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Abstract

In this paper, we discuss the convergence of the DFP algorithm with revised search direction. Under
some inexact line searches, we prove that the algorithm is globally convergent for continuously di2erentiable
functions and the rate of convergence of the algorithm is one-step superlinear and n-step second order for
uniformly convex objective functions.

From the proof of this paper, we obtain the superlinear and n-step second-order convergence of the DFP
algorithm for uniformly convex objective functions.
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1. Introduction

We know that in order to obtain a superlinearly convergent method, it is necessary to approximate
the Newton step asymptotically—this is the principle of Dennis and Mor=e [7]. How can we do
this without actually evaluating the Hessian matrix by any approximate to the Hessian matrix at
every iteration? The answer was discovered by Davidon [5] and was subsequently developed and
popularized by Fletcher and Powell [10]. It consists of starting with any approximation to the
Hessian matrix, and at each iteration, updating this matrix by incorporating the curvature of the
problem measured along the step. If this update is done appropriately, one obtains some remarkably
robust and eEcient algorithms, called Quasi–Newton methods or variable metric algorithms. They
revolutionized nonlinear optimization by providing an alternative to Newton’s method which is too
costly for many applications.
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One, maybe the most important, class of variable metric algorithms is Broyden algorithms [3].
With exact line search, Dixon [8] proved that all Broyden algorithms produce the same iterations for
general functions. Powell [16] proved that the rate of convergence of these algorithms is one-step
Q-superlinear for the uniformly convex object functions, and Pu [24] extend this result for LC1

objective function. Pu and Yu [28] proved that if the points which are given by these algorithms
are convergent, they are globally convergent, for continuously di2erentiable functions.

Without exact line search several results have been obtained. A global convergence result for
the BFGS algorithm is obtained by Powell [17]. He demonstrated that if the objective function f
is convex, then the BFGS algorithm gives lim inf‖∇f(xk)‖ = 0 under given conditions on the line
search, and if in addition the sequence {xk} converges to a solution point at which the Hessian
matrix is positive deOnite, then the rate of convergence is Q-superlinear.

This analysis has been extended by Byrd et al. [4] to the restricted Broyden algorithms. They
proved the global and Q-superlinear convergence on convex problems for all the restricted Broyden
algorithms except for the DFP algorithm, i.e., for �∈ (0; 1] in the Broyden update class (the � in the
Broyden update is shown in (6)). Pu [23,25] proved the global convergence of the DFP algorithm
for the uniformly convex object function under some modiOed Wolfe conditions.

Other variable metric algorithms have also been proposed. For example, the Huang’s updating for-
mula is characterized by three independent parameters. For the relationship among Huang’s updates,
Oren’s updates [14] and the Broyden algorithms see [32,33].

For the choice of the parameter � in the Broyden update formula, some optimal conditions are
suggested in some methods. For example, Davidon [6] proposed a method in which Bk+1 (Bk and
Bk+1 are denoted in (6)) is chosen to be the member of the Broyden class that minimizes the
condition number of B−1

k Bk+1, subject to preserving positive deOniteness. Other work in this area
includes [1,13,11], and so on. Besides Zhang and Tewarson [37] performed numerical tests with
negative values of �.

One can also attempt to improve variable metric methods by introducing automatic scaling strate-
gies to adjust the size of matrix Bk . An idea proposed by Oren and Luenberger [15] consists of
multiplying Bk by a scaling length 
 before the update takes place. For example, for BFGS methods,
the update would be of the form

Bk+1 = 

[
Bk − BksksT

k Bk
sT
k Bksk

]
+
ykyT

k

yT
k sk

; (1)

where gk is the gradient of f(x) at xk , sk = xk+1 − xk and yk = gk+1 − gk .
Another strategy has been proposed by Powell [21], and further developed by Lalee and Nocedal

[12] and Siegel [30,31]. Powell’s idea is to work with the lengthization

Hk = (Bk)−1 = zkzT
k (2)

of the inverse Hessian approximation Hk .
There are many theoretical and computational results on rank-one updating formulas as well as

rank-two updating formulas proposed (for example, see [34]).
The Broyden algorithms are also applied to the methods for solving the constrained nonlinear

optimization problems, for example, see [18,2,29].
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However, there are several unsolved theoretical problems for the Broyden algorithms. We cannot
prove the convergence of the Broyden algorithms for nonconvex functions, some computational
results show that the points given by the Broyden algorithms may not converge to the optimum
if objective functions are not convex. We do not know that, whether or not, the DFP algorithm is
convergent if the line search satisOes the Wolfe conditions too (see [9]).

To overcome the shortcoming that the Broyden algorithms may not converge for general functions,
Pu and Tian proposed ([22,26]) a class of modiOed Broyden algorithms in which the updating
formula is rank three, and proved the convergence and the one-step superlinear convergence of these
algorithms. They advanced above algorithms and proposed a new class of variable metric algorithms
in which the Broyden update is used, but the line searches directions are revised properly (see [27]).
They call them the Broyden algorithms with revised search direction, or revised Broyden algorithms,
and proved that these algorithms are convergent for continuously di2erentiable objective functions,
and superlinear and n-step second-order convergent for the uniformly convex objective functions
under exact line search.

In this paper, we discuss the revised DFP algorithm under inexact line search. We prove that
the algorithm is convergent for the continuously di2erentiable objective functions. Also the new
algorithm is superlinear and n-step second-order convergent for uniformly convex functions when the
line search is inexact, but satisOes some search conditions. We list the convergent and superlinearly
convergent results, but do not give the detail proof of superlinear convergence for other revised
Broyden algorithms. We also list the n-step second-order convergence results of revised Broyden
algorithms without the detail proof.

The revised Broyden algorithms are iterative. Given a starting point x1 and an initial positive
deOnite matrix B1, they generate a sequence of points {xk} and a sequence of matrices of {Bk}
which are given by the following equations ((3) and (6)):

xk+1 = xk + sk = xk + �kdk ; (3)

where �k ¿ 0 is the step factor and dk is the search direction satisfying

− dk = Hkgk + ‖QkHkgk‖Rkgk ; (4)

where gk is the gradient of f(x) at xk and Hk is the inverse of Bk .
{Qk} and {Rk} are two sequences of positive deOnite or positive semi-deOnite matrices which are

uniformly bounded. All eigenvalues of these matrices are included in [q; r]; 06 q6 r, i.e., for all
k and x∈Rn; x �= 0

q‖x‖26 xTQkx6 r‖x‖2; q‖x‖26 xTRkx6 r‖x‖2: (5)

If gk = 0, the algorithms terminate, otherwise let

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+
ykyT

k

sT
k yk

+ �(sT
k Bksk)vkv

T
k ; (6)

where yk = gk+1 − gk ; vk = yk(sT
k yk)

−1 − Bksk(sT
k Bksk)

−1 and �∈ [0; 1]. In the above algorithms if
Rk ≡ 0, we get the Broyden algorithms, and if �= 0 we call it revised BFGS algorithm or RBFGS
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algorithm, and if � = 1 we call it revised DFP algorithm or RDFP algorithm. In this paper, we
discuss the convergence of algorithms for q¿ 0.

The matrix Hk+1 denotes the inverse of Bk+1, the recurrence formula of Hk+1 is

Hk+1 = Hk − HkykyT
k Hk

yT
k Hkyk

+
sksT

k

sT
k yk

+
��k�T

k

yT
k Hkyk

; (7)

where

�k = Hkyk − yT
k Hkyk
sT
k yk

sk ; (8)

where �∈ [0; 1]; � and � satisfying

� =
(1 − �)(sT

k yk)
2

(1 − �)(sT
k yk)2 + �yT

k HkyksT
k Bksk

(9)

or

� =
(1 − �)(sT

k yk)
2

(1 − �)(sT
k yk)2 + �yT

k HkyksT
k Bksk

: (10)

We may obtain the quasi-Newton formula

Hk+1yk = sk (11)

in the Broyden algorithms.
In this paper, the line search is inexact, and in order to guarantee descentness of the objective

function values and the convergence of the algorithms, we must give some conditions for determining
�k . We use the Wolfe conditions or modiOed Wolfe conditions as follows:

f(xk) − f(xk+1)¿ �k(−gT
k sk) (12)

and

|gT
k+1sk |6 
k(−gT

k sk): (13)

Let �0 and 
0 be two constants satisfying 0¡�06 
0 ¡ 1=2, we discuss the following cases:
Case 1 (Wolfe condition): �k = �0 and 
k = 
0 are two constants.
Case 2 (modi1ed Wolfe condition):

�k = �0 min{1; �−1
k }; 
k = 
0 min{1; �−1

k } (14)

and −sT
k g(xk + �sk)¿ 0 for all �∈ (0; 1].

Case 3 (another modi1ed Wolfe condition):

�k = �0 min{1; ‖gk‖−1}; 
k = 
0 min{1; ‖gk‖−1}: (15)

The above three cases will be called the line search condition 1, 2 or 3, respectively. We always
try �k = 1 Orst in choosing the step factor.
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From the Broyden algorithms we know that if Bk is a positive deOnite matrix and line research
satisOes one of above cases, then sT

k yk ¿ 0 and Bk+1 is positive deOnite. Using the mathematical
induction, it is easy to imply that Bk and Hk are positive deOnite matrices if H1 and B1 are so.

If no ambiguities are arisen, we may drop the subscript of the characters, for example, g; x; R
denote gk ; xk , Rk , and use subscript * to denote the amounts obtained by the next iteration, i.e.,
g∗; x∗; R∗ denote gk+1; xk+1; Rk+1, respectively.

For simplicity, we let

Uk =
−gT

k Hkyk
yT
k Hkyk

; Vk =
yT
k Hkyk
sT
k yk

; Wk =
−gT

k dk
yT
k dk

=
−gT

k sk
sT
k yk

;

Zk =Hkgk +
−gT

k Hkyk
sT
k yk

sk

=
‖QkHkgk‖yT

k Rkgk
sT
k yk

sk − ‖QkHkgk‖Rkgk : (16)

The paper is outlined as follows:
Section 2 gives several convergence results without the convexity assumption. Section 3 gives

some results for convex objective functions. In Sections 4, we prove that the revised DFP algorithm
is linearly convergent. In Section 5 we prove that our algorithm is one-step superlinearly convergent
and in Section 6 we show that the algorithm has a quadratical convergence rate under some conditions
on line search and give some numerical results.

Throughout this paper the vector norms are Euclidian.

2. Several convergence results without convexity assumption

In this section, we assume:

1. f(x)∈C1;1, i.e., there exists an L¿ 1 such that for any x; y∈Rn,
‖g(x) − g(y)‖6L‖x − y‖: (17)

2. For any x1 ∈Rn, the level set S(x1) = {x |f(x)6f(x1)} is bounded.
3. Let Sx be the minimum point of f, then f(x) and x are replaced by f(x − Sx) − f( Sx) and x − Sx,

respectively. So, we may assume for simplicity

f(0) = minf(x) = 0:

We get the following by the properties of R and Q:

(1 + r2‖g‖)‖Hg‖¿ ‖d‖¿ (1 − r2‖g‖)‖Hg‖: (18)

If 2r2‖gk‖¡ 1 for suEciently large k, then there exists a constant c0 ¿ 0 such that for all k,

‖d‖(1 − c0‖x‖)6 ‖Hg‖6 ‖d‖(1 + c0‖x‖): (19)
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The following holds for all k:

− gTs = �[gTHg + ‖QHg‖gTRg]¿
q2‖g‖2‖s‖
1 + r2‖g‖ : (20)

Assumption 1 and (13) imply

− (1 − 
0)gTs6 sTy6L‖s‖2: (21)

From (20) and (21) we obtain

‖s‖¿ −(1 − 
0)gTs
L‖s‖ ¿

q2(1 − 
0)‖g‖2

L(1 + r2‖g‖)
(22)

and

(−gTs)¿
(1 − 
0)q4‖g‖4

L(1 + r2‖g‖)2 ¿
(1 − 
0)‖g‖2

4L
min

{
q4‖g‖2;

q4

r4

}
: (23)

Then the following theorem can be given.

Theorem 2.1. The algorithms are globally convergent under the line search condition 1:

lim
k→∞

gk = 0: (24)

Proof. Suppose the theorem is not true, then there exists an %¿ 0 such that ‖gk‖¿ %¿ 0 for
inOnitely many k. The f(xk) is bounded below because the level set S(x1) is bounded. This implies

lim
k→∞

{f(xk) − f(xk+1)} = 0: (25)

But (12) and (23) imply that, for those k with ‖gk‖¿ %,

f(xk) − f(xk+1)¿ �0(−gT
k sk)¿

(1 − 
0)%2�0

4L
min

{
q4%2;

q4

r4

}
¿ 0: (26)

The contradiction between (25) and (26) leads to the theorem.

Remark. Under line search condition 2 or 3, Theorem 2.1 still holds.

Except there is an extra statement, in the remainder part of this paper we discuss the revised DFP
algorithm, i.e., � = 1 or � = 0.

By taking the trace of both sides of (6), we get

tr(B∗) = tr(B) +
‖y‖2

sTy
+

‖y‖2sTBs
(sTy)2 − 2yTBs

sTy
: (27)

By taking the trace of both sides of (7), we obtain

tr(H∗) = tr(H) − ‖Hy‖2

yTHy
+

‖s‖2

sTy
: (28)
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Multiplying both sides of (7) by g∗, we get

H∗g∗ =Hg∗ − gT∗Hy
yTHy

Hy +
gT∗s
sTy

s =
−gTHy
yTHy

Hy + Hg +
gT∗s
sTy

s

=U� + Z + (1 −W )s; (29)

where U and W are deOned in (16). Then we get

� = U−1[H∗g∗ − Z − (1 −W )s] (30)

and

Hy = � + Vs = U−1[H∗g∗ − Z − (1 −W )s] + Vs: (31)

Let c1 = [(1 + r2 sup{‖gk‖})]−1q2 and &k denote the angle between gk and Hkgk , then from (20)
we know that for all k,

M‖s‖
(1 − 
)‖g‖¿

yTs
(1 − 
)‖g‖‖s‖¿ cos & =

−gTs
‖g‖‖s‖¿ c1‖g‖: (32)

3. Some results for the uniformly convex objective functions

In this section, we assume:

1. The objective function f(x) is uniformly convex and there exist M and m; M¿m¿ 0, such
that, for all x; y∈Rn,

m‖x‖26 xTG(y)x6M‖x‖2; (33)

where G(y) is the Hessian of f(x) at y.
2. G(x) satisOes the Lipschitz condition, i.e., there exists an L¿ 1 such that, for all x; y∈Rn,

‖G(x) − G(y)‖6L‖x − y‖: (34)

For simplicity, we assume
3. f(0) = minf(x) = 0 and G(0) = In×n, i.e., the nth order identity matrix.

Assumption 3 is equivalent to in having a linear aEne transformation for the objective function
which does not a2ect the results in the paper.

By Byrd et al. (1987) (cf. p. 1175), there exists a c2 ¿ 0 such that for all k,

f(xk+1)6 (1 − c2 cos2 &k)f(xk); (35)

where cos &k is the same as in (32). Since

m
2
‖x‖26f(x) = xT

(∫ 1

0

∫ u

0
G(tx) dt du

)
x6

M
2
‖x‖2 (36)
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and {f(xk)} is a monotonically nonincreasing sequence of k, we get, for all k and i¿ 0,

M‖xk‖2¿m‖xk+i‖2: (37)

Let

Gk =
∫ 1

0
G(xk + tsk) dt (38)

and c3 = L
√
M=m(1 + 1=m), then (34) and (37) imply, for all k,

‖I − G‖ = ‖G(0) − G‖6L

√
M
m
‖x‖6 c3‖x‖; (39)

where the subscript k of Gk is dropped. Since y = Gs, and ‖y‖2 − sTy = sT(G)1=2(G − I)(G)1=2s,
we get

max{m; 1 − c3‖x‖}6 ‖y‖2

sTy
6min{M ; 1 + c3‖x‖}: (40)

For the same reason, let (G)−1 denote the inverse of G, we get

‖I − G−1‖6 ‖G−1‖‖I − G‖6L

√
M
m

1
m
‖x‖6 c3‖x‖ (41)

and the following holds for all k:

max
{

1
M

; 1 − c3‖x‖
}
6

‖s‖2

sTy
6min

{
1
m

; 1 + c3‖x‖
}
: (42)

The Quasi–Newton H∗y = s and (39) imply that gT∗s = gT∗H∗y and

|gT
∗H∗s− gT

∗s| = |gT
∗H∗(I − G)s|6L

√
M
m
‖x‖‖H∗g∗‖‖s‖: (43)

So, by (42) and (43)

|gT
∗H∗s− (1 −W )‖s‖2|6

∣∣∣∣gT
∗H∗s− gT∗H∗s‖s‖2

sTy

∣∣∣∣ +
∣∣∣∣gT∗H∗s‖s‖2

sTy
− gT∗s‖s‖2

sTy

∣∣∣∣
6 2c3‖x‖‖H∗g∗‖‖s‖: (44)

Eqs. (16) and (19) imply that there is a constant c4 ¿ 0 such that, for all k,

‖Z‖6 c4‖d‖‖x‖: (45)
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Eqs. (30), (44) and (45) imply

|sT�| = |U−1(gT
∗H∗s− sTZ − (1 −W )‖s‖2)|

6U−1‖x‖‖s‖(2c3‖H∗g∗‖ + c4‖d‖): (46)

By (31) and (46) we obtain

‖Hy‖2

yTHy
=
V‖s‖2

sTy
+

‖�‖2

yTHy
+

2sT�
sTy

¿V (1 − 2c3‖x‖) +
‖�‖2

yTHy
− 2‖x‖‖s‖(2c3‖H∗g∗‖ + c4‖d‖)

UsTy
: (47)

Eq. (45) implies 2|ZTH∗g∗|6 c4‖x‖(‖H∗g∗‖2 +‖d‖2), (30) and (46) imply that there exists a c5 ¿ 0
such that, for all k,

‖�‖2 = U−2‖H∗g∗ − Z − (1 −W )s‖2

¿U−2{‖H∗g∗‖2 − 2|ZTH∗g∗| − (1 −W )2‖s‖2} − 2|U−1(1 −W )sT�|
¿U−2[‖H∗g∗‖2(1 − c5‖x‖) − c5‖x‖‖d‖2 − (1 −W )gT

∗s(1 + c5‖x‖)]: (48)

We discuss the relation among yTHy; −gTHy; dTy and gTd. Eq. (4) means

− gTd− r2‖Hg‖‖g‖26 gTHg

= −gTd− ‖QHg‖gTRg6− gTd− q2‖Hg‖‖g‖2 (49)

and

dTy − r2‖g‖‖Hg‖‖y‖6−gTHy

= dTy + gTRy‖QHg‖6dTy + r2‖g‖‖Hg‖‖y‖: (50)

On the other hand, −gTdyTHy¿yTHygTHg¿ (−gTHy)2 implies yTHy¿ (−gTHy)2=(−gTd).
So, by (18) and (19), there exists a constant c6 ¿ 0 such that the following (51)–(53) hold for

suEciently large k:

dTy(1 − c6‖x‖)6− gTHy6dTy(1 + c6‖x‖); (51)

yTHy¿ (1 − 
0)(1 − c6‖x‖)(−gTHy) (52)

and

yTHy¿ (1 − 
0)2(1 − 2c6‖x‖)yTd: (53)
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Without loss of generality, we may assume that (51)–(53) hold for all k. Substituting (48) and (53)
into (47), there exists a c7 ¿ 0 such that, for all k,

‖Hy‖2

yTHy
¿V (1 − c7‖x‖) +

U−2[‖H∗g∗‖2(1 − c7‖x‖)
yTHy

− (1 −W )gT∗s(1 + c7‖x‖)]
yTHy

− c7‖x‖: (54)

Because of

gk =
∫ 1

0
G(txk) dt xk ; (55)

Eq. (33) implies that the following holds,

m‖x‖6 ‖g‖6M‖x‖: (56)

By (37) we obtain the following result for all k and i¿ 0,

m3‖gk+i‖26M 3‖gk‖2: (57)

From (35) we know f(xk+1)6
∏k

j=1(1 − c2 cos2 &)f(x1), and (32) indicates

∞∑
k=1

‖gk‖2 ¡ + ∞;
∞∑
k=1

‖xk‖2 ¡ + ∞: (58)

Lemma 3.1. There exists a sequence of monotonically nonincreasing positive numbers {bk} such
that, for all k

‖xk‖6 bk6 c3‖xk‖: (59)

Proof. Let k = 1 and bk = c3‖xk‖, (37) implies that bk¿ ‖xk+i‖, for all i¿ 0. We choose bk+1 =
min{bk ; c3‖xk+1‖}, then we can obtain b2; b3; : : :, recursively. Clearly, Lemma 3.1 holds.

Lemma 3.2. Let {Dk} be a sequence of positive numbers, and let t1 be a positive number. If there
exists a positive number t2 ¿ 0 such that the following holds for all k:

k∑
j=1

Dj(1 − t1‖xj‖)6 t2k; (60)

then there exists a positive number t3 such that the following holds for all k:

k∑
j=1

Dj‖xj‖6 t3‖xj‖: (61)
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Proof. Because xj → 0 as j → ∞, we know that there exists a constant t4 such that, for all k,

k∑
j=1

Dj=t4 =
k∑
j=1

Ej6 k; (62)

where Ej = Dj=t4.
We Orst prove by mathematical induction that for any sequence of positive numbers {Ej}, if (62)

holds, then the following holds for all k,

k∑
j=1

Ejbj6
k∑
j=1

bj; (63)

where bj is monotonically nonincreasing, and deOned in Lemma 3.1. Clearly, the result holds for
k = 1. Assume it is true for k. If Ek+16 1, then the above result holds for k + 1. If Ek+1 ¿ 1,
then let Fj = Ej; j = 1; 2; : : : ; k − 1, Fk = Ek − 1 + Ek+1 and Fk+1 = 1, (62) holds for {Fk}. So, the
assumption of mathematical induction implies

k+1∑
j=1

bj¿
k∑
j=1

Fjbj + bk+1

=
k−1∑
j=1

Ejbj + (Ek − 1 + Ek+1)bk + bk+1¿
k+1∑
j=1

Ejbj: (64)

The result is true for k + 1. So, we get, for all k, that

k∑
j=1

Dj‖xj‖6
k∑
j=1

Djbj6
k∑
j=1

t4bj6
k∑
j=1

t4c3‖xj‖: (65)

The lemma is proved.

By Lemma 3.2, we obtain the following conclusion immediately.

Corollary 3.1. Let {Dk} be a sequence of positive numbers, and let t1; t2; t3; t4 and t5 be positive
numbers. If the following equation holds for all k:

t1 +
k∑
j=1

Dj(1 − t2‖xj‖)6 t3 + t4k +
k∑
j=1

t5‖xj‖; (66)

then there exists a positive number t6 ¿ 0 such that for all k,

t1 +
k∑
j=1

Dj6 t4k +
k∑
j=1

t6‖xj‖: (67)
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4. The linear convergence of RDFP algorithm

In this section, we assume assumptions 1–3 in Section 3 hold. Under the line search condition 2,
we discuss the linear convergence for the RDFP algorithm. This result is also true under the line
search condition 3, and the proof of the linear convergence for the RDFP algorithm under the line
search condition 3 is almost the same as that under the line search condition 2.

Lemma 4.1. There exists a c8 ¿ 0 such that for all k,

tr(Bk+1)6 c8k Exp


c8

k∑
j=1

‖xj‖

 : (68)

Proof. Eq. (39) implies

2yTBs− ‖y‖2sTBs
sTy

¿ sTBs− 3‖I − G‖‖Bs‖‖s‖¿ sTBs− 3c3‖x‖‖Bs‖2sTy
sTBs

: (69)

Without loss of generality we may assume 1¿c3‖x‖ for all k. Then (27) implies

tr(B∗)6 tr(B) +
3c3‖x‖‖Bs‖2

sTBs
+ M

6 tr(B)(1 + 3c3‖x‖) + M: (70)

Clearly, there exists a constant c8 ¿ 0 such that

tr(Bk+1)6 tr(Bk)(1 + 3c3‖xk‖) + M

6
k∑
j=2

[
M

k∏
i=j

(1 + 3c3‖xj‖)

]
+ M + tr(B1)

k∏
i=j

(1 + ‖xj‖)

6 (1 + M)(1 + tr(B1))k
k∏
j=1

[1 + 3c3‖xj‖]

6 c8k Exp


c8

k∑
j=1

‖xj‖

 ; (71)

which completes the proof of this lemma.

Lemma 4.2. There exists a constant c9 ¿ 0 such that, for all k,

tr(Hk+1) +
k∑
j=1

[
Vj

(
1 − 
2

0

(1 − 
0)2

)
+
Vj‖Hj+1gj+1‖2

‖Hjgj‖2

]
6 k +

k∑
j=1

c9‖xj‖: (72)
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Proof. DeOnition (16) of U and (51) imply that when 1 − 2c6‖x‖¿ 0,

1
U 2yTHy

=
yTHy

(−gTHy)2 6
yTHy(1 + 2c6‖x‖)2

(dTy)2

=
�V (1 + 2c6‖x‖)2

dTy
6

V [(1 + 2c6‖x‖)(1 + c0‖x‖)]2

m‖Hg‖2 : (73)

By (73), we get the following equation under the line search condition 2:

(1 −W )gT∗s
yTHy

=
U 2yTHy(gT∗s)2

(−gTHy)2sTy

6
V
2

0(−gTs)2(1 + 2c6‖x‖2)
(sTy)3 6

V
2
0(1 + 2c6‖x‖)2

(1 − 
0)2 : (74)

On the other hand, (19) and (15) imply

1
U 2yTHy

=
yTHy

(−gTHy)2 ¿
Vm(1 − c6‖x‖)2(1 − c0‖x‖)2

‖Hg‖2 : (75)

Substituting (74) and (75) into (54), we obtain, for suEciently large k, that

‖Hy‖2

yTHy
¿

[
V
(

1 − 
2
0

(1 − 
0)2 − c10‖x‖
)]

+
[
V‖H∗g∗‖2

‖Hg‖2 (1 − c10‖x‖)
]
; (76)

where c10 ¿ 0 is a constant. Eqs. (76) and (28) imply

tr(H∗) +
[
V
(

1 − 
2
0

(1 − 
0)2 − c10‖x‖
)]

+
[
V‖H∗g∗‖2

‖Hg‖2 (1 − c10‖x‖)
]
6 tr(H) + 1 + c10‖x‖: (77)

We may assume that (77) holds for all k. Adding both sides of (77) over j = 1; 2; : : : ; k we get

tr(Hk+1) +
k∑
j=1

Vj

(
1 − 
2

0

(1 − 
0)2 − c10‖xj‖
)

+
k∑
j=1

[
Vj‖Hj+1gj+1‖2

‖Hjgj‖2 (1 − c10‖xj‖)
]

6 tr(H1) + k +
k∑
j=1

c9‖xj‖: (78)

The Corollary 3.1 implies this lemma.

The recurrence formula of the RDFP algorithm is the same as that of the DFP algorithm.
So the determinants of the matrices {Bk} satisfy the following recurrence relation for the RDFP
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algorithm (cf. [16]):

det(Bk+1) = det(Bk)Vk = det(B1)
k∏
j=1

Vj: (79)

Lemma 4.2 implies that there exists a constant c11 ¿ 0 such that for all k,

tr(Hk)6 c11k (80)

Theorem 4.1. There exists a constant 3; 0¡3¡ 1, such that for su7ciently large k,

f(xk+1)6 3kf(x1): (81)

Proof. Eqs. (72), (68), (79), (80) and ‖xk‖ → 0 imply that given any constant t; t ∈ (0; 1), there
exists a positive integer number Kt such that the following equations hold for all k¿Kt:

k∑
j=1

Vj¿ k


 k∏
j=1

Vj




1=k

= k
[

det(Bk+1)
det(B1)

]1=k

¿ k
[

1
det(B1)(c11k)n

]1=k

¿ kt; (82)

[
1

‖H1g1‖2tr2(Bk+1)

]1=k

¿
(

1
2(‖H1g1‖2)(c18k)2

)1=k

Exp


−2c18

k

k∑
j=1

‖xj‖



¿ t; (83)

and

1
k

k∑
j=1

c9‖xj‖6 1 − t: (84)

Combining (82) and (83) we obtain

k∑
j=1

Vj‖Hj+1gj+1‖2

‖Hjgj‖2 ¿ k


 k∏
j=1

Vj‖Hj+1gj+1‖2

‖Hjgj‖2




1=k

= k
[‖Hk+1gk+1‖2

‖H1g1‖2

]1=k k∏
j=1

[Vj]1=k¿ kt2‖gk+1‖2=k : (85)

Substituting (82), (84) and (85) into (72), we obtain, for all k¿Kt ,

tr(Hk+1) + k{t[1 − [
0=(1 − 
0)]2 + t2‖gk+1‖2}



D. Pu, W. Tian / Journal of Computational and Applied Mathematics 154 (2003) 319–339 333

6 tr(Hk+1) +
k∑
j=1

[
Vj

(
1 − 
2

0

(1 − 
0)2

)
+
Vj‖Hj+1gj+1‖2

‖Hjgj‖2

]

6 k +
k∑
j=1

c9‖xj‖6 k + k(1 − t) (86)

or

‖gk+1‖6
[

2 − 2t + t[
0=(1 − 
0)]2

t2

]2=k

: (87)

Clearly, this theorem holds for 
0 ¡ 1=2 and t can be any number in (0; 1).

5. The one-step superlinear convergence of the algorithms

In this section, we assume assumptions 1–3 in Section 3 hold. We discuss the RDFP algorithm
under the line search condition 2 or 3. The algorithm presented in this paper has been proved to
have linear convergence rate. The Theorem 4.1 implies

∞∑
j=1

‖xj‖¡∞;
∞∑
j=1

‖gj‖¡∞: (88)

Similar to the proof in [17], (88) may imply that our algorithm has one-step superlinear convergence
rate. But we would rather use another way which is somewhat di2erent from Powell’s method to
get some interesting results.

Lemma 5.1. There exists a constant c12 ¿ 0 such that, for all k,

tr(Bk+1) +
k∑
j=1

sT
j Bjsj
sT
j yj

6 k + c12: (89)

Proof. Lemma 4.1, (28) and (88) imply that there exists a constant c13 ¿ 0 such that, for all k,

tr(Bk)6 c13k; tr(Hk)6 c13k; (90)

and for suEciently large k; tr(B)‖x‖6 ‖x‖1=2. Substituting (69) into (27), we get, for all k, that

tr(Bk+1) +
sT
k Bksk
sT
k yk

(1 − 3c3‖xk‖)6 tr(Bk) +
c3‖xk‖‖yk‖‖Bksk‖

sT
k Bksk

+ 1 + c3‖xk‖

6 tr(Bk) + c13M‖xk‖k + 1 + 3c3‖xk‖: (91)
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Adding both sides of (91) over j = 1; 2; : : : ; k, we get

tr(Bk+1) +
k∑
j=1

sT
j Bjsj
sT
j yj

(1 − c3‖xj‖)6 tr(B1) + k +
k∑
j=1

[Mc13‖xj‖j + c3‖xj‖]: (92)

By (92) and (88), it is clear that this lemma holds.

Lemma 5.2. There exists a c14 ¿ 0 such that, for all k,

tr(Hk+1) +
k∑
j=1

Vj6 k + c14: (93)

Proof. Eq. (90) implies that there exists a constant c15 ¿ 0 such that, for all k,

∞∑
j=1

2‖xj‖‖sj‖(2c3‖Hj+1gj+1‖ + c4‖dj‖)
UjsT

j yj
= c15: (94)

Substituting (47) and (94) into (28) and then adding both sides over j = 1; 2; 3; : : : ; k, we get

tr(Hk+1) +
k∑
j=1

Vj(1 − c3‖xj‖) − c156 tr(Hk+1) +
k∑
j=1

‖Hjyj‖2

yT
j Hjyj

= tr(H1) +
‖sj‖2

sT
j yj

6 tr(H1) + k +
k∑
j=1

c3‖xj‖: (95)

Now it is easy to see that the lemma holds.

Theorem 5.1. The algorithm presented in this paper is one-step superlinearly convergent for uni-
formly objective functions, i.e.,

lim
k→∞

‖gk+1‖=‖gk‖ = 0: (96)

Proof. Adding both sides of (89) and (93), respectively, we get

tr(Bk+1 + Hk+1) + 2
k∑
j=1

[
(yT

j Hjyj)1=2(sT
j Bjsj)

1=2

sT
j yj

− 1

]

+
[(yT

j Hjyj)1=2 − (sT
j Bjsj)

1=2]2

sT
j yj

6 c12 + c14: (97)
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As yT
j HjyjsT

j Bjsj¿ (sT
j yj)

2, we have

tr(Hk+1 + Bk+1)6 c12 + c14; (98)

lim
k→∞

yT
k HkyksT

k Bksk
(sT
k yk)2

= 1 (99)

and

lim
k→∞

∣∣∣∣yT
k Hkyk
sT
k yk

− sT
k Bksk
sT
k yk

∣∣∣∣ = 0: (100)

Substituting (99) into (100), we get

lim
k→∞

∣∣∣∣ sT
k yk

sT
k Bksk

− sT
k Bksk
sT
k yk

∣∣∣∣ = 0 (101)

and

lim
k→∞

sT
k yk

sT
k Bksk

= lim
k→∞

sT
k Bksk
sT
k yk

= lim
k→∞

sT
k yk

yT
k Hkyk

= lim
k→∞

yT
k Hkyk
sT
k yk

= 1: (102)

From (102) we get

lim
k→∞

−�kgT
k dk

yT
k dk

= lim
k→∞

−gT
k dk

‖dk‖2 = 1; (103)

and for suEciently large k,

1¡ 2�k ¡ 4: (104)

We get by (103),

gT(xk + dk)dk − gT
k dk = dT

k

(∫ 1

0
G(xk + tdk) dt

)
dk

= ‖dk‖2 + o(‖dk‖2): (105)

Eqs. (103) and (105) imply

dT
k g(xk + dk) = o(‖dk‖2) = o(−gT

k dk) (106)

and

lim
k→∞

g(xk + dk)Tdk
gT
k dk

= 0: (107)
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Therefore, for suEciently large k,

f(xk) − f(xk + dk) = dT
k

(∫ 1

0

∫ 1

u
G(xk + tkdk) dt du

)
dk − dT

k g(xk + dk)

¿
‖dk‖2 − L‖dk‖3

2
− dT

k g(xk + dk)¿ �0gT
k Hkgk : (108)

Eqs. (106) and (108) show that �k = 1 must satisfy (12) and (13) for suEciently large k. So we
can take � ≡ 1 for suEciently k. Eqs. (102) and (106) imply

lim
k→∞

yT
k Hkyk
gT
k dk

− 1 = lim
k→∞

gT
k+1Hkgk+1

gT
k dk

= 0 (109)

and

lim
k→∞

‖gk+1‖
‖gk‖ = 0: (110)

This completes the proof of Theorem 5.1.

From the proof of Theorem 5.1 we may obtain conclusions below, (1) � ≡ 1, and
∞∑
j=1

gT
j+1Hjgj+1

gT
j Hjgj

¡∞; (111)

(by (89) and (93)). (2) There exist H and B satisfying

lim
k→∞

Hk = H; lim
k→∞

Bk = B: (112)

The following theorem follows from the proof of Theorem 5.1.

Theorem 5.2. If xk → x∗ then under the line condition 2 the DFP algorithm is one-step superlin-
early convergent for uniformly objective functions, i.e.,

lim
k→∞

‖gk+1‖=‖gk‖ = 0: (113)

Remark 5.1. Theorem 5.1 holds for all revised Broyden algorithms under the line condition 1 or 2
or 3.

We list the n-step quadratic convergence of the algorithm without detailed proof.

Theorem 5.3. If the line search satis1es the line search condition 3, then the algorithm presented
in this paper is n-step quadratically convergent, i.e.,

‖xk‖2 = O(‖xk+n‖):

Remark 5.2. Theorem 5.3 holds for all revised Broyden algorithms.
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6. Discussion

In Sections 2–5, we have shown that the revised DFP algorithm proposed in this paper have
good convergence properties, that is, the algorithms guarantee one-step superlinear convergence and
n-step quadratical convergence for uniformly convex objective functions. Furthermore, they are glob-
ally convergent for the continuously di2erentiable functions. So, we use them not only to solve
unconstrained nonlinear problems, but also to solve constrained nonlinear optimization problems.
For example, we change constrained nonlinear optimization problems into unconstrained nonlinear
optimization problems which are equivalent to the prime original problems by multiplier methods or
penalty function methods. Generally, the objective functions obtained in the unconstrained nonlinear
optimization problems may not be convex. So, in this case the revised DFP algorithm are usually
more eEcient than the DFP algorithm.

We have done some computational experiments for the DFP algorithm and the revised DFP
algorithm under both the Wolfe conditions and the modiOed Wolfe condition. The testing results
show that, for uniform convex functions, the two classes of algorithms are same e2ective under both
the Wolfe conditions and the modiOed Wolfe conditions, and for nonconvex functions the revised
DFP algorithm has better stability than the DFP algorithm. Here we compare the performance of
the BFGS algorithm with revised BFGS algorithm under the Wolfe conditions for blow function.

Function. Let

5(x) =
100∑
j=0

[1 − e−jhr(jh; x)]2; x∈R5: (114)

where h = 0:05 and r(t; x) has the value

r(t; x) =
x1 + x2t + x3t2

1 + (x4 + x5t)
: (115)

The objective function itself is the expression

f(x) = 5(Dx); (116)

where D is a 5 × 5 positive diagonal matrix. We choose the starting point

x0 = (15d−1
11 ; 10d−1

9 ; 5d−1
33 ; 6d

−1
44 ;−d−1

55 )T; (117)

where dii=di+1; i+1= constant. We set 
= 0:7 and B0 = I , and the stopping condition is the inequality

|f(xk) − f(x∗)|¡ 10−10; (118)

where the optimal function value of the problem is to ten decimal places,

f(x∗) = 3:085557482 × 10−3: (119)

The computing results are listed in Table 1.



338 D. Pu, W. Tian / Journal of Computational and Applied Mathematics 154 (2003) 319–339

Table 1

Function x0 BFGS RBFGS

IN FN IN FN

1 15 × 1; : : : ;−1 × 1 42 58 35 54
1 15 × 1; : : : ;−1 × 104 68 102 57 96
1 15 × 1; : : : ;−1 × 108 72 136 64 123
1 15 × 1; : : : ;−1 × 1012 81 150 69 125
1 15 × 10−4; : : : ;−1 × 1 91 111 63 99
1 15 × 10−8; : : : ;−1 × 1 67 121 67 103
1 15 × 10−12; : : : ;−1 × 1 F F 70 120
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