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Abstract

Let D be a set of positive integers. The distance graph generated by D, denoted by G(Z , D), has the
set Z of all integers as the vertex set, and two vertices x and y are adjacent whenever |x − y| ∈ D. For
integers 1 < a ≤ b < m − 1, define Da,b,m = {1, 2, . . . , a − 1} ∪ {b + 1, b + 2, . . . , m − 1}. For the
special case a = b, the chromatic number for the family of distance graphs G(Z , Da,a,m) was first studied
by R.B. Eggleton, P. Erdős and D.K. Skilton [Colouring the real line, J. Combin. Theory (B) 39 (1985)
86–100] and was completely solved by G. Chang, D. Liu and X. Zhu [Distance graphs and T -coloring,
J. Combin. Theory (B) 75 (1999) 159–169]. For the general case a ≤ b, the fractional chromatic number
for G(Z , Da,b,m) was studied by P. Lam and W. Lin [Coloring distance graphs with intervals as distance
sets, European J. Combin. 26 (2005) 25 1216–1229] and by J. Wu and W. Lin [Circular chromatic numbers
and fractional chromatic numbers of distance graphs with distance sets missing an interval, Ars Combin.
70 (2004) 161–168], in which partial results for special values of a, b, m were obtained. In this article, we
completely settle this problem for all possible values of a, b, m.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Let D be a set of positive integers. The distance graph generated by D, denoted by G(Z , D),
has the set Z of all integers as the vertex set, and two vertices x and y are adjacent whenever
|x − y| ∈ D. Initiated by Eggleton, Erdős and Skilton [5], the study of distance graphs has
attracted considerable attention [2–8,11–18,20–25].
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A fractional coloring of a graph G is a mapping f which assigns to each independent set I
of G a non-negative weight f (I ) such that for each vertex x ,

∑
x∈I f (I ) ≥ 1. The fractional

chromatic number χ f (G) of G is the least total weight of a fractional coloring for G.
The problem of determining the fractional chromatic number for distance graphs has been

studied in different research areas under different names. Firstly, it is equivalent to a sequence
density problem in number theory. For a set D of positive integers, a sequence S of non-
negative integers is called a D-sequence if a − b 6∈ D for any a, b ∈ S. Let S(n) denote
|{0, 1, . . . , n − 1}∩ S|. The upper density and the lower density of S are defined, respectively, by

δ̄(S) = limn→∞

S(n)

n
, δ(S) = limn→∞

S(n)

n
.

We say S has density δ(S) if δ̄(S) = δ(S) = δ(S). The parameter of interest is the maximum
density of a D-sequence, defined by

µ(D) = sup{δ(S) : S is a D-sequence}.

The problem of determining or estimating µ(D) was initially posed by Motzkin in an
unpublished problem collection (cf. [1]), and has been studied in [1,10,19,9,18]. Note that S
is a D-sequence if and only if S (as a set of integers) is an independent set of G(Z , D). It was
proved by Chang et al. [3] that for any finite set D,

µ(D) =
1

χ f (G(Z , D))
.

Secondly, the fractional chromatic number of a distance graph is equivalent to an asymptotic
problem in T -coloring. The T -coloring problem was motivated by the channel assignment
problem introduced by Hale [10], in which an integer broadcast channel is assigned to each
of a given set of stations or transmitters so that interference among nearby stations is avoided.
Interference is modeled by a set of non-negative integers T containing 0 as the forbidden channel
separations. By using a graph G to represent the broadcast network, a valid channel assignment is
defined as a T -coloring for G, which is a mapping f : V (G) → Z such that | f (x) − f (y)| 6∈ T
whenever xy ∈ E . The span of a T -coloring f is the difference between the largest and the
smallest numbers in f (V ), i.e., max{| f (u) − f (v)| : u, v ∈ V }. Given T and G, the T -span
of G, denoted by spT (G), is the minimum span among all T -colorings of G. As for any graph
G, spT (G) ≤ spT (Kχ(G)), it is useful to estimate spT (Kn). Let σn denote spT (Kn). Griggs and
Liu [9] proved that for any set T the asymptotic T -coloring ratio

R(T ) := lim
n→∞

σn

n

exists and is a rational number. It was proved in [3] that for any T , by letting D = T − {0}, we
have R(T ) = χ f (G(Z , D)).

Partially due to its rich connections to other problems, the fractional chromatic number for
various classes of distance graphs has been studied in the literature (cf. [2,3,17,18,23,14,24,25]).
If D is a singleton, trivially χ f (G(Z , D)) = 2. If D = {a, b} and gcd(a, b) = 1, it is known [1]
that χ f (G(Z , D)) =

a+b
b(a+b)/2c

. For |D| ≥ 3, the exact values of χ f (G(Z , D)) are known only
for some special sets D. For D = {a, b, a + b}, upper and lower bounds for χ f (G(Z , D))

were obtained by Rabinowitz and Proulx [19]. Let χ(G) and ω(G) denote, respectively, the
chromatic number and the clique number of G. It is easy to see that ω(G) ≤ χ f (G) ≤ χ(G)

holds for any graph G, and χ(G(Z , D)) ≤ |D| + 1 [4,20] if D is finite. In [18], the sets D with
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ω(G(Z , D)) ≥ |D| were characterized and the value of χ f (G(Z , D)) for most of this class of
graphs, including D = {a, b, a + b}, was determined.

For any two integers a ≤ b, let [a, b] denote the interval of consecutive integers {a, a +

1, . . . , b}. It is known that if D = [a, b], then χ f (G(Z , D)) = (a + b)/a [9,2]. For the sets D of
the form D = [1, m] − {k, 2k, . . . , sk} for integers m, k and s, the values of χ f (G(Z , D)) were
determined in [17].

For 1 < a ≤ b < m − 1, let Da,b,m denote the two-interval set

Da,b,m = [1, a − 1] ∪ [b + 1, m − 1].

Note, if a = b, then Da,a,m = [1, m − 1] − {a}. The chromatic number for G(Z , Da,a,m) was
first studied by Eggleton, Erdős and Skilton [5] and the problem was completely solved in [3].
For the general case a ≤ b, both the fractional chromatic number and the chromatic number
for G(Z , Da,b,m) were studied by Wu and Lin [23], and by Lam and Lin [14]. Some partial
results were obtained. In this article, we completely determine the fractional chromatic number
of G(Z , Da,b,m) for all 1 < a ≤ b < m − 1.

2. Main result and preliminaries

For some special cases, the values of χ f (G(Z , Da,b,m)) for the two-interval set Da,b,m =

[1, a−1]∪[b+1, m−1] were solved in [23,14]. If b < 2a, then χ f (G(Z , Da,b,m)) is determined
in [23]. Let ∆ = m − b. If ∆ ≤ a or ∆ ≥ 2a, then χ f (G(Z , Da,b,m)) is determined in [14].
Some other special cases (which cannot be easily described) are discussed in [14].

The main result of this article is the following which completely determines the value of
χ f (G(Z , Da,b,m)) for all 1 < a ≤ b < m − 1.

Theorem 1. For integers 1 < a ≤ b < m − 1. Suppose G = G(Z , Da,b,m) where Da,b,m =

[1, a − 1] ∪ [b + 1, m − 1]. Let ∆ = m − b, s = bb/ac, and q = bm/∆c.

• If ∆ ≥ 2a, then χ f (G) = (sa + m)/(s + 1).
• If ∆ ≤ a, then χ f (G) = max{a, m/(s + 1)}.
• If a < ∆ < 2a, then

χ f (G) =



sa + m

s + 1
, if 2qa ≤ m < a + q∆ or if m ≥ (2q + 1)a;

m

q
, if m < min{q∆ + a, 2qa};

(2q − 1)m + a

2q2 , if q∆ + a ≤ m < (2q + 1)a.

The cases for ∆ ≥ 2a and ∆ ≤ a were solved in [14]. However, for completeness, we include
these cases in the statement and give a short proof for them.

Recall the result in [3] mentioned in Section 1, the fractional chromatic number of G is
equal to the reciprocal of µ(Da,b,m), which is the maximum density of a Da,b,m-sequence. Let
I = {x1, x2, . . .} be a Da,b,m-sequence where xi < xi+1. Let δi = xi+1 − xi . The sequence
Ω = (δ1, δ2, . . .) is called the gap sequence of I . In the following, we call a sequence (δ1, δ2, . . .)

a D-gap sequence if it is the gap sequence of a D-sequence. Observe that a sequence (δ1, δ2, . . .)

is a D-gap sequence if and only if for any j ≤ j ′,
∑ j ′

i= j δi 6∈ D. In particular, the following
observation is frequently used, usually implicitly, in our proofs.
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• A sequence (δ1, δ2, . . .) is a Da,b,m-gap sequence if and only if
(1) δi ≥ a for each i ; and

(2) for any j ≤ j ′, either
∑ j ′

i= j δi ≤ b or
∑ j ′

i= j δi ≥ m.

By definition,

µ(Da,b,m) = max lim
n→∞

|I ∩ [0, n − 1]|

n
,

where the maximum is taken over all Da,b,m-sequences I . Hence

χ f (G) =
1

µ(Da,b,m)
= min lim

n→∞

n

|I ∩ [0, n − 1]|
= min lim

k→∞

k∑
i=1

δi

k
.

Again, the minimum is taken over all Da,b,m-sequences I with gap sequence (δ1, δ2, . . .).
For an interval of integers [a, b], we call its cardinality |[a, b]| the length of [a, b]. Given

a Da,b,m-gap sequence Y = (δ1, δ2, δ3, . . .), the average gap length of Y is limk→∞

∑k
i=1

δi
k

(if exists). Thus to determine the fractional chromatic number of G(Z , Da,b,m), it amounts to
determine the minimum average gap length of a Da,b,m-gap sequence. Usually, the gap sequences
we concern are periodic. For a periodic gap sequence, it suffices to present one period of the
sequence. We shall denote by 〈y1, y2, . . . , yk〉 the infinite periodic sequence with period k. That
is, 〈y1, y2, . . . , yk〉 = (y1, y2, . . . , y j , . . .) where for j > k, y j = y j−k . For convenience, we
denote by p ⊗ t , for any integers p and t , the p repetitions of t . For example, 〈3 ⊗ 5, 2 ⊗ 7〉 is
the periodic sequence 〈5, 5, 5, 7, 7〉 = (5, 5, 5, 7, 7, 5, 5, 5, 7, 7, . . .).

We now give a short proof for the cases ∆ ≤ a and ∆ ≥ 2a. As each gap of a Da,b,m-
gap sequence is at least a, we have χ f (G) ≥ a. If m ≤ (s + 1)a, then 〈a〉 is a Da,b,m-gap
sequence with average gap length a. Hence χ f (G) = a. Assume m > (s + 1)a and ∆ ≤ a.
Then the sequence 〈s ⊗ a, m − sa〉 is a Da,b,m-gap sequence of average gap length m/(s + 1).
So χ f (G) ≤ m/(s + 1). On the other hand, for any Da,b,m-gap sequence (δ1, δ2, . . .), since∑s+1

i=1 δi ≥ (s + 1)a ≥ b + 1, we must have
∑s+1

i=1 δi ≥ m. Hence the average gap length is at
least m/(s + 1). So χ f (G) = m/(s + 1).

Assume ∆ ≥ 2a. It is easy to verify that the sequence 〈s ⊗ a, m〉 is a Da,b,m-gap sequence
with average gap length (m + sa)/(s + 1). Hence χ f (G) ≤ (m + sa)/(s + 1). On the other
hand, if χ f (G) = 1/µ(Da,b,m) < (m + sa)/(s + 1), then there is a Da,b,m-sequence I
with |[0, sa + m − 1] ∩ I | ≥ s + 2. Without loss of generality, we may assume 0 ∈ I . Let
I ′

= {i : i ∈ I, i ≤ b} ∪ {i − m + a : i ∈ I, i ≥ m − a}. It is easy to verify that |I | = |I ′
|,

I ′
⊆ [0, (s + 1)a − 1] and for any x, y ∈ I ′, |x − y| ≥ a. This is in contrary to the assumption

that |I | ≥ s + 2. Therefore we have χ f (G) = (m + sa)/(s + 1).

3. Proof of the upper bound

In the rest of the paper, we assume that a < ∆ < 2a, and let

τ(Da,b,m) =



sa + m

s + 1
, if 2qa ≤ m < a + q∆ or if m ≥ (2q + 1)a;

m

q
, if m < min{q∆ + a, 2qa};

(2q − 1)m + a

2q2 , if q∆ + a ≤ m < (2q + 1)a.
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In this section, we prove that χ f (G) ≤ τ(Da,b,m). This amounts to present a Da,b,m-gap
sequence whose average gap length is at most τ(Da,b,m).

Lemma 2. Suppose G = G(Z , Da,b,m). Then χ f (G) ≤ τ(Da,b,m).

Proof. First note that the following are two Da,b,m-gap sequences:

〈s ⊗ a, m〉 and 〈(q − 1) ⊗ ∆, m − ((q − 1)∆)〉,

where the average gap lengths, respectively, are (sa +m)/(s +1) and m/q. This proves the result
for all the cases, except the very last one.

For the last case, q∆ + a ≤ m < (2q + 1)a, the gap sequence is more complicated. We shall
define some special sequences, then combine them to form the required periodic sequence.

For i = 1, 2, . . . , q − 1, let Yi , Y ′

i and W be finite sequences of integers defined as follows:

Yi = (i ⊗ ∆, a, (q − 1 − i) ⊗ ∆, m − (a + (q − 1)∆))

Y ′

i = ((i − 1) ⊗ ∆,∆ + a, (q − 1 − i) ⊗ ∆, m − (a + (q − 1)∆))

W = (a).

Let

Y ′
q = ((q − 1) ⊗ ∆, m − (q − 1)∆).

For finite sequences A = (a1, a2, . . . , as) and B = (b1, b2, . . . , bt ), the concatenation of A and
B, denoted by AB, is the sequence

AB = (a1, a2, . . . , as, b1, b2, . . . , bt ).

The concatenation of sequences is associative. Thus for finite sequences A1, A2, . . . , At , the
sequence A1 A2 . . . At is well-defined. Define the periodic gap sequence as

〈Y ′
qYq−1Y ′

q−1Yq−2Y ′

q−2 · · · Y1Y ′

1W 〉.

Now we show that this sequence is indeed a Da,b,m-gap sequence. Since

m − (a + (q − 1)∆) = m − q∆ − a + ∆ ≥ ∆ > a,

each entry of the sequence is at least a. It remains to show that the sum of any number of
consecutive entries of the sequence is either at most b or at least m. Observe that the sum of
the entries in each Yi or Y ′

i is equal to m. Consider the sum of any t consecutive entries in the
sequence. Straightforward calculation shows that if t ≥ q + 1, then the sum is at least m; if
t ≤ q − 1, then the sum is at most b; if t = q , then the sum is either equal to m or at most b.
(Here we use the condition that (q − 1)∆ + a ≤ (q − 1)∆ + m − q∆ = b.) Thus the sequence
defined above is a Da,b,m-gap sequence.

Straightforward calculation shows that this gap sequence has average gap length
(2q−1)m+a

2q2 . �

4. Proof of the lower bound

To complete the proof of Theorem 1, it remains to show that χ f (G) ≥ τ(Da,b,m). To this end,
we need some more definitions.
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In the following, we assume that I = {x1, x2, . . .} is a Da,b,m-sequence, i.e., an independent
set in G = G(Z , Da,b,m). We shall prove that the gap sequence of I has average gap length at
least τ(Da,b,m).

Let

L = {i : xi+1 − xi ≥ ∆}.

For each xi ∈ I , we associate it with a set X i of integers as follows.

X i =

{
[xi , xi + ∆ − 1], if i ∈ L;

[xi , xi + a − 1] ∪ [xi + m, xi + m + a − 1], if i 6∈ L .

Lemma 3. If i 6= j , then X i ∩ X j = ∅.

Proof. Assume i < j . If i ∈ L , then X i = [xi , xi + ∆ − 1] and by definition, x j ≥ xi + ∆.
As t ∈ X j implies that t ≥ x j , we have X i ∩ X j = ∅. Assume i 6∈ L . Then X i =

[xi , xi +a−1]∪[xi +m, xi +m +a−1]. As x j ≥ xi +a, we know that X j ∩[xi , xi +a−1] = ∅.
Assume X j ∩ [xi + m, xi + m + a − 1] 6= ∅. Then by the definition of X j , we have either
x j ∈ [xi + m − ∆ + 1, xi + m − 1] or x j ∈ [xi + m, xi + m + a − 1]. The former case implies
b + 1 ≤ x j − xi ≤ m − 1; and the latter case implies b + 1 ≤ x j − xi+1 ≤ m − 1 (since
i 6∈ L , we have a ≤ xi+1 − xi < ∆). For both cases, it contradicts the assumption that I is a
Da,b,m-sequence. �

We call intervals of the form [xi +m, xi +m +a −1] for i 6∈ L Type-B I -intervals. Intervals of
the form [xi , xi +∆− 1] for i ∈ L , and intervals of the form [xi , xi + a − 1] for i 6∈ L are called
Type-A I -intervals. Both Type-A and Type-B I -intervals are referred as I -intervals. The length
of an I -interval is either ∆ or a, and they are called, respectively, long or short I -intervals.

Lemma 4. If T = [xi , xi +a−1] is a short Type-A I -interval, then the first I -interval T ′
= [u, v]

with u ≥ xi + a is Type-A.

Proof. Assume to the contrary that T ′
= [u, v] = [x j + m, x j + m + a − 1] for some j . As

x j + m ≥ xi + a, which implies xi − x j ≤ m − a, we have xi − x j ≤ b. So x j + m ≥ xi + ∆.
In addition, since T is a short Type-A I -interval, xi+1 < xi + ∆. Hence, xi+1 < x j + m,
contradicting the choice of T ′. �

Lemma 5. There are at most s short consecutive I -intervals that are of the same type.

Proof. First we show that there are at most s short consecutive Type-A I -intervals. Assume
T1 = [u1, v1], T2 = [u2, v2], . . . , T j = [u j , v j ] are consecutive I -intervals and T1, T2, . . . , T j−1
are short and Type-A. By Lemma 4, T j is also Type-A. So u1, u2, . . . , u j ∈ I . We prove by
induction on i that ui ≤ u1 + b for i = 1, 2, . . . , j . It is trivial for i = 1. Assume i < j and
ui ≤ u1 + b. By definition of I -intervals, ui+1 − ui < ∆. Hence ui+1 < ui + ∆ ≤ u1 + m. As
u1, ui+1 ∈ I , it follows that ui+1 ≤ u1 + b.

Because s = bb/ac and |Ti | ≥ a, we conclude that there are at most s consecutive short
Type-A I -intervals. By definition, consecutive Type-B I -intervals correspond to consecutive
short Type-A I -intervals. So the result follows. �

Suppose T is an I -interval. Define the weight of T by

w(T ) =

{
1, if T is long;
1/2, if T is short.
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For any interval of integers [u, v], let

w([u, v]) =

∑
T is an I -interval and T ⊆ [u,v]

w(T ).

By definition, every integer in I creates either a long interval of weight 1 or two short intervals
of weight 1/2 each. By Lemma 3, all these intervals are disjoint, and by definition the two short
intervals induced by an integer in I are of distance m − a apart. Hence, by Lemma 5, for any n,

w([0, n − 1]) − s/2 ≤ |I ∩ [0, n − 1]| ≤ w([0, n − 1]) + s/2.

Thus to prove that limn→∞
n

|I∩[0,n−1]|
≥ τ(Da,b,m), it suffices to show that limn→∞

n
w([0,n−1])

≥

τ(Da,b,m).
An interval W = [x, y] of integers is called neat if every I -interval is either contained in W

or disjoint from W . Suppose W is a neat interval. We define the X -ratio of W to be

r(W ) =
|W |

w(W )
.

To prove that limn→∞
n

|I∩[0,n−1]|
≥ τ(Da,b,m), it suffices to find integers a1 < a2 < · · · such

that for any i , Ri = [ai , ai+1 − 1] is a neat interval and r(Ri ) ≥ τ(Da,b,m).
We say an integer p has property (*) if

(*) for the first Type-B I -interval [u, u + a − 1] with u ≥ p, we have u ≥ p + ∆.

Lemma 6. Each xi ∈ I has property (∗). Moreover, if i ∈ L, then xi + m also has property (∗)

and [xi , xi + m − 1] is neat.

Proof. If i 6∈ L , by Lemma 4, xi has property (*). Assume i ∈ L . By definition, xi has
property (*). Suppose xi + m does not have property (*). Then, there exists some u with
xi +m ≤ u < xi +m +∆ such that [u, u +a−1] is a Type-B I -interval. By definition, u −m ∈ I
and [u − m, u − m + a − 1] is Type-A. This is impossible as xi ≤ u − m < xi + ∆ ≤ xi+1 but
i ∈ L . Hence, xi + m has property (*).

Now, assume to the contrary that [xi , xi + m − 1] is not neat. Let T = [u, v] be an I -interval
that T ∩ [xi , xi + m − 1] 6= ∅ and T 6⊆ [xi , xi + m − 1]. By definition and as i ∈ L , T must be
Type-A. Hence, u ∈ I . Let u = xt for some t . Then xi + m − ∆ + 1 ≤ xt ≤ xi + m − 1. This
implies b + 1 ≤ xt − xi ≤ m − 1, a contradiction. �

To complete the proof of Theorem 1, it suffices to find an infinite sequence of integers
a1 < a2 < · · · such that the following hold for all i :

(1) ai has property (*),
(2) Ri = [ai , ai+1 − 1] is neat, and
(3) r(Ri ) ≥ τ(Da,b,m).

We shall construct such a sequence of integers a1 < a2 < · · · inductively. Initially, set
a1 = x1. By Lemma 6, a1 has property (*). Assume we have determined a1, a2, . . . , ai , where
(1–3) in the above are satisfied. We shall determine ai+1 so that (1–3) still hold.

Let [u, v] be the first I -interval with u ≥ ai . If [u, v] is Type-B, then as ai has property (*),
u ≥ ai + ∆. Let ai+1 = xt , where xt is the smallest element of I for which xt > ai . Then all the
I -intervals contained in Ri = [ai , ai+1 − 1] are Type-B, and Ri is neat. Assume Ri contains j
Type-B I -intervals. By Lemma 5, j ≤ s. Since w(Ri ) = j/2 and |Ri | ≥ ∆ + ja, it follows that

r(Ri ) ≥
2(∆ + ja)

j
≥ 2a +

2∆
s

≥ τ(Da,b,m).
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(Observe that sa+m
s+1 < a +

b
s+1 +

∆
s+1 < 2a +

∆
s+1 . If m < 2qa, then m

q < 2a. If m < (2q + 1)a,

then (2q−1)m+a
2q2 < 2a.) Moreover, by Lemma 6, ai+1 = xt has property (*). Thus (1–3) in the

above are satisfied.
In the following, assume [u, v] is Type-A. Then u ∈ I . Let xh be the first element of I such

that xh ≥ u and h ∈ L . Let ai+1 = xh + m. By Lemma 6, Ri = [ai , ai+1 − 1] is neat and ai+1
has property (*).

It remains to show (3). Assume the interval [u, xh − 1] contains j I -intervals for some j ≥ 0.
By Lemma 4, all the I -intervals contained in [u, xh − 1] are Type-A and short.

Since an I -interval of weight 1 has length ∆ and an I -interval of weight 1/2 has length
a > ∆/2, so for any interval T of length m, we have

w(T ) ≤

q, if m < q∆ + a;

q +
1
2
, if m ≥ q∆ + a.

Because Ri = [ai , xh − 1] ∪ [xh, xh + m − 1], it follows that

w(Ri ) ≤


q +

j

2
, if m < q∆ + a;

q +
j + 1

2
, if m ≥ q∆ + a.

Now we consider three cases.

Case 1. m < q∆ + a. As |Ri | ≥ ja + m, by the above discussion, r(Ri ) ≥
ja+m

q+ j/2 . Observe that
ja+m

q+ j/2 is a function of j which is increasing if m ≤ 2qa and decreasing if m ≥ 2qa. Hence, as
j ≤ s, we have

• if m ≥ 2qa, then r(Ri ) ≥
sa+m
q+

s
2

≥
sa+m
s+1 ;

• if m < 2qa, then r(Ri ) ≥
0a+m
q+0 ≥

m
q .

Hence, (3) holds.

Case 2. m ≥ (2q +1)a. Similar to Case 1, we have r(Ri ) ≥
ja+m

q+( j+1)/2 . Because m ≥ (2q +1)a,

which implies that ja+m
q+( j+1)/2 is a decreasing function of j , we conclude that r(Ri ) ≥

sa+m
q+(s+1)/2 .

As b
a =

m
a −

∆
a ≥ 2q + 1 − 2, we have s = bb/ac ≥ 2q − 1, i.e., q ≤ (s + 1)/2. Hence

r(Ri ) ≥ (sa + m)/(s + 1), so (3) holds.

Case 3. a+q∆ ≤ m < (2q+1)a. Then r(Ri ) ≥
ja+m

q+( j+1)/2 . Because m < (2q+1)a, ja+m
q+( j+1)/2 is

an increasing function of j . If j ≥ 1, then r(Ri ) ≥
a+m
q+1 >

(2q−1)m+a
2q2 . If j = 0 and w(Ri ) ≤ q,

then r(Ri ) ≥
m
q >

(2q−1)m+a
2q2 , and we are done.

Assume j = 0 and w(Ri ) = q + 1/2. Then u = xh and r(Ri ) ≥ m/(q + 1/2). As
m

q+1/2 <
(2q−1)m+a

2q2 = τ(Da,b,m), this “ai+1” does not satisfy our requirement. We need to find a
different ai+1 so that (1–3) are satisfied. In the following, we re-name the interval [u, u + m − 1]

just obtained by R1
i . (The correct Ri is not found yet.)

Since w(R1
i ) = q + 1/2, R1

i contains a short I -interval. Let p1 ≤ q be the total weight of
I -intervals preceding the last short I -interval in R1

i . As w(R1
i ) = q + 1/2 and the first I -interval

of R1
i is long, we know that p1 ≥ 1 is an integer.
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Before reaching the correct interval Ri , we may need a (finite) sequence of intervals R j
i , where

R1
i is just the first one of them. In the following, we describe the inductive step of finding R j

i .
Suppose z is an integer, 1 ≤ z ≤ 2q − 1, and for j = 1, 2, . . . , z, we have obtained

R j
i = [xi j , xi j + m − 1] with the following properties:

• xi j ∈ I and i j ∈ L , and for j ≥ 2, xi j−1 + m ≤ xi j < xi j−1 + m + a.

• w(R j
i ) = q + 1/2.

Observe that if w(R j
i ) = q + 1/2, the I -intervals in R j

i must be “tightly packed.” Namely, if

a neat sub-interval H of R j
i has length ≥ α∆ + βa, where α, β are non-negative integers, then

w(H) ≥ α + β/2. For otherwise, w(R j
i ) will be less than q + 1/2.

Let p j be the total weight of I -intervals preceding the last short I -interval in R j
i . Since

w(R j
i ) = q + 1/2, R j

i does contain a short I -interval. Since the first interval of R j
i is a long

interval, we have p j ≥ 1.
Let [xs′ , xs′ + ∆ − 1] be the first long I -interval with xs′ ≥ xiz + m. If xs′ ≥ xiz + m + a,

let ai+1 = xs′ . Then Ri = [ai , ai+1 − 1] is neat, |Ri | ≥ zm + ja for some j ≥ 1, and
w(Ri ) ≤ z(q + 1/2) + j/2. Hence

r(Ri ) ≥
zm + ja

z(q +
1
2 )

+
j

2
≥

zm + a

z(q +
1
2 )

+
1
2

≥
(2q − 1)m + a

2q2 .

Note, all the I -intervals contained in [xiz +m, xs′ −1], if any, are short. The last inequality in the
above holds since z ≤ 2q − 1 and zm+a

z(q+
1
2 )

is a decreasing function of z. As ai+1 ∈ I has property

(*), we are done for this case.
Assume xs′ ≤ xiz + m + a − 1. Let Rz+1

i = [xs′ , xs′ + m − 1]. If w(Rz+1
i ) ≤ q, then let

ai+1 = xs′ + m. By Lemma 6, Ri = [ai , ai+1 − 1] is neat and ai+1 has property (*). To verify
(3), we note that w(Ri ) ≤ (z + 1)q + z/2 and

r(Ri ) ≥
(z + 1)m

(z + 1)q +
z
2

≥
2qm

2q2 + q −
1
2

≥
(2q − 1)m + a

2q2 .

The second inequality in the above holds because (z+1)m
(z+1)q+z/2 is a decreasing function of z. The

third inequality holds because m ≥ a(q + 1). Thus we assume that w(Rz+1
i ) = q + 1/2.

Claim. pz+1 ≤ pz . Moreover, if pz+1 = pz , then the last short I -interval contained in Rz
i is

Type-A, and the last short I -interval in Rz+1
i is Type-B.

Proof of Claim. Let T = [u, u + a − 1] and T ′
= [u′, u′

+ a − 1] be the last short I -interval in
Rz

i and Rz+1
i , respectively. If T ′ is Type-B, then T ′′

= [u′
−m, u′

−m +a −1] is a short Type-A
I -interval contained in Rz

i . Note, as |[u′
− m, xis′

− 1]| = |[u′, xis′
+ m − 1]| and xis′

≥ xiz + m,
we have |[xiz , u′

− m − 1]| ≥ |[xis′
, u′

− 1]|. Hence, [xiz , u′
− m − 1] is capable of containing I -

intervals of total weight at least pz+1. As the I -intervals in Rz
i are tightly packed, the I -intervals

contained in [xiz , u′
− m − 1] has total weight at least pz+1. Therefore pz ≥ pz+1, and if the

equality holds then the last short I -interval in Rz
i is Type-A.

Assume T ′ is Type-A. Thus u′
= xi∗ ∈ I for some i∗. Since T ′ is short, xi∗+1 ≤ xi∗ +∆− 1.

Note, as s′
∈ L and xi∗ , xi∗+1 ∈ I , we have xi∗+1 ≤ xs′+b and [xi∗−m+1, xi∗+1−b−1]∩I = ∅.

Consider the interval [xiz , xi∗+1 − b − 1]. If this is a sub-interval of Rz
i , then since

|[xiz , xi∗+1 − b − 1]| ≥ |[xis′
, xi∗+1 − 1]| + ∆,
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and the interval [xiz , xi∗+1 − b − 1] is tightly packed, we conclude that the total weight of the
I -intervals that intersect with [xiz , xi∗+1 − b − 1] is at least pz+1 + 1 + 1/2. Moreover, since
|[xi∗ −m +1, xi∗+1 −b−1]| ≥ ∆+a −1 and [xi∗ −m +1, xi∗+1 −b−1]∩ I = ∅, we conclude
that the last I -interval intersecting with [xiz , xi∗+1 − b − 1] is Type-B. The total weight of the
I -intervals of Rz

i preceding this Type-B I -interval is at least pz+1 + 1. Therefore, pz+1 < pz .
Assume [xiz , xi∗+1 − b − 1] is not a sub-interval of Rz

i . Then xi∗+1 − b − 1 ≥ xiz + m. Since
xiz ≥ xs′−m−a+1, we have xi∗+1 ≥ xs′+b−a+3. This implies that [xi∗+1+1, xs′+m]∩I = ∅,
and [xi∗+1, xi∗+1 + ∆ − 1] is the last I -interval contained in Rz+1

i . Hence pz+1 = q − 1. If
pz ≤ q − 2, then the conclusion follows.

Assume pz = q − 1. Then the last I -interval in Rz
i is a long interval. Denote this long I -

interval by [w, w′
]. Since w ∈ I but [xi∗ − m + 1, xiz + m − 1] ∩ I = ∅, we have w ≤ xi∗ − m.

As all I -intervals are disjoint, the last short I -interval of Rz
i must be within [xiz , xi∗ − m − 1].

Therefore, the interval [xiz , xi∗ − m − 1] has length at least (q − 1)∆ + a. Moreover, since

|[xi∗ − m, xs′ − 1]| ≥ |[xi∗ − m, xi∗+1 − b − 1]| ≥ ∆ + a,

we conclude, [xiz , xs′ − 1] has length at least q∆ + 2a. Let ai+1 = xs′ . Then

r(Ri ) ≥
(z − 1)m + q∆ + 2a

z(q +
1
2 )

≥
(2q − 2)m + q∆ + 2a

(2q − 1)(q +
1
2 )

.

The second inequality holds because the formula is a decreasing function on z and z ≥ 2q − 1.
To complete the proof of the Claim, it suffices to show

(2q − 2)m + q∆ + 2a

(2q − 1)(q +
1
2 )

≥
(2q − 1)m + a

2q2 .

Write m = q∆ + 2a − λ, where 0 < λ ≤ a. The above inequality is equivalent to

2q2λ − (2q2
− 1/2)a − m(1/2 − q) ≥ 0.

By definition, we have:
(1) λ ≥ 2a − ∆ + 1 (since q = bm/∆c)
(2) ∆ ≤ 2a − 1 (since 2a > ∆).
Therefore,

2q2λ − (2q2
− 1/2)a − m(1/2 − q)

= (2q2
− q + 1/2)λ − a(2q2

− 2q + 1/2) − ∆(q/2 − q2)

≥ a(2q2
+ 1/2) − ∆(q2

− q/2 + 1/2) + (2q2
− q + 1/2) (by (1))

≥ a(q − 1/2) + 3q2
− (3q)/2 + 1 (by (2))

≥ 0 (since q ≥ 1)

This completes the proof of the Claim. �

Since pi ≥ 1, so p2q does not exist. Thus the procedure above terminates at the k-th step for
some k ≤ 2q , when the valid ai+1 is obtained. This completes the proof of Theorem 1. �
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