types of restrictions

on V(n-[Weg), we obtain the following five families of vector languages V(n-[Weg),

V(n-I[Weg), V(n-cReg), V(n-plWeg), and V(n-cplWeg).

In addition to the above five families, we also investigate the family of control lan-

guages based upon monoids: O-(n-Mon) = {8* (9 IS an n-dimensional vector alphabet},

and its associated family of vector languages, V(n-Mon).

The control mechanism represented by IL(n-Mlon) has been used in [151 in the VCCS

submodel of Vector Synchronized Systems. Also in [l] systems with this type of

monoid control have been studied. In the theory of COSY control is implicitly also of

this type, though there it is even more restricted. The control represented by IL(n-Man)

can be termed static: at each moment during the history of such a VCCS the allowed

synchronizations, represented by a set of vector letters, is the same. In contrast with

this the control mechanisms represented by V(n-[Weg) are dynamic: here the allowed

set of synchronization vectors may change during computations, i.e., with the state of

the system.

Note that all languages in L(n-Man) are prefix-closed, and that the vector languages

in V(n-Mon) are complete and hence A-complete as well. Hence, applying the three

restrictions of prefix-closedness, n-completeness, and completeness does not lead to

new families.

Now we turn to families of component languages.

Starting with All, the family of all languages, and applying the restrictions of reg-

ularity and prefix-closedness, we obtain the families IWeg, the family of all regular

languages, p/Ml, the family of all prefix closed languages, and p[Weg, the family of all

prefix closed regular languages.

Regularity and prefix-closedness are again considered, because they stand for re-

spectively, finiteness of the underlying state model and ongoing computations. In [151

and [16], VCCSs were studied having component languages without restrictions, i.e.,

from All, and with the regularity restriction, i.e., from [Weg. In [l] prefix-closedness is

assumed throughout.

For component languages the restrictions of completeness or n-completeness are

void. These restrictions are only non-trivial in case of vector languages of dimension

greater than one.

To the above four families of component languages, we add the family of (finitely

generated) monoids, Mon = {C* 1 C is an alphabet}. Vector Controlled Concurrent

Systems with component languages from Mon exhibit the behaviour of their control

mechanism. For this reason we include this type of component languages into our

investigations.

Combining the families of control languages and the families of component languages

introduced above, a considerable number of VCCS models are obtained. In this paper

we investigate the resulting families of vector languages of these VCCSs, that is, we

investigate the families V(W; n-M) = {V) V is the vector language of a VCCS with

70 N. W Keesmaat, H. C.M. Kleijnl Theoretical Computer Science I79 (1997) 61-102

component languages from K and a control language from %(n-h4l)}, i.e.

where

06 = Mon, pReg, Reg, pAl1, or All, and

Ml = iVllon, cpWeg, pReg, cReg, 1Reg, or Reg.

2.2. Inclusions and equalities

The families of VCCS vector languages introduced in the previous subsection can

be directly related using the following observation.

Let n denote an arbitrary but fixed positive integer.

Observation 2.2.1. V(Ki;n-Mi)c V(K 2;n-RJl2) whenever [Mi G 062 and V(n&tli)c

V(n-R&).

Since, for component languages, by definition,

hAIon C plReg C Reg & All, and

pReg C pAl1 & All,

and since similarly, for control languages,

V(n-Mon) g V(n-CpReg) & V(n-pReg) C V(n-AReg) & V(n-Reg), and

V(n-cpReg) C V(n-cReg) C V(n-1lReg),

this yields an initial inclusion diagram, Fig. 1, given in the form of a matrix. A

particular family o/(06; n-Ml) is the entry in the row marked by K to the left and the

column marked by lUl at the bottom. In the matrix each entry V(K; n-M) is represented

by a dot and an arrow from a family W 1 to a family n/2 denotes that W 1 C n/2.

Not all inclusions in the diagram are strict as will become clear below.

In addition to the VCCS vector languages introduced in Section 2.1, also a number of

other families of vector languages is included in our study. They are included because

they turn out to characterize a number of VCCS vector language families or arise as

the result of application of one of the operations and as such form reference points for

these families. Moreover, they are defined directly and thus are simpler than VCCS

vector languages and easier to handle technically.

They are, first of all, the families V(n-All), V(n-Reg), and V(n-Mlon), where

V(n-All) is the family of all n-dimensional vector languages. By adding the restric-

tions of A-completeness, completeness, and prefix-closedness, we arrive at the following

N. W. Keesmaat, H.C.M. Kleijnl Theoretical Computer Science 179 (1997) 61-102 71

I , I I I

Reg AReg cReg pWeg cpWeg Mon

Fig. 1. (Non-strict) inclusion diagram of the families of the form V(K;n-M) for n> 1.

families:

V(n-All), V(n-IAll), V(n-CAll), V(n-pAll), V(n-cpAll),

V(n-[Weg), V(n-I[Weg), V(n-c[Weg), V(n-p[Weg), V(n-cp[Weg), and V(n-Mon).

The last six families have already been introduced in Section 2.1, as families of control

vector languages. The first five are new. They can be seen as counterparts of the

five regular families. They capture precisely the combinations of restrictions of /1-

completeness, completeness, and prefix-closedness.

The following lemma gives a number of inclusions and equalities that relate these

families to Fig. 1

Lemma 2.2.2. (1) V(~-C~A~~)~V(~-CA~~)~V(~-~A~~)W(~-A~~), and V(n-cpAl1) 2

V(n-pAl1) C V(n-IAll).

(2) V(All; n-[Weg) G V(n-All), V(A11; n-Il%eg) C V(n-AAll), V(A11; n-cReg) c

V(n-cAll), V(pA11; n-plWeg) C V(n-pAll), and V(pAl1; n-cpReg) G V(n-cpAl1).

(3) V([Weg;n-M)=V(p[Weg;n-M)=V(Mon;n-Ml)=V(n-M)), for M = Reg, AlReg,

cReg, V(plWeg; n-M) = V(Mon;n-M) = V(n-M), for M = pReg, cpReg, and
V(Mot-r; n-Mon) = V(n-Mon).

Proof.
(1) Obvious.

(2) The first inclusion is obvious. The other inclusions follow from Observation

1.1.1, the preservation of prefix-closedness by inverse weak codings and intersections,

and the basic properties (*) and (**) of completeness and n-completeness (see Sec-

tion 2.1), stating that the intersection of two (A-)complete vector languages is again

(A-)complete and that a Cartesian product of languages is complete and hence A-

complete.

72 N. W. Keesmaat, H. C.M. Kleijnl Theoretical Computer Science 179 (1997) 61.-102

(3) The inclusions > are obvious. So it remains to prove that V(Reg; n-M)~V(n-Ml)

for Ml = Reg, 1Reg, cReg, V(p~eg;n-~) C V(~-~) for M = plReg, cplReg, and

V(~o~;~-~} 2 V’(n-Mm> for M = Mon. As in (2) above these inclusions follow

from Observation 1.1.1, the preservation properties of prefix-closedness, and the basic

properties (*) and (**) from Section 2.1. In addition, the preservation of regularity by

inverse weak codings and intersection is used. Cl

Combining the results proved in Lemma 2.2.2 we obtain an extended inclusion di-

agram, Fig. 2. In this diagram the families introduced in Section 2.1 are depicted

together with the five new families V(n-Ml) for Ml = All, Mll, cAl1, pAl1, cpAl1.

Again the families of the form V(W; n-M) are depicted in a matrix form, where the

KS are denoted at the left of the matrix and the MS are depicted at the bottom of the

matrix. Each family of the form V(W; n-M) is represented by a dot (as in Fig. 1).

The families proved equal in Lemma 2.2.2(3) are adjacent and their corresponding

dots have been merged into one another, with dashed lines showing the equalities

between different entries.

Each family of the form V(n-Ml) is denoted by a small circle. They have been

marked by their co~esponding fM.

Since the families V(n-M), where m/o = Reg, &Peg, cReg, pReg, cpReg, or Mlon,

coincide with some of the families of the form V(K; n-M) circled dots have been used

here.

The arrows again denote inclusion, but as will be shown in the next section these

inclusions are strict now (at least for n > 2).

Fig. 2. Inclusion diagram of the families of the form V(K;n-Ml) and V(n-M) for na2,

N. W Keesmaat, H.C.M. Kleijnl Theoretical Computer Science 179 (1997) 61-102 13

3. The inclusion diagram

Now we prove that the inclusion diagram (Fig. 2) is complete, i.e, any inclusion

holding between any of the families presented can be derived from the diagram as a

(directed) path between these families. This is done, for the case n 2 2, in Section 3.1

by giving particular example vector languages contained in one family but not another.

The family containing such an example vector language is chosen as small as possible,

while the family that does not contain the example vector language is chosen as large

as possible. In this way we establish with a small number of example vector languages

all non-inclusions needed, and thus the strictness of the inclusions in the diagram and

the incomparability of the families not connected by a directed path.

As shown in Section 3.2, however, for n = 1 additional equalities and inclusions

hold, because, e.g., completeness and n-completeness are trivial for one-dimensional

vector languages. The resulting complete diagram is presented in that subsection.

3. I. The more-dimensional case

In the proof of the following lemma we present the first set of example vector

languages. The resulting non-inclusions also hold for the case n = 1.

Lemma 3.1.1. (1) V(pReg;n-Mon) - V(n-Mon) # 0 for all n> 1.

(2) V([Weg; n-Mon) - V(n-pAl1) # 0 for all n 2 1.

(3) V(pAll;n-Mon) - V(n-[Weg) # 0 for all na 1.

(4) V(A11; n-Mon) - V(pAl1; n-Reg) # 0 for all n 2 1.

Proof. Each of the four non-inclusions can be proved using l-dimensional vector lan-

guages. For n > 1, the lemma follows by extending these vector languages with LI-

components, i.e. replacing l-dimensional vectors of the form (w) with n-dimensional

vectors of the form (w, A,. . . ,A).

The first 3 non-inclusions are easy. The fourth needs a more careful consideration.

(1) Vi = {;i,(@)} E V(pReg; 1-Mlon) - V(l-Mon).

(2) V2 = {(ab)} E V(iWeg; 1-Mon) - V(l-pAl1).

(3) V3 = {(akb’) 1 k > 120) E V(pAl1; 1-Man) - V(1-Reg).

(4) V, = {(akbk) 1 kaO} E V(Al1; 1-Mon) - V(pA11; 1-Reg).

That Vd E V(Al1; 1-Mon) is easy to see. That n/4 +Z V(pAl1; 1-Reg) is shown in the

following way. If Vd = X(K n R) where K is a prefix-closed language and R is a

regular language, then, by the pumping lemma for regular languages, akbk E R for a

large enough k, implies that ambk E R for an m > k. Since ambk $ V4, we then have

that a”bk @ K, and since K is prefix-closed also ambm # K. This is in contradiction

with ambm E V4. 0

In the following lemma we present the remaining non-inclusions. These only hold

for the case n 3 2.

74 N. W. Keesmaat, H. C. M. Kleijnl Theoretical Computer Science 179 (1997) 61-102

Lemma 3.1.2. (1) V(n-cpReg) - V(AlI;a-Mon) # 0 fir all ~32.

(2) V(~-p~eg) - V(~-cAl1) # 0 fir all n22.

(3) V(~-c~eg) - V(Al1; n-pReg) # 0 for all n 3 2.

(4) V(n-Reg) - V(n-IAll) # 0 for all n>2.

(5) V(n-cpAl1) - V(All;n-Reg) # 0 for all n>2.

Proof. We use 2-dimensional vector languages to prove the lemma. For the higher

dimensions these vector languages are again extended with A-components.

(1) Vs = (1)” U (r)@ U {(t), (t)}” E a/(2-cpReg) - V’(All;2-Mon).

It is easy to see that V’s is rational, prefix-closed and complete, hence Vs E V(2-

CpReg).
Now, suppose that Vs = (Ki xK~)flW, for some Ki,Kz E All and a W E D/(2-Man).

Then (;) 0 (;) E W, b ecause (i), (z> E VS C W. F~he~ore, aa E proj, (F’s) C Kt and

be E proj#‘s) C&. This implies that (i) 0 (z) = f’) E Vs, a contradiction. Thus it

follows that Vs @ n/(,011; 2-fkllon).

(2) V6 = {j, ($, (i)} E a/(2-pWeg) - V(2-cAl1). Follows directly from the defini-

tions, because clearly V6 is prefix closed and rational, but not complete.

(3) V7 = {(zz), (3, (t>} = V(2-c~eg) - V(All;2-p~eg).

It is easy to see that V7 E V(2-cReg).

Now, suppose that VT = (K, x K2) il toll(M), for some K1, I& E All and an

M E U-(2-pReg). Since M is prefix closed and (z) E toll(M), it follows that (,:) E

co&M), (“,“) E toll(M), or (z) E toll(M). Since furthermore {a,aa} C K1 and

(c,cc} C I&, at least one of these three word vectors must be in VT as well, which is

a contradiction. Thus, it follows that VT $ V(Al1; 2-pReg).

(4) Vs = { (:), (i)} E V(2-Reg) - V(2-AAll). Follows directly from the definitions,

because clearly Vs is rational and not n-complete.

(5)V9-{(~~~)~O~k$h}U{(~)~~~1,wE{c,d}*}EV(2-cpW11)-V(W11;2-Reg).

It is easy to see that V9 f V(2-cpAll), because in the first place VS = colI(L), where

L = {(~)~~~)~ ~O~kbh}U{(~)}((~)}*((~),(~)}* is prefix-closed, and in the second

place V9 is complete - the only word vector having an empty first component is A.

Suppose that V9 = (Kr xK2)ncoll(M), for some K,,K2 E All and an M E Il(2-Reg).

Then a* U e* C KI and {c,d}* CK2. Set V’ = ({a}* x {c,d}*) n VS. Then V’ =

((Kl ~{a}*)x(K~~~c,d}*)~co~~(~) = ({a}* x {c,d}*)f~oll(M) E V(~on;2-beg),

By Lemma 2.2.2 (3) V(~on;2-leg) = V(2-leg) and hence there exists a regular

M’ over a vector alphabet 6, such that coll(M’) = V’. Then proj0.,2(M’) is reg-

ular, because proje*,2 is a homomorphism. A contradiction, because proje*,2(A4’) =
proj,(coll(M’)) = {chdk 106 k <h} which clearly is not regular. Thus it follows that

V9 $ V(Al1; 2-Reg). q

The following lemma shows that the 9 non-inclusion results of Lemma 3.1.1 and

Lemma 3.1.2 are sufficient for proving the completeness of Fig. 2 (as stated in Corol-

lary 3.1.4). Moreover, it shows how this completeness can be proved: for each pair

of families for which non-inclusion is to be shown, an auxiliary non-inclusion result

N. W. Keesmaat, H. C.M. Kleijnl Theoretical Computer Science 179 (1997) 61-102 75

given in Lemma 3.1.1 or Lemma 3.1.2 can be found. The straightforward checking

of each pair of families, thus amounts to a simple inspection of Fig. 2, but due to

the large number of pairs this is a tedious process. The proof is therefore left to the

reader.

Lemma 3.1.3. Let WI and n/2 be two families occurring in Fig. 2. Assume n>,2. If
there is no directed path from W 1 to n/2 in the diagram, then there exist families

n/l, C Wr and n/i 2 n/2, such that n/l, - n/i # 0 has been proved in Lemma 3.1.1 or

in Lemma 3.1.2.

Hence, there is a path from a family W 1 to a family n/2 if and only if W 1 c n/2. In

other words:

Corollary 3.1.4. Fig. 2 is complete, for n > 2.

3.2. The one-dimensional case

In the previous subsection some of the non-inclusions were shown to hold for all

n b 1, whereas others were shown to hold only if n > 2. The latter non-inclusion results

cannot be extended to the case n = 1, as is shown next.

Several families that are distinct for n > 2, coincide for n = 1.

First of all, every l-dimensional vector language is complete and hence also

n-complete. Thus, for families of l-dimensional vector languages completeness and A-

completeness form no restriction. Hence, e.g., W(l-cReg) = W(l-IReg) = W(l-Reg)

and W(A11; 1-cReg) = W(Al1; 1-IReg) = W(Al1; 1-Reg).

Secondly, we observe that the vector languages of one-dimensional VCCSs are noth-

ing but the vector counterparts of intersections of ordinary languages. This means that

we can use the intersection closure results of ordinary languages.

Lemma 3.2.1. Let K and M be such that W(K;n-M) is an entry in Fig. 2. Then
l If [L(l-K)G IL(l-Ml), then W(W; 1-M) = n/(1-M).

l Zf IL(1-M) C [L(l-M), then W(K; 1-M) = W(1-K).

Proof. The statement follows directly from the definition of W(K; 1-M) = {XK n
toll(M) JK E 116, M E [L(l-M)}, since each of the families 116 and each of the families

lL(l-M) is closed under intersection and contains Mon or [L(l-Mon), respectively. 0

As a consequence, we have, e.g., W(A11; 1-pReg) = W(l-All), and W(pReg; 1-Reg) =

W(1-Reg).

By the above observations, it follows that almost all families of the form W(U6; 1-M)

coincide with one of the families of the form n/(1-M), where M = All, pAl1, Reg,

pReg, or Mon. The only exception is the family W(pA11; 1-Reg).

Summarizing the above, we obtain Fig. 3, a simplified inclusion diagram for the case

n = 1. We use the drawing conventions of Fig. 2. Thus, again the families W(W; 1-M)

76 N. W. Keesmaat. H. C. M. KleQnl Theoretical Computer Science I79 (1997) 61-102

Fig. 3. Inclusion diagram of the families of the form V(W; 1-M) and n/(1-m/o).

are represented as entries in the row marked by K and the column marked by

dashed lines between adjacent entries show that the corresponding

For each group of coinciding families only a single dot is drawn.

From Lemma 3.1.1, we obtain:

Corollary 3.2.2. Fig. 3 is complete.

4. The operations

families

M, while

coincide.

Having completed the direct comparison of the VCCS submodels, we now turn to an

indirect approach. Rather than considering inclusions of families of vector languages,

we use operations as a means for comparison. That is, we look at relations of the form

V = O(W), where 43, is a class of operations and O(V’) = {O(V) IO E 0, V E V’, V

in the domain of 0).

Note that the relation obtained between families using an operation is rather strong.

Not only is it proved that the larger family can be obtained from the smaller one

with the help of the operation, i.e. V c O(W), but also the converse is shown: the

combination does not exceed the larger family, i.e. 0(V’) C V.

The use of operations for relating families of languages is well established in the

theory of formal languages. A classical example is the representation of the family of

recursively enumerable languages: each recursively enumerable language can be ob-

tained from a context-sensitive language using a weak coding. There is a range of

representation results, where a family of languages is shown to be generated from

a single generator language using one or more operations like homomorphisms, in-

verse homomorphisms, intersection with regular languages, etc. Famous results for the

N. W. Keesmaat, H. C.M. Kleijn I Theoretical Computer Science 179 (1997) 61-102 71

family of context-free languages are the theorems of Chomsky-Schiitzenberger [8],

and Greibach [9]. In [1 I] a number of representation results have been collected con-

cerning homomorphisms and rational transductions. Operations on families of lang-

uages have also been studied in the framework of Abstract Families of Languages, see,

e.g. [4].
Here we consider the families of vector languages from Sections 2 and 3 and we

focus on the operations of multi coding, hiding, and multi weak coding. These are

vector operations and as such well suited for relating families of vector languages.

Moreover, they are relatively simple and, as we have seen from [16, l] they can be

used to relate at least some of the VCCS families of vector languages leading to

representations of one family in terms of a smaller one.

In this section we formally introduce these three operations and provide some more

background and motivation for their use. In the next section we consider each of these

operations in turn and investigate its effects.

A multi coding (of dimension n) is a mapping @ = cpi x . . . x qn, where cpi , . . . , (P,,

are codings. Thus, if (Pi : CT + A) for alphabets Ci and Ai, i = 1,. . ,n, then @ :

.Z; x . . x CT + AT x . . . x A,* is defined by @((WI,. . . , w,)) = (cpl(wl), . . . , q,(w,)).

As an illustration let cpl(a) = b, q,(b) = b, cpz(a) = d, and cpz(b) = a, then

@ = cpi x 472 satisfies @((nit)) = (yi).

Note that multi codings are not special instances of the multi-morphisms of

Nivat (see, e.g., [20]), as the latter are mappings from languages to vector languages:

(cp,,...,cp,) : C* -+ AT x ... x AZ is a multi-morphism according to Nivat, if vi :

C* 4 A* is a homomorphism for all i E [n].
Thus, e.g., with cpi and (~2 as above, the multi-morphism (cpi, (~2) satisfies (cpi, (~2)

(aba) = (iii).

In many respects multi codings resemble ordinary codings. They map (vector) letters

onto (vector) letters. They are, however, more refined in the sense that they act on

the components of vector letters and not simply on the vector letters themselves. In

general, an (ordinary) coding - defined on a vector alphabet - is not a multi coding,

because, e.g., they can arbitrarily change the dimension of vector letters. Thus, e.g. a

coding $ may satisfy $((i)) = [a],$(($) = (I), and $<(t)> = (:).

The families of vector languages (and their associated n-languages) studied in this

paper are closed under multi injective codings, i.e. products of injective codings.

In general, families of n-languages are not closed under general injective codings,

as those may change dimensions. A family like R(n-cReg) is not even closed un-

der dimension-preserving injective codings, because such codings do not necessarily

preserve the ~-structure of word vectors. Note that multi codings do preserve ,4-

structure.

Note that the multi coding @ defined above is not a multi injective coding, because

cp1 is not injective. However, Cp restricted to the domain { (3, (f), (i)} is injective.

Multi codings may be seen as labellings leading to an identification of originally

different symbols (actions). Note, however, that the labelling is applied to the behaviour

78 N. W. Keesmaat. H. C.M. Klegnl Theoretical Computer Science I79 (1997) 61-102

of a system, i.e. its vector language, and not to the underlying model itself, i.e. to

the specification by component languages and control language. Since the component

languages and the control languages are ordinary languages, the latter way of applying

the labelling would make it a simple matter of ordinary formal language theory to

determine the type of the resulting VCCS.

In [16] multi codings have been used to relate the families V(Reg; n-Man) and

V(Reg; n-cReg).

The class of all n-dimensional multi codings will be denoted n-MCod.

For a family V of n-dimensional vector languages, we let n-M@od(V) = {Q(V) 1 @E

n-MCod, V E V, V in the domain of @}.

It is easy to see that n-MCod is an operator (on families of vector languages) that

is

monotonic: a/ C V’ implies n-M @od(V) G n-MCod(V’),

extensive: V S n-M Cod(V), and

idempotent: n-MlCod(n-MlCod(V)) = n-MCod(V),

where V and V’ are families of n-dimensional vector languages. Since it is extensive

and idempotent, it is a closure operator.

By its idempotency, a repeated application of multi codings has the same effect as

a single application: the family has been closed with respect to the operator. Families

that are not enlarged by a closure operator are already closed; such families turn out

to be important in our investigations.

A hiding applied to a word vector removes the last component. Thus, it is a mapping

from word vectors to word vectors. In fact, it is a particular type of projection. Denoting

hiding by hid, we have hid((wl,. . . ,wn+l)) = (WI,. . . ,w,).

If V is a family of vector languages, then hid(V) = {hid(V) 1 V E V, V has dimen-

sion at least 2). Note that we consider here families of, possibly, mixed dimensions

and that hid is not defined for l-dimensional vector languages.

Hiding is an operator that is monotonic. On families of n-dimensional vector lan-

guages, n > 2, it is neither extensive, nor idempotent, due to the change in dimension.

It is, however, extensive for the families V(W; M) = Una, V(H; n-M) and V(M) =

lJnBl V(n-M), where V(D6; n-M) and V(n-Ml) are the families from Fig. 2. This can be

seen by noting that for each vector language W from such a family W, the A-extension

Kl = {(WI,. . ., wn, A) I (WI,. . . T IV,) E V} belongs to V as well, while V = hid(&).

Hence V C hid(V).

By repeated application of hid, in combination with permutation of components more

general hiding operators can be obtained. Since the vector language families studied

in this paper are invariant under permutation of components, it is sufficient for our

purposes to consider the simple hiding operator defined above.

The hiding operation hid has been used in [l] for relating families of vector lan-

guages. For instance, it has been proved in [l] that hid(V(pReg; n + l-Mon)) =

V(pReg;n-plReg), see also Section 5.2 in this paper.

As this example shows, also the hiding operation is able to enlarge (modulo a

change of dimension) the families it operates on. The ‘extra’ component that is hidden

N. W. Keesmaat, H. C.M. Klednl Theoretical Computer Science 179 (1997) 61-102 19

is crucial for this enlargement power. To prove the example above it is shown how the

simple control languages from [L(n-Mon) can be used in combination with the hidden

component to simulate the larger family [L(n-pReg) of control languages.

In contrast to multi codings the hiding operation is capable of changing dependent

word vectors (like (j) and (C) 2) into independent word vectors (like ($ and ($)).

Thus, properties like completeness and A-completeness, that are based on the notion

of dependency, can be changed by hiding.

When considered as operation on n-languages the operation hid acts as a weak

coding: it can map different vector letters onto the same vector letter, and it can

remove vector letters. For instance,
(!) and (!)

are both mapped to (i), and
0

!

is mapped to A.

We now formally introduce the third and last operation.

A multi weak coding (of dimension n) is a mapping @ = cpi x .. . x (P,,, where

cpi,. . . , qn are weak codings. Let n-MWCod denote the class of all n-dimensional

multi weak codings.

For any family V of n-dimensional vector languages, n-MIW@od(V) will be the

family n-MlYvVCod(V) = {G(V) I@ E n-MWCod, V E V, V in the domain of @}.

The operator n-MlIWCod is monotonic, extensive, and idempotent (and hence a clo-

sure operator). Moreover, n-MWCod(n-MCod(V)) = n-M@od(n-MW@od(V)) =

n-MN/Cod(V) for any family V of n-dimensional vector languages.

In the terminology of [4] n-M@od<n-MlVVCod, i.e. n-hAlCod s n-MW@od(V)

for all families V of n-dimensional vector languages. Thus, any family enlarged by

the application of n-MlCod may be even further enlarged by the application of

n-MVVCod.

In contrast to multi codings, multi weak codings are capable of changing the

,4-structure of vectors, namely by replacing non-empty components by empty ones.

Thus, properties like completeness and n-completeness, that are dependent on the

n-structure of vectors, can be changed by the application of multi weak codings. In

this paper this is expressed by a result like n-MWCod(V(n-cReg)) = V(n-Reg) (see
Section 5.3). As said before, multi codings keep the n-structure of vectors and hence

the last result cannot be obtained for multi codings.

In [l] multi weak codings have been used to relate families of vector languages. For

instance, in that paper - and here again, it has been proved that n-MW@od(V(pReg;

n-Mlon)) = V(plReg; n-pReg). Using multi weak codings is essential:

n-MCod(V(ptReg; n-Mon)) C V(plReg; n-pReg) as is shown in Section 5.1.

The crucial property of multi weak codings used in the above equality result, is

the fact that each vector alphabet can be obtained as the image of a multi weak

coding applied to a set of vector letters each of the form (b, b, . . , b), i.e. vector letters

containing one and the same letter in each component. Thus, every vector language

can be obtained from an ordinary language by first coding each letter b as a vector

letter (b, b, . . . , b) and then applying a multi weak coding.

80 N. W. Keesmaat, H.C.M. KleijnlTheoretical Computer Science 179 (1997) 61-102

Multi weak codings applied to n-languages act as weak codings: vector letters are

mapped to vector letters or the empty word vector. However, as for multi codings, not

every weak coding on vector letters can be extended to a multi weak coding on word

vectors.

5. The representations

In this section we study the effect of multi codings, hidings, and multi weak cod-

ings, i.e. the relations of the form V = n-M@od(V’), V = hid(V), and V =

n-MVVCod(V’), where V and V’ are families of vector languages. The families V’

considered are those represented in Fig. 2, i.e. the families V(K;n-IUI) and V(n-Ml),

where K E {All, p/U, Reg,pReg, Mon} and M E {All, LAll, cAll,pAll, cpAl1, Reg,

AlBeg, cReg,pReg, cpReg, WIon}.

Emphasis is on multi codings. They are the most elementary of the three types

of operations we consider, as they do not affect the n-structure of the vectors to

which they are applied. Because of the relatively little effect of multi codings, the

application of n-MCod to the families of Fig. 2 leads to more different families than

the applications of n-MVVCod and hid. These latter operations have more effect on the

structure of vectors leading to more identifications of families of vector languages. For

our technical presentation this means that more proofs and more involved proofs are

needed to establish the representation results based on multi codings. The observations

on multi codings also form a basis for the results concerning n-MWCod: each multi

coding is also a multi weak coding.

The results are presented in graphical form for each of the three operations by

the use of so-called operation diagrams. They are simply the graphs representing the

relations above: in the operation diagram for 0, an arrow will be drawn from V’ to V

whenever O(V’) = V, where 0 = n-fUCod, hid, or n-MVVCod. For the families the

same drawing convention will be used as in Fig. 2: dots represent families of the form

V(K;n&I), circles represent families of the form V(n-WI), and circled dots represent

families for which such forms coincide.

5.1. Multi codings

In order to facilitate the understanding of our approach to establish the results needed

to complete the operation diagram for n-MCod, we first present this diagram as Fig. 4.

Each relation, i.e. each arrow, is labelled with the corresponding result. This allows

for a quick lookup of results. The diagram only gives the results for n 3 2. For n = 1,

the results can be easily derived from Fig. 4 by using the additional equalities holding

for the l-dimensional families (see Fig. 3).

Since n-FUlCod is a closure operator, the families resulting after a single application

of n-MlCod are not affected by another application. Hence, it is sufficient to consider

only the effect of a single application.

N. W. Keesmaat, H. C. h4. Kleijnl Theoretical Computer Science 179 (1997) 61-102 81

Mon

XReg cReg pReg cpReg Mon

Fig. 4. Operation diagram of n-bACod for the families V(W; n-ISA) and V(n-%A) for ~~32.

Preceding the technical details needed to prove the results summarized in this diagram,
an overview of our approach and the ordering of the results is given.

Six main steps can be distinguished.
(I) First we argue that all families V(~-~) are closed with respect to n-MCod.

This proves the self-loops in the diagram. Because of the equa~ties established in
Section 2, this implies that we are also done for almost half of the entries V(K; n-Ml)
in the diagram.

(II) For the families V(All;n-M) with M = Reg, iReg, or cReg, we prove in
Lemma 5.12 that the application of multi codings leads to the families V(n-All),
V(~-~~ll), and V(n-cAli), respectively. By Fig. 2 each of these resulting families
strictly includes the original family and hence the original families are not closed with
respect to n-MCod. Still we may compare this result with the effect of multi codings in
case the underlying VCCSs have regular component languages: since V(Reg; n-M) =
V(n-Ml) for M = Reg, AReg, or cReg, we have n-MCod(V(Reg;n-Reg))=V(n-Reg),
~-~Cod(V(Reg; n-J.R!eg))= V(~-Greg), and ~-~~od(V(IWeg; n-cReg))= V(~-c~eg).
Thus, replacing in Lemma 5.12 each occurrence of All by an occurrence of lI%eg leads
to valid equalities.

(III) At this stage one is tempted to believe that also the representation of the fami-
lies V(n-pReg) and V(n-cpReg) in terms of multi codings and the families V(plReg;

82 N. W. Keesmaat, H. CM. Kleijnl Theoretical Computer Science 179 (1997) 61-102

n-pReg) and V(pReg;n-cpReg), respectively, can be lifted to the level of arbitrary

languages.

However, as we show next V(n-pAl1) and V(n-cpAl1) do not have such representa-

tions. By Lemma 5.1.4, the families n-WlCod(V(pAl1; n-plReg)) and n-MCod(V(pAl1;

n-cpWeg)) are strictly included in V(n-pAl1) and V(n-cpAll), respectively. In fact, as

further supported by Lemma 5.1.6, none of the families of Fig. 2 is representable as

n-MCod(V(pAl1; n-pReg)) or n-MlCod(V(pAl1; n-cpReg)).

(IV) Imposing the restriction of prefix-closedness on the component languages only,

does not diminish the effect of multi codings. Thus, as stated in Corollary 5.1.9, n-

MCod(V(pAll;n-Ml)) = n-MlCod(V(All;n-Ml)) for M = Reg, IEReg, or cReg which

leads to new representations of V(n-All), V(n-AAll), and V(n-cAll), respectively.

(V) In Lemma 5.1.10 conditions are given under which multi codings reduce the ef-

fect of prefix-closed control languages. As a consequence, we have in Corollary 5.1.11

the observations that n-M@od(V(K; n-pReg)) = n-MCod(V(K; n-%!eg)) for K = All

or Reg. Thus, n-MCod(V(Al1; n-pReg)) = V(n-IAll) and n-MlCod(V(Reg; n-pWeg)) =

V(n-&!eg).

(VI) This leaves us to consider the entries V(W; n-Man), V(pK;n-Mon), and V(W;

n-cpReg) with K=All or Reg. Using results from [16, 181, we relate vector monoids and

complete vector languages. This leads to the results mentioned in Corollary 5.1.14. For

K=All or Reg, n-~Cod(V(K;n-~on))=n-~~od(V(Db;n-cpWeg))=n-M@od(V(Od;

n-cWeg)) which by Lemma 5.1.2 and Fig. 2, respectively, equals V(n-cK); similarly,

n-MCod(V(pM; n-Mlon)) = n-MCod(V(pK; n-cpWeg)). Since V(pReg; n-cpReg) =

V(n-cpReg) is closed with respect to n-MCod, we conclude n-MCod(V(pReg;

n-Man)) = V(n-cpReg).

Hence, except for the families V(pAl1; n-pReg), V(pAl1; n-cpReg), and V(pAl1;

n-Mlon), we find for all families that multi codings lead to one of the families V(n-Ml).

Now we turn to the full technical proofs of the results claimed above.

The first step is an easy one.

Lemma 5.1.1. V(n-M)=n-MCod(V(&Ml)) for M =All, xAl1, Reg, xReg, or Mon,

where x = A, c, p, or cp.

Proof. V g n-MCod(V) for any family V of n-dimensional vector languages.

The inclusions “2” follow directly from the fact that multi codings preserve com-

pleteness and ,4-completeness and the fact that the families All, pAl1, Reg, pReg, Mon

are closed under codings. 0

The second step is quite involved.

Lemma 5.1.2. (1) V(n-All) = n-MlCod(V(Al1; n-Reg)).

(2) V(n-AAll) = n-MCod(V(Al1; n-AReg)).

(3) V(n-cAl1) = n-MCod(V(Al1; n-cReg)).

N. W. Keesmaat, H. C.M. Kleijnl Theoretical Computer Science 179 (1997) 61-102 83

The proof shows how to construct a vector language V in V(n-All) from a vector

language in V(A11; n-Reg) using multi codings. It is based on the following idea.

First, the information contained in a word vector from V is put into one of its

components; for different word vectors different components may be used. After having

synchronized the other components using the relative weak control languages from

il(n-Reg), a multi coding is used to remove the extra information from the special

components.

Before giving the proof with all formal details we discuss an example.

Example 5.1.3. Let V = {(z) 1 u,u,w,x E {a,b}*, u is the reverse of w, and (u = n

or x = A)}.

Then V # V(A11; 2-Reg), which can be seen as follows. Suppose V = (Ki x Ki) n

toll(M) for some K,‘,Ki E All and an M E Reg. Then, since {a,b}* = proj,(V) =

proj,(V), we may assume without loss of generality that Ki = Ki = {a,b}*. Thus, it

follows that V = ({a,b}* x {a,b}*) n toll(M) E V(Reg;2-Reg) = V(2-Reg). Using

the pumping lemma for regular languages (see [12]), it can easily be shown that

V $i V(2-Reg), which gives a contradiction. Hence V $! V(Al1; 2-Reg).

We now show that V E 2-MlCod(V(Al1; 2-Reg)) by constructing KI, K2 E All, all

ME Reg and a GE 2-M@od, such that V = @[(K1 x K2) n toll(M)].
Let~=Tot(~a,b~,~u,b~),let~~=~(~)~~~a#~~,andlet~~=~(~)~~~~#~~,

i.e.

and

Next let 4 = { (P;) E 0,) and fi = { i ((t) E &}, i.e.
0

and

Set M = 4” U I?: U {A}.

84 N. W Keesmaat, H. CM. Kleijnl Theoretical Computer Science I79 (1997) 61-102

Let @ : (Ii U fi)@ + l3@ be the 2-dimensional coding @ = 40~ x (p2, where cpi and

cpz are the codings defined by cpi(a) = a, qi(b) = b, and (pi(S) = proj,(d) for all

29E8, i= 1,2. Thus,

and

@(((!) (8, (i))) = GI)-
Let L = 4 U-h where -h = {u E ((3, (i),(z), ($}*{($, ($}* Iprojo8,,(u) is a

prefix of the reverse of proj c3*,1(~)~ and L2 = 10 E {(3? (;I? (3, (3>*{(3, (;>I* I
proj,,, 1(u) is a prefix of the reverse of pro] ‘e.,2(u)}. Here L;, i = 1,2, is chosen such

that coll(Li) is the set of all word vectors from V having an ith component longer than

or at least as long as the other component. Moreover, Li is built from vector letters all

having a non-empty ith component.

Clearly, V = toll(L). Note that colI(Li) and coII(L2) are incomparable, but not

disjoint. For instance, (2) E coll(L1) - coII(L2), whereas (sz) E coll(L1) fl coII(L2).

Let K1 = LlUproj,,,,(L) = LI U{a,b}* and let K2 = L2Uproj,.,,(L) = LZU{a,b}*.

Thus, e.g., (3 (t) (i) E KI and bba E KI.
It is not very difficult to see that V = @[(K, x K2) n toll(M)]. All formalities can

be found in the proof of Lemma 5.1.2. 0

Proof of Lemma 5.1.2 From Lemma 5.1.1 we know that V(n-All) = n-IUCod(V(n-

All)) and by the inclusion diagram Fig. 2 we have V(Al1; n-Reg) C V(n-All). This

proves that V(n-All) > n-MCod(V(Al1; n-Reg)). Similar reasoning, again using Lemma

5.1.1 and Fig. 2 shows that V(n-I1All)>n-k4Cod(V(All;n-JReg)) and V(n-cAll)>

n&UCod(V(All; n-cReg)). This leaves us to prove the converse inclusions.

With this aim we start out with an arbitrary language V E V(n-All). After some

consideration about the alphabets involved, we define an n-dimensional coding @, n

languages K,, . . . , K,,, and a regular language M such that @[X&,Ki f+ toll(M)] =

V - {/I}. Finally, we show how to extend A4 to a regular M’ such that @[XyylKi n

coll(M’)] = V, and such that coII(M’) is n-complete or complete if V is n-complete

or complete, respectively.

So let V E V(n-All). Let 8 be a total vector alphabet such that V C 00 and let

&={tiEe(proj,(ti) # n}, for i = l,..., n. Without loss of generality, we may assume

that 8 n proji(B) = 0 for all i E [n], i.e. vector letters of 6 do not occur as components

in (other) vector letters from 8. For each i E [n] and each 6 = (6i,. . . ,19,) E Bi, the

vector letter ~29,~ is defined by ~29,~ = (91,. . . , l9_1,?9,6i+~)..., 6,). SO “/tB,i is equal t0

8 except for the ith component, where 6 itself is occurring as a component. Note that

yG,i and 6 have the same /l-structure due to the definition of Bi. Let 4 = (~19,~ 16 E &}
for i = l,...,n.

N. W. Keesmaat, H. C. M. Klet@l Theoretical Computer Science 179 (1997) 61-102 85

Let @ : (U:=, c)@ -+ fl@ be the homomorphism defined by @(yti,i) = 19, for all

i E [n] and all 6 E 8i. Then it is easy to see that @ = cpi x . . . x cpn, where, for all

i E [n], Cpi : (0, U proj,(O))* + proj,(ti)* is the coding defined by: Cpi(29) = proji(t9)

if 19 E f3i and vi(S) = 6 if 6 E proji(8). Hence, @ E n-MCod. Note that @(toll(v)) =

colloproji ocoll(u) for all in [n] and all VEX*.

Next we define the component languages Ki , . . . , K,, and the control language M.

For this, we first choose a language L with toll(L) = V, such that L = Li U. . . U L,
where Li C_ 0: for all i E [n]. In other words, L is chosen in such a way that,

for each word u E L, there is an i E [n], such that each vector letter from u has

a non-empty ith component. Such an L can be chosen because 8 is a total vector

alphabet.

Next, set Ki = proj,,,i(L) ULi, for all i E [n], and set M = lJ:=, c+. Note that A4 is

regular.

It is now easy to see that w E X:=lKi n toll(M) if and only if there is a j E [n] such

that w E ‘;.@ and projj(w) E OTnL,. Consequently, whenever w E)(:,,KifICOll(M), then

@J(w) E COll(Lj)_{A} c V-{/i}. c onversely, whenever w E V - {A}, then w = coll(u)

for some v E L/ - {A} and j E [n]. Thus, u = 191 . . . 8, for some m 2 1 and 61 E Qj, for all

I E [ml. Then w = @(COll(ys,,j . . . Y.LY,,,,)) and COI~(Y~,,~ . * . yti,,,j) E()(y=,Ki) n toll(M).
From this we may now conclude that V - {/i} = @[X~=,Ki n toll(M)].

The last part of the proof concentrates on the extension of M in order to take care

of the case that /1 E V and of A-completeness and completeness.

If /i @’ V and V is not A-complete, we leave M as it is. In that case we already

have V = @[Xy=,Ki n toll(M)].
If 2 E V or V is A-complete, we add A to M. In this way we obtain M’ =

U;=, I;+ u {A} w IC IS a regular language, and coll(M’) is A-complete. If /1 E V, h’ h .

then A E L, and hence A E Ki for all i E [n]. (#)
Thus, it follows that @[X&,Ki n coll(M’)] = @[O(~=,K~ n toll(M)) U {/I}] = (V -

(2)) u (2) = v.

If /i $ V and V is A-complete, then A $Z L and A 6 projj(V) for some j E [n]. Hence,

for this j,,4 @proje,,i(L) and A @Lj. Hence, A $ Kj. (##)
Consequently, /1 tif XF=,K,. Thus, it follows that @[Xy=,Ki ncoll(M’)] = @[)(!=,Ki n
toll(M)] = v - {A} = v.

This leaves us with the case that V is complete. Now we extend M to M’ =

{u~...u,~m~1,v~~M,coll(u~)andcoU(v~)areindependentifj#k,j,k~[n]}U{~}.

Clearly, M’ is complete and it is not difficult to see that M’ is regular. Using the

reasoning given at (#) above it follows easily that /1 E V implies /i E X~=,Ki~coll(M’),
and hence V 2 @[X:=1 Ki n coll(M’)].

The last thing to prove is that @[Xy=,Ki n coll(M’)] C V, or equivalently that, for

all u EM’ -M, @[Xy=,Ki n CO~~({V})] C V.
If u = A, then we can apply the reasonings given at (#) and (###) above which tell us

that, since V is A-complete, /1 E X~=,K, if and only if /T E V. Hence, @[X~=,K, n
coll({n})] c v.

86 N. W. Keesmaat, H. CM. Kleijnl Theoretical Computer Science 179 (1997) 61-102

SO assume that v # A and that coll(V) E Xy=,Ki. (If coll(v) #)(e,~i, there is noth-

ing to prove.) Since u # A and v E MI-M, there is an m 3 2 such that v = VI . . . v,,, with

uj E M for all j E [m] and cOll(vi) and coll(vk) are independent if i # k. By the defini-

tion of M, for each j E [m] there is an ij E [n] such that Vj E 4,‘. By the independence of

the COll(Vj), we know that ij # ik for all j, k E [m] with j # k. Since Ki = proj,,,i(l) U

Li, for all i E [n] and coll(vl . . . v,) E)(r=,Ki, we have that proji,(coll(vl . ..v.)) =
proj,,(coll(vj)) E Li,. Thus, @(COll(Vj)) = coll(projii(coll(vj)) E COll(Li,) C Y. More-

over, {i E [n] 1 @(COll(Vj)) # A} = {i E [n]) COll(Vj) # A} and @(~oll(v, . . .v,)) =

@(coll(v,))@. . .@@(coll(v,)). Combining all this leads to @(X~=rKinCOll(ur . . . v,)) =

WI 0 ... 0 w,, where Wj E V for j E [m] and wi is independent from Wk if i # k.
Since V is complete, this leads to the desired conclusion that wr o . . . o w,,, E V.

As already pointed out under (III) above, in case of prefix-closedness the situation

changes.

Lemma 51.4. Let n 22.
(1) V(n-pAl1) 2 n-MCod(V(pAl1; n-pReg)).

(2) V(n-cpAl1) 2 n&lCod(V(pAll; n-cpReg)).

In an auxiliary lemma we first consider the example vector language to be used in the

proof of Lemma 5.1.4.

Lemma 5.1.5. Let V = { (Ei) E {a,b}* x {a,b}*) w2 is a prejx of the reverse of WI)}.

Then V E V(n-cpAl1) - 2JU@od(V(pAll; 2-pReg)).

Proof of Lemma 51.5 Let K = (qv2 1 VI E { (;), (:)}*,Q E {(t), (t)}*, proj,(vz) is

a prefix of the reverse of proj,(vl)}. Then V = toll(K). Since K is prefix-closed and

V is complete, this shows that V E V(2-cpAl1).

In order to prove that V 6 2-MCod(V(pAl1; 2-pReg)), we assume to the contrary

that V = @[@‘I where @ = qr x 472 E 2-MlCod and W = (K1 x K2) fl toll(M) with

K,, K2 E pAl1 and M E [I(2-p[Weg).

Then we can make the following technical observation: for all word vectors w =

(1%) E W where qi(c) = cpz(e) = a, q,(d) = I = b, and where v and x are

words such that (p2(x) is a prefix of the reverse of qi (v), there exist words Y and s

such that toll(r) = (“F), toll(s) = (;‘,) and YS EM. (&)
This can be seen as follows. As w E coil(M), it follows that there exists a word

POEM such that w = toll(i). Clearly, there exist a prefix i of t^ such that con(;) = (E)

where u is a prefix of vdc. If u is a prefix of vd, then clearly r^ can be extended to

the prefix s^ of t^ satisfying con(i) = (i’) where y is a prefix of fx. Since K,, K2 and

M are prefix-closed this leads to the conclusion that ($) E W and hence (J’$F$) E V.

The latter is a contradiction, because acp2(y) is not a prefix of the reverse of cpr(v)b.

N. W. Keesmaat, H. C.M. Klevnl Theoretical Computer Science 179 (1997) 61-102 87

Consequently, u = udc which proves (8~).

Now consider the sequence of word vectors (2’9:) E V, i 3 0. Hence, by our assump-

tion, there is a sequence of word vectors Wi = ($$ E W, i>O, such that qi(ni)=ba’,

Vi(ci) = qz(ei) = Q, ~pl(di) = (~2(fi) = b9 and (P2(xi) = a’b, for all i20. Since

cp;‘(a) is finite, it follows that there exists an e E q;‘(a) such that ei = e infinitely

often.

Hence, by our observation (&) above, there are infinitely many rj, sj with COll(rj) =
(uJ$ci) and coU(sj) = (,:‘,) such that rjsj E M and ej = e. Since M is regular, there

exist k # I, such that rksl E M. Now cofl(rksl) E W, because proj,(Cofl(rksl)) =
vkdkck = proj,(wk) E KI and proj2(eoll(?-ks[)) = efjxl = proj,(w,) E K2. However,

@(col&-ksl)) = (f$;) $ v, b ecause a’b is not a prefix of a ukb since k # 1.

This contradiction proves that V @ 2-M@od(V(pAll; 2-pReg)). 0

Proof of Lemma 5.1.4 From Lemma 5.1.1 we know that V(n-pAl1) = n-MCod

(V(n-pAl1)) and by the inclusion diagram (Fig. 2) we have V(pAll;n-pReg) C

V(n-pAl1). This proves that V(n-pAl1) > n-MCod(V(pAl1; n-pReg)). Similar reason-

ing, again using Lemma 5.1.1 and Fig. 2, shows that V(n-cpAl1) > n-MCod(V(pAl1;

n-cp Weg)).

In order to prove both inclusions to be strict, we show that V(n-cpAl1) - n-MlCod

(V(pAll;n-pWeg)) # 0 if n22. This is sufficient, because V(n-cpAl1) & V(n-pAl1)

and n-MCod(V(pAl1; n-pReg) 2 n-FMlCod(V(pAll;n-cpReg).

For n = 2, the above follows from Lemma 5.1.5. For dimensions greater than 2, the

example can be obtained from Lemma 5.1.5 by adding n-components to the vectors

involved. 0

The following lemma shows that the two families n-MCod(V(pAll;n-ylReg)),

y E {p, cp}, are not closed with respect to n-MCod. Combining this with Lemma 5.1.4

and Fig. 2 shows that they do not correspond to any of the families of the diagram.

Lemma 5.1.6. Let n 2 2.

(1) n-MCod(V(pAl1; n-pReg)) 2 V(pAl1; n-plReg).

(2) n-MCod(V(pAl1; n-cpReg)) 2 V(pAl1; n-cpReg).

Proof. The lemma is proved by proving the single non-inclusion result n-MCod

(V(pAl1; n-cpReg)) - V(pA11; n-plReg) # 8 for n 22. From the proof of Lemma 3.1.2

(5) we know that v={(~~~~)IO~k~h}U{(“WP) Ip>l,w~ {c,d}*}$V(A11;2-Reg)

and hence V 6 V(pA11; 2-plReg). After proving that V E 2-MlCod(V(pAl1; 2-cpReg)),

we are done, because the same vector language with additional A-components can be

used for the case that n > 2.

Let KI E pAl1, K2 E pAl1, and M E lL(2-cpReg) be given by: K1 = {uhbk 1 O<k dh}U

{e}*, K2 = {c,d}*, ad ~4 = (z)*(i)* U (${($, (t), ($>*. Set @ = PI x 92 E
2-MCod, where cpi(u) = cpl(b) = a, q,(e) = e, (Pi = c, and cpz(d) = d. Then

V = Qi[(Kl x K2) f’ coIl(and hence V E 2-MCod(V(pAl1; 2-cpReg)). Cl

88 N. W. Keesmaat, H. CM. Kleijn I Theoretical Computer Science 179 (1997) 61-102

In the next step we turn to a general lemma showing when prefix-closedness of com-

ponent languages can be “overcome” with the help of multi codings. The construction

in the proof makes use of an endmarking technique.

Lemma 5.1.7. V(Od;n-M) Cn-M@od(V(pOd;n-Ml)) provided the families K and M

of languages satisfy the following properties:

- K is closed under inverse codings, under intersection with regular languages, and

under pref,

- W(n-MI) is closed under inverse n-dimensional codings and under intersection with

n-fold Cartesian products of regular languages.

Proof. Let K, E K for all i E [n] and let V E V(n-Ml). We construct, for all i E [n],

a language K,! E p[M, a vector language V’ E V(n-Ml), and an n-dimensional coding

GE n-MCod, such that ()(F=,Ki) n V = @[(Xy=,K;) n V’].
Let C be an alphabet such that Ki C C*, for all i E [n], and such that V C C* x . . x

.Z*. Let 2 be a disjoint copy of C and define the endmarking p : C* + Z*,f u {A}

by p(A) = A and u(wa) = wa for all w E C* and a E C. Then we set, for all i E [n],

K: = pref{p(w) 1 w E K,}, and V’ = ((4~), . . , Awn)) I (WI,. . . , w,) E V n X;=‘=,h},
where, for all i E [n], Li = C* if ,4 E Ki and Li = Cf if A $ Ki. Since in the K,!

all and only the original non-empty words from the Ki have an endmarking and all

non-empty components of words from V have an endmarking, it is easy to see that

X;==,K: n V’ = {(p(w,),. . .,p(wn)) 1 (w, ,..., w,) E X;=,Ki n V}. Hence, X;=,Kj n V =
@[X;=,K: fl V’], where @ = cp x ... x cp E n-MiCod removes the endmarkings through

the coding cp defined by cp(i) = q(b) = b for all b E C. Note that the intersection by

Xyz,Li is necessary to handle the empty words: if, for an i E [n], ,4 E K,! - K;, then

,4 6 proj,(V’), because of this intersection.

The only things left to prove are that K,! E pM, for all i E [n], and that V’ E
V(n-Ml). Clearly, {p(w) 1 w E K} = cp-‘(K)n(Z*~U{A}), for K C C”. The properties

n
of K now guarantee that pref(cp-‘(K) n (C*C U {A})) E 06 whenever KC C* is in

K. Since, for each i E [n], K,! = pref(cp-‘(Ki) n (C*,J? U {A}) is prefix-closed and

Ki E 06, we have K,! E pDb for all i E [n]. Similarly, V’ can be written as V’ =
~-‘(V)nX:=,(C*~U{n})nX~=,~i, which - due to the closure properties of V(n-M)

- shows that V’ E V(n-Ml). !I

In order to apply the above lemma we need to verify that the conditions are satisfied.

In particular, we want to apply the lemma for the cases that M = Reg, IReg, cReg.

From Proposition 5.1.8 below, it follows that V(n-Reg) satisfies the required closure

properties.

Proposition 5.1.8. (1) V(n-Reg) is closed under inverse n-dimensional multi codings.

(2) V(n-Reg) is closed under intersection with n-fold Cartesian products of regular

languages.

N. W. Keesmaat, H. CM. Klegnl Theoretical Computer Science I79 (1997) 61-102 89

Proof. (1) Let V = colI(L) where L is a regular n-language. Let @J = cpl x . . . x qh

where cpt,..., (P,, are codings. Then rp,‘, . . . , cp;’ are finite substitutions mapping letters

to finite sets of letters. If (bt, . . . , b,) is a vector letter, then clearly @-‘((bt,. . . , b,)) =

{(Cl,..', Cn) 1 Cpi(Ci 1 = bi, i E [aI} is a finite set of vector letters. For vector letters /I =

(bt,..., b,) and y = (cl,...,~,), we have that @-‘(/IoY) = {(Wt,...,Wn)Iqi(Wi) =

bici, i E [n]} = @-‘(/I) 0 @-l(y). Thus, it follows that @-'(COAX) = COu(@-l(L)).

Since the family of regular languages is closed under finite substitutions, it follows

that @-‘(I’) E V(n-Reg).

(2) Follows from V(Reg;n-Reg) = V(n-Reg) (see Lemma 2.2.2(3)). 0

Corollary 5.1.9. (1) n-MCod(V(Al1; n-Reg)) = n-MCod(V(pAl1; n-Reg)).

(2) n-MCod(V(G11; n-1Reg)) = n-MCod(V(pAl1; n-XReg)).

(3) n-M@od(V(All; n-cReg)) = n-MCod(V(pAl1; n-cReg)).

Proof. The inclusions “2” follow directly from the results presented in Fig. 2.

The converse inclusions “G” can be deduced from Lemma 5.1.7 and Proposition 5.1.8

in the following way. Clearly, All is closed under inverse codings, under intersection

with regular languages and under pref. Proposition 5.1.8 shows that V(n-Reg) sat-

isfies the required closure properties. From the basic properties of completeness and

/l-completeness - marked (*) and (**) in Section 2.1 - it follows that V(n-LReg)

and V(n-cReg) are closed under intersection with n-fold Cartesian product of regular

languages. Finally, since inverse multi codings do not alter the ~-structure of word

vectors, Proposition 5.1.8 also proves that V(n-,UReg) and V(n-cReg) are closed under

inverse n-dimensional multi codings.

The conditions of Lemma 5.1.7 are satisfied and hence the inclusions “c” can be

inferred from this lemma, using the idempotency of multi codings. 0

In step V, it is shown that prefix-closedness of control languages can also be

“overcome” with the help of multi codings. In contrast to Lemma 5.1.7, we end up

in this case with a /i-complete vector language, which is caused by the fact that

prefix-closedness implies n-completeness and the fact that multi codings preserve ,4-

completeness.

Lemma 5.1.10. V(K; n-IReg) C n-M@od(V(K; n-pReg)) provided the family M is

closed under inverse codings and under intersection with regular languages.

Proof. Let Ki E K for all i E [n] and let M E L(n-AReg). We construct, for all i E [n],

a language K,! E I6, a language M’ E lL(n-pReg), and a multi coding @ E n-MCod,

such that (XF=,Ki) n coll(A4) = @[(Xy=,K,‘) n ~0ll(A4’)].
As in the proof of Lemma 5.1.7 we use here endmarkings to distinguish original

words from prefixes. Now, however, we have to be more careful, because we are

dealing with more dimensions. We concentrate first on the construction of M’ from A4

and its properties.

90 N. W Keesmaat, H. CM. Kle@ I Theoretical Computer Science 179 (1997) 61-102

Let C be an alphabet such that Ki C C”, for all i E [n], and such that M 2 Tot

C‘?..., C)*. Let J? = {ci 1 CJ E E} be a disjoint copy of 6. Let qi : (I: U i)* -+ E*
be the coding defined by q;(6) = y’(b) = 6, for all i E [n] and all b E C, and let
@ = ~1 x - - . x cpn. Consider the vector language V = Qi-‘(coll(M))~X~~,(Z*~U{A}),
i.e. V corresponds to the vector language coll(h4) in which each non-empty component
of each word vector has been endmarked. It is not difficult to see that V E V(n-Reg),

because V(n-Reg) is closed under inverse multi codings and under intersection with
Cartesian product of regular languages (see Proposition 5.13).

From Lemma 2.6 of [18] and its proof it follows that we can find an M” = !L(n-Reg)
with coll(M”) = V, which satisfies the property that

ubcw EM” implies b and c are dependent, tt)

for any words n, w and any vector letters b and c. Thus, M’” is a language co~esponding

to the endmarked V and satisfying the special property (t).
Let M’ = pref(M”). The M’ E IL(n-pEWeg) and - by property (t) - M’ satisfies, as

we prove next, the property

&*i- u Lj) n coU(M’) = colI(M”),
i=l

where L’ = {.4} if A E proj,(coll(M)) and Li = 8 otherwise, for all i E [n]. Thus non-
empty proper prefixes of M” can be distinguished from original words from M” as
intended. Property (t) is necessary, since in general a proper ‘prefix’ of an endmarked
word vector from coU(M”) can have the same form as an original endmarked word
vector from coIl(M”) in which some components are empty.

The proof of property ($) is as follows:
“2” follows directly from M” L M’ and coll(M”) C(Xy=,(C*f U L’)).
“c” Let w E X:=, (Z* 2 U L’) n coll(M’). Then there exist words u, v’ such that

cell(u) = w and vv’ E M”. Now 1; and v’ must be independent, because if, for any
i E [n], proj,(v) # A, then proj,(v) E C*z - because u E X~=,(C*~ U Li). Since also
proji(uv’) E Z*e - because vu’ E M” - it follows that proj,(v’) = A for this i. By
property (t), the independence of v and v’ implies that either v = ,4 or v’ = A.
If v = A and hence w = /i, then, for all i E [n], L; = {A}. This implies, by the
A-completeness of toll(M), that 3 E toll(M) and hence w = /1 E coU(M”). If v’ = .4,
then v = vu’ EM” and thus w E Lou.

This proves the relation between M’ and M” formulated above.
Finally, we define, for all i E [n], K,! = (~6 / wb E Ki, w E E*, b E C} U (L’ n Ki) =

v’:‘(&) n (.Z*,f u Li). By the closure properties of It6, K(, . . . ,KL E Dd.

Now,

2 K; fl toll(M) = ,s Ki n ~[co~(~“)~ (by the unction-inte~ection rule)
i=l

= $ Ki n CB [$ (c*.I? U Li) n COUQW)]

N. W. Keesmaat, H.C.M. Kleijnl Theoretical Computer Science 179 (1997) 61-102 91

(again by the function-intersection rule)

and we are done. 0

Corollary 5.1.11. (1) n-MCod(V(Al1; n-IReg)) = n-M@od(V(All; n-pReg)).

(2) n-M@od(V(Reg; n-iReg)) = n-M@od(V(Reg; n-pReg)).

Proof. The inclusions “2” follow directly from the results presented in Fig. 2.

The families All and Reg satisfy the closure properties of Lemma 5.1.10 and hence

the inclusions “c” follow from this lemma, using the idempotency of multi codings.

0

Our last main step focusses on monoid control languages.

The following lemma is a generalization of a result from [16], mentioned in Sec-

tion 4. It is based on the theory of Individual Token Net Controllers developed in that

paper, and on the characterization of the vector languages of ITNCs given in [181.

Lemma 5.1.12. (1) V(W; n-cReg) & n-MCod(V(K; n-Man)) provided the family 56
of languages is closed under inverse codings and under intersection with regular
languages.

(2) V(W; n-cpReg) C n-M@od(V(lt6; n-Mon)) provided the famiZy od of languages
is closed under inverse codings and under intersection with prejx-closed regular
languages,

The proof of Lemma 5.1.12 makes use of the following auxiliary lemma.

Lemma 5.1.13. (1) Let V E V(n-cReg). Then there exist regular languages RI,. . . , R,,
a vector alphabet r, and a multi-coding @, such that V = @[X%, Ri n To].

(2) Let V = V(n-cpReg). Then there exist prefix-closed regular languages RI,. . . ,

R,, a vector alphabet T, and a multi-coding Qi, such that V = @[& Ri n Y@].

The proof of this lemma uses some results from [181. The notations used there

however relate to different underlying concepts. In order to make that paper more

accessible as a reference, we briefly explain the relations between the different notations.

In [181 the family of n-dimensional rational relations is denoted by n-Rat. As already

stated in Section 2 of this paper and as also observed in Section 2 of [181 we have

n-Rat = V(n-[Weg).
The notation n-@P in [181 is used for the family of all n-dimensional complete vector

languages. Thus, V(n-cReg)= V(n-[Weg)rln-CP, and V(n-cpReg)= V(n-p[Weg)nn-CP.

92 N. W. Keesmaat, H. C.M. Klegnl Theoretical Computer Science 179 (1997) 61-102

In [181, the families V(n-GITNC) and V(n-ITNC) denote the families of n-dimensional

vector languages of, respectively, Generalized ITNCs and (ordinary) ITNCs. Similarly,

the families V(n-pGlTNC) and V(n-plTNC) denote the families of n-dimensional vec-

tor languages of, respectively, Generalized ITNCs with prefix-closed languages and

ITNCs with prefix-closed languages. (For the purpose of this paper it is not necessary

to precisely describe the ITNC and generalized ITNC models.)

Proof of Lemma 5.1.13. (1) Let V E V(n-[Weg). From Theorems 2.10 and 3.29 of

[181, it follows that V = toll(L) for an ITNC language L (see also the remark in

Section 2). Let 0 be a vector alphabet such that L C 8*.

From Lemmas A.3 and A.7 of [16], it follows that there exist a regular language

F over an alphabet T - i.e. F C T*-, a coding cp : T* ---) t3*, and regular languages

Fl,..., F,, over T, such that L = q(F) and such that F = {w E T* 1 presz(w) E E
for all i E [n]}, where Ti = {t E T 1 proj,(q(t)) # A}. Here pres,> is the weak coding

defined by pres,(t) = t if t E c and presz(t) = _4 otherwise. In terms of [18] F is

a set of firing sequences of an ITNC and the associated L is the set of labelled firing

sequences of this ITNC, i.e. the ITNC language.

Let

v’ =

pres,, (4

{(i Pres,, (4 1 1.
s follows. and Ri = pres,,(F) for all E [n]. We prove that V’ = Xy=lRi n r@ a

The inclusion V’ C Xy=, Ri rl r@ is easily shown, so we only need to prove the

reverse inclusion. To that aim, let (VI,. . . , v,) E X~=,Ri n r@. Then, there is an m 2 0,

and tl . . tm E T, such that vi = presz(tl . . . t,,,) for all i E [n]. Furthermore, since

pres,,(F) & Fi, for all i E [n], we have that Ui E Ri implies that vi E Fi for all i E [n].

From the relation between F and the F; given above it follows that tl . . . tm E F,

and hence (VI,..., v,) E V’. This proves the inclusion and hence the equality V’ =

Xi”,,Ri n r@.

Finally, let @ = ~1 x . . . x q,,, where Cpi = proji o cp, for all i E [n]. Then V =

toll(L) = coll(q(F)) = @[V’] = @[Xy=lRi fl Y@], because

proh 0 cp(w)

i ! 1 =

r-W, 0 cp(w)

pres,, (w>
=@ : i(.)) presrz (4

for all w E F.

Note that the definition of 7; implies that qoi = cpi o pres,,, for all i E [n].

(2) is proved analogously to (1). We only check the role of prefix-closedness here.

N. W. Keesmaat, H.C.M. Kleijn I Theoretical Computer Science 179 j1997j 61-102 93

Firstly, by Theorems 4.7 and 4.10 of [18], it follows that any V E V(n-cp[Weg) is
equal to coII(L) for a prefix-closed ITNC language L.

Secondly, by Remark 4.9(3) of [18], it folfows that the associated regular language
F can be assumed to be prefix-closed as well.

Finally, since the mapping presT, are homomorphisms, also the languages Ri =
pres,(F) are prefix- closed. I3

Proof of Lemma 5.1.12. (1) Let V = (X:=,Ki)ilU, where Ki E K, for all i E [n], and
U E V(n-cReg). By Lemma 5.1.13(1), there exist regular languages RI,. . . , R,, a vector
alphabet r, and a multi-co~ng @‘, such that U = @p(X%,Rinr@]. Set 6, = cpi X. - a x qpI.

Then I’ = Qr[@-‘(Xy==,Ki) n Xy=,Ri fl P] = @[X~==,((P~‘(Ki) fI Ri) i’l P]. From the
closure properties of K it now follows directly that V E n-M@od(K; n-Mon), which
concludes the proof.

(2) is proved analogously to (1). In this case the regular languages R1, . . . , R, are
also prefix-closed and the closure properties of K take this into account. 0

CoroUary 5.1.14. (1) ~-~Cod(V(All; n-ciReg)) = ~-~~od(V(All; n-cpReg)) = n-
MCod(V(Al1; n-Mon)).

(2) n-MCod(V(IWeg; n-cReg)) = n-M@od(V(IWeg; n-cpIWeg)) = n-MCod(V(IWeg;
n-Men)).

(3) ~-~~od(V(pAll; n-cplReg)) = ~-~Cod(V(pAll; n-M/on)).
(4) n-M@od(V(pReg; n-cplWeg)) = n-MCod(V(p[Weg; n-Man)).

Proof. The inclusions “2” follow directly from the results presented in Fig. 2.
The converse inclusions “c” - between the leftmost and rightmost parts - follow

from Lemma 5.1.12, using the idempotency of multi codings.
(I) and (2) follow from Lemma 5.1.12(1), because All and lWeg satisfy the required

closure properties.
(3) and (4) follow from Lemma 5.1.12(2), because p/all and pReg satisfy the re-

quired closure properties. 0

5.2. Hiding

Again we first present the operation diagram. In Fig. 5 the results are summarized
for hid for n 32, i.e. the graph of the relation V = hid(V) for (n + l)-dimensional
V’ is depicted. As before for it = 1, the results can be derived from the diagram for
n 3 2 by using the additional equalities holding for n = 1.

Again the arrows are marked with the numbers of the co~esponding results. Note
that we have been a little sloppy as we have ignored in the diagram the change in
dimension caused by hid.

In spite of the fact that hid is not a closure operator for families of vector lan-
guages of a fixed dimension, the follo~ng lemma shows we have closure results when
disregarding dimensions. The five self-loops in Fig. 5 reflect this idea.

94 N. W. Keesmaat, H. CM. Klegnl Theoretical Computer Science I79 (1997) 61-102

P Rag --I

:Reg .._.

PM cp Reg

@
29

MOfl

clReg pReg cpReg Mon

Fig. 5. Operation diagram of hid for the families V(W; n-M) and L/(&b!) for n 23.

Lemma 52.1. V(n-Ml) = hid(V((n + 1) - Ml)) for all M E {All,pAll,Reg,plReg,

Man).

Proof. “G”: Follows from the fact that the n-extension mapping (mapping n-dimen-

sional vector letters (al, . . . , a,,) to (n + 1)-dimensional vector letters (al, . . . , a,, A)) is

an injective coding; and the observation that All, p/411, Reg,pReg, and Mon are closed

under injective codings,

“>“: Follows from the fact that hid is in essence a weak coding when restricted to

vector letters. Thus the inclusion results follow, from the closure under weak codings

of the families All, pAlI, Reg,pReg, and Mon. q

The following general lemma is the basis of most of the results concerning hiding. Its

proof uses “transfer” of control from the control language to the hidden last component.

Lemma 5.2.2. V(n-M) G hid(V(M; (n + l)-Man)) provided the fin+ of languages
LA contains Mon.

Proof. Let V = toll(L) where L E IL(n-Ml) and let 8 be a vector alphabet such that

LcB*. Let Z be the (n + 1)-dimensional vector alphabet {(proj, (8), . . . , proj,(d), 6) 1

19 E f3). Then, with &+I = L and Ki = proj,(O)* for all i E [n], we have that

IV. W. Keesmaat, H.C.M. Kleijn I Theoretical Computer Science 179 (1997) 61-102 95

V = hid((Xyz;Ki) n E@). Since L E m/o and s@ E ‘V((n + I)-Man), this proves the

lemma. Cl

Corokq 5.2.3. Let n 32.

(1)

(2)

(3)

(4)

hid(V(n-All)) = hid(V’(n-/All)) = hid(V(n-cinll))

= ~d(V(All;~-~))

far all M E (Reg, BReg, cReg, pReg, cpReg, Won}.

hid(V(n-Reg)) = hid(V(n-1Reg)) = hid(V(n-cReg))

= hid(V(Reg; n-Ml))

fir all M E { Reg, AReg, cReg, pReg, cpReg, Mlon}.

hid(V(n-p/Ill)) = bid(V(n-cpAl1))

= hid(V(pAl1; n-M))

for all M E {pReg,cpReg, Uon).

hid(V(~-p~eg)) = ~d(V(~-cp~eg))

= hid(V(pReg; n-Ml))

for all M E {pReg,cpReg, Mlon}.

For the remaining cases we use the following lemma.

Lemma 5.2.4. V(n-Ml) C hid(V(pM; (n + 1)-cReg)) provided the family of languages

M is closed under inverse codings, under intersection with regular languages, under
pref, and contains Mon.

Proof. Let Y = co&L) where L E Il_(n-M) and let 8 be a vector alphabet such
that L C Ox. Let 6 = {I.! 129 E f3) be a disjoint copy of 0. Let &+I = pref({w& 1 wb E

L}) = pref(cp-l(L)n(B*&J{A})), where q is the coding defined by ~(8) = ~(6) = 6,
for all r9 = 8. Set Ki = proj,(@)* for all i E [n]. Let 2 = {(proj,(G), . . . , proj,(fi),i3) 1

6 E 8) and let fi = ((proj,(G),. . . ,proj,(S),$) / t!? f 0). Set M = E*8 U N where
N = (A} if /i E V and N = 8 otherwise. Then Y = ~d((X~~~~~) n toll(M)), which
follows directly from the observation that proj,+,(M) n &+I = (0*6 UN) fl K,+I = L

and the definitions of E and fi. Now toll(M) is complete, because proj,+,(w) # A
for all non-empty w E M. Hence, toll(M) E V((n + I)-cReg), because clearly A4 E
IL((n+ I)-Reg). Combined with the fact that Ki E PM, for all i E [n+ I], this proves the
lemma. rl

Corollary 5.2.5. Let n >, 2.

hid(V(n-All)) = hid(VCpAl1; n-M)) for all Ml E { Reg,IZlReg, cReg}.

96 N. W Keesmaat, H.C.M. Klezjnl Theoretical Computer Science I79 (1997) 61-102

J.Reg cReg

PReg CP%l_......_

Fig. 6. Operation diagram of n-MWCod for the families V(W; n-M) and V(n-M) for n>2.

5.3. Multi-weak codings

In Fig. 6 we present an overview of the results of this section in the form of the

operation diagram of n-MVVCod for n > 2. Clearly, Figs. 5 and 6 are very similar. We

come back to this in the discussion.

Again, the arrows are marked with the numbers of the corresponding results and for

n = 1, the diagram can be obtained from the diagram for n > 2 using the additional

equalities holding for n = 1 (see Fig. 3).

The operator n-MVVCod is a closure operator and the families closed under n-MWCod

correspond to the families closed for hid. This is shown in the following lemma.

Clearly, the families closed under multi weak codings are also closed under multi

codings. However, not all of the families closed under multi codings are closed under

multi weak codings.

Also in contrast to multi codings, all families of the form V(K; n-M)) from Fig. 2,

yield under n-MVVlCod one of the families closed under multi weak codings.

Lemma 5.3.1. V(n-Ml) = n-MWCod(V(n-M)) for all M E {All,pAll,Reg,pReg,

Man}.

Proof. “C”: Obvious, since V 2 n-MVVCod(V) for any family V of n-dimensional

vector languages.

N. W. Keesmaat, H.C.M. Kleijnl Theoretical Computer Science 179 (1997) 61-102 91

“Z”: This follows directly from the fact that.the families All,pAll, Reg,pReg, Man

are closed under weak codings. 0

Together with the results concerned with multi codings, the following lemma forms

the basis of most of the results concerned with multi weak codings.

Lemma 5.3.2. V(n-M) C n-MW@od(V(n-CM)) provided the family of languages M
is closed under injective codings.

Proof. Let V = colI(L) where L E iL(n-MI). Let eps be the injective coding, mapping

n-dimensional vector letters to n-dimensional vector letters, that replaces in every vector

letter every ,4-component by the new letter E (leaving the other components unchanged).

Then co11 o eps(L) E V(n-&I), because /T is the only possible word vector in co11 o
eps(L) having an empty component. If Y is the n-dimensional weak coding that erases

all occurrences of E in word vectors, then V = Y(col1 o eps(L)), which proves that

V(n-M) C n-MWCod(V(n-CM)). 0

Corollary 5.3.3.

(1) n-MWCod(V(n-All)) = n-MWCod(V(n-AAll)) = n-MW@od(V(n-cAl1)).

(2) n-MVVCod(V(n-Reg)) = n-MWCod(V(n-IReg)) = n-MWCod(V(n-cReg)).
(3) n-MW@od(V(n-pAl1)) = n-MlW@od(V(n-cpAl1)).

(4) n-MWCod(V(n-pReg)) = n-MWCod(V(n-cpReg)).

The following corollary combines the previous one and some of the results of

Section 5.1.

Corollary 5.3.4. (1) n-MW@od(V(n-All)) = n-MWCod(V(All;n-M)) for all M E

{ Reg, AlReg, cReg, pReg, cpReg, Mlon}.

(2) n-MWCod(V(n-All)) = n-MWCod(V(pAll;n-Ml)) for al2 m/o E {Reg,i,Reg,
cReg}.

(3) n-MWCod(V(n-Reg)) = n-MWi@od(V(Reg;n-m/O)) for all m/o E {Reg,AReg,
cReg,pReg, cpReg, Man}.

(4) n-MWCod(V(n-pReg)) = n-MWlCod(V(pReg;n-M)) for all M E {pReg,

cpReg, Mon}.

The final results concerning multi weak codings are obtained using the following

lemma.

Lemma 5.3.5. n-MW@od(V(n-pAl1)) = n-MWi@od(V(pAll;n-MI)) for all Ml E

WQeg, cpReg, Man}.

Proof. The inclusions “2” follow directly from the results presented in Fig. 2. The

converse inclusions follow from the idempotency of multi weak codings and the fact

that V(n-pAl1) C n-MWCod(pAl1; n-Mon)), which is proved as follows.

98 N. W. Keesmaat, H. C.M. Kleijn I Theoretical Computer Science 179 (1997) 61-102

Let V = toll(L) where L E [L(n-pAl1) and let 8 be a vector alphabet such that L g 8*.

Let E be the n-dimensional vector alphabet ((r9,. . . ,8) 1 t9 E 0) and let A4 = 8*. Then,

with Y = projz*,, x . . . x projE*,n, we have that V = Y((Xy==,L) fl toll(M)). Since

L E pGll,coll(M) E V(n-Mon), and Y E n-MVVCod, this proves the inclusion. 0

6. Discussion

Within the framework of Vector Controlled Concurrent Systems different models of

concurrent systems based on vector synchronization can be studied in a uniform way.

In [15, 16, l] several such models have been investigated. Each of these models is

formulated using regularity, prefix-closedness, or completeness as restrictions on the

component languages or the control language. In this paper we have not singled out

one or a few specific submodels as the focus of our interest. The aim here has been

to investigate the effect of these restrictions and their combinations. This has led to a

whole range of different VCCS submodels not all of which are individually interesting

as a model for concurrent systems. Together, however, they lead to insight in the effect

the restrictions have on the behaviour of the systems.

The effect of the restrictions has been measured in two different ways. Firstly, a direct

comparison of the resulting behaviours in terms of families of vector languages has led

to an inclusion diagram showing the equalities, strict inclusions and incomparabilities.

Secondly, a more indirect approach has been followed. Each family of vector languages

has been subjected to three types of operations with the aim of enlarging the family to

one of the other families of the diagram. Each such representation of a larger family

in terms of the smaller and one of the operations, corresponds to a characterization of

the difference in effect between the combinations of restrictions involved.

In the inclusion diagram, the inclusions and equalities have been established on the

basis of observations on the nature of the restrictions and on the interplay between

component languages and control languages. For the non-inclusions and the incompa-

rabilities a relatively small set of example vector languages has been used. Thus, here,

it is efficient to consider the whole range of submodels rather than proving inequalities

between certain specific submodels.

From the inclusion diagram we see that in a VCCS the control language has a strong

influence on the resulting VCCS vector language. For VCCS families with a regular

control language, regular, prefix-closed regular and monoidal component languages can

be absorbed by the control: V(n-[Weg) = V(K; n-[Weg) for K = [Weg,p[Weg, Mon. On

the other hand, even general component languages are not able to absorb the control

language: V(A11; n-IWeg) s V(n-All). Regular control languages cannot absorb arbitrary

component languages: V([Weg; n-[Weg) s V(Al1; n-[Weg). Similarly, prefix-closedness of

the control language only guarantees a prefix-closed behaviour if also the compo-

nent languages are prefix-closed: V(pAl1; n-[Weg) c V(n-pAll), but V(Al1; n-pReg) and

V(n-pAl1) are incomparable. Non-prefix-closed component languages again cannot fully

overcome the prefix-closeness of the control language: V([Weg; n-plReg) C V(n-[Weg).

N. W. Keesmaat, H. C. M. Kleijn I Theoretical Computer Science 179 (1997) 61-102 99

Completeness is a property that is only applicable to control languages, though one

could argue that the component languages are trivially complete. It leads to the com-

pleteness of the resulting vector languages: V(Al1; n-cReg) C V(n-cA11).

To prove the representation results has required more technical effort. Of the three

types of operations considered (multi codings, hiding, and multi weak codings) the

multi codings are the weakest and, by the variety of results, also the most revealing.

A number of interesting representation results have been obtained, using a variety of

proof techniques. Still a number of generic results could be derived.

On the one hand, multi codings bridge the gap between V(A11; n-Reg) and V(n-All),

thus enhancing the relative weakness of the component languages mentioned above.

On the other hand, however, they are not sufficiently powerful to bridge a seemingly

similar gap between the prefix-closed versions V(pAll;n-pReg) and V(n-pAl1). A

closer examination of the proofs of Lemmas 5.1.2 and 5.1.5 shows that here it is crucial

that prefix-closedness basically is a language property instead of a vector language

property.
In the cases that prefix-closedness is required only of the component languages or

only of the control language, a multi coding can assist the absorption of this restriction.

The basic techniques used to get these types of results are similar: an endmarking is

used to distinguish proper prefixes from original words and a multi coding is used to

remove the marking. However, the occurrence of the empty word in the control lan-

guage in combination with the independent choice of component languages to include

or exclude the empty word may prevent the full absorption of prefix-closedness. Then

/1-completeness, as a residual of prefix-closedness, is the best we can get.

Using a generic result (Lemma 5.1.12), the characterization n-MCod(V(Reg; it-

Man)) = V(Reg; n-cReg) = V(n-cReg) from [16] has been reproved, but now also its

prefix-closed version could be shown to hold: n-mlOCod(V(pReg; n-Mon)) = V(pReg;

n-cpReg) = V(n-cpReg). For the case of non-regular component languages, the same

lemma has led to the equalities n-MCod(V(Al1; n-Mon)) = V(n-cAl1) and n-MCod(V

(p/All; n-Mon)) = n-RJlCod(V(pAl1; n-cpReg)). This confirms completeness as a char-

acterizing property for the combination of monoidal control languages and multi

codings.

Multi codings preserve completeness (and n-completeness), but both hiding and

multi weak coding do not preserve these properties: for each family of vector languages

the image under either multi weak codings or hidings is equal to the image of its

complete (or n-complete) subfamily under this operation. Thus, for multi codings a

larger number of closed families was obtained, than for the other two operations.

When comparing in Figs. 5 and 6 the effects of hidings and of multi weak codings,

we see that - ignoring dimensions - they are essentially the same: in both situations the

same five families are closed under the operation, and in both situations these families

are precisely the families that we end up with when applying the operations to one of

the other families. Moreover, similar representations are obtained in both situations.

For hiding, these representations results are obtained by the combination of a generic

result (Lemma 5.2.2) applicable to most of the cases and a more specific result

100 N. W. Keesmaat, H. C.M. Kleijnl Theoretical Computer Science 179 (1997) 61-102

(Lemma 5.2.4) for the remaining cases. The first result is based on a technique by

which the role of the control languages is taken over by a component language. In

fact, a similar situation exists for the multi weak codings, i.e. the role of the control

language may be taken over by (one or more) component languages. We have not fully

exploited this here however, because many of the multi weak coding results are already

a consequence of multi coding results. Only for the remaining cases this technique was

used (Lemma 5.3.5).

The gap left by multi codings when starting with a prefix closed control language -

yielding A-completeness - is bridged by both hidings and multi weak codings: hid(V

(lReg;n-pReg)) = n-MVQ’@od(V(Reg;n-pReg)) = V(n-Reg), whereas n-M@od(V

(Reg; n-pReg)) = V(n-IReg) C V(n-Reg).

Hidings and multi weak codings also bridge the gaps between V(pAll;n-p!Reg) and

V(n-pAl1) and between V(pAl1; n-cpReg) and V(n-cpAl1) that could not be closed by

multi codings.

When considering the three restrictions regularity, prefix-closedness, and complete-

ness, we observe that both regularity and prefix-closedness are strong restrictions on

the vector language level: all three operations preserve these. Completeness is weaker,

because it is only preserved by multi codings.

When restrictions are used in only a part of a VCCS, i.e., only for component

languages or only for control languages, then they can mostly be absorbed, though

sometimes not fully. Using hidings and multi weak codings, the effect of these restric-

tions always disappears.

Completeness is a pure vector language property, regularity is a language property

that can be extended to vector languages - in the form of rationality, whereas prefix-

closedness is a pure language based property. For multi codings this distinction has

turned out to be crucial.

The systematic approach of this paper has enabled us to not only repeat a number

of results occurring in [l], it has also answered the open questions of [l] concerning

the VCCS submodels included in our study. Thus, we have proved the strictness of

the inclusions V(pReg; n-Men) C V(pReg; n-pReg), and n-MCod(V(pReg; n-Man)) C

V(pReg; n-pReg). In fact, we have even obtained a characterization of the last strict

inclusion, namely completeness: n-MCod(V(pReg; n-Mon)) = V(plReg; n-cpReg) g

V(plReg; n-pReg).

One of the models that has been studied in [11, but has not been considered here,

is the COSY model. The main reason for this is that COSY does not fit in the set-up

of this paper with its systematic combination of restrictions on independently defined

component and control languages.

For component languages, COSY uses the additional and particular restriction of

cyclicity in addition to regularity and prefix-closedness. Adding this extra restriction

would have increased the set of models.

More importantly, COSY uses monoids as control languages and in addition imposes

restrictions on the synchronization vectors themselves. This contrasts with the VCCS

models studied in this paper: restrictions have only been used for component languages

N. W. Keesmaat, H.C.M. Kletjnl Theoretical Computer Science 179 (1997) 61-102 101

and control languages, never for their vector letters. A consequence of the additional

vector letter restrictions in COSY systems is that behaviours of COSY systems are not

closed under multi injective codings, whereas the VCCSs behaviours in this paper are.

In other words, the component languages are mutually related in ways that go farther

than in our VCCSs.

Next, the component languages are not defined independently of the control lan-

guage of a COSY system. COSY systems demand that the set of letters occurring in

component languages equals the set of letters occurring in the control languages.

Thus, COSY does not fit easily in the set-up of this paper. A preliminary study of

the effect of the three operations on COSY systems given further proof of the special

character of COSY vector languages. Let V(n-COSY) denote the family of vector lan-

guages of n-dimensional COSY systems. It can be shown that V(n-COSY) C: hid(V(n+

l-COSY)) g hid(hid(V(n + 2-COSY))) = hid3(V(n + 3-COSY)). Thus, for COSY sys-

tems a single application of hid does not lead to a family closed under hid. For multi

codings and multi weak codings the situation is also different: n-MlCod(V(n-COSY)) =

V(n-cpReg), and n-MVVCod(V(n-COSY)) = V(n-pReg), for n32, but the family

V(l-COSY) is closed under multi codings, and multi weak codings: n-MCod(V(l-

COSY)) = n-MW@od(V(l-COSY)) = V(l-COSY), whereas n/(1-COSY)CV(l-p

Reg). Thus, for COSY systems, we get a decrease of the number of equalities for

n = 1, instead of the usual increase.

We conclude this section by pointing out some topics for further research.

In the first place, as mentioned above, the COSY model has been been fully in-

vestigated, although we have obtained some results. A more thorough investigation

of the COSY model within the VCCS framework may be worthwhile. The remain-

ing open issues from [l] all concern the COSY model (and a variant). A deeper

investigation of the COSY model along the lines of this paper may lead to an-

swers to these open questions. Our preliminary investigations seem to confirm this

idea.

As observed above, in a VCCS the control exercised by the control languages

is rather strong. This had led us to exclude VCCSs with control languages from

[L(n-All), lL(n-cGll), or [L(n-pAl1) from our investigations. Intuitively, VCCS submod-

els having such powerful families of control languages would hardly be interest-

ing as the influence of additional component languages would probably be

negligible.

In this paper our aim has been to study certain restrictions in the framework of

VCCSs. Three specific operations have been used to investigate the effects of these

restrictions. It is conceivable that other operations may also prove useful in these

investigations. Dually, one could also argue that we have studied certain operations by

applying these to different families of VCCS vector languages. From this point of view

it may be worthwhile to consider more families of vector languages to which to apply

the operations.

Both approaches may lead to further insight in the underlying fundamental properties

of restrictions, operations, and their mutual relationships.

102 N. W. Keesmaat, H. C. M. Kleijn I Theoretical Computer Science 179 (1997) 61-102

Acknowledgements

The authors are grateful to H.J. Hoogeboom for his useful comments on an earlier

version of this paper. Also the comments of an anonymous referee which led to further

improvements of the presentation are gratefully acknowledged.

References

[I] A. Arnold, Synchronized behaviours of processes and rational relations, Acta Inform. 17 (1982) 21-29.

[2] A. Arnold, Synchronization de processus, Universite de Bordeaux I, Cours 83-84.

[3] J. Beauqier and M. Nivat, Application of formal language theory to problems of security and

synchronization, in: R. Book, ed., Formal Language Theory: Perspectives and Open Problems
(Academic Press, New York, 1980) 407-453.

[4] J. Berstel, Transductions and Context-Free Lunauges (Teubner, Stuttgart, 1979).

[5] L. Bemardinello and F. De Cindio, A survey of basic net models and modular net classes, Lecture

Notes in Computer Science, Vol. 609 (Springer, Berlin, 1992) 304-351.

[6] L. Boasson and M. Nivat, Adherences of languages, J. Comput. System Sci. 20 (1980) 285-309.

[7] R.H. Campbell and A.N. Habermann, The specification of process synchronization by path expressions,

Lecture Notes in Computer Science, Vol. I6 (Springer, Berlin, 1974) 89-102.

[S] N. Chomsky and M.P. Schiitzenberger, The algebraic theory of context-free languages, in: P. Bratfort

and D. Hirschberg, eds., Computer Programming and Formal Systems (North-Holland, Amsterdam,

1963) 118-161.

[9] S. Greibach, The hardest CF language, SIAM J. Comput. 2 (1973) 304-310.
[lo] M. Hack, Analysis of production schemata by Petri nets, TR-94, MIT, Boston, 1972.

[I l] T. Harju and H.C.M. Kleijn, Morphisms and rational transducers, EATCS Bull. 51 (1993) 168-180.
[12] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation

(Addison-Wesley, Reading, MA, 1979).

[13] R. Janicki and P.E. Lauer, Specification and Analysis of Concurrent Systems, The COSY Approach,
EATCS Monographs on Theoretical Computer Science (Springer, Berlin, 1992).

[I41 K. Jensen, Coloured Petri Nets, Basic Concepts, Analysis Methods, and Practical Use, Vol. I, EATCS

Monographs on Theoretical Computer Science (Springer, Berlin, 1992).

[151 N.W. Keesmaat, H.C.M. Kleijn and G. Rozenberg, Vector controlled concurrent systems, part I: basic

classes, Fund. Inform. 13 (1990) 275-316.
[I61 N.W. Keesmaat, H.C.M. Kleijn and G. Rozenberg, Vector controlled concurrent systems, part II:

comparisons, Fund. Infirm. 14 (1991) l-38.
[I71 N.W. Keesmaat and H.C.M. Kleijn, The effect of vector synchronization: residue and loss, Lecture

Notes in Computer Science, Vol. 609 (Springer, Berlin, 1992) 215-250.

[18] N.W. Keesmaat and H.C.M. Kleijn, Net-based control versus rational control: the relation between ITNC

vector languages and rational languages, Acta Inform., to appear.

[I93 P.E. Lauer and R.H. Campbell, Formal semantics for a class of high level primitives for coordinating

processes, Acta Inform. 5 (1975) 297-332.
[20] M. Nivat, Behaviors of processes and synchronized systems of processes, in: M. Broy and G. Schmidt,

eds., Theoretical Foundations of Programming Methodology (Reidel, Dordrecht, 1982) 473-551.
[21] W. Reisig, Petri Nets, an Introduction, EATCS Monographs on Theoretical Computer Science

(Springer, Berlin, 1985).

[22] M.W. Shields, Adequate path expressions, Lecture Notes in Computer Science, Vol 70 (Springer, Berlin,

1979) 249-265.

