
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Finite Fields and Their Applications 14 (2008) 798–815

http://www.elsevier.com/locate/ffa

Elliptic curves and explicit enumeration of irreducible
polynomials with two coefficients prescribed ✩

Marko Moisio a, Kalle Ranto b,∗,1

a Department of Mathematics and Statistics, University of Vaasa, PO Box 700, FIN-65101 Vaasa, Finland
b Department of Mathematics, University of Turku, FIN-20014 Turku, Finland

Received 3 August 2007; revised 13 December 2007

Available online 13 February 2008

Communicated by Gary L. Mullen

Abstract

Let Fq be a finite field of characteristic p = 2,3. We give the number of irreducible polynomials xm +
am−1xm−1 + · · · + a0 ∈ Fq [x] with am−1 and am−3 prescribed for any given m if p = 2, and with am−1
and a1 prescribed for m = 1, . . . ,10 if p = 2,3. In the latter case an enumeration formula, applicable also
if m > 10, is given, but it is explicit only up to the evaluation of certain Kronecker class numbers.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let p be a prime, let r and m be positive integers, and let Fq denote the finite field with q = pr

elements. The determination of the number N of irreducible polynomials

xm + am−1x
m + · · · + a1x + a0 ∈ Fq [x],
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with some of the coefficients a0, . . . , am−1 prescribed, is a difficult problem in general and has
been a subject of study for a long time, see e.g. [4, p. 340], where a short survey on recent results
on this topic is given. For example, in [16,5] Yucas et al. considered the case of fixed am−1, am−2,
and am−3 over F2 and asked how these results could be generalized to F2r . Our results on case (i)
below can be seen as a partial, although not completely satisfactory, answer to this question.

Let c ∈ Fq . In this paper the following special cases are considered:

(i) p = 2, am−1 = 0, am−3 = c,
(ii) p = 2 or p = 3, am−1 = c, a1 = 0.

In these cases the problem of determining N is closely related to the problem of counting the
number of rational points on the fibre products of certain super-singular elliptic curves and of
certain Kloosterman curves over Fqm . This problem can be tackled by using some properties of
Kloosterman sums and cubic exponential sums, properties of Dickson polynomials, and the well-
known (see e.g. [12,13,15]) weight distributions of the dual of the binary two-error-correcting
BCH code of length q − 1 and of the binary and ternary Melas codes of length q − 1. This
approach enables us to give N explicitly for any m in case (i) and for m = 1, . . . ,10 in case (ii).
In the latter case we have an enumeration formula which works for m > 10 as well, but it is
explicit only up to the evaluation of certain Kronecker class numbers.

The rest of this note is organized as follows. In Section 2 we first recall some basic properties
of Dickson polynomials and then a formula expressing the number of rational points on certain
Artin–Schreier curves in terms of exponential sums is derived. That formula is used in Section 3
to get explicitly the number of rational points on the fibre product of certain super-singular elliptic
curves, and finally, in Section 4, the number N of irreducible polynomials is determined by
connecting it to the number of rational points on the curves studied in Sections 2 and 3.

2. Preliminaries

In this section some notations are fixed, a result concerning the point counting on fibre prod-
ucts of certain Artin–Schreier curves is established, and some results from [7,9,10] are recalled.

Let Tr and tr denote the trace functions from Fqm onto Fp and Fq , respectively, and let e and
χ be the canonical additive characters of Fqm and Fq .

Let ω be a complex number, and let

Dm(T ,ω) :=
�m/2�∑
j=0

m

m − j

(
m − j

j

)
(−ω)jT m−2j ∈ C[T ]

denote the Dickson polynomial of the first kind of degree m with parameter ω. We shall need the
following two fundamental properties of Dickson polynomials:

Dm(t,ω) =
(

t + √
t2 − 4ω

2

)m

+
(

t − √
t2 − 4ω

2

)m

∀t ∈ C, (1)

Dm

(
t + ω

,ω

)
= tm + ωm

m
∀t ∈ C∗. (2)
t t
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Next we consider point counting on fibre products of Artin–Schreier curves. Let L be a
Fp-subspace of the rational function field Fqm(x) with a basis {f1, . . . , fn} ⊂ Fqm(x) \ Fq , and
assume that the multiplicities of the poles of the non-zero elements of L are not divisible by p.

Let f (x) ∈ L \ {0}, let Ff,m = Fqm(x, yf ) with y
p
f − yf = f (x), and let

Fm = Fqm(x, yf1 , . . . , yfn).

Proposition 1. (See [10, Theorem 18].) The number Nm of rational places of Fm is given by

Nm = qm + 1 − pn − 1

p − 1
+

∑
f ∈L\{0}/F∗

p

|Sf | +
∑

f ∈L\{0}

∑
z∈Fqm\Pf

e
(
f (z)

)
,

where Sf is the set of rational places of Ff,m lying above P∞, and Pf is the set of poles of f (x)

in Fqm .

In [10] Proposition 1 was applied to the fibre product Lm of Kloosterman curves defined by

Lm = Fqm(x, ya, yb), y
q
a − ya = x + ax−1, y

q
b − yb = x + bx−1,

for fixed a, b ∈ Fq with a 
= b.
Theorem 2 below will cover a more general situation. To state the result we fix some notations:

let a, b ∈ Fq , a 
= b, let β ∈ Fqm , and let d = −1 or d = 3. In addition, if d = 3 we assume p 
= 3.
Let

Lm,d,β := Fqm(x, ya, yb), y
q
a − ya = x + a

(
β + xd

)
, y

q
b − yb = x + b

(
β + xd

)
,

and for u,v 
= 0 in the subfield Fq denote

S
(m)
d (u, v) =

∑
z

e
(
uz + vzd

)
,

where z runs over F∗
qm or Fqm according as d equals −1 or 3, respectively. Moreover, we denote

Sd(u, v) := S
(1)
d (u, v).

Theorem 2. The number Nm,d(β) of rational places of Lm,d,β is given by

Nm,d(β) = qm + 1 +
∑
v∈F∗

q

e(βv)
∑
u

S
(m)
d (u, v),

where u runs over F∗
q or Fq according as d equals −1 or 3, respectively.

Proof. Let {u1, . . . , ur} be a basis of Fq over Fp . It follows by Proposition 1.2 and by the proof
of Proposition 1.1 in [6] that

Lm,d,β = Fqm(x, yu1, . . . , yur , zu1, . . . , zur )

with
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y
p
ui

− yui
= ui

(
x + a

(
β + xd

)) =: fi(x),

z
p
ui

− zui
= ui

(
x + b

(
β + xd

)) =: gi(x)

for i = 1, . . . , r . Let L be the Fp-subspace of Fqm(x) spanned by the elements f1(x), . . . , fr (x),

g1(x), . . . , gr (x). Now, each element f (x) of L is of the form

f (x) = (au + bv)β + (u + v)x + (au + bv)xd, (3)

for some u,v ∈ Fq .
If f (x) = 0, then u = v = 0 as a 
= b. It follows that the elements f1(x), . . . , gr (x) are linearly

independent over Fp and, moreover, the representation (3) is unique.
Since the mapping (u, v) �→ (u + v, au + bv) is linear and invertible, it is a permutation of

F2
q \ {0}, and therefore each non-zero f (x) ∈ L is of the form f (x) = vβ + ux + vxd for unique

(u, v) ∈ F2
q \ {0}.

If d = 3, |Sf | = 1 for every f ∈ L by [14, Proposition VI.4.1(c)] and Proposition 1 implies

Nm,d(β) = qm + 1 +
∑

(u,v)∈F2
q\{0}

∑
z∈Fqm

e
(
vβ + uz + vzd

)
,

and the claim follows now by noting that the inner sum equals zero if v = 0.
Assume next that d = −1. Proposition 1 now implies that

Nm,d(β) = qm + 1 + 1

p − 1

(
−(

q2 − 1
) +

∑
(u,v)∈F2

q\{0}
|Su,v,β |

)

+
∑

(u,v)∈F2
q\{0}

e(vβ)
∑

z∈Fqm\Pu,v

e
(
uz + vz−1), (4)

where Su,v,β is the set of rational places of

Fqm(x, y), yp − y = ux + v
(
β + x−1)

lying above P∞, and Pu,v is the set of poles of f (x) = ux + v(β + x−1) in Fqm . By [14, Propo-
sition III.7.8(c), Corollary III.3.8] we know that

|Su,v,β | =
{0 if u = 0 and Tr(vβ) 
= 0,

p if u = 0 and Tr(vβ) = 0,

1 if u 
= 0.

(5)

Assume tr(β) = 0. Now, by (4) and (5), we get
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Nm,d(β) = qm + 1 + 1

p − 1

(−(
q2 − 1

) + (q − 1)p + q2 − 1 − (q − 1)
)

+
∑
v∈F∗

q

∑
u∈F∗

q

S
(m)
d (u, v) +

∑
v∈F∗

q

∑
z∈F∗

qm

e
(
vz−1)

= qm + 1 +
∑
v∈F∗

q

∑
u∈F∗

q

S
(m)
d (u, v).

Assume finally that tr(β) 
= 0. By (4) and (5) we now have

Nm,d(β) = qm + 1 + 1

p − 1

(−(
q2 − 1

) + (q/p − 1)p + q2 − 1 − (q − 1)
)

+
∑
v∈F∗

q

e(vβ)
∑
u∈F∗

q

S
(m)
d (u, v) +

∑
v∈F∗

q

e(vβ)
∑

z∈F∗
qm

e
(
vz−1)

= qm + 1 − 1 +
∑
v∈F∗

q

e(vβ)
∑
u∈F∗

q

S
(m)
d (u, v) −

∑
v∈F∗

q

χ
(
v tr(β)

)

and the claim follows. �
By the following result we see that in order to count Nm,d(β) it is enough to count Nm,d(0)

unless tr(β) 
= 0, d = 3, and r is even. That case will be considered in the next section. From
now on we use the abbreviated notation Nm,d := Nm,d(0).

Corollary 3. Let β1, β2 ∈ Fqm , and assume tr(β1) = 0, tr(β2) 
= 0. Then Nm,d(β1) = Nm,d . More-
over, if d = −1, or d = 3 and r is odd, then

Nm,d(β2) = qm + 1 − Nm,d − qm − 1

q − 1
.

Proof. By Theorem 2 it is clear that Nm,d(β1) = Nm,d . Let β ∈ Fqm . When d = 3, we have

Nm,3(β) = qm + 1 +
∑
v∈F∗

q

e(vβ)
∑
u∈F∗

q

S
(m)
3 (u, v) +

∑
v∈F∗

q

e(vβ)S
(m)
3 (0, v),

where the last sum equals
∑

v,z e(v(β + z3)) = ∑
v,z e(vz) = 0 since z �→ z3 is a permutation by

the assumptions. Therefore, in all cases

Nm,d(β) = qm + 1 +
∑
v∈F∗

q

e(vβ)
∑
u∈F∗

q

∑
z

e
(
uz + vzd

)
.

Now, by the substitution z �→ u−1z we get

Nm,d(β) = qm + 1 +
∑
v∈F∗

e(vβ)
∑
u∈F∗

∑
z

e
(
z + vu−dzd

)
,

q q
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and since the map u �→ vu−d is a permutation of F∗
q we obtain

Nm,d(β) = qm + 1 +
( ∑

v∈F∗
q

e(vβ)

︸ ︷︷ ︸
=:S

)( ∑
u∈F∗

q

S
(m)
d (1, u)

)
,

where S equals q − 1 or −1 according as tr(β) = 0 or tr(β) 
= 0, respectively, and the claim
follows now easily. �
Corollary 4. If q = 2, then

Nm,−1 − (
2m + 1

) = (−1)m−1Dm(1,2) = −
(−1 + √−7

2

)m

−
(−1 − √−7

2

)m

.

If q = 3, then

Nm,−1 − (
3m + 1

) = 2(−1)m−1(Dm(−1,3) + Dm(2,3)
)

= −2

((
1 + √−11

2

)m

+
(

1 − √−11

2

)m

+ (−1 + √−2
)m

+ (−1 − √−2
)m

)
.

Proof. Since S
(m)
−1 (u, v) = (−1)m−1Dm(S−1(u, v), q) for uv 
= 0 by [8, Theorem 5.46], the

claim follows now by Theorem 2, Eq. (1), and the fact Dm(−t,ω) = (−1)mDm(t,ω). �
If q is a power of two or three, we can count Nm,−1 up to the evaluation of Kronecker class

numbers:

Proposition 5. (See [10, Lemma 35].) Let p = 2 or p = 3, and let q = pr with r � 2. Then

Nm,−1 = qm + 1 + (−1)m−1(q − 1)
∑
t∈Sp

H
(
t2 − 4q

)
Dm(t, q),

where H(d) is the Kronecker class number defined for any negative integer d , d ≡ 0,1 (mod 4),
as ∣∣{(u, v,w) ∈ Z3: v2 − 4uw = d, |v| � u � w, and v � 0 if |v| = u or u = w

}∣∣
and

Sp = {
t ∈ Z: |t | < 2

√
q, t ≡ −1(e)

}
with e =

{
4, if p = 2,

3, if p = 3.

In the case where q is unbounded power of two or three we are still able to give the Nm,−1
provided that m is relatively small:
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Proposition 6. (See [10, Theorem 32, Remark 33].) Let q = pr with p = 2 or p = 3 and r � 2.
The number Nm,−1 of rational places of Lm,−1,0 is given by

m N ′
m when q = 2r N ′

m when q = 3r

1 q q

2 q2 q2

3 ±q2 0
4 0 q2

5 (t7 ∓ 1)q3 ±q3

6 ±q3 (−1 ± 1)q3

7 (t9 − t7 + 1)q4 (u9 ∓ 1)q4

8 (1 ∓ 1)q4 q4 − q + 1
9 (t11 − t9 − 1)q5 (u11 − u9)q

5

10 τ2q
2 − q5 τ3q

2 − q5

where N ′
m = (Nm,−1 − qm − 1)/(q − 1) + q − 1, ± = (−1)r , and

wr + wr w

t7 (1 + √−15)/4
t9 (−5 + √−39)/8
u9 (5 + 2

√−14)/9
u11 (−1 + 4

√−5)/9
τ2 −3 + √−119
τ3 14 + √−1991
t11 wr+ + w+r + wr− + w−r

w± (−3 ± √
505 +

√
−510 ∓ 6

√
505)/32

3. The number of rational places of Lm,3,β

In order to count Nm,3(β) we need the following three results.

Lemma 7. Assume p 
= 3. Then

S
(m)
3 (u, v) = (−1)m−1Dm

(
S3(u, v), q

) ∀u,v ∈ Fq, u 
= 0.

Proof. By Weil’s theorem (see e.g. [8, Theorem 5.36]) we know that there exist complex num-
bers ω and ν satisfying |ω| = |ν| = √

q and

S
(m)
3 (u, v) = −(

ωm + νm
)
.

Clearly, S(m)
3 (u, v) = ∑

z e(−uz−vz3) = S
(m)
3 (u, v) so S

(m)
3 (u, v) is real and ν = ω̄. Now, by (2)

Dm(ω + q/ω,q) = ωm + qm/ωm = ωm + ω̄m

and therefore

S
(m)

(u, v) = −Dm(ω + ω̄, q) = −Dm

(−S3(u, v), q
)
. �
3
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Proposition 8. Let q = 2r . The value distribution of S3(u, v) is given by

S3(u, v) # in case 2 | r # in case 2 � r

q 1 1
−2

√
q

q−1
24 (q − 2

√
q ) 0

−√
2q 0 q−1

4 (q − √
2q )

−√
q

q−1
3 (q − √

q ) 0

0 q−1
4 q + (q − 1)

q−1
2 q + (q − 1)√

q
q−1

3 (q + √
q ) 0√

2q 0 q−1
4 (q + √

2q )

2
√

q
q−1
24 (q + 2

√
q ) 0

where S3(u, v) is attained # times as (u, v) varies over F2
q .

Proof. Let γ be a primitive element of Fq , and let

c(u, v) = (
Tr(u + v),Tr

(
uγ + vγ 3), . . . ,Tr

(
uγ q−2 + vγ 3(q−2)

))
,

be a codeword in the dual B⊥ of the binary two-error-correcting BCH code of length q − 1, and
let w(c(u, v)) denote the Hamming weight of c(u, v).

The claim follows now by the weight distribution of B⊥ (see e.g. [12]) and by the following
two facts which are easy to verify:

(1) Map ψ : (F2
q,+) → B⊥, (u, v) �→ c(u, v) is a group isomorphism.

(2) S3(u, v) = q − 2w(c(u, v)). �
In our results we need to separate the cases where some trace is a cube or not. Therefore, we

let γ be a primitive element of Fq and then the non-zero cubes of Fq are denoted by 〈γ 3〉.
We rephrase a result by Carlitz [1] in the following form.

Proposition 9. Let q = 2r and v ∈ F∗
q . If r is even, then

S3(u, v) ∈
{ {0,±2

√
q} if v ∈ 〈γ 3〉,

{±√
q} if v /∈ 〈γ 3〉,

and each value is attained at least once as u varies over Fq . Moreover,

S3(0, v) =
{

(−1)r/2+12
√

q if v ∈ 〈γ 3〉,
(−1)r/2√q if v /∈ 〈γ 3〉.

Now we have all the tools in order to establish the main result of this section:
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Theorem 10. Let q = 2r . The number Nm,3 of rational places of Lm,3,0 is given by

r is odd r is even

m mod 8 Nm,3 − (qm + 1) m mod 12 Nm,3 − (qm + 1)

0 −2(q − 1)q
m+2

2 0 −2(q − 1)q
m+2

2

±1 (q − 1)q
m+1

2 ±1,±5 (q − 1)q
m+1

2

±2 (q − 1)q
m+2

2 ±2 (q − 1)q
m+2

2

±3 −(q − 1)q
m+1

2 ±3 −(q − 1)q
m+1

2

4 0 ±4 0

6 −(q − 1)q
m+2

2

Let β ∈ Fqm and tr(β) = c 
= 0. If r = 2s, the number Nm,3(β) of rational places of Lm,3,β is
given by

m mod 12 Nm,3(β) − (qm + 1), c ∈ 〈γ 3〉 Nm,3(β) − (qm + 1), c /∈ 〈γ 3〉
0 2q

m+2
2 2q

m+2
2

±1,±5 −q
m+1

2 −q
m+1

2

±2 −q
m+2

2 −q
m+2

2

±3 (1 − (−1)s2
√

q )q
m+1

2 (1 + (−1)s
√

q )q
m+1

2

±4 (−1)s2q
m+3

2 (−1)s+1q
m+3

2

6 (1 − (−1)s2
√

q )q
m+2

2 (1 + (−1)s
√

q )q
m+2

2

Proof. Assume first that r is odd. Now, by Theorem 2, Lemma 7, and Proposition 8 we obtain

Nm,3 − (
qm + 1

) =
∑
v∈F∗

q

∑
u∈Fq

S
(m)
3 (u, v)

= (−1)m−1
(

q − 1

4
(q − √

2q)Dm(−√
2q, q)

+ q − 1

4
(q + √

2q)Dm(
√

2q, q) + q − 1

2
qDm(0, q)

)
.

We note that above the q − 1 zeros of S3(u, v) corresponding to the pairs (u,0), u 
= 0, are
excluded. By (1) we see that Dm(±√

2q, q) = 2(±√
q)m cos(mπ

4 ), Dm(0, q) = 0 if m is odd,
and Dm(0, q) = 2(−q)m/2 if m is even. Thus

Nm,3 − (
qm + 1

) =
{√

2(q − 1)q
m+1

2 cos(mπ
4 ) if 2 � m,

−(q − 1)q
m+2

2 (cos(mπ
4 ) + (−1)

m
2 ) if 2 | m,

and the claim follows.
Assume next that r is even. By Theorem 2
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S := Nm,3(β) − (
qm + 1

) =
∑
v∈F∗

q

χ(cv)
∑
u∈Fq

S
(m)
3 (u, v)

=
2∑

i=0

∑
v∈γ i 〈γ 3〉

χ(cv)
∑
u∈Fq

S
(m)
3 (u, v)

=
2∑

i=0

(q−4)/3∑
j=0

χ
(
cγ i+3j

) ∑
u∈Fq

∑
x∈Fqm

e
(
ux + γ i

(
γ jx

)3)
︸ ︷︷ ︸

=:S∗

.

By the substitution x �→ γ −j x we have

S∗ =
∑
u∈Fq

∑
x∈Fqm

e
(
uγ −j x + γ ix3) u �→γ j u=

∑
u∈Fq

S
(m)
3

(
u,γ i

)
,

and therefore

S =
(q−4)/3∑

j=0

χ
(
cγ 3j

) ∑
u∈Fq

S
(m)
3 (u,1) +

2∑
i=1

(q−4)/3∑
j=0

χ
(
cγ i+3j

) ∑
u∈Fq

S
(m)
3

(
u,γ i

)
.

We observe that

∑
u∈Fq

S
(m)
3

(
u,γ 2) x �→x2=

∑
u∈Fq

∑
x∈Fqm

e
(
ux2 + γ 2(x3)2)

u �→u2=
∑
u∈Fq

∑
x∈Fqm

e
((

ux + γ x3)2) =
∑
u∈Fq

S
(m)
3 (u, γ ), (6)

and we now get

S =
(q−4)/3∑

j=0

χ
(
cγ 3j

)
︸ ︷︷ ︸

S1

∑
u∈Fq

S
(m)
3 (u,1)

︸ ︷︷ ︸
S2

+
2∑

i=1

(q−4)/3∑
j=0

χ
(
cγ i+3j

)
︸ ︷︷ ︸

S3

∑
u∈Fq

S
(m)
3 (u, γ )

︸ ︷︷ ︸
S4

.

Let us consider each sum Si separately. Clearly, S1 = (S3(0, c) − 1)/3, and by Proposition 9

S3 = 1

3

(
S3(0, cγ ) − 1 + S3

(
0, cγ 2) − 1

)

=

⎧⎪⎨
⎪⎩

2
3 (q − 1) if c = 0,

2
3 ((−1)sq1/2 − 1) if c ∈ 〈γ 3〉,
1 ((−1)s+12q1/2 + (−1)sq1/2 − 2) if c /∈ 〈γ 3〉.
3
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We apply the argument used with the sum S∗ above to the opposite direction to get

S2 = 3

q − 1

(q−4)/3∑
j=0

∑
u∈Fq

S
(m)
3

(
u,γ 3j

) = 3

q − 1

∑
v∈〈γ 3〉

∑
u∈Fq

S
(m)
3 (u, v).

By Proposition 9 we know that the sum S3(u, v) gets exactly the values 0,±2
√

q when v ∈ 〈γ 3〉.
By Lemma 7 and Proposition 8 we obtain

q − 1

3
S2 = (−1)m−1

(
q − 1

24
(q − 2

√
q )Dm(−2

√
q, q)

+ q − 1

24
(q + 2

√
q )Dm(2

√
q, q) + q − 1

4
qDm(0, q)

)
,

where in the last term we exclude q −1 zeros for S3(u, v) as they correspond to sums with v = 0.
By (1) we see that Dm(±2

√
q, q) = 2(±√

q)m, Dm(0, q) = 0 if m is odd, and Dm(0, q) =
2(−q)m/2 if m is even. All in all,

S2 =
{

− 1
2q

m
2 +1 − 3

2q(−q)
m
2 if 2 | m,

q
m+1

2 if 2 � m.

Consider finally S4. Now

S4 = 1

2

2∑
i=1

∑
u∈Fq

S
(m)
3

(
u,γ i

) = 3

2(q − 1)

∑
v∈F∗

q\〈γ 3〉

∑
u∈Fq

S
(m)
3 (u, v)

and by Proposition 9 the value set of S3(u, v) is {±√
q}. Again, by Lemma 7 and Proposition 8

we get

2(q − 1)

3
S4 = (−1)m−1

(
q − 1

3
(q − √

q )Dm(−√
q, q) + q − 1

3
(q + √

q )Dm(
√

q, q)

)
.

By (1) Dm(±√
q, q) equals 2qm/2, ±qm/2, −qm/2, and ∓2qm/2 when m ≡ 0, ±1, ±2, and

3 (mod 6), respectively. Hence, we get

S4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2q
m
2 +1 if m ≡ 0 (mod 6),

q
m+1

2 if m ≡ ±1 (mod 6),

q
m
2 +1 if m ≡ ±2 (mod 6),

−2q
m+1

2 if m ≡ 3 (mod 6).

By collecting all the calculations we obtain the claimed result. �
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4. Enumeration of irreducible polynomials with prescribed coefficients

In this section we calculate the number of irreducible polynomials over Fq in the cases (i)
and (ii) of the Introduction. The method we use here is a modification of the method introduced
in [11] (see also [3,2]). Roughly speaking, this method involves two steps: first, count the number
of all the elements of Fqm with prescribed traces, and second, use Möbius inversion to count the
number of elements of degree m with prescribed traces. From now on we assume that p = 2 or
p = 3.

4.1. Elements of degree m with prescribed traces

Let d = 3 or d = −1 and employ the convention 0−1 = 0.

Definition 11. For c ∈ Fq define

Hc,d(m) = ∣∣{z ∈ Fqm

∣∣ tr(z) = 0, tr
(
zd

) = c
}∣∣.

Lemma 12. Let α ∈ Fqm satisfy tr(α) = 1. Then

Hc,d(m) = 1

q2

(
Nm,d(−αc) − 1 + ε

)
,

where

ε =
{0 if d = 3,

1 − q if d = −1 and c 
= 0,

(q − 1)2 if d = −1 and c = 0.

Proof. With the standard techniques we get

Hc,d(m) =
∑

z∈Fqm

(
1

q

∑
u∈Fq

χ
(
tr(z)u

))(
1

q

∑
v∈Fq

χ
(
tr
(
zd − αc

)
v
))

= 1

q2

∑
u,v∈Fq

∑
z∈Fqm

e
(
uz + vzd − αcv

)

= 1

q2

(
qm +

∑
v∈F∗

q

e(−αcv)
∑
u∈Fq

∑
z∈Fqm

e
(
uz + vzd

))

= 1

q2

(
qm +

∑
v∈F∗

q

e(−αcv)
∑
u

S
(m)
d (u, v) + ε

)
,

where the last equality follows by the definition of S
(m)
d (u, v). The claim follows now by Theo-

rem 2. �
Next we shall count the number of elements z in Fqm of degree m satisfying tr(z) = 0 and

tr(zd) = c.
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Definition 13. For c ∈ Fq define

Gc,d(m) = ∣∣{z ∈ Fqm

∣∣ tr(z) = 0, tr
(
zd

) = c, z /∈ Fqn if n < m
}∣∣.

We need the following well-known formula for the number of all irreducible polynomials (see
e.g. [8, Theorem 3.25]):

Proposition 14. The number of monic irreducible polynomials in Fq [x] of degree m is given by
I (m)/m, where

I (m) =
∑
t |m

μ(t)q
m
t .

Let n be a positive factor of m, and let trn : Fqn → Fq denote the relative trace function.
Clearly, for every z ∈ Fqn we have tr(z) = m

n
trn(z) and therefore

tr(z) = tr
(
zd

) = 0 iff

[
p | m

n
or

(
p �

m

n
and trn(z) = trn

(
zd

) = 0

)]
.

Let m = pks such that p � s. Now

H0,d (m) = H0,d

(
pks

) =
∑

n|m,p| m
n

I (n) +
∑

n|m,p� m
n

G0,d (n)

=
∑
t |s

k−1∑
i=0

I
(
pit

) +
∑
t |s

G0,d

(
pkt

) =
∑
t |s

(
S
(
pkt

) + G0,d

(
pkt

))
,

where S(pkt) = ∑k−1
i=0 I (pit). By Möbius inversion, see e.g. [8, Theorem 3.24], we get

S
(
pks

) + G0,d

(
pks

) =
∑
t |s

μ

(
s

t

)
H0,d

(
pkt

)
.

By Lemma 12 we now get the following theorem.

Theorem 15. Let m = pks with p and s coprime. Then

G0,d (m) =
∑
t |s

μ

(
s

t

)
H0,d

(
pkt

) − S(m),

where

H0,d (n) = 1

q2

(
Nn,d(0) − 1 + ε

)
and S(m) =

k−1∑
I
(
pis

)

i=0
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with

ε =
{

0 if d = 3,

(q − 1)2 if d = −1.

Assume next that c 
= 0, and let n be a positive factor of m. Now, for each z ∈ Fqn , we have
that

tr(z) = 0 and tr
(
zd

) = c iff trn(z) = 0 and trn
(
zd

) = n

m
c.

Since n/m = 1 or n/m = ±1 according as p equals 2 or 3, respectively, we see that

Gnc
m

,d(n) = Gc,d(n),

and therefore

Hc,d(m) =
∑
t |s

Gc,d

(
pkt

)
.

Now, by Möbius inversion and Lemma 12 we get the following result.

Theorem 16. Let m = pks with p and s coprime, let c ∈ F∗
q , and let α ∈ Fqm satisfy tr(α) = 1.

Then

Gc,d(m) =
∑
t |s

μ

(
s

t

)
Hc,d

(
pkt

)
,

where

Hc,d(n) = 1

q2

(
Nn,d(−αc) − 1 + ε

)
and ε =

{
0 if d = 3,

1 − q if d = −1.

4.2. Irreducible polynomials of degree m with prescribed coefficients

Lemma 17. Let q = pr with p = 2 or p = 3, and let c ∈ Fq . The number of irreducible poly-
nomials p(x) = xm + am−1x

m−1 + · · · + a1x + a0 in Fq [x] with am−1 = c and a1 = 0 equals
Gc,−1(m)/m.

Proof. If p(x) is irreducible, then am−1 = tr(z), where z is any of the m distinct roots of p(x)

in Fqm . Moreover, since a−1
0 xmp(x−1) is monic and irreducible we get tr(z−1) = a1/a0. Hence,

the number of irreducible p(x) with am−1 = c and a1 = 0 equals G′
c,−1(m)/m, where G′

c,−1(m)

is the number of elements z of degree m over Fq in Fqm satisfying tr(z) = c and tr(z−1) = 0. But
clearly G′

c,−1(m) = Gc,−1(m). �
Remark 18. By the preceding proof it is clear that the number of irreducible polynomials xm +
am−1x

m−1 +· · ·+a1x +a0 in Fq [x] such that am−1 = 0 and a1/a0 = c also equals Gc,−1(m)/m.
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Lemma 19. Let q = 2r and c ∈ Fq . The number of irreducible polynomials p(x) = xm +
am−1x

m−1 + · · · + a1x + a0 in Fq [x] with am−1 = 0 and am−3 = c equals Gc,3(m)/m.

Proof. Let z = z1, . . . , zm be the roots of an irreducible polynomial p(x) in Fqm . If m � 3, we
have, by Newton’s formula (see [8, Theorem 1.75]), that

s3 + s2am−1 + s1am−2 + am−3 = 0,

where sk = ∑m
i=1 zk

i = tr(zk). Since s1 = am−1 = 0, we get am−3 = tr(z3), and the claim fol-
lows. �

Lemma 17, Theorems 15 and 16, Corollary 3, and Proposition 6 give the following two corol-
laries:

Corollary 20. Let q = pr with p = 2 or p = 3. The number of irreducible polynomials xm +
am−1x

m−1 + · · · + a1x + a0 in Fq [x] with am−1 = a1 = 0 equals G0,−1(m)/m, where

m G0,−1(m) with q = 2r G0,−1(m) with q = 3r

1 1 1
2 0 q − 1
3 (1 ± 1)(q − 1) 0
4 0 q2 − 1
5 q3 + (t7 ∓ 1)q(q − 1) − 1 q3 ± q(q − 1) − 1

6 (q − 1)(q3 ± q) q(q − 1)(q2 + q − 1 ± 1)

7 q5 + q2(q − 1)(t9 − t7 + 1) − 1 q5 + q2(q − 1)(u9 ∓ 1) − 1

8 q6 − q4 + (1 ∓ 1)q2(q − 1) q6 + q3 − 2q2 − q + 1

9 q7 + (q − 1)(q3(t11 − t9 − 1) − 1 ∓ 1) − 1 q7 + q3(q − 1)(u11 − u9) − q3

10 q8 − q5 − q4 + q3 + (q − 1)τ2 q8 − q4 − (q − 1)(1 ± q) + (q − 1)τ3

Corollary 21. Let q = pr with p = 2 or p = 3, and let c ∈ F∗
q . The number of irreducible polyno-

mials xm +am−1x
m−1 +· · ·+a1x +a0 in Fq [x] with am−1 = c and a1 = 0 equals Gc,−1(m)/m,

where

m Gc,−1(m) with q = 2r Gc,−1(m) with q = 3r

1 0 0
2 0 0
3 q ∓ 1 q

4 q2 q2 − 1
5 q3 − q(t7 ∓ 1) q3 ∓ q

6 q4 ∓ q q4 ∓ q

7 q5 − q2(t9 − t7 + 1) q5 − q2(u9 ∓ 1)

8 q6 + (−1 ± 1)q2 q6 − 2q2 + 1
9 q7 − q3(t11 − t9 − 1) − q ± 1 q7 − q3(u11 − u9)

10 q8 + q3 − τ2 q8 ± q − τ3
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In principle, one could calculate the two tables above even further but the computations will
become quite involved and the formulas will include more traces of Hecke operators, ti , and
values of Ramanujan’s tau-function, τi .

Finally, we give some formulas for the number of irreducible polynomials in the case (i)
in Introduction. This case differs essentially from the case (ii) above: we have all information
needed in closed form and we just plug our formulas in e.g. Mathematica and count the formulas
as far as we like. Unfortunately, we cannot give this result in any simple general formula due to
the Möbius inversion and to the several cases in Theorem 10. Therefore, we illustrate our results
by giving the number of the polynomials for every degree m � 30.

Lemma 19, Theorems 15 and 16, Corollary 3, and Theorem 10 give, with help of Mathemat-
ica, the following corollary.

Corollary 22. Let q = 2r and c ∈ Fq . The number of monic irreducible polynomials xm +
am−1x

m−1 + · · · + a1x + a0 in Fq [x] with am−1 = 0 and am−3 = c equals Gc,3(m)/m, where

m G0,3(m), if 2 | r G0,3(m), if 2 � r Gc,3(m), if 2 � r and c 
= 0

1 1 1 0
2 0 0 0
3 0 0 q + 1
4 0 0 q2

5 q3 + q2 − q − 1 q3 − q2 + q − 1 q3 + q

6 q4 − 2q3 + q2 q4 − q2 q4 − q2

7 q5 + q3 − q2 − 1 q5 + q3 − q2 − 1 q5 − q2

8 q6 − q4 q6 − 3q4 + 2q3 q6 + 2q3

9 q7 − q4 + q3 − 1 q7 + q4 − q3 − 1 q7 − q3 − q − 1
10 q8 − q4 q8 − q4 q8 − q4

11 q9 + q5 − q4 − 1 q9 − q5 + q4 − 1 q9 + q4

12 q10 − 3q6 + 2q5 q10 − q6 q10 − q2

13 q11 + q6 − q5 − 1 q11 − q6 + q5 − 1 q11 + q5

14 q12 − q6 q12 − q6 q12 − q6

15 q13 − q7 + q6 − q3 − q2 + q q13 + q7 − q6 − q3 + q2 − q q13 − q6 − q3 − 2q − 1
16 q14 − q8 q14 − 3q8 + 2q7 q14 + 2q7

17 q15 + q8 − q7 − 1 q15 + q8 − q7 − 1 q15 − q7

18 q16 − 2q9 + q8 − q4 + 2q3 − q2 q16 − q8 − q4 + q2 q16 − q8 − q4 + q2

19 q17 + q9 − q8 − 1 q17 − q9 + q8 − 1 q17 + q8

20 q18 − q10 q18 − q10 q18 − q2

21 q19 − q10 + q9 − q5 − q3 + q2 q19 − q10 + q9 − q5 − q3 + q2 q19 + q9 − q5 + q2 − q − 1
22 q20 − q10 q20 − q10 q20 − q10

23 q21 + q11 − q10 − 1 q21 + q11 − q10 − 1 q21 − q10

24 q22 − 3q12 + 2q11 − q6 + q4 q22 − 3q12 + 2q11 − q6 + 3q4 − 2q3 q22 + 2q11 − q6 − 2q3

25 q23 + q12 − q11 − q3 − q2 + q q23 + q12 − q11 − q3 + q2 − q q23 − q11 − q3 − q

26 q24 − q12 q24 − q12 q24 − q12

27 q25 − q13 + q12 − q7 + q4 − q3 q25 − q13 + q12 − q7 − q4 + q3 q25 + q12 − q7 + q3

28 q26 − q14 q26 − q14 q26 − q2

29 q27 + q14 − q13 − 1 q27 − q14 + q13 − 1 q27 + q13

30 q28 − 2q15 + q14 − q8 + 2q3 − q2 q28 − q14 − q8 + q2 q28 − q14 − q8 + q2

moreover, with r = 2s, ± = (−1)s , and c 
= 0 we have
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m Gc,3(m), if c ∈ 〈γ 3〉 Gc,3(m), if c /∈ 〈γ 3〉
1 0 0
2 0 0

3 q ∓ 2q
1
2 + 1 q ± q

1
2 + 1

4 q2 ± 2q
3
2 q2 ∓ q

3
2

5 q3 − q q3 − q

6 q4 ∓ 2q
5
2 + q2 q4 ± q

5
2 + q2

7 q5 − q2 q5 − q2

8 q6 ± 2q
7
2 q6 ∓ q

7
2

9 q7 ∓ 2q
7
2 + q3 − q ± 2q

1
2 − 1 q7 ± q

7
2 + q3 − q ∓ q

1
2 − 1

10 q8 − q4 q8 − q4

11 q9 − q4 q9 − q4

12 q10 + 2q5 − q2 ∓ 2q
3
2 q10 + 2q5 − q2 ± q

3
2

13 q11 − q5 q11 − q5

14 q12 − q6 q12 − q6

15 q13 ∓ 2q
13
2 + q6 − q3 ± 2q

1
2 − 1 q13 ± q

13
2 + q6 − q3 ∓ q

1
2 − 1

16 q14 ± 2q
15
2 q14 ∓ q

15
2

17 q15 − q7 q15 − q7

18 q16 ∓ 2q
17
2 + q8 − q4 ± 2q

5
2 − q2 q16 ± q

17
2 + q8 − q4 ∓ q

5
2 − q2

19 q17 − q8 q17 − q8

20 q18 ± 2q
19
2 − q2 ∓ 2q

3
2 q18 ∓ q

19
2 − q2 ± q

3
2

21 q19 ∓ 2q
19
2 + q9 − q5 + q2 − q ± 2q

1
2 − 1 q19 ± q

19
2 + q9 − q5 + q2 − q ∓ q

1
2 − 1

22 q20 − q10 q20 − q10

23 q21 − q10 q21 − q10

24 q22 + 2q11 − q6 ∓ 2q
7
2 q22 + 2q11 − q6 ± q

7
2

25 q23 − q11 − q3 + q q23 − q11 − q3 + q

26 q24 − q12 q24 − q12

27 q25 ∓ 2q
25
2 + q12 − q7 ± 2q

7
2 − q3 q25 ± q

25
2 + q12 − q7 ∓ q

7
2 − q3

28 q26 ± 2q
27
2 − q2 ∓ 2q

3
2 q26 ∓ q

27
2 − q2 ± q

3
2

29 q27 − q13 q27 − q13

30 q28 ∓ 2q
29
2 + q14 − q8 ± 2q

5
2 − q2 q28 ± q

29
2 + q14 − q8 ∓ q

5
2 − q2

Remark 23. The expressions for Gc,d(m) are approximately of the form qm−2 + O(q
m
2 ). In

the case 2 � r and c 
= 0 the formulas for Gc,3(m) are quite close to qm−2 when m = 4s and
s is an odd prime. Indeed, if m = 4s and s = nj for some odd prime n, we see by Corollary 3,
Theorem 10, and Lemma 12 that Hc,3(m) = qm−2, and then, by Theorem 16, we have Gc,3(m) =
qm−2 − q

m
n

−2. Especially, if j = 1, then Gc,3(m) = qm−2 − q2.
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