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Summary

Objective: Cartilage damage is a major problem in osteoarthritis (OA). Growth factors like transforming growth factor-b (TGF-b) have great
potential in cartilage repair. In this review, we will focus on the potential therapeutic intervention in OA with TGF-b, application of the growth
factor TGF-b in cartilage repair and on the side effects of TGF-b treatment that could occur.

Methods: This review summarizes peer-reviewed articles published in the PubMed database before November 2006. In addition, this review is
supplemented with recent data of our own group on the use of TGF-b as a cartilage reparative factor in OA.

Results: TGF-b is crucial for cartilage maintenance and lack there of results in OA-like changes. Moreover, TGF-b supplementation can en-
hance cartilage repair and is therefore a potential therapeutic tool. However, application of TGF-b supplementation provides problems in other
tissues of the joint and results in fibrosis and osteophyte formation. This can potentially be overcome by local inhibition of TGF-b at sites of
unwanted side-effects or by blocking downstream mediators of TGF-b that are important for the induction of fibrosis or osteophyte formation.

Conclusion: Current understanding of TGF-b suggests that it essential for cartilage integrity and that it is a powerful tool to prevent or repair
cartilage damage. The side-effects that occur with TGF-b supplementation can be overcome by local inhibition of TGF-b itself or downstream
mediators.
ª 2007 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Osteoarthritis (OA) is the most common form of arthritis,
involving cartilage, synovium and bone. The main character-
istics are cartilage damage, synovial fibrosis, sclerosis of the
subchondral bone and osteophyte formation at the joint mar-
gins1. Clinically, OA is characterized by joint pain, tender-
ness, occasional effusions and eventually loss of joint
function. The cause of OA is unknown in most cases. It is
highly feasible that there is not one main initiating event of
OA, but that several different events can lead to a common
disease pathway eventually leading to the same disease.
Regardless of the initiating trigger cartilage damage is the
main event in OA. Cartilage has a very limited intrinsic repar-
ative capacity. As a consequence, cartilage damage results
in progressive disease. This makes it crucial to target carti-
lage damage at an early stage to prevent further progression.

Cartilage

Cartilage is non-vascular and nutrients are provided by
the synovial fluid. On a weight base it is mainly composed
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of collagens and proteoglycans. Collagens provide tensile
strength and proteoglycans retain water molecules in the
matrix. In humans, cartilage is composed of three zones:
superficial, middle and deep zone, each with a distinct com-
position. The superficial zone includes disc-shaped chon-
drocytes and the collagen fibers are aligned along the
surface. The middle zone has a higher proteoglycan content
than the superficial zone, cells are more spherical and the
collagen fibers are orientated isotropically. The deep zone
contains spherical cells and collagens have a peripendicular
orientation1.

Cartilage damage in OA has several hallmarks. Initially, in
contrast to what is expected during damage, an increased
synthesis of matrix molecules is observed. However, in
time cartilage matrix degradation exceeds matrix deposition
resulting in net matrix loss. In early OA the cartilage surface
is still intact, but shows some focal edema or even minor
fibrillations. The chondrocytes then start to proliferate and
form cell clusters. In addition, chondrocyte hypertrophy
can be observed. Subsequently, the superficial zone shows
fibrillations and loss of chondrocytes. The fibrillations then
progress into fissures that extend into the mid zone,
followed by cartilage erosion, denudation of bone and finally
deformation2.

Chondrocytes can be stimulated by catabolic cytokines to
release cartilage degradation products, ultimately leading to
damage. In the 1980s catabolin, now termed interleukin-1
(IL-1), was discovered to play a role in OA. Several groups
described its capacity to induce metalloproteinases in carti-
lage and its ability to stimulate chondrocytes to degrade
both proteoglycan and collagen3,4. The exact nature of
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the major mediator of chondrocyte activation in OA is not
identified yet, but IL-1b is considered to be a principle me-
diator of joint damage in OA5. It causes destruction of car-
tilage by increasing enzyme activity and inflammation
while inhibiting synthesis of enzyme-inhibitors6. IL-1 and tu-
mor necrosis factor-a (TNF-a) can stimulate chondrocytes
to produce of nitric oxide (NO)7, matrix metalloproteinases
(MMPs)8, aggrecanases (ADAMTS)9 and suppress the syn-
thesis of aggrecan and collagen10e14.

In normal cartilage there is constant degradation as well as
synthesis of cartilage matrix molecules, controlled by the
chondrocytes. A high degradation rate does not necessarily
implicate OA as long as there is enough compensation by
synthesis. Besides catabolic factors OA chondrocytes also
express anabolic factors, like insulin-like growth factor-1
and transforming growth factor (TGF)-b that stimulate extra-
cellular matrix (ECM) production15e18. Increased synthetic
activity in early OA has been found accompanied with an up-
regulation of TGF-b expression19,20. The initial increase in
production of ECM that is found in OA shows that OA is
more than just accelerated cartilage degradation. Unfortu-
nately, the increased anabolic impulse is only a temporary
state characteristic for early OA and therefore cannot com-
pensate for the overall catabolic insult to cartilage.

Chondrocytes in OA cartilage are different from normal
cartilage in their cytokine and growth factor expression pat-
terns. For instance, chondrocytes from fibrillated OA carti-
lage display higher levels of intracellular IL-1a and b and
upregulated plasmamembrane-bound IL-1RI, whereas the
decoy receptor IL-1RII is downregulated in OA chondro-
cytes21,22. Thus, not only are there higher levels of IL-1 pres-
ent in OA joints, but OA chondrocytes are also more
sensitive to IL-1, thereby increasing susceptibility to IL-1
induced cartilage damage. Not only fibrillated areas show
different expression patterns, also cartilage proximal to mac-
roscopic OA lesions show a higher binding of TNF-a and
IL-1b compared to chondrocytes from morphologically
normal cartilage from the same joint23.

In our studies, we found that the anabolic growth factor
TGF-b was expressed in high levels in normal cartilage,
but was almost absent in OA cartilage24. We also showed
that blocking TGF-b made cartilage more susceptible to
damage25. TGF-b is a potent inducer of cartilage ECM
synthesis and a very potent counteracting agent of IL-1
actions26,27. Therefore, lack of TGF-b causes a reduction
in ECM deposition and suppression of catabolic stimuli is
drastically reduced. Thus, the balance between catabolic
and anabolic factors that maintains cartilage integrity is
shifted toward the catabolic side in OA. Not only through
elevation of catabolic stimuli, but also through a dramatic
decrease in anabolic stimuli, like TGF-b. Therefore, it
seems that administration of TGF-b will provide a potentially
good tool for therapeutic intervention.

TGF-b

The TGF-b family consists of over 35 members and in-
cludes, besides TGF-bs, activins and bone morphogenetic
proteins (BMPs)28. They play vital roles in development
and homeostasis of various tissues. They regulate cell prolif-
eration, differentiation, apoptosis and migration, as well as
control ECM synthesis and degradation. Moreover, these
factors mediate cell and tissue responses to injury and mod-
ulate immune functions29. In mammals, there are three iso-
types of TGF-b, called b1, b2 and b3. All isoforms show
a high degree of homology of 84e92%. The expression of
the three isoforms is differently regulated at the transcrip-
tional level due to different promotor sequences30e32.
TGF-b is secreted as an inactive complex comprised of
a TGF-b dimer, its propeptide LAP (latency associated
peptide) and LTBP (latent TGF-b binding proteins)33,34.
Therefore, the secreted TGF-b requires activation before it
can bind to its receptor. Activated TGF-b binds to the
TGF-b type II receptor to form a complex that recruits the
TGF-b type I receptor, which is activated by phosphorylating
the serine/threonine residues. There is an additional third
TGF-b receptor, also known as betaglycan, which allows
high-affinity binding of mainly TGF-b2 to the TGF-b receptor
type II29.

Upon receptor phosphorylation, R-SMADs (mothers
against decapentaplegic homolog 2 (SMAD2) or 3) are pre-
sented to the receptor by SARA (SMAD-anchored for recep-
tor activation) and phosphorylated. Then the phosphorylated
R-SMADs form a complex with the Co-SMAD (SMAD4), and
translocate to the nucleus where they can act either as, or in
orchestrate with, transcription factors29,35,36. I-SMADs
(SMAD6 and 7) can inhibit TGF-b signaling by interfering
with R-SMAD phosphorylation, thereby functioning as a neg-
ative feedback system.

TGF-b can also activate Erk, Jun N-terminal kinase (JNK)
and p38 mithogen-activated protein kinase (MAPK) path-
ways37. Cross-talk between the SMAD-pathway and other
TGF-b signaling pathways has also been reported36,37.
They can interact by SMAD phosphorylation by ERK or
JNK, by controlling SMAD7 expression and by nuclear in-
teraction between SMAD complexes and MAPK-activated
transcription factors. The latter depends on the structure
of the target promotors38. MAPK activation is not TGF-b sig-
naling specific and can be triggered by various extracellular
stimuli, such as IL-1 and TNF-a. Therefore, the SMAD-
MAPK interactions are not solely the result of multifaceted
TGF-b signaling downstream of the receptors, but are a re-
sult of interacting cytokines that together modulate the
SMAD/MAPK signals38. The mechanism of alternative
TGF-b signaling pathways and their biological conse-
quences is poorly understood since there are many factors
that can activate the MAPK pathways at various levels,
most of which are able to interact.

Genetic aspects of OA and TGF-b

Family studies can indicate a relation between genetically
determined factors and the development of OA. In humans,
a relationship between TGF-b and OA symptoms has been
shown in Japanese women. A polymorphism of TGF-b1 on
position 29 (T to C, amino acid 10) positioned in the signal
sequence region of TGF-b1 is related to an elevated preva-
lence of spinal osteophytosis and ossification of the posterior
longitudinal ligament39,40. This TGF-b polymorphism was
also associated with bone mineral density (BMD) and frac-
ture risk in postemenopausal Chinese women41. The same
polymorphism appears to protect Japanese women from os-
teoporosis42,43. However, in a sample of post-menopausal
German women a relationship between increased BMD
and the C29 polymorphism was not found44.

Other studies showing a relationship between TGF-b1
activity and bone mass are reports of the rare autosomal
dominant disorder, CamuratieEngelmann disease. The
long bones of patients with CamuratieEngelmann disease
show osteosclerosis. The osteosclerosis is associated
with a number of mutations in the TGF-b1 gene. All of these
observed mutations result in an elevated activity of TGF-b1
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in these patients45,46. Since an inverse relationship be-
tween osteoporosis and OA has been suggested in the
literature47,48 elevated bone mass due to increased TGF-b
activity might be related to the development of OA.

Asporin, which is abundantly expressed in cartilage of OA
patients, inhibits TGF-b mediated expression of cartilage
matrix genes like collagen type II and aggrecan and re-
duces accumulation of proteoglycans49. Kizawa et al.49

have found a asporin polymorphism that showed a signifi-
cantly higher frequency in OA. They found that this particu-
lar (D-14) polymorphism has a stronger inhibitory effect on
TGF-b than the common D-13 repeat. This indicates that
in OA there is a higher frequency D-14, resulting in strong
TGF-b inhibition, which can result in reduction of ECM of
cartilage. This suggests that reduced TGF-b action might
be correlated with increased susceptibility to OA. However,
the study performed by Kizawa et al. included only Japa-
nese patients. When repeated in a Spanish Caucasian
population, by Rodriguez-Lopez et al.50 the higher suscep-
tibility to OA in patients with the D-14 polymorphism was no
longer found. In UK Caucasians, a trend was seen toward
a higher degree of D-14 polymorphism in OA patients, but
this was only significant in a specific subset of patients51.
However, in a different ethnic group, Han Chinese, the
OA susceptibility was found again52. The susceptibility
was not limited to OA, Torres et al. also found that patients
with rheumatoid arthritis (RA) that carried the D-14 polymor-
phism more frequently produced rheumatoid factor and had
an earlier onset of the disease. Although the repeat might
not be the major influence in RA, it was concluded to
influence the outcome of the disease53. The studies men-
tioned above show that TGF-b inhibition can aggravate
OA and RA.

Mice deficient for TGF-b1 show 50% embryonic lethality
and animals that are born alive develop severe infla-
mmatory disorders and die within 1 month54,55. Mice with
a knockout gene for TGF-b2 and TGF-b3 show numerous
developmental defects and perinatal death. Mice lacking
TGF-b2 have numerous structural defects in the skeletal el-
ements and show joint laxity56. This indicates that TGF-b2
is involved in skeletal development. Animals with a non-
functional gene for the type I receptors ALK1 or ALK5 or
the SMAD proteins 2 and 4 are embryonic lethal57e60.

Null mice for SMAD3 developed degenerative joint dis-
ease resembling human OA, as characterized by progres-
sive loss of articular cartilage, formation of osteophytes
and increased expression of type X collagen. These data in-
dicate that SMAD3 signaling is essential for repressing
chondrocyte terminal differentiation, a hallmark of human
OA61. This observation is supported by studies in mice
that overexpress a dominant negative TGF-b type II recep-
tor in skeletal tissues62. These mice developed progressive
skeletal degeneration that strongly resembles human
OA. The articular surface shows hypertrophic cartilage
as judged by the expression of type X collagen. Supportive
of these findings, we found reduced TGF-b receptor in
cartilage of aged mice which are prone to develop OA25

and demonstrated reduced TGF-b signaling via Smad2 dur-
ing experimental models of murine OA24. Our data support
earlier findings by Boumediene et al.63 in rabbits and
by Verdier et al.64 in humans that show a reduction in
TGF-b receptor expression during OA. In addition, mice
that lack the LTBP-3 also show altered chondrocyte
differentiation and early OA development65,66. These ob-
servations show that interference with TGF-b signaling in
chondrocytes results in abnormalities in chondrocyte differ-
entiation and the development of OA.
TGF-b and cartilage

Lack of TGF-b or an abnormality in TGF-b signaling
apparently results in cartilage phenotype that resemble
cartilage pathology in OA. We recently showed a strong re-
duction of TGF-b receptor expression as well as a reduction
in active TGF-b signaling in aged mice in a strain that
is prone to develop OA25. Moreover, we showed a similar
reduction in TGF-b signaling in murine models for OA24.
Furthermore, we showed that inhibition of endogenous
TGF-b led to increased damage to cartilage25. TGF-b has
been shown to be very beneficial for cartilage as it stimulates
chondrocytes in vitro to induce elevation of proteoglycan and
collagen type II production15e17,67. Also in vivo TGF-b proved
to have beneficial effects on cartilage such as stimulation of
proteoglycan synthesis in cartilage68.

Not only does TGF-b stimulate ECM production, it also
counteracts the main catabolic players in OA. Our group
has shown that TGF-b counteracts 38% of the genes that
are regulated by IL-1. For example, TGF-b counteracts
IL-1 up regulation of MMP-13 and -14, which have been
found important mediators of cartilage damage. In addition,
IL-1 downregulation of collagen and ECM-related genes are
counteracted by TGF-b9. Hui et al. show that TNF-a pro-
motes MMP dependent collagen breakdown, which can
be prevented by TGF-b 1 in bovine cartilage explant cul-
tures. In addition, TGF-b1 reduced expression and secre-
tion of collagenases and induced tissue inhibitor of
matrixmetalloproteinases (TIMP) production69. In addition,
IL-1b has been shown to inhibit proteoglycan biosynthesis
in a dose-dependent manner in porcine articular cartilage
and increase the rate of degradation in proteoglycans.
TGF-b was able to recover the IL-1 induced proteoglycan
reduction70,71. TGF-b is not only able to counteract the ef-
fects of IL-1, but can also reduce IL-1 signaling by downre-
gulation of its receptors and increasing the expression of
the decoy receptor IL-1Ra, thereby counteracting at several
levels26,27,72e74.

Overall, IL-1 and TNF-a produce matrix proteases and
suppress the synthesis of collagen and proteoglycan.
TGF-b is able to counteract the net effect of catabolic cyto-
kines by stimulating the synthesis of matrix components, of
protease inhibitors and down regulating the expression of
cytokine receptors and cartilage-degrading enzymes75.
These studies show that TGF-b can potently counteract
catabolic effects in cartilage and stimulate ECM production
and can be used as a potential treatment for cartilage
destruction in OA.

TGF-b supplementation

Lack of TGF-b signaling results in susceptibility to carti-
lage damage, therefore TGF-b supplementation should
aid in cartilage maintenance or repair. For years many
researchers have focused on this TGF-b quality. We have
shown that multiple injections of TGF-b induce strong and
long-lasting stimulation of proteoglycan synthesis and in-
crease the glycosaminoglycan content in patellar cartilage
in mice under arthritic conditions68,70. TGF-b stimulation of
proteoglycans is a long-lasting effect. A single injection of
200 ng TGF-b into a murine knee joint stimulated proteogly-
can synthesis for 3 weeks and elevated proteoglycan
content for 2 weeks. Triple injections prolonged the in-
crease in proteoglycan content for 3 weeks76. In a survey,
Grimoud et al.77 concluded that TGF-b expression and
the use of gene transfer might provide an approach for
treatment of OA lesions in cartilage.



600 E. N. Blaney Davidson et al.: TGF-b and osteoarthritis
Unfortunately, the effects of injecting TGF-b into a joint
are not limited to cartilage. Chondrocytes are embedded
in the cartilage without direct contact with other cells. The
non-vascular properties make chondrocytes dependent on
their direct environment for signals. This makes it very
hard to target cartilage without involvement of other tissues.
This implies that TGF-b supplementation in a joint also re-
sults in responses of other tissues that are in contact with
the synovial fluid. TGF-b is implicated in fibrosis in many
organs like eye, lung, heart, liver, kidney, pancreas and
skin78. The synovial tissue in articular joints is susceptible
to TGF-b induced fibroplasias and fibrosis. As a conse-
quence, multiple injections of TGF-b induce synovial fibro-
sis in murine knee joints68. In contrast to the lack of
sufficient TGF-b expression in cartilage in progressive
OA, it is abundantly present in synovial tissue. Therefore,
TGF-b might also be involved in the synovial hyperplasia
that is observed in OA. Besides being a potent inducer of
synovial fibrosis, TGF-b is also able to induce osteophytes
similar to those found in OA68,79. TGF-b expression as well
as active TGF-b signaling is found highly expressed in os-
teophytes in OA, suggesting a role for TGF-b in OA-induced
osteophytes. This shows that TGF-b itself is abundantly
present in OA joints, but not at the location where it is
needed: in the cartilage. Because of the role of TGF-b in
fibrosis and osteophyte formation, the use of TGF-b as
a therapeutic agent for cartilage repair should be evaluated
thoroughly as side effects will likely occur or aggravate al-
ready existing pathology if TGF-b exposure is not confined
to the articular cartilage. Another fact that should be ad-
dressed more closely is the fact that several groups have
demonstrated reduced TGF-b receptor expression during
OA. So even if TGF-b supplementation could be confined
to cartilage, the question remains whether these chondro-
cytes are at all sensitive to TGF-b and if so whether the sen-
sitivity is high enough to overcome the cartilage damage.

TGF-b inhibition

The experiments discussed above are all circumstantial
evidence of TGF-b involvement in the OA-changes like
fibrosis and osteophyte formation. The only real proof of
a protective role for TGF-b in OA and a role in induction
of fibrosis and osteophytes can be obtained by blocking
endogenous TGF-b during OA to see whether cartilage
damage is aggravated by the lack of TGF-b and if fibrosis
and osteophyte formation can be prevented.

Our group has shown that inhibition of TGF-b with a soluble
receptor enhanced proteoglycan loss and reduced cartilage
thickness80. Serra et al.62 overexpressed a dominant nega-
tive TGF-b receptor resulting in terminal chondrocyte differ-
entiation and OA. This proves that endogenous TGF-b is
important for maintaining cartilage integrity.

Inhibition of TGF-b in a murine model for OA revealed
that indeed TGF-b plays a role in OA-induced synovial fibro-
sis and osteophyte formation as both were reduced by
blocking TGF-b by adenoviral overexpression of different
TGF-b inhibitors: SMAD6, SMAD7 or LAP81. Moreover,
we showed that it is possible to isolate the beneficial effect
of TGF-b on cartilage from its fibrotic side effect on syno-
vium by simultaneous transfection of the synovial lining
with both a TGF-b and a SMAD7 adenovirus. This way
the synovial lining was protected from TGF-b as the cells
expressed SMAD7 and did not respond to TGF-b. The
TGF-b that they produced was secreted into the synovial
fluid and could reach the cartilage where it induced
elevation of proteoglycan content, even in a murine OA-
model82. This shows that there are ways to overcome the
problem of TGF-b side effects in the joint.

Potential secondary pathways

We showed that simultaneous overexpression of SMAD7
with TGF-b blocks fibrosis while the cartilage protective
effects of TGF-b remain. But this is not the only possibility
to overcome the problem of having to compartmentalize
TGF-b effects in a single tissue of the joint. Another poten-
tially fruitful approach of abolishing TGF-b side effects, while
preserving the beneficial effects of TGF-b, is to evaluate the
secondary pathways that might be involved in the side ef-
fects. To enhance cartilage ECM formation with TGF-b while
preventing synovial fibrosis, the putative TGF-b -induced
secondary mediator that induces fibrosis should be identi-
fied. Connective tissue growth factor (CTGF/CCN2) is
a good candidate as it is directly induced by TGF-b through
a TGF-b response element in the CTGF-promotor. More-
over, CTGF is an established player in various fibrotic disor-
ders including nephropathy, Crohn’s disease, liver fibrosis,
scleroderma, systemic sclerosis, lung fibrosis and heart
fibrosis83e90. We demonstrated that CTGF is indeed able
to induce synovial fibrosis on its own, but it did not compare
to the magnitude of fibrosis induced by TGF-b. In addition,
TGF-b induced fibrosis was persistent for months, whereas
CTGF-fibrosis was only transient91. One must keep in
mind that during TGF-b overexpression, there is always in-
duction of CTGF. Therefore, one can imagine that CTGF
and TGF-b work synergistically. Wahab et al.92 established
that CTGF augments TGF-b signaling by reducing the neg-
ative feedback through SMAD7 and enhancing SMAD2
phosphorylation. They showed that together, TGF-b and
CTGF stimulated PAI-I and Col II expression more strongly
than TGF-b alone, whereas CTGF itself had no effect. In
skin-fibrosis, Mori et al.93 suggested that TGF-b is needed
for the initial impulse to induce fibrosis and that CTGF is
important for maintenance. We have found that TGF-b is ex-
pressed in OA synovium mainly in early stages, whereas in
later stages of OA CTGF was more abundantly expressed24.
CTGF has been frequently suggested as a potential target
for fibrosis therapy and this might also be the case in OA.
More research is required to verify this.

Besides its role in fibrosis, CTGF has been found to have
chondrogenic effects94e99. In spite of these findings, adenovi-
ral expression of CTGF in murine knee joints resulted in
reduction of proteoglycan content of the cartilage indicating
deleterious effects91. Moreover, CTGF overexpression did
not induce osteophyte formation80. Although it is still possible
that CTGF can elicit chondrogenesis under explicit conditions,
CTGF injection into murine knee joints had opposite effects.
This might be due to CTGF-induced fibrosis, which can result
in excretion of catabolic factors into the joint, ultimately leading
to loss of proteoglycans in cartilage. If indeed CTGF mediates
or aggravates TGF-b-induced fibrosis it would be very benefi-
cial to block CTGF to get rid of the TGF-b induced fibrosis
while maintaining TGF-b effects on cartilage.

In addition to fibrosis, TGF-b induces osteophytes. Sec-
ondary mediators might play essential roles in TGF-b induced
osteophyte formation. A potent inducer of osteophytes is
BMP-2. BMP belongs to the TGF-b superfamily and shares
some of the TGF-b functions. BMP has been shown to com-
pensate for TGF-b in SMAD3 deficiency. Chondrocytes that
are SMAD3 deficient, therefore lacking TGF-b signaling,
have a high up regulation of BMP-signaling indicating
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a compensatory mechanism100. Therefore, it is possible that
BMPs share some of the TGF-b functions in osteophyte for-
mation, making it a potential candidate for mediating TGF-
b induced osteophyte formation. We have shown that
BMP-2 is able to induce osteophytes in murine knee
joints101. It is still under investigation whether osteophytes
as seen in OA are BMP-dependent and it remains to be
investigated whether TGF-b induced osteophytes involve
BMP-activity.

We found that expression of BMP-2 is low in normal car-
tilage, but elevated staining is seen around osteoarthritic
lesions24. Whether its elevated expression in osteoarthritic
lesions is a means of repair or a pathological feature re-
mains to be investigated. BMP-2 appears not to be a factor
that is present in cartilage under normal conditions. Thus,
blocking of BMP-2 will not likely interfere with normal carti-
lage homeostasis although it might play a role as secondary
mediator of TGF-b induced cartilage repair. If BMP-2 does
not have this role in cartilage repair, it is a potential target
for blocking osteophyte formation.

Although TGF-b repair of cartilage also implies inducing
side effects, we show that there are ways to overcome
this problem. They should be further investigated before ap-
plication of TGF-b as a therapeutic agent for cartilage repair
purposes.

Conclusions

Many researchers have demonstrated a role for TGF-b in
cartilage homeostasis. A strong correlation between lack of
TGF-b and predisposition to cartilage damage has been
shown. Several studies suggest that lack of TGF-b might in-
duce susceptibility to OA, while others show that TGF-b can
counteract catabolic cytokines and in that way overcome
many cartilage-degrading events. This suggests that TGF-
b is a potential tool for repair of OA cartilage or prevention
of further degradation. TGF-b application also implies fibro-
sis and osteophyte formation. A potential solution to this
problem is either compartmentalized inhibition of TGF-b sig-
naling, in non-articular tissues, or blocking of secondary
mediators. The solution to cartilage damage might not be
restricted to blocking a single cytokine or stimulating a single
growth factor, but rather a selection of factors that together
provide the anti-osteoarthritic properties that are required.
The latter can provide a possibility for use of TGF-b as
a tool to not only overcome OA damage in cartilage, but
maybe also prevent cartilage destruction. Moreover, if se-
lectively blocking TGF-b should prove to be effective, not
only will we be able to prevent TGF-b side effects, but pos-
sibly also prevent OA-like side effects like synovial fibrosis
and osteophyte formation, thereby providing an all-round
therapeutic intervention.
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