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a b s t r a c t

We study the family of graphs whose number of primitive cycles equals its cycle rank. It is
shown that this family is precisely the family of ring graphs. Then we study the complete
intersection property of toric ideals of bipartite graphs and oriented graphs. An interesting
application is that complete intersection toric ideals of bipartite graphs correspond to ring
graphs and that these ideals are minimally generated by Gröbner bases. We prove that any
graph can be oriented such that its toric ideal is a complete intersection with a universal
Gröbner basis determined by the cycles. It turns out that bipartite ring graphs are exactly
the bipartite graphs that have complete intersection toric ideals for any orientation.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph (no loops or multiple edges) with n vertices and q edges, and let frank(G) be the number of primitive
cycles of G, i.e., cycles without chords. The number frank(G) is called the free rank of G and the number rank(G) = q− n+ r
is called the cycle rank of G, where r is the number of connected components of G. The cycle rank of G can be expressed as the
dimension of the cycle space of G. These two numbers satisfy rank(G) ≤ frank(G), as is seen in Proposition 2.2. The aim of
this paper is to study and classify the family of graphs where the equality occurs. It will turn out that this family is precisely
the family of ring graphs. The precise definition of a ring graph can be found in Section 2. Roughly speaking ring graphs can be
obtained starting with a cycle and subsequently attaching paths of length at least two that meet graphs already constructed
in two adjacent vertices.
The contents of this paper are as follows. Before stating our main results, recall that a graph G has the primitive cycle

property (PCP) if any two primitive cycles intersect in at most one edge. A subdivision of a graph is any graph that can be
obtained from the original graph by replacing edges by paths. As usual we denote the complete graph on n vertices byKn.
In Section 2, which is the core of the paper, we prove the following implications for any graph G:

outerplanar ⇒ ring graph ⇔ PCP+ contains no
m subdivision ofK4 ⇒ planar

rank = frank as a subgraph

These purely graph theoretical results are applied in Sections 3 and 4, where graphs with complete intersection toric
ideals are studied, both in the oriented and unoriented case. For bipartite graphs the equality rank(G) = frank(G) is related
to these special types of toric ideals, as we explain below.
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Let R = k[x1, . . . , xn] be a polynomial ring over a field k and let G be a graph with vertex set V (G) = {x1, . . . , xn} and
edge set E(G) = {t1, . . . , tq}. The edge subring of G is the k-subalgebra of R:

k[G] = k[{xixj| xi is adjacent to xj}] ⊂ R.

There is an epimorphism of k-algebras

ϕ: k[t1, . . . , tq] −→ k[G], {x, y} 7−→ xy,

where k[t1, . . . , tq] is a polynomial ring. The kernel of ϕ, denoted by P(G), is called the toric ideal of G. Toric ideals of graphs
are studied in Section 3. The height of P(G) is equal to g = q− rank(AG), where AG is the incidence matrix of G. By a result of
Krull [2] the ideal P(G) cannot be generated by less than g polynomials. The toric ideal of G is called a complete intersection if
it can be generated by g polynomials. The complete intersection property of P(G)was first studied in [6,19], and later in [8,
7,13].
An interesting result of Simis [19] shows that if G is a bipartite graph, then rank(G) = frank(G) if and only if P(G) is a

complete intersection. Thus by describing the graphs where equality occurs, we are in particular describing the toric ideals
of bipartite graphs that are complete intersections (see Corollary 3.4). We prove that complete intersection toric ideals of
2-connected bipartite graphs are minimally generated by Gröbner bases (see Corollary 3.7).
In Section 4 we introduce and study toric ideals of oriented graphs and their Gröbner bases. To the best of our knowledge

these toric ideals have not been studied much except for the case of acyclic tournaments [12]. Oriented graphs share some
properties with bipartite graphs. For instance, in both cases their incidence matrices are totally unimodular. This is a key
fact to understand the Gröbner bases of toric ideals of oriented graphs (see Lemma 4.1). We prove that the toric ideal of any
oriented graph is completely determined by its primitive cycles and has a universal Gröbner basis determined by the cycles
(see Proposition 4.3 and Corollary 4.5). It is shown that toric ideals of oriented ring graphs are complete intersections for
any orientation. As an interesting consequence of the results of Section 2 we obtain that, for bipartite graphs, this property
characterizes ring graphs (see Corollary 4.9). One of our main results shows that any graph has an acyclic orientation such
that the corresponding toric ideal is a complete intersection (see Theorem 4.16).
The paper is essentially self contained. For unexplained terminology and notation on graph theory we refer to [5,10]. Our

main references for edge subrings are [21,22].

2. Ring graphs

Let G be a graph with n vertices and q edges. We denote the vertex set and edge set of G by V (G) = {x1, . . . , xn} and
E(G) = {t1, . . . , tq} respectively. Recall that a 0-chain (resp. 1-chain) ofG is a formal linear combination

∑
aixi (resp.

∑
biti)

of vertices (resp. edges), where ai ∈ Z2 (resp. bi ∈ Z2). The boundary operator is the linear map ∂: C1 → C0 defined by

∂({x, y}) = x+ y,

where Ci is the Z2-vector space of i-chains. A cycle vector is a 1-chain of the form t1+ · · · + tr where t1, . . . , tr are the edges
of a cycle of G. The cycle space Z(G) of G over Z2 is equal to ker(∂). The vectors in Z(G) can be regarded as a set of edge-
disjoint cycles. A cycle basis for G is a basis forZ(G)which consists entirely of cycle vectors, such a basis can be constructed
as follows:

Remark 2.1 ([10, pp. 38–39]). If G is connected, then G has a spanning tree T . The subgraph of G consisting of T and any edge
in G not in T has exactly one cycle, the collection of all cycle vectors of cycles obtained in this way form a cycle basis for G.
Hence dimZ2 Z(G) = q− n+ r if G is a graph with r connected components.

Let c be a cycle of G. A chord of c is any edge of G joining two non adjacent vertices of c. A cycle without chords is called
primitive. The number dimZ2 Z(G) is called the cycle rank of G and is denoted by rank(G). The number of primitive cycles of
a graph G, denoted by frank(G), is called the free rank of G.

Proposition 2.2. If G is a graph, then Z(G) is generated by cycle vectors of primitive cycles. In particular rank(G) ≤ frank(G).

Proof. Let c1, . . . , cr be a cycle basis for the cycle space of G and let c1, . . . , cr be the corresponding cycles of G. It suffices
to notice that if some cj has a chord, we can write cj = c′j + c′′j , where c

′

j and c
′′

j are cycle vectors of cycles of length smaller
than that of cj. �

Corollary 2.3. Let G be a graph. Then the following are equivalent:
(a) rank(G) = frank(G).
(b) The set of cycle vectors of primitive cycles is a basis for Z(G).
(c) The set of cycle vectors of primitive cycles is linearly independent.

Proof. (a)⇒ (b): By Proposition 2.2 there is a basisB ofZ(G) consisting of cycle vectors of primitive cycles. By hypothesis
rank(G) = frank(G). Thus B is the set of all cycle vectors of primitive cycles and B is a basis. That (b) implies (c) and (c)
implies (a) are also very easy to prove. �



432 I. Gitler et al. / Discrete Mathematics 310 (2010) 430–441

LetG be a graph. A vertex v (resp. an edge e) ofG is called a cutvertex (resp. bridge) if the number of connected components
of G \ {v} (resp. G \ {e}) is larger than that of G. A maximal connected subgraph of Gwithout cutvertices is called a block. A
graph G is 2-connected if |V (G)| > 2 and G has no cutvertices. Thus a block of G is either a maximal 2-connected subgraph,
a bridge or an isolated vertex. By their maximality, different blocks of G intersect in at most one vertex, which is then a
cutvertex of G. Therefore every edge of G lies in a unique block, and G is the union of its blocks.

Lemma 2.4. Let G be a graph and let G1, . . . ,Gr be its blocks. Then rank(G) = frank(G) if and only if rank(Gi) = frank(Gi) for
all i.

Proof. (⇒) Let Gi be any block of G. We may assume |V (Gi)| > 2, otherwise rank(Gi) = frank(Gi) = 0. If c is a primitive
cycle of Gi, then by the maximality condition of a block one has that c is also a primitive cycle of G. Thus by Corollary 2.3 the
set of cycle vectors of primitive cycles of Gi is linearly independent and rank(Gi) = frank(Gi).
(⇐) LetBi andB be the set of cycle vector of primitive cycles of Gi and G respectively. As∪ri=1Bi is linearly independent,

by Corollary 2.3 it suffices to prove that∪ri=1Bi = B. In the first part of the proofwehave already observed that∪ri=1Bi ⊂ B.
To prove the equality take any cycle vector c of a primitive cycle c ofG. Since c is a 2-connected subgraph, itmust be contained
in some block of G, i.e., in some Gi. Thus c is a primitive cycle of Gi, so c is inBi. �

Definition 2.5. Given a graph H , we call a path P an H-path if P is non-trivial and meets H exactly in its ends.

In order to describe, in graph theoretical terms, the family of graphs satisfying the equality rank(G) = frank(G)we need
to introduce another notion.

Definition 2.6. A graph G is a ring graph if each block of Gwhich is not a bridge or a vertex can be constructed from a cycle
by successively adding H-paths of length at least 2 that meet graphs H already constructed in two adjacent vertices.

Families of ring graphs include forests and cycles. These graphs are planar by construction.

Remark 2.7. Let G be a 2-connected ring graph and let c be a fixed primitive cycle of G, then G can be constructed from c by
successively adding H-paths of length at least 2 that meet graphs H already constructed in two adjacent vertices.

A graph H is called a subdivision of a graph G if H = G or H arises from G by replacing edges by paths.

Lemma 2.8 ([1, Lemma 7.78, p. 387]). Let G be a graph with vertex set V. If G is 2-connected and deg(v) ≥ 3 for all v ∈ V, then
G contains a subdivision of K4 as a subgraph.

Lemma 2.9. Let G be a graph. If rank(G) = frank(G) and x, y are two non adjacent vertices of G, then there are at most two
vertex disjoint paths joining x and y.

Proof. Assume that there are three vertex disjoint paths joining x and y:

P1 = {x, x1, . . . , xr , y}, P2 = {x, z1, . . . , zt , y}, P3 = {x, y1, . . . , ys, y},

where r, s, t are greater or equal than 1. We may assume that the sum of the lengths of the Pi’s is minimal. Consider the
cycles

c1 = {x, x1, . . . , xr , y, zt , . . . , z1, x},
c2 = {x, z1, . . . , zt , y, ys, . . . , y1, x},
c3 = {x, x1, . . . , xr , y, ys, . . . , y1, x}.

Thus we are in the situation shown in Fig. 1.

Fig. 1. Illustration of the cycles.

Observe that, by the choice of thePi’s, a chord of the cycle c1 (resp. c2, c3) must join xi and zj (resp. zi and yj, xi and yj) for
some i, j. If c1 is not primitive, we can write

c1 = a1 + · · · + an1
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for some distinct cycle vectors a1, . . . , an1 of primitive cycles a1, . . . , an1 such that each cycle ai contains at least one edge
of the form {xj, zk}. Similarly if c2 (resp. c3) is not primitive we can write:

c2 = b1 + · · · + bn2 (resp. c3 = d1 + · · · + dn3)

for some distinct cycle vectors b1, . . . , bn2 (resp. d1, . . . , dn3 ) of primitive cycles such that each cycle bi (resp. di) contains
at least one edge of the form {zj, yk} (resp. {xj, yk}). Therefore we can write

c1 =
n1∑
i=1

ai, c2 =
n2∑
i=1

bi, c3 =
n3∑
i=1

di

where a1, . . . , an1 , b1, . . . , bn2 , d1, . . . , dn3 are distinct cycle vectors of primitive cycles of G. Thus from the equality c3 =
c1 + c2 we get a non trivial linear relation of the set B of cycle vectors of primitive cycles, i.e., B is linearly dependent, a
contradiction to Corollary 2.3. �

Lemma 2.10. Let G be a graph. If rank(G) = frank(G), then G has the primitive cycle property.

Proof. Let c1, c2 be two distinct primitive cycles. Assume that c1 and c2 intersect in at least two edges. Thus c1 and c2 must
intersect in at least two non adjacent vertices u, v. The cycle c2 can be written as:

c2 = {u = u0, u1, . . . , us, v = us+1, v1, . . . , vm, u}.

At least one of the paths P1 = {u, u1, . . . , us, v}, P2 = {v, v1, . . . , vm, u} that form the cycle c2 must contain a vertex not
in c1, otherwise c1 = c2. Assume that the path P1 has this property. Hence there is uk 6∈ c1 such that ui ∈ c1 for i < k, and
there is u` ∈ c1, with k < `, such that ui 6∈ c1 for k ≤ i < `. Hence there are two non adjacent vertices x = uk−1, y = u` in
c1 and a path P = {x, uk, . . . , u`−1, y} of length at least two that intersect c1 in exactly the vertices x, y (see Fig. 2).

Fig. 2. Illustration of the path and the cycle.

This contradicts Lemma 2.9. �

Lemma 2.11. Let G be a graph. If G satisfies PCP and G does not contain a subdivision of K4 as a subgraph, then for any two non
adjacent vertices x, y of G there are at most two vertex disjoint paths joining x and y.

Proof. Assume that there are three vertex disjoint paths joining x and y:

P1 = {x, x1, . . . , xr , y}, P2 = {x, z1, . . . , zt , y}, P3 = {x, y1, . . . , ys, y},

where r, s, t are greater or equal than 1. We may assume that the sum of the lengths of the Pi’s is minimal. Consider the
cycles

c1 = {x, x1, . . . , xr , y, zt , . . . , z1, x}, c2 = {x, z1, . . . , zt , y, ys, . . . , y1, x},
c3 = {x, x1, . . . , xr , y, ys, . . . , y1, x}.

Thus we are in the situation shown in Fig. 3.

Fig. 3. Illustration of the cycles.

Observe that, by the choice of thePi’s, a chord of the cycle c1 (resp. c2, c3) must join xi and zj (resp. zi and yj, xi and yj) for
some i, j. Notice that the cycles c1 and c3 are primitive. Indeed if c1 or c3 have a chord, then one of the graphs shown in Figs. 4
and 5 is a subgraph of G, which is impossible because both subgraphs are subdivisions ofK4. Since c1 and c3 are primitive
and have at least two edges in common we obtain that G does not satisfy PCP, a contradiction. �
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Fig. 4. Illustrating a chord.

Fig. 5. Another chord.

Lemma 2.12. Let G be a graph. If rank(G) = frank(G), then G does not contain a subdivision of K4 as a subgraph.

Proof. Assume there is a subgraph H ⊂ G which is a subdivision ofK4. IfK4 is a subgraph of G, then G has four distinct
triangles whose cycle vectors are linearly dependent, a contradiction to Corollary 2.3. IfK4 is not a subgraph of G, then H
is a strict subdivision ofK4, i.e., H has more than four vertices. It follows that there are two vertices x, y in V (H)which are
non adjacent in G. Notice that x, y can be chosen inK4 before subdivision. Therefore there are at least three non adjacent
paths joining x and y, a contradiction to Lemma 2.9. �

The main result of this section is:

Theorem 2.13. Let G be a graph. Then the following conditions are equivalent:

(a) G is a ring graph.
(b) rank(G) = frank(G).
(c) G satisfies PCP and G does not contain a subdivision of K4 as a subgraph.

Proof. (a)⇒ (b): By induction on the number of vertices it is not hard to see that any ring graph G satisfies the equality
rank(G) = frank(G).
(b)⇒ (c): It follows at once from Lemmas 2.10 and 2.12.
(c)⇒ (a): Let G1, . . . ,Gr be the blocks of G. The proof is by induction on the number of vertices of G. If each Gi is either

a bridge or an isolated vertex, then G is a forest and consequently a ring graph. Hence by Lemma 2.4 we may assume that G
is 2-connected and that G is not a cycle. We claim that G has at least one vertex of degree 2. If deg(v) ≥ 3 for all v ∈ V (G),
then by Lemma 2.8 there is a subgraph H ⊂ G which is a subdivision ofK4, which is impossible. Let v0 ∈ V (G) be a vertex
of degree 2 as claimed. By the primitive cycle property there is a unique primitive cycle c = {v0, v1, . . . , vs = v0} of G
containing v0. The graph H = G \ {v0} satisfies PCP and does not has a subdivision ofK4 as a subgraph. Consequently H is
a ring graph. Thus we may assume that c is not a triangle, otherwise G is a ring graph because it can be obtained by adding
the H-path {v2, v0, v1} to H .
Next we claim that if 1 ≤ i < j < k ≤ s − 1, then vi and vk cannot be in the same connected component of H \ {vj}.

Otherwise there is a path of H \ {vj} than joins vi with vk. It follows that there is a path P of H \ {vj} with at least three
vertices that joins a vertex of {vj+1, . . . , vs−1}with a vertex of {v1, . . . , vj−1} and such thatP intersects c exactly in its ends,
but this contradicts Lemma 2.11. This proves the claim. In particular vi is a cutvertex of H for i = 2, . . . , s− 2 and vi−1, vi+1
are in different connected components of H \ {vi}. For each 1 ≤ i ≤ s − 2 there is a block Ki of H such that {vi, vi+1} is an
edge of Ki. Notice that if 1 ≤ i < j < k ≤ s− 1, then vi, vj, vk cannot lie in some K`. Indeed if the three vertices lie in some
K`, then there is a path P ′ in K` \ {vj} that joins vi and vk. Since P ′ is also a path in H \ {vj}, we get that vi and vk are in
the same connected component of H \ {vj}, but this contradicts the last claim. In particular V (K`) intersects the cycle c in
exactly the vertices v`, v`+1 for 1 ≤ ` ≤ s− 2.
Observe that at least one of the edges of c not containing v0 is not a bridge of H . To show this pick x 6∈ c such that {x, vk}

is an edge of H . We may assume that vk+1 6= v0 (or vk−1 6= v0). Since G′ = G \ {vk} is connected, there is a path P of G′
joining x and vk+1 (or vk−1). This readily yields a cycle of H containing an edge of c which is not a bridge of H . Hence at least
one of the blocks K1, . . . , Ks−2, say Ki, contains vertices outside c .
Next we show that two distinct blocks B1, B2 of H cannot intersect outside c. We proceed by contradiction assuming

that V (B1) ∩ V (B2) = {z} for some z not in c . Let H1, . . . ,Ht be the connected components of H \ {z}. Notice that t ≥ 2
because {z} is the intersection of two different blocks ofH . Wemay assume that {v1, . . . , vs−1} are contained inH1. Consider
the subgraph H ′1 of G \ {z} obtained from H1 by adding the vertex v0 and the edges {v0, v1}, {v0, vs−1}. It follows that the
connected components of G \ {z} are H ′1,H2, . . . ,Ht , which is impossible because G is 2-connected.
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Let Ki be a block of H that contains vertices outside c for some 1 ≤ i ≤ s− 2. By induction hypothesis Ki is a ring graph.
Thus by Remark 2.7 we can construct Ki starting with a primitive cycle c1 that contains the edge {vi, vi+1}, and then adding
appropriate paths. Suppose that P1, . . . ,Pm is the sequence of paths added to c1 to obtain Ki. If we remove the path Pm
from G and use the fact that distinct blocks of H cannot intersect outside c , then again by induction hypothesis we obtain a
ring graph. It follows that G is a ring graph as well. �

An immediate consequence of Theorem 2.13 is:

Corollary 2.14. Let G be a graph. If rank(G) = frank(G), then G is planar.

Corollary 2.15. If G is a ring graph and H is an induced subgraph of G, then H is a ring graph.

Proof. It follows from part (c) of Theorem 2.13. �

Two graphs H1 and H2 are called homeomorphic if there exists a graph G such that both H1 and H2 are subdivisions of G.
A graph is outerplanar if it can be embedded in the plane so that all its vertices lie on a common face; it is usual to choose
this face to be the exterior face. The complete bipartite graph with bipartition (V1, V2) is denoted byKt,s, where |V1| = t
and |V2| = s.

Theorem 2.16 ([10, Theorem 11.10]). A graph is outerplanar if and only if it has no subgraph homeomorphic toK4 orK2,3 except
K4 \ {e}, where e is an edge.

Proposition 2.17. If G is an outerplanar graph, then rank(G) = frank(G).

Proof. By Theorem 2.13(c) it suffices to prove that G satisfies PCP and G does not contain a subdivision ofK4 as a subgraph.
If G contains a subdivision H ofK4 as a subgraph, then G contains a subgraph, namely H , homeomorphic toK4, but this is
impossible by Theorem 2.16. To finish the proof we now show that G has the PCP property. Let c1 = {x1, x2, . . . , xm = x1}
and c2 = {y1, y2, . . . , yn = y1} be two distinct primitive cycles having at least one common edge. We may assume that
xi = yi for i = 1, 2 and x3 6= y3. Notice that y3 6∈ c1 because otherwise {y2, y3} = {x2, y3} is a chord of c1. We need only
show that {x1, x2} = c1 ∩ c2, because this implies that c1 and c2 cannot have more than one edge in common. Assume that
{x1, x2} ( c1 ∩ c2. Let r be the minimum integer such that yr belong to (c1 ∩ c2) \ {x1, x2}. Notice that yr 6= x3 because
otherwise {x2, x3} is a chord of c2. Hence c1 together with the path {x2 = y2, y3, . . . , yr} give a subgraph H of G which is a
subdivision ofK2,3, a contradiction to Theorem 2.16. �

3. Toric ideals of graphs

Let R = k[x1, . . . , xn] be a polynomial ring over a field k and let G be a graph on the vertex set V (G) = {x1, . . . , xn}.
The edge subring of the graph G, denoted by k[G], is the k-subalgebra of R generated by the monomials corresponding to the
edges of G:

k[G] = k[{xixj| xi is adjacent to xj}] ⊂ R.

There is a graded epimorphism of k-algebras

ϕ: B = k[t1, . . . , tq] −→ k[G], {x, y} 7−→ xy,

where B is a polynomial ring graded by deg(ti) = 1 for all i and k[G] has the normalized grading deg(fi) = 1 for all i. The
kernel of ϕ, denoted by P(G), is a graded prime ideal of B called the toric ideal of G. The graded structure of P(G)will not play
a role in what follows. Later we will emphasize the fact that toric ideals of oriented graphs may not have a graded structure.
Having a grading is useful if one studies the projective toric variety defined by P(G) or systems of generators of P(G).
The Krull dimension of k[G] equals the rank of the incidence matrix of G [11]. If G is a connected graph, then by [23,

Corollary 6.3] one has:

dim(k[G]) =
{
n if G is not bipartite, and
n− 1 otherwise.

Since B/P(G) ' k[G], we obtain that height of P(G) is q− n+ 1 if G is a connected bipartite graph and that height of P(G) is
q− n if G is a connected non-bipartite graph.

Definition 3.1. The toric ideal P(G) is called a complete intersection if it can be generated by g polynomials, where g is the
height of P(G). The graph G is called a complete intersection if P(G) is a complete intersection.



436 I. Gitler et al. / Discrete Mathematics 310 (2010) 430–441

The complete intersection property is independent of k [14, Theorem3.9]. In the area of complete intersection toric ideals
there are some recent papers, see [4,3] and the introduction of [14], where one can find additional properties and references
on this active area.
Next we describe a generating set for P(G) that shows how the cycle structure of G determine P(G). Let

c = {x0, x1, . . . , xr = x0}

be an even cycle of G such that fi = xi−1xi. Notice that the binomial

tc = t1t3 · · · tr−1 − t2t4 · · · tr
is in P(G). If G is bipartite, then P(G) is minimally generated by the set of all tc such that c is a primitive cycle of G, see [21].
The next result can be extended to non connected bipartite graphs.

Theorem 3.2 ([19, Theorem 2.5]). If G is a bipartite connected graph, then G is a complete intersection if and only if rank(G) =
frank(G).

This was the first characterization of complete intersection bipartite graphs. For these graphs the equality rank(G) =
frank(G) can also be interpreted in homological terms [19]. Another characterization is the following:

Theorem 3.3 ([13]). If G is a bipartite graph, then G is a complete intersection if and only if G is planar and satisfies PCP.

The next result is interesting because it shows how to construct all the complete intersection bipartite graphs.

Corollary 3.4. If G is a bipartite graph, then G is a complete intersection if and only if G is a ring graph.

Proof. By Theorem 3.2 G is a complete intersection if and only if rank(G) = frank(G) and the result follows from
Theorem 2.13. �

Notation. For a = (a1, . . . , aq) ∈ Nq and f1, . . . , fq in a commutative ring we set f a = f
a1
1 · · · f

aq
q . The support of f a is the set

supp(f a) = {fi | ai 6= 0}.

Definition 3.5. Let g1 = tα1 − tβ1 , . . . , gr = tαr − tβr be a sequence of homogeneous binomials of degree at least 2 in the
polynomial ring B = k[t1, . . . , tq]. We say thatB = {g1, . . . , gr} is a foliation if the following conditions are satisfied:

(a) tαi and tβi are square-free monomials for all i,
(b) supp(tαi) ∩ supp(tβi) = ∅ for all i, and
(c) |(∪ji=1 Ci) ∩ Cj+1| = 1 for 1 ≤ j < r , where Ci = supp(t

αi) ∪ supp(tβi).

Proposition 3.6. If B = {g1, . . . , gr} is a foliation, then the ideal I = (B) generated by B is a complete intersection and B is
a Gröbner basis of I.

Proof. By the constructive nature ofB we can order the variables t1, . . . , tq such that the leading terms of g1, . . . , gr , with
respect to the lexicographical order, are relatively prime. Let in(gi) be the leading term of gi. Then B is a Gröbner basis by
a result of Buchberger [22, Theorem 2.4.15]. Since B/I and B/(in(g1), . . . , in(gr)) have the same Krull dimension by a result
of Macaulay [22, Corollary 2.4.13], we obtain that the height of I is equal to r , as required. �

Corollary 3.7. If G is a 2-connected bipartite graph with at least four vertices, then the toric ideal P(G) is a complete intersection
if and only if it is generated by a foliation.

Proof. It follows from Corollary 3.4 and the definition of a ring graph. �

4. Toric ideals of oriented graphs

Let G be a connected graph with n vertices and q edges and let O be an orientation of the edges of G, i.e., an assignment
of a direction to each edge of G. ThusD = (G,O) is an oriented graph. To each oriented edge e = (xi, xj) ofD , we associate
the vector ve defined as follows: the ith entry is −1, the jth entry is 1, and the remaining entries are zero. The incidence
matrix AD ofD is the n× qmatrix with entries in {0,±1} whose columns are the vectors of the form ve, with e an edge of
D . For simplicity of notation we set A = AD . The set of column vectors of A will be denoted byA = {v1, . . . , vq}. It is well
known [15] that A defines a matroid M[A] on A = {v1, . . . , vq} over the field Q of rational numbers, which is called the
vector matroid of A, whose independent sets are the independent subsets of A. A minimal dependent set or circuit of M[A]
is a dependent set all of whose proper subsets are independent. A subset B of A is called a basis of M[A] if B is a maximal
independent set. Recall that an integer matrix is called totally unimodular if each i× iminor (subdeterminant) of the matrix
is 0 or±1 for all i ≥ 1.

Lemma 4.1. The circuits of M[A] are precisely the cycles of G, A is totally unimodular, and rank(A) = n− 1.
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Proof. It follows from [9, pp. 343-344] and [18, p. 274]. �

Let α ∈ Rq. The support of α is defined as supp(α) = {i | αi 6= 0}. An elementary vector of ker(A) is a vector 0 6= α
in ker(A) whose support is minimal with respect to inclusion, i.e., supp(α) does not properly contain the support of any
other nonzero vector in ker(A). A circuit of ker(A) is an elementary vector of ker(A) with relatively prime integral entries
(see [24, Section 2]). There is a one to one correspondence

Circuits of ker(A) −→ Circuits ofM[A] = cycles of G

given by α = (α1, . . . , αq)→ C(α) = {vi| i ∈ supp(α)}. Thus the set of circuits of the kernel of A is the algebraic realization
of the set of circuits of the vector matroidM[A].
Consider the edge subring k[D] := k[xv1 , . . . , xvq ] ⊂ k[x±11 , . . . , x

±1
n ] of the oriented graphD . There is an epimorphism

of k-algebras

ϕ: B = k[t1, . . . , tq] −→ k[D], ti 7−→ xvi ,

where B is a polynomial ring. The kernel of ϕ, denoted by PD , is called the toric ideal of D . Notice that PD is no longer a
graded ideal, see Proposition 4.7. The toric ideal PD is a prime ideal of height q − n + 1 generated by binomials and k[D]
is a normal domain. Thus any minimal generating set of PD must have at least q − n + 1 elements, by the principal ideal
theorem.
Let α ∈ Rq. Note that α = α+ − α−, where α+ and α− are two non negative vectors with disjoint support. If

0 6= α ∈ ker(A) ∩ Zn we associate the binomial tα = tα+ − tα− . Notice that tα ∈ PD . Given a cycle c of D , we split c
in two disjoint sets of edges c+ and c−, where c+ is oriented clockwise and c− = c \ c+. The binomial

tc =
∏
vi∈c+

ti −
∏
vi∈c−

ti

belongs to PD . If c+ = ∅ or c− = ∅we set
∏
vi∈c+

ti = 1 or
∏
vi∈c−

ti = 1.

Definition 4.2. The toric ideal PD is called a binomial complete intersection if PD can be generated by q− n+ 1 binomials.

If PD is homogeneous and is generated by q− n+ 1 polynomials, then PD is a binomial complete intersection.

Proposition 4.3. PD is generated by the set of all binomials tc such that c is a cycle of D and this set is a universal Gröbner basis.

Proof. Let UD be the set of all binomials of the form tα such that α is a circuit of ker(A). Since A is totally unimodular,
by [20, Proposition 8.11], the setUD form a universal Gröbner basis of PD . Notice that the circuits of ker(A) are in one to one
correspondence with the circuits of the vector matroidM[A]. To complete the proof it suffices to observe that the circuits of
M[A] are precisely the cycles of G, see Lemma 4.1. �

Proposition 4.4. Let c = {x1, x2, . . . , xr , x1} be a circuit of D . Suppose that (xi, xj) or (xj, xi) is an edge of D , with i+ 1 < j.
Then tc is a linear combination of tc1 and tc2 , where c1 = {x1, x2, . . . , xi, xj, xj+1, . . . , xr , x1} and c2 = {xi, xi+1, . . . , xj, xi}.

Proof. Supposewithout loss of generality that vk = (xi, xj) is the edge ofD with i+1 < j. Thenwe canwrite tc1 = t
α+−tα−

and tc2 = t
β+ − tβ− for some α, β . We may assume that vk ∈ c1+ ∩ c2+ , because otherwise we may multiply tc1 or tc2 by

−1. As tk divides tα+ and tk divides tβ+ , we get(
tβ+

tk

)
tc1 −

(
tα+

tk

)
tc2 =

(
tβ+

tk

)
(tα+ − tα−)−

(
tα+

tk

)
(tβ+ − tβ−)

=

(
tα+

tk

)
tβ− −

(
tβ+

tk

)
tα− = tγ1 − tγ2 .

Hence tγ1 − tγ2 is in PD , where γ1 = (α+ − ek) + β− and γ2 = (β+ − ek) + α−. Then tγ1 is the product of the edges of
(c1+ \ {tk})∪ c2− , but these are the edges of c+. By the same reason tγ2 is the product of the edges of c−. Thus tc = t

γ1 − tγ2 .
From the equality above we get that tc is a linear combination of tc1 and tc2 . �

As an immediate consequence of Propositions 4.3 and 4.4 we get:

Corollary 4.5. PD is generated by the set of binomials corresponding to primitive cycles.

We say that a cycle c ofD is oriented if all the arrows of c are oriented in the same direction. IfD does not have oriented
cycles, we say thatD is acyclic.

Proposition 4.6 ([10]). D is acyclic if and only if there is a linear ordering of the vertices such that every edge of D has the form
(xi, xj) with i < j.

The ordering of the last proposition is called a topological ordering. The next result is not hard to prove.
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Proposition 4.7. If D has a topological ordering, then PD is generated by homogeneous binomials with respect to the grading
induced by degree(tk) = j− i, where tk maps to x−1i xj and (xi, xj) is an edge.

Corollary 4.8. If D is acyclic, then PD is a complete intersection if and only if PD is generated by q−n+1 binomials corresponding
to primitive cycles.

Proof. Since PD is a graded ideal, it suffices to recall that all the homogeneous minimal sets of generators of PD have the
same number of elements. �

In general the binomial complete intersection property of PD depends on the orientation of G. However we have:

Corollary 4.9. If G is a ring graph, then PD is a complete intersection for any orientation of G. The converse holds if G is bipartite.

Proof. By Corollary 4.5, PD is generated by q−n+1 binomials. To show the converse assume that G is bipartite. Let (V1, V2)
be a bipartition of G. Consider the oriented graph D obtained from G by orienting all the edges of G from V1 to V2, i.e., all
the arrows of G have tail at V1 and head at V2. Since every vertex ofD is either a source or a sink it follows that P(G) = PD .
Hence P(G) is a complete intersection and G is a ring graph by Corollary 3.4. �

An interesting problem that remains unsolved is to characterize the graphs with the property that PD is a binomial
complete intersection for all orientations of G. Apart from ring graphs, it has been shown that complete graphs have this
property [17,16].

4.1. A special orientation

Let G be a connected graph. Here we show that there is always an orientation of G such that PD is a complete intersection
generated by the binomials that correspond to a cycle basis of a certain spanning tree of G.

Definition 4.10. Let S be a set of vertices of a graph G. The neighbor set of S, denoted by NG(S) or simply by N(S) if G is
understood, is the set of vertices of G that are adjacent with at least one vertex of S.

Lemma 4.11. If H is a subgraph of a connected graph G and NG(V (H)) ⊂ V (H), then V (G) = V (H).

Proof. Fix a vertex x ∈ V (H). Let y ∈ V (G). Since G is connected, there is a path P = {b1 = x, b2, . . . , b` = y} from x to
y. Using that {bj, bj+1} ∈ E(G) for 1 ≤ j < ` − 1 and that b1 ∈ V (H), by induction we get that bj ∈ V (H) for all j. Thus
y ∈ V (H). �

We begin by constructing a proper nested sequence A1, . . . , Am of subtrees of G labeled by V (Aj) = {y
j
1, . . . , y

j
rj} such

that Am is a spanning tree of G and V (Ai) ( V (Ai+1) for i < m. First we construct the sequence A1, . . . , Am and then we show
that it has the required properties. Let A1 be a path of G maximal with respect to inclusion. Set V (A1) = {y11, y

1
2, . . . , y

1
r1}.

We define

i1 = max{u ∈ N|NG(y11, . . . , y
1
u) ⊂ V (A1)},

where NG(B) is the neighbor set of B. If i1 = r1, then NG(V (A1)) ⊂ V (A1) and by Lemma 4.11 we get V (A1) = V (G), in this
case A1 is the required spanning tree andwe setm = 1. If i1 < r1, we define a1 = y1i1+1. By inductionwe define the sequence
of subgraphs A1, . . . , Am. Suppose that Aj has been defined, where V (Aj) = {y

j
1, . . . , y

j
rj}. We define

ij = max{u ∈ N|NG(y
j
1, . . . , y

j
u) ⊂ V (Aj)}.

If ij = rj, then by Lemma 4.11 we get V (Aj) = V (G), in this case we set m = j and A1, . . . , Aj is the desired sequence. If
ij < rj = |V (Aj)|, we define aj = y

j
ij+1
. Let Lj be a maximal path with respect to inclusion such that V (Lj) ∩ V (Aj) = {aj}

and V (Lj) = {z
j
1, z

j
2, . . . , z

j
sj = aj}, the final vertex of Lj is aj. We define Aj+1 as follows: V (Aj+1) = V (Aj) ∪ V (Lj) =

{yj+11 , . . . , yj+1rj+sj−1}, where

yj+1i =


yji if i ≤ ij,

z ji−ij if ij + 1 ≤ i ≤ ij + sj,

yji−sj+1 if ij + sj + 1 ≤ i ≤ rj + sj − 1,

(1)

E(Aj+1) = E(Aj) ∪ E(Lj), and rj+1 = rj + sj − 1.

Lemma 4.12. ik+1 > ik for 1 ≤ k ≤ m− 1.
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Fig. 6. Tree A1 .

Fig. 7. Tree A2 .

Fig. 8. Tree A3 .

Proof. By construction yk+1i = yki for 1 ≤ i ≤ ik and y
k+1
ik+1
= zk1 (see Eq. (1)). By the maximality ofLj we have

NG(yk+11 , yk+12 , . . . , yk+1ik , yk+1ik+1) ⊂ V (Ak+1),

thus ik+1 > ik by definition of ik+1. �

Suppose that the process finish at stepm, i.e., im = rm. We now prove that A1, . . . , Am has the required properties:

Lemma 4.13. Ai is a tree for 1 ≤ i ≤ m and Am is a spanning tree of G.

Proof. By induction on i. For i = 1 the assertion is clear. Suppose that Ai is a tree. Recall thatLi is a tree and V (Li)∩V (Ai) =
{ai}. On the other hand V (Ai+1) = V (Ai) ∪ V (Li) and E(Ai+1) = E(Ai) ∪ E(Li), then Ai+1 is connected and does not has
cycles. By Lemma 4.11 we get that V (Am) = V (G) and Am is a spanning tree. �

Orientation of the tree Am and the graph G.
Let τ = (Am,O) be the oriented tree obtained from Am using the following orientation:

(ymi , y
m
j ) ∈ E(τ ) if and only if {y

m
i , y

m
j } ∈ E(Am) and j > i.

By Lemma 4.13 we have V (G) = V (Am) = {ym1 , y
m
2 , . . . , y

m
rm} and we orient G to obtain the oriented graphD = (G,O)

in the following way:

(ymi , y
m
j ) ∈ D if and only if {ymi , y

m
j } ∈ E(G) and j > i.

Example 4.14. The construction of the spanning tree Am and the orientation O of G is illustrated in Figs. 6–11.

Notation. For each fi ∈ E(D) \ E(τ ) the unique cycle of the subgraph τ ∪ {fi} is denoted by c(τ , fi).

Proposition 4.15. For each fi ∈ E(D) \ E(τ ) all the edges of c(τ , fi) \ {fi} are oriented in the same direction and fi is oriented in
the opposite direction.
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Fig. 9. Tree A4 .

Fig. 10. Tree A5 .

Fig. 11. Tree A6 .

Proof. By induction onm, the number of subtrees A1, . . . , Am. Ifm = 1 the result is easy to verify because A1 is a spanning
path of G. Assumem > 1. Consider the subgraphs

G = G \ {y11, . . . , y
1
i1}, Ai = Ai \ {y11, . . . , y

1
i1}, i ≥ 2.

We setD = (G,O) and τ = (Am,O), where O is the orientation induced from O. Notice that G is connected because Am is
a spanning tree of G. Using the equality

V (A2) = {y2i1+1, . . . , y
2
r1+s1−1} = {z

1
1 , . . . , z

1
s1 , y

1
i1+2, . . . , y

1
r1}

and zs1 = y
1
i1+1
it is not hard to see that A2 is a maximal path of G and the result follows by induction. Indeed a fundamental

cycle of τ is equal to c(τ , fi) = c(τ , fi) with fi ∈ E(D) \ E(τ ) or c(τ , fi) = c(τ ′, fi) with fi ∈ E(H) \ E(τ ′) where H is the
induced subgraph on {y11, . . . , y

1
i1
} and τ ′ is the spanning path of H given by y11, . . . , y

1
i1
. In the first case we apply induction

to obtain that the edges of c(τ , fi) are properly oriented, in the second case it is easy to verify that c(τ ′, fi) has the required
orientation. �

Theorem 4.16. PD =
(
{tc(τ ,fi)|fi ∈ E(D) \ E(τ )}

)
.

Proof. Set E(D)\E(τ ) = {f1, . . . , fq−n+1}. Supposewithout loss of generality that t1, . . . , tq−n+1 are the variables associated
to f1, . . . , fq−n+1 respectively. By Proposition 4.15 tc(τ ,fi) = ti − t

βi , where tβi is a product of variables associated to edges
in τ . Let I be the ideal generated by the set {tc(τ ,fi)|fi ∈ E(D) \ E(τ )} in B = k[t1, . . . , tq]. Let h = t

α
− tβ be a binomial in

PD . Thus ti = tβi in B/I for i = 1, . . . , q− n+ 1. Then h = tγ − tω , where tγ and tω are products of variables associated to
edges of τ . As I ⊂ PD , then tγ − tω ∈ PD = ker(ϕ). But τ is a tree, thus tγ = tω , and h = 0 in B/I . Since PD is generated by
binomials, PD = I . �

Corollary 4.17. Assume that D is the oriented graph constructed above. Then PD is a homogeneous ideal generated by q−n+1
binomials corresponding to primitive cycles.

Proof. By Theorem 4.16 it follows that PD does not contains binomials of the form 1 − ta, i.e., D is acyclic. Thus we may
apply Corollary 4.8. �

A tournamentD is a complete graphKn with a given orientation.
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Proposition 4.18 ([10]). If D is a tournament, thenD has a spanning oriented path.

Proposition 4.19 ([12]). If D is an acyclic tournament, then PD is a complete intersection minimally generated by a Gröbner
basis.

Proof. Let τ be a spanning oriented path ofD , i.e., τ = {x1, x2, . . . , xn} and (xi, xi+1) is an edge ofD for all i < n. SinceD
is acyclic, using the proof of Theorem 4.16, it follows that

PD = ({tc(τ ,fi)|fi ∈ E(D) \ E(τ )}),

where for each fi ∈ E(D) \ E(τ ), the unique cycle of the subgraph τ ∪ {fi} is denoted by c(τ , fi). �

Similarly we can prove the following generalization:

Proposition 4.20. If D is an acyclic oriented graph with a spanning oriented path, then PD is a complete intersection minimally
generated by a Gröbner basis.
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