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a b s t r a c t

This work is devoted to the study of quadrature rules for integration with respect to
(w.r.t.) general probability measures with known moments. Automatic calculation of the
Clenshaw–Curtis rules is considered and analyzed. It is shown that it is possible to construct
these rules in a stable manner for quadrature w.r.t. balanced measures. In order to make
a comparison Gauss rules and their stable implementation for integration w.r.t. balanced
measures are recalled. Convergence rates are tested in the case of binomial measures.
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1. Introduction

In quadrature theory, much effort has been done in the analysis of the integration with respect to (w.r.t.) the Lebesgue
measure or to some of its weighted variants. Among the possible generalizations of the problem, the case of singular
measures naturally appears, for instance, when dealing with fractal properties of some physical phenomenon, see [3,17].
In a recent review paper [25], Trefethen compares the convergence rates of Clenshaw–Curtis rules with the Gauss ones.

In this paper the author points out that the two rates of convergence are similar if the integrand function is not analytic in
a suitable neighborhood of the interval of integration. In the present paper we want to compare the same two families of
quadrature rules when the integration is performed w.r.t. a singular (fractal) measure.
We beginwith the introduction of the convergence theory for general quadrature rules in Section 2. Then in Section 3, we

introduce the Clenshaw–Curtis and Gauss families of quadrature rules and their numerical construction. On the one hand
we notice that these rules converge for wide classes of functions. On the other hand, for a general measure, we observe
that the automatic calculation passes through an unstable procedure which is of different origin in the two cases. In the
Gauss quadrature it appears when the construction of the recurrence coefficients for orthogonal polynomials is carried
out [4], while in the Clenshaw–Curtis case when the calculation of modified moments is performed [5]. In Section 4 we
recall the definition of balanced measures. We show that, despite the general case, for this class of singular measures it
is possible to construct in a stable manner both formulae. In the case of Gauss quadrature this has been developed in [15],
while for Clenshaw–Curtis rule it is made adapting the analysis in [24]. In the same section the connectionwith the theory of
linear refinable functionals introduced in [14] is also analyzed. As an application, in Section 5 the quadrature w.r.t. binomial
measures is performed through numerical tests.
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2. Preliminary results and definitions

In this introductionwepresent some results valid for a generalmeasureµ, thatwewill assume finite, positive anddefined
in a closed interval [a, b]. Our aim is to study how to calculate

Iµ(f ) ≡
∫ b

a
f (x)dµ(x); (1)

where f ∈ L1µ ≡ {f : [a, b] → R :
∫ b
a |f (x)|dµ(x) <∞}.

In general a quadrature rule In is defined by means of (n + 1) distinct points ξj ∈ [a, b] called nodes and (n + 1) real
valueswj called weights:

In(f ) ≡
n∑
j=0

wjf (ξj). (2)

In order to obtain efficient quadrature rules, we can construct In to be the exact integral of an approximating function f̃ :
In(f ) = Iµ(f̃ ). In what follows, we assume that the moments of the measure are known:

λj ≡

∫ b

a
xjdµ(x) ∀j = 0, 1, . . . (3)

and for this reason we will take as approximating function a polynomial, f̃ (x) ∈ Pn where Pn are the polynomials of degree
at most n. Such rule will be called interpolatory quadrature formula when the polynomial that we integrate exactly is the
(unique) polynomial of degree n interpolating the function f at the nodes ξj.
We will say that a quadrature rule has degree of exactness d if

n∑
j=0

wjξ
q
j = λq ∀q ≤ d, q ∈ N.

It is well known that every quadrature rule with n+ 1 nodes of degree of exactness at least n is interpolatory. In general the
following result holds true, see [6, Section 1.3]:

Theorem 2.1. The quadrature rule (2) has degree of exactness d = n + k, k ≥ 0 if and only if both of the following conditions
are satisfied:
1. the formula (2) is interpolatory;
2. the following holds true:∫ b

a
ωn(x)p(x)dµ(x) = 0 ∀p ∈ Pk−1 (P−1 ≡ ∅)

where ωn(x) =
∏n
j=0(x− ξj) is the nodal polynomial.

Given a function f ∈ L1µ, we will say that a sequence of quadrature rules {In}n converges in f if In(f )→n Iµ(f ).
Given a function f ∈ C0, we will denote by p∗d(x) the polynomial

1 of degree at most d that gives the best approximation
to f on [a, b]w.r.t. the supremum norm.Wewill also denote by E∗d ≡ ‖f −p

∗

d‖∞. With this notations, the following theorem
gives the most general error estimate, see [12, Theorem 5.2.2] or [25, Theorem 4.1].

Theorem 2.2. Let In be a quadrature rule with weights wj, j = 0, . . . , n of degree of exactness d ≥ 0. Then for all f ∈ C0 we
have: ∣∣Iµ(f )− n(f )∣∣ ≤ E∗d

[
n∑
j=0

|wj| + µ([a, b])

]
.

The result is proved simply applying the definitions and the triangular inequality.
If we consider a family of rules {In}n of increasing degrees of exactness dn and such that

∑n
j=0 |wj| ≤ Kn wewill have that

the rule converges if KnE∗dn→n→∞ 0. Notice that for interpolatory quadrature rules the constant Kn is bounded from above
by the Lebesgue constantΛn (see [22, Eq. (8.11)]).
As corollary of the Weierstrass theorem we can state also that for every f ∈ C0 there exists always a sequence of

polynomials uniformly convergent to f , and therefore the corresponding quadrature rules will be convergent. On the other
hand it is very well known that equispaced interpolatory quadrature formulae do not converge in general due to Runge
phenomenon.

1 Note that this polynomial is unique. For the theory of the best approximation see, ad example, [19, Section 3.2].
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3. Quadrature rules

In this section we will introduce the properties of two families that exhibit good convergence properties: the
Clenshaw–Curtis and the Gauss ones.

3.1. Clenshaw–Curtis rules

For the sake of clarity, in this section we will set [a, b] = [−1, 1]. We will define the Clenshaw–Curtis formula, denoted
by CCn, as the interpolatory quadrature rule constructed on the Chebychev2 nodes θl = cos

( lπ
n

)
, l = 0, . . . , n (see [12,

Section 5.2.6]). The interpolating polynomial that we integrate in an exact manner, denoted byΠf ,n(x), can be expressed in
a compact form as (see [19, Eq. (6.27)]):

Πf ,n(x) =
n∑
′

l=0

f Cl Tl(x), (4)

f Cl =
2
n+ 1

n∑
′′

j=0

f (θj)Tl(θj), (5)

where Tj(x) is the Chebychev polynomial of the first type of degree j, the prime indicates that the first term is to be halved
and the double prime indicates that the first and the last term are to be halved. Let us summarize some of the properties of
Chebyshev polynomials of first type. The family of polynomials {Tj(x)}j is defined by the following:

Tj(cos(θ)) = cos(jθ), θ ∈ [0, π].
They are characterized by the recursive relation:

T0(x) = 1; T1(x) = x
Tj = 2xTj−1(x)− Tj−2(x) ∀j = 2, 3, . . . .

(6)

These polynomials are orthogonal w.r.t. the measure ωC (x)dx, where ωC (x) = 1√
1−x2
. In particular:

〈Ti, Tj〉 =


0 if i 6= j
π if i = j = 0
π

2
if i = j > 0.

With the symbol 〈·, ·〉we are considering the scalar product in the ωC (x)dx-measure, i.e.:

〈ψ, φ〉 =

∫ 1

−1
ψ(x)φ(x)ωC (x)dx.

We can derive the convergence of the interpolation based quadrature rule from Theorem 2.2. First of all it is well known
that for polynomialsΠf ,n(x) the Lebesgue constant3 Λn is such that Λn ≤ 1 + 2

π
log(n + 1). Convergence, is thus ensured

if the best approximation constant E∗n converges more than logarithmically. This is achieved if the function f ∈ C
0 satisfies

the so-called Dini–Lipschitz condition, see [23, Th. 3.4]:

lim
n→∞

log(n)ω(n−1) = 0, (7)

where the continuity modulus ω(ε) is defined by
ω(ε) ≡ sup

|x−y|≤ε
x,y∈[−1,1]

|f (x)− f (y)|.

We have, thus, that if condition (7) is satisfied4 then the sequence of Clenshaw–Curtis quadrature rules converges.

3.2. Computation of Clenshaw–Curtis rules

In this section we address the item of the computation of Clenshaw–Curtis rules. First of all we notice that from Eq. (4)
we can compute the approximate integrals in this way:

CCn(f ) =
∫ 1

−1
Πf ,n(x)dµ =

n∑
l=0

f Cl Ml (8)

2 For other rules on the Chebychev nodes and extremes we refer the reader to [20].
3 For this and other estimates see [22, Section 10.3].
4 Notice that all Lipschitz continuous functions satisfy condition (7).
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where, following [5], we callMj the following modified moments:

Mj ≡
∫ 1

−1
Tj(x)dµ. (9)

The calculation ofmodifiedmoments can be done, in principle, exactly if themomentsλi of themeasure are known, although
it iswell known that the directmethod is unstable due to the alternating signs of the coefficients in Eq. (6). In the next section
we will see how to avoid this unstability in the case of balanced measures.
The coefficients f Cj can be calculated by means of the fft, see [25,26]. From Eq. (5) we can see that this is an

approximation by means of a composite trapezoidal formula of the scalar product 〈f , Tj〉. Thus, using the definition of the
Chebyshev polynomials, we have:

〈f , Tj〉 =
∫ 1

−1
f (x)Tj(x)ωC (x)dx =

2
π

∫ π

0
f (cos(θ)) cos(jθ)dθ

=
1
π

∫ π

−π

g(x) cos(jx)dx =
1
π
[aj2π ] = 2aj,

where aj is the real part of the Fourier coefficient of the even function g : x ∈ [−π, π] → R defined as: g(x) =
f (cos(x)) ∀x ∈ [0, π].
For example, in Matlab notation, we can use the efficient implementation of the fft through the simple procedure:

x=cos(pi*(0:(n-1))/(n-1));
fx=eval(ftest,x)/(2*(n-1)) ;
fx=[fx(1:end) fx(end-1:-1:2)];
g= real(fft(fx));
fc=[2*g(1), g(2:(n-1))+g(2*(n-1):-1:(n+1)) , g(n)];

Remark 3.1. Notice that the approximate integral that we compute is, as originally considered in [2], a formula that
calculates the integral of the partial sum of the Chebyshev series, where the coefficients f Cl are approximated by means
of a composite trapezoidal rule.
It is well known that the Clenshaw–Curtis rules in the case of the Lebesgue measure are of optimal degree of exactness

w.r.t. the weighted measure ωC (x)dx. In our case this is not true, and the weights can become negative.
Among the good properties that remain valid for these generalization of the rules, there is the possibility to consider

fixed a priori known nodes (nested in the cases n = 2k) and to use the fft procedure for the calculation of the weights.
Notice also that all the information on the measure is used in the computation of modified moments.

3.3. Gauss formulae

We will call Gauss quadrature Gn the unique quadrature rule5 on n + 1 nodes of degree of exactness 2n + 1. It is well
known that these rules have positive weights, and this property implies, as corollary of Theorem 2.2, that the family {Gn} is
convergent ∀ f ∈ C0.
Due to Theorem 2.1, the Gauss formulae are interpolatory quadrature rules. For this reason, we need only to define the

nodes to describe the rule. The corresponding weights, called Christoffel numbers, can be calculated consequently.
Nodes of the Gauss quadrature formulae Gn can be characterized as the zeros of the monic polynomial πn+1 of degree

n + 1 dµ-orthogonal to the ones of lower degree. These polynomials can be constructed from a three-term recurrence
relation:

πk+1(x) = (x− αk)πk(x)− βkπk−1(x), k = 0, 1, 2, . . .
π−1(x) = 0 , π0(x) = 1.

(10)

The coefficients αk and βk are defined by the following:

αk =
(xπk(x), πk(x))dµ
(πk(x), πk(x))dµ

, k = 0, 1, 2, . . .

βk =
(πk(x), πk(x))dµ

(πk−1(x), πk−1(x))dµ
, k = 1, 2, 3, . . .

(11)

where with the symbol (·, ·)dµ we refer to the scalar product in the dµmeasure, i.e.:

(φ(x), ψ(x))dµ =
∫ b

a
φ(x)ψ(x) dµ(x).

5 For a complete survey on the theory concerning Gauss quadrature and various extensions we refer to [6]. In particular in all this section we will follow,
without explicit reference, Sections 1.4 and 5.
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The numerical calculation of the coefficients αk and βk is in general unstable. In the next section wewill address this feature
for a wide class of measures.
From the first n of these coefficients we can construct the following symmetric tridiagonal matrix (usually refereed to as

Jacobi matrix):

Jn ≡



α0
√
β1 0√

β1 α1
√
β2√

β1
. . .

. . .

. . .
. . .

. . .

. . .
. . .

√
βn−1

0
√
βn−1 αn−1


.

Thenodes of theGauss formulae can be calculated as eigenvalues of thematrix Jn and the Christoffel numbers are constructed
from the corresponding eigenvectors (see [9] or [7, th. 3.1]).
Numerically the calculation of the eigenvalues can be done in a stable manner, and the calculation costs O(n2) flops,

see [9].

4. Balanced measures and linear refinable functionals

In this section we will see how for a wide class of measures it is possible to compute in a stable manner the coefficients
in Eq. (11) and the modified moments defined in (9). In general we will be able to do this for balanced measures, that are
particular invariantmeasures, see [10, Section 4]. Relevance of thesemeasures for applications has beenhighlighted in [1,18].
In this sectionwewill also see the connectionwith the recently introduced linear refinable functionals [14]. This connection
is very important to notice, as it allows taking ideas from thewide literature on quadrature w.r.t. refinable weight functions,
see for example [24,8,11,13].
For the sake of clarity, and without loss of generality all the results are given in the interval [−1, 1] and in the probability

case, i.e. µ([−1, 1]) = 1.
Following [15–17], we will call δ-homogeneous linear iterated function system (δ-HLIFS) balanced measure the unique

measure µ such that:∫ 1

−1
f dµ =

M∑
i=0

pi

∫ 1

−1
f (φi(x))dµ∑

pi = 1, φi(x) = δx+ βi; 0 < δ < 1, βi ∈ [−1, 1].

In this framework, δ is called contraction ratio and pi and βi are, respectively, the probabilities and the fixed points of the
LIFS.
Now we present the definition of refinable linear functional as given in [14]. A linear functional L : P → R where P are

all the polynomials with real coefficients is called refinable if there exists an (N + 1)-uple [γj]j=0,...,N called mask such that:

L[f ] =
N∑
j=0

γjL
[
f
(
x+ j
2

)]
L[1] = 1.

If we assume that the functional is positive, by Riesz theorem, the functional L acts as integration w.r.t. a positive Borel
measure µ. Rescaling in [−1, 1]we can write:

L[f ] =
∫ 1

−1
f dµ = 1/2

N∑
j=0

γj

∫ 1

−1
f (ENj (x))dµ

∑
γj = 2, ENj (x) =

x− 1
2
+
j
N
.

For this reason we can notice that a positive refinable linear functional is given by integration w.r.t. a δ-HLIFS balanced
measure with contraction ratio δ = 1/2, probabilities pi = γi/2 and fixed points βi = 2i−N

2N i = 0 . . .N .
Stable algorithms for the calculation of the scalar products in (11) for these measures have been introduced in [15]

using the balance equation and successively in [14] using the property that the functional is refinable. These algorithms
rely on the idea of projecting the composite functions that define the balance equation on the same set of functions:
πk(φ(x)) =

∑k
i=0 ciπi(x). This can be done if the πk(x) are a basis of polynomials of increasing degree k, because from

the balance equation we can easily compute the leading coefficient ck and then the other coefficients by induction. Clearly,
for Gauss quadrature we take as polynomials πk(x) the µ-orthogonal polynomials described in Eq. (10).
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Table 1
Some quadrature rules for integration w.r.t. binomial measures µα .

Rule Nodes Weights

G1 4
7 (2α − 1)∓

√
3
21

√
−88α2 + 88α + 27 1

2 ±
3
√
3(2α−1)
2

√
−88α2+88α+27
88α2−88α−27

CC1 [−1, 1] [(1− α), α]
CC2 [−1, 0, 1]

[
(1−α)(3−4α)

3 , 8α(1−α)3 , α(4α−1)3

]

The same procedure via projections can be adopted for the calculation of the modified moments (9), by using as
polynomials πk(x) the Chebyshev ones described in Eq. (6). This has been done in the case of integration w.r.t. refinable
weight functions, see [24], and we have simply used this idea applying it for integration w.r.t. balanced measures.
Details of these procedures can be found in the cited References [15,14,24]. Notice that the computational cost of these

algorithm for the scalar products of Eq. (11) and the integrals in (9) is of O(n2) flops.

5. Case study: Integration with respect to binomial measure

We will compare the two families of quadrature rules on a special class of balanced measures, the binomial ones.
Quadrature w.r.t. these measures has been already addressed in [1], where the convergence of the composite rules and
automatic quadrature with local error estimates has been explored. The binomial measure µα , where 0 < α < 1 is a
parameter, is a probability measure (i.e. µα([a, b]) = 1) that is characterized by the following (self-similar) property [3]:
let J a dyadic subinterval of [a, b] and bisect J in the left and right parts J = JL ∪ JR; then

µα(JR) = αµα(J). (12)

When α = 1/2 we trivially obtain the probability measure proportional to the Lebesgue measure on [a, b]. Some other
important properties of µα are:

• {µα}α is a family of pairwise mutually singular Borel measures: µα1 ⊥ µα2 if α1 6= α2;
• Each µα is a continuous measure, i.e. µα({x}) = 0 ∀x ∈ [a, b];
• µα andµ1−α are connected by the following property of symmetry:µα([c, d]) = µ1−α([a+ b− d, a+ b− c]) ∀[c, d] ⊂
[a, b].

Wewill consider I ≡ [−1, 1] and refer to themeasure on this interval asµ∗α , while withµα wewill refer to the case with
support in [0, 1], the most usual in the framework of fractals. Trivially, there exists the following relation:∫ 1

−1
f (x)dµ∗α(x) =

∫ 1

0
f (2y− 1)dµα(y). (13)

The general balance equation that defines the measure is the following:∫ 1

−1
f (x)dµ∗α(x) = (1− α)

∫ 1

−1
f
(
x− 1
2

)
dµ∗α(x)+ α

∫ 1

−1
f
(
x+ 1
2

)
dµ∗α(x). (14)

We have reported in Table 1 the rulesG1,CC1 andCC2. From a comparison between the two-point rules it can be seen how
it is difficult to write down the Gauss rule while the Clenshaw–Curtis one is easily described. In the rule CC2 it can be seen
that the weights corresponding to the endpoints become negative6 for some values of α, as noticed in Remark 3.1.
In order to construct our reference solution, we have applied an adaptive quadrature algorithm based on a six-point local

quadrature modulus and an error estimate with Null-Rules. The description can be found in [1] (modheralpha.m) where
it has been also proved the efficiency and the reliability of this procedure.
Test functions are taken as in Reference [25]:

Test functions:

f1 = x20 f2 = ex f3 = e−x
2

f4 =
1

1+ 16x2
f5 = e−1/x

2
f6 = |x3|.

For the construction of the Gauss quadrature rules from the coefficients αk, βk, we have used the Matlab route eig , as in
the package OPQ: a Matlab Suite of Programs for Generating Orthogonal Polynomials and Related Quadrature Rules, described
in [7].
We have tested the convergence of the two families of rules up to 60 nodes in the cases µαi = µ0.i, i = 1, . . . , 5 for

the six test functions. Notice that the last case is the Lebesgue one that has been considered in Reference [25] and has been
included for a quick comparison. Relative errors are plotted in Figs. 1–5. As we can see, these tests give convergence of the

6 However a numerical check, performed for n up to 20 and every value of α gave (for the sum of absolute values of the weights) values very close to 1
(maximum value around 1.1).
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Fig. 1. Calculated errors in semilog scale, case µα = µ0.1 .

Fig. 2. Calculated errors in semilog scale, case µα = µ0.2 .

two families and thus stability of the considered algorithms. The Gauss formulae converge more rapidly, as expected; we
can notice that the convergence velocity becomes similar for the two formulae only when the function has less regularity
and for values of α closer to 1/2. For the Lebesgue measure this has been pointed out in Reference [25], due also to the
similar distributions of the nodes of the two quadrature rules.
Thinking at the question given in the title of Reference [25] we can note the following:
• Clenshaw–Curtis rules are very simple to compute in the general case and converge almost in the same hypotheses.
• The proposed algorithms for the numerical construction of the formulae in the case of balancedmeasures are numerically
stable both for Gauss and Clenshaw–Curtis rules.
• In the case of binomial measures Gauss quadrature leads to better results, especially in the case of measures that are very
different from the Lebesgue one, while Clenshaw–Curtis rules perform almost in the same manner when the function is
less regular.
• Clenshaw–Curtis rules have a priori fixed nodes that are nested in the case of 2k nodes, see [21]. This implies that an
automatic quadrature routine that doubles the number of nodes can reuse the calculated values of the function, while
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Fig. 3. Calculated errors in semilog scale, case µα = µ0.3 .

Fig. 4. Calculated errors in semilog scale, case µα = µ0.4 .

for Gauss quadrature each time the order is changed the nodes – and consequently the function evaluations – are to be
recomputed.
• Fixed to n the number of function evaluations, the corresponding Gauss quadrature rule maintain as in the Lebesgue
case a cost of O(n2) flops. The Clenshaw–Curtis rule takes advantage of the fft procedure but for the calculation of the
modified moments has a cost of O(n2) flops, thus the two have the same leading computational cost.

Concluding and summarizing, we have explored the convergence properties of the Gauss and Clenshaw–Curtis
quadrature families and the numerical calculation of these formulae for general probabilitymeasureswith knownmoments.
In the case of Gauss rules this was done and we have only described and utilized available software, in the case of
Clenshaw–Curtis we propose a construction in such a way that we preserve the possibility to use the fft procedure. In
this way we have constructed in an efficient fashion a family that converges for a very general class of functions. The tests
of these two families in the case of binomial measure seem to indicate that Gauss formulae are preferable both in the case
of functions with high regularity, as pointed out in [25], and in the case of measures more irregular. The latter is probably
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Fig. 5. Calculated errors in semilog scale, case µα = µ0.5 .

due to the symmetry of the distributions of the nodes of Clenshaw–Curtis quadrature family while the measures are not
symmetric.

References

[1] F. Calabrò, A. Corbo Esposito, An efficient and reliable quadrature algorithm for integration with respect to binomial measures, BIT Numer. Math. 48
(2008) 473–491.

[2] C.W. Clenshaw, A.R. Curtis, A method for numerical integration on an automatic computer, Numer. Math. 2 (1960) 197–205 (in English).
[3] C.J.G. Evertsz, B.B. Mandelbrot, Chaos and Fractals, in: Multifractal Measures, Springer-Verlag, 1992, pp. 921–953 (Appendix B).
[4] W. Gautschi, Construction of Gauss-Christoffel quadrature formulas, Math. Comput. 22 (1968) 251–270 (in English).
[5] W. Gautschi, On the construction of Gaussian quadrature rules from modified moments., Math. Comp. 24 (1970) 245–260.
[6] W. Gautschi, in: E.B. Christoffel (Ed.), A Survey of Gauss-Christoffel Quadrature Formulae, (Aachen/Monschau, 1979), Birkhäuser, Basel, 1981,
pp. 72–147.

[7] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, in: Numerical Mathematics and Scientific Computation, Oxford University
Press, Oxford Science Publications, New York, 2004.

[8] W. Gautschi, L. Gori, F. Pitolli, Gauss quadrature for refinable weight functions, Appl. Comput. Harmon. Anal. 8 (3) (2000) 249–257.
[9] G.H. Golub, J.H. Welsch, Calculation of Gauss quadrature rules, Math. Comput. 23 (1969) 221–230 (in English).
[10] J.E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (5) (1981) 713–747.
[11] D. Huybrechs, S. Vandewalle, Composite quadrature formulae for the approximation of wavelet coefficients of piecewise smooth and singular

functions, J. Comput. Appl. Math. 180 (1) (2005) 119–135.
[12] Arnold R. Krommer, Christoph W. Ueberhuber, Computational Integration, in: Society for Industrial and Applied Mathematics, vol. xix, SIAM,

Philadelphia, PA, 1998, p. 445 $ 64.00 (in English).
[13] D.P. Laurie, J.M. de Villiers, Orthogonal polynomials and Gaussian quadrature for refinable weight functions, Appl. Comput. Harmon. Anal. 17 (3)

(2004) 241–258.
[14] D.P. Laurie, J.M. de Villiers, Orthogonal polynomials for refinable linear functionals, Math. Comp. 75 (256) (2006) 1891–1903 (electronic).
[15] G.Mantica, A stable Stieltjes technique for computing orthogonal polynomials and Jacobimatrices associatedwith a class of singularmeasures, Constr.

Approx. 12 (4) (1996) 509–530.
[16] G. Mantica, On computing Jacobi matrices associated with recurrent and Möbius iterated function systems, J. Comput. Appl. Math. 115 (1–2) (2000)

419–431.
[17] G. Mantica, Fractal measures and polynomial sampling: IFS-Gaussian integration, Numer. Algor. 45 (1–4) (2007) 269–281.
[18] G. Mantica, D. Guzzetti, The asymptotic behaviour of the Fourier transforms of orthogonal polynomials. II. L.I.F.S. measures and quantum mechanics,

Ann. Henri Poincaré 8 (2) (2007) 301–336.
[19] J.C. Mason, D.C. Handscomb, Chebyshev Polynomials, Chapman & Hall/CRC, Boca Raton, FL, 2003.
[20] Sotirios E. Notaris, Interpolatory quadrature formulae with Chebyshev abscissae, J. Comput. Appl. Math. 133 (1–2) (2001) 507–517.
[21] T.N.L. Patterson, Stratified nested and related quadrature rules, J. Comput. Appl. Math. 112 (1999) 243–251.
[22] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, second ed., in: Texts in Applied Mathematics, vol. 37, Springer-Verlag, Berlin, 2007.
[23] Theodore J. Rivlin, The Chebyshev Polynomials, in: Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1974.
[24] W. Sweldens, R. Piessens, Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions, SIAM J. Numer.

Anal. 31 (4) (1994) 1240–1264.
[25] L.N. Trefethen, Is Gauss quadrature better than Clenshaw Curtis? SIAM Rev. 50 (1) (2008) 67–87.
[26] Jörg Waldvogel, Fast construction of the Fejér and Clenshaw–Curtis quadrature rules, BIT 46 (1) (2006) 195–202 (in English).


	An evaluation of Clenshaw--Curtis quadrature rule for integration w.r.t. singular measures
	Introduction
	Preliminary results and definitions
	Quadrature rules
	Clenshaw--Curtis rules
	Computation of Clenshaw--Curtis rules
	Gauss formulae

	Balanced measures and linear refinable functionals
	Case study: Integration with respect to binomial measure
	References


