Relationship between peptide structure and antimicrobial activity as studied by de novo designed peptides

Jianbo Sun a,1, Yuqiong Xia b,1, Dong Li c, Quan Du c,*, Dehai Liang a,***

a Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871 China
b School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710126, China
c State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China

A R T I C L E I N F O

Article history:
Received 19 April 2014
Received in revised form 5 July 2014
Accepted 15 August 2014
Available online 23 August 2014

Keywords:
Antimicrobial peptide
Membrane leakage
Fusion
Aggregation

A B S T R A C T

As fundamental components in innate immunity, antimicrobial peptides (AMPs) hold great potentials in the treatment of persistent infections involving slow-growing or dormant bacteria in which, selective inhibition of prokaryotic bacteria in the context of eukaryotic cells is not only an essential requirement, but also a critical challenge in the development of antimicrobial peptides. To identify the sequence and structural properties critical for antimicrobial activity, a series of peptides varying in sequence, length, hydrophobicity/charge ratio, and secondary structure, were designed and synthesized. Their antimicrobial activities were then tested using Escherichia coli and HEK293 cells, together with several index activities against model membrane, including liposome leakage, fusion, and aggregation. While no evident correlation between the antimicrobial activity and the property of the peptides was observed, common activities against model membrane were nevertheless identified for the active antimicrobial peptides: mediating efficient membrane leakage, negligible membrane fusion and liposome aggregation. Therefore, in addition to identifying one highly active antimicrobial peptide, our study further sheds light on the design principle for these molecules.

1. Introduction

Antimicrobial peptides are abundant and diverse group of molecules produced and distributed in a variety of invertebrate, plant, and animals species, serving as “defender” against bacteria, fungi, viruses, and other invasion conceivable substances [1]. Although their antibacterial activity was proposed to derive mainly from their membrane disruption capability, recent studies suggested that AMPs also inhibited the formation of cell walls, as well as the synthesis of DNA, RNA and proteins [2].

AMPs are peptides with a length less than 100 amino acids. Their amino acid composition, amphiphilicity, cationic charge, and size allow them to attach to and insert into the bilayer membrane of bacteria, as well as to achieve selectivity between prokaryotic bacteria and eukaryotic mammalian cells. To elucidate the relationship between peptide structures and antibacterial activities, a variety of peptides differing in size, hydrophobicity, charge density, as well as secondary structure were studied [3–11]. Generally, higher hydrophobicity of AMPs led to enhanced membrane disturbance and compromised cellular selectivity [12], while higher charge density led to enhanced electrostatic interaction between peptides and membrane, and lowered toxicity to mammalian cells [6,13]. In addition, secondary structure of AMPs also showed significant influence. Studies indicated that AMPs stayed random in water, and formed α-helix upon interacting with membrane [7]. In response to the environment stimulations, change of the peptide secondary structure can cause more efficient membrane leakage [14]. The effect was more evident for less-charged membrane [9]. It was also found that AMPs with increasing length were more destructive to membranes [15]. Even though the effect of individual peptide property has been well understood, combinational effects of multiple properties are rarely investigated, which presents a critical challenge for the development of high performance AMPs [11].

Technically, the performances of AMPs are usually characterized by liposome leakage, using large unilamellar vesicles (LUVs) or giant unilamellar vesicles (GUV) as the model membrane. The degree of leakage is taken as a criterion to evaluate the membrane destroying capability of the AMPs [5,10,16]. The kinetics of the liposome leakage are also used to measure the interactions between AMPs and membranes [17]. Despite these investigations, the liposome leakage is not directly related to the antibacterial activity of AMPs. Particularly for LUVs, the leakages are often found to be accompanied with liposome aggregation and membrane fusion [18]. However, the underlying mechanisms and their effects on the antibacterial activity of AMPs have not been defined.
Herein, we designed and tested a series of peptides, which varied in terms of peptide sequence, length, hydrophobicity/charge ratio, and secondary structure (Table 1). To make the results comparable, only two types of amino acids, lysine and leucine mainly, were used for each peptide, with an exception of K14 consisting of only lysine. The peptides were designed to be with a sequence of bola-typed (K3L8K3)_n or surfactant-like (K6L8K6)_n and K3V8K3. To evaluate the influence of the hydrophobicity and secondary structure, the leucine in K6L8K6 was replaced by either isoleucine or valine, in peptide K3I8K3. The sequences and secondary structures of peptides in 50% TFE.

Table 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
<th>α-helix</th>
<th>β-sheet</th>
<th>β-turn</th>
<th>random</th>
</tr>
</thead>
<tbody>
<tr>
<td>(KL2KL2)2</td>
<td>Ac-KLLLIIIIKLLKK-amide</td>
<td>0.58</td>
<td>0.03</td>
<td>0.11</td>
<td>0.27</td>
</tr>
<tr>
<td>(KL6KL6)2</td>
<td>Ac-KLLKRLLKRLLK-amide</td>
<td>0.58</td>
<td>0.04</td>
<td>0.12</td>
<td>0.27</td>
</tr>
<tr>
<td>K6L8K6</td>
<td>Ac-KKLLLLLLKKK-amide</td>
<td>0.62</td>
<td>0.06</td>
<td>0.12</td>
<td>0.22</td>
</tr>
<tr>
<td>K6L8K6</td>
<td>Ac-KKKKLLLLLLLL-amide</td>
<td>0.50</td>
<td>0.06</td>
<td>0.15</td>
<td>0.28</td>
</tr>
<tr>
<td>K3I8K3</td>
<td>Ac-KKKIIIIIIKKK-amide</td>
<td>0.35</td>
<td>0.17</td>
<td>0.20</td>
<td>0.30</td>
</tr>
<tr>
<td>K3I8K3</td>
<td>Ac-KKKVAAAAVAAAAK-amide</td>
<td>0.10</td>
<td>0.34</td>
<td>0.18</td>
<td>0.26</td>
</tr>
<tr>
<td>K14 Ac-KKKKKKKKKKKK-amide</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

2.2. Circular dichroism spectra

Peptides were individually dissolved in Milli-Q water and sonicated for 5–10 s to obtain stock solution with a concentration of 1.00 or 0.25 mg/mL. Milli-Q water or trifluoroethanol (TFE) was used to dilute the stock solution. The circular dichroism (CD) spectra were measured from 190 to 250 nm at 50 °C using a JASCO J-810 spectrometer (AVIV, USA), with a 1.0 cm path length cuvette. Temperature was controlled by using a Polyscience programmable temperature controller. Peptides in Milli-Q water (25 μM) or 50% TFE (12.5 μM) was used in the measurement. For each peptide, three independent assays were performed.

2.3. Preparation of LUVs

DPPC/DPPG LUVs were prepared using the Bangham method [19]. In brief, DPPC solution (chloroform) and DPPG solution (methanol, v/v = 9/1) were added into a 50 mL pyriform flask at a molar ratio of 1:1, and mixed with Teflon beads. The organic solvent was removed at 50 °C under reduced pressure, followed by vacuuming overnight. The liposome film was then hydrated with Hepes buffer (pH 7.40, 20 mM Hepes, 150 mM NaCl, 0.1 mM EDTA) at 50 °C on a rotary evaporator for 1 h, with occasional vortexing. Using a mini-extruder (Avanti Polar Lipids, Inc.) and a polycarbonate filter with 100 nm pore size, liposome solution was extruded at 50 °C for 21 times. DPPC/DPPG liposome labeled with fluorescent probes (Rh-DPPE) was prepared similarly. The final concentration of liposome was determined by a modified Bartlett method [20]. The stock solution of liposome was then diluted to 15.6 μM in Hepes buffer.

2.4. Liposome leakage assay

Liposome leakage assays were performed at 50 °C using fluorescence TbCl3-DPA [21]. Tb/DPA-loaded liposome (10 mg/mL) was prepared in a buffer (1.25 mM TbCl3, 25 mM Na-citrate, 25 mM DPA, 60 mM NaCl, 20 mM Na-Hepes, pH 7.4). The non-encapsulated reagents were removed by filtering the solution through a Sephadex G-25 M column (column size, 1.0 × 20 cm; elution buffer: 150 mM NaCl, 1 mM EDTA, 20 mM Na-Hepes, pH 7.4). The fluorescence intensity of the Tb/DPA-loaded liposome was set as I0. 100% leakage was obtained by adding 0.05 wt.% Triton X-100 to the "Tb/DPA-loaded" liposome (total lipid concentration 15.6 μM). The fluorescence intensity at 100% leakage was set as I0. Liposome leakage in the presence of peptide was measured with a Fluoromax-4 spectrophotofluorometer. The excitation and emission wavelengths were 280 and 543 nm, respectively. A cutoff filter at 430 nm was placed in the emission path to eliminate the contributions from the scattered light. In accordance with the molar ratio of 0.053 after adding the peptides, the fluorescence intensity of the mixture was denoted as Iw, and the percentage of liposome leakage was calculated according to the equation:

\[
\text{Leakage} (\%) = \frac{100 \times (I_w - I_0)}{I_w - I_0} \quad (1)
\]

2.5. Laser light scattering

A commercialized spectrometer equipped with a BI-TurbCo Digital Correlator (BI-200SM, Brookhaven Instruments Corporation, Holtsville) was used to perform both static light scattering (SLS) and dynamic light scattering (DLS), over a scattering angular range of 20–120°. A vertically polarized, 100 mW solid-state laser (GXC-III, CNI, Changchun, China) operating at 532 nm was used as the light source.

In DLS, the intensity–intensity time correlation function \(G^{(2)}(\tau)\) in the self-beating mode was obtained on the basis of

\[
G^{(2)}(\tau) = A \left[1 + \beta g^{(1)}(\tau) \right] \quad (2)
\]

where \(A\) is the measurement base line, \(\beta\) is a coherence factor, \(\tau\) is the delay time, and \(g^{(1)}(\tau)\) is the normalized first-order electric field time correlation function. \(g^{(1)}(\tau)\) was related with the line width distribution \(G(\Gamma)\) by

\[
g^{(1)}(\tau) = \int_0^{\infty} G(\Gamma) e^{-\Gamma \tau} d\Gamma \quad (3)
\]

By using a Laplace inversion program, CONTIN [22], the normalized distribution function of the characteristic line width \(G(\Gamma)\) was obtained.
The average line width Γ was calculated according to $\Gamma = \frac{1}{\int G(\Gamma) d\Gamma}$. Γ was a function of both C and q, which was expressed as:

$$\frac{\Gamma}{q^2} = D(1 + k_Cq) \left[1 + f \left(\frac{R_g}{q} \right)^2 \right]$$

where k_C and f are the diffusion second virial coefficient and a dimensionless constant, respectively.

D was further converted into the hydrodynamic radius R_h by using the Stokes–Einstein equation:

$$D = k_B T / 6 \pi \eta R_h$$

where k_B, T and η are the Boltzmann constant, the absolute temperature and the viscosity of the solvent, respectively.

For aggregation assays, peptide aqueous solutions of 25 μm were added into 7.8 μm/7.8 μm DPPC/DPPG liposomes at 50 °C. After vortexing for 30 s at 1200 rpm, the solutions were measured by laser light scattering. The molar ratio of peptides/liposomes was defined as P_{HL}.

2.6. Membrane fusion assay

Membrane fusion of liposomes was determined by the fluorescence resonant energy transfer between NBD-DPPE and Rh-DPPE [23]. NBD-DPPE and Rh-DPPE were incorporated into one population of liposomes ("labeled liposomes") at 1 mol% each, a probe concentration at which there was significant NBD quenching by Rh. The labeled vesicles were then mixed with vesicles containing no fluorescent phospholipids ("unlabeled liposomes") at a ratio of 1:1. The residual fluorescence intensity I_0 was taken as 0% of the maximum fluorescence. The total lipid concentration was 15.6 μm. The peptide was then added. The measured fluorescence was denoted as I. Complete intermixing of all the bilayers upon fusion would be expected to result in a membrane containing 0.1 mol% each of the two fluorescent phospholipids. The liposome containing 0.1 mol% of each probes, but prepared separately, was used to calibrate the 100% maximum fluorescence intensity I_∞. The percentage of fusion was calculated as $F(\%) = 100 \times (I_\infty - I_0)/(I_\infty - I_\infty)$. The average line width Γ was calculated according to $\Gamma = \frac{1}{\int G(\Gamma) d\Gamma}$. Γ was a function of both C and q, which was expressed as:

$$\frac{\Gamma}{q^2} = D(1 + k_Cq) \left[1 + f \left(\frac{R_g}{q} \right)^2 \right]$$

where k_C and f are the diffusion second virial coefficient and a dimensionless constant, respectively.

D was further converted into the hydrodynamic radius R_h by using the Stokes–Einstein equation:

$$D = k_B T / 6 \pi \eta R_h$$

where k_B, T and η are the Boltzmann constant, the absolute temperature and the viscosity of the solvent, respectively.

For aggregation assays, peptide aqueous solutions of 25 μm were added into 7.8 μm/7.8 μm DPPC/DPPG liposomes at 50 °C. After vortexing for 30 s at 1200 rpm, the solutions were measured by laser light scattering. The molar ratio of peptides/liposomes was defined as P_{HL}.

2.6. Membrane fusion assay

Membrane fusion of liposomes was determined by the fluorescence resonant energy transfer between NBD-DPPE and Rh-DPPE [23]. NBD-DPPE and Rh-DPPE were incorporated into one population of liposomes ("labeled liposomes") at 1 mol% each, a probe concentration at which there was significant NBD quenching by Rh. The labeled vesicles were then mixed with vesicles containing no fluorescent phospholipids ("unlabeled liposomes") at a ratio of 1:1. The residual fluorescence intensity I_0 was taken as 0% of the maximum fluorescence. The total lipid concentration was 15.6 μm. The peptide was then added. The measured fluorescence was denoted as I. Complete intermixing of all the bilayers upon fusion would be expected to result in a membrane containing 0.1 mol% each of the two fluorescent phospholipids. The liposome containing 0.1 mol% of each probes, but prepared separately, was used to calibrate the 100% maximum fluorescence intensity I_∞. The percentage of fusion was calculated as $F(\%) = 100 \times (I_\infty - I_0)/(I_\infty - I_\infty)$. The average line width Γ was calculated according to $\Gamma = \frac{1}{\int G(\Gamma) d\Gamma}$. Γ was a function of both C and q, which was expressed as:

$$\frac{\Gamma}{q^2} = D(1 + k_Cq) \left[1 + f \left(\frac{R_g}{q} \right)^2 \right]$$

where k_C and f are the diffusion second virial coefficient and a dimensionless constant, respectively.

D was further converted into the hydrodynamic radius R_h by using the Stokes–Einstein equation:

$$D = k_B T / 6 \pi \eta R_h$$

where k_B, T and η are the Boltzmann constant, the absolute temperature and the viscosity of the solvent, respectively.

For aggregation assays, peptide aqueous solutions of 25 μm were added into 7.8 μm/7.8 μm DPPC/DPPG liposomes at 50 °C. After vortexing for 30 s at 1200 rpm, the solutions were measured by laser light scattering. The molar ratio of peptides/liposomes was defined as P_{HL}.

2.6. Membrane fusion assay

Membrane fusion of liposomes was determined by the fluorescence resonant energy transfer between NBD-DPPE and Rh-DPPE [23]. NBD-DPPE and Rh-DPPE were incorporated into one population of liposomes ("labeled liposomes") at 1 mol% each, a probe concentration at which there was significant NBD quenching by Rh. The labeled vesicles were then mixed with vesicles containing no fluorescent phospholipids ("unlabeled liposomes") at a ratio of 1:1. The residual fluorescence intensity I_0 was taken as 0% of the maximum fluorescence. The total lipid concentration was 15.6 μm. The peptide was then added. The measured fluorescence was denoted as I. Complete intermixing of all the bilayers upon fusion would be expected to result in a membrane containing 0.1 mol% each of the two fluorescent phospholipids. The liposome containing 0.1 mol% of each probes, but prepared separately, was used to calibrate the 100% maximum fluorescence intensity I_∞. The percentage of fusion was calculated as $F(\%) = 100 \times (I_\infty - I_0)/(I_\infty - I_\infty)$. The average line width Γ was calculated according to $\Gamma = \frac{1}{\int G(\Gamma) d\Gamma}$. Γ was a function of both C and q, which was expressed as:

$$\frac{\Gamma}{q^2} = D(1 + k_Cq) \left[1 + f \left(\frac{R_g}{q} \right)^2 \right]$$

where k_C and f are the diffusion second virial coefficient and a dimensionless constant, respectively.

D was further converted into the hydrodynamic radius R_h by using the Stokes–Einstein equation:

$$D = k_B T / 6 \pi \eta R_h$$

where k_B, T and η are the Boltzmann constant, the absolute temperature and the viscosity of the solvent, respectively.
monitored by tracing the remaining Tb(DPA)$_3$ fluorescence, after mixing the liposome with a given peptide. Fig. 3 compares the leakage curves of the liposome in the presence of the studied peptides. The leakage in Fig. 3A is slightly above 100%, which is within the experimental error. As shown in Fig. 3, all the peptides caused evident liposome leakage at 50 °C. The leakage curves of all the bola-typed peptides, including K$_3$L$_8$K$_3$, K$_3$I$_8$K$_3$, and K$_6$L$_18$K$_6$, can be fitted by a double exponential growth model (Eq. 8), while the rest showed a simple exponential rise to maximum and can be fitted by Eq. 7. The characteristic time(s) of leakage calculated by Eqs. 7 and 8, and the leakage percentage in 1 h, are listed in Table 2.

\[
y(t) = y_0 + A \left(1 - \exp\left(-\frac{t}{\tau_0}\right)\right) + B \left(1 - \exp\left(-\frac{t}{\tau_1}\right)\right)
\]

(7)

\[
y(t) = y_0 + A \left(1 - \exp\left(-\frac{t}{\tau_0}\right)\right)
\]

(8)
Table 2: Experimental data with model cell and MIC.

<table>
<thead>
<tr>
<th>MIC/μM</th>
<th>Survive fraction in MIC/%</th>
<th>Leakage kinetics</th>
<th>Aggregation kinetics</th>
<th>Fusion kinetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(KL2KL2K)2</td>
<td>2</td>
<td>122 ± 12</td>
<td>100(12 s)</td>
<td>2.0(N/A)</td>
</tr>
<tr>
<td>K3L8K3</td>
<td>9</td>
<td>108 ± 1</td>
<td>80(1.1 s/185 s)*</td>
<td>16(670 s)</td>
</tr>
<tr>
<td>K14</td>
<td>9</td>
<td>102 ± 5</td>
<td>70(600 s)</td>
<td>20(25 s)</td>
</tr>
<tr>
<td>K3V8K3</td>
<td>10</td>
<td>97 ± 2</td>
<td>40(20 s/1200 s)*</td>
<td>11(360 s)</td>
</tr>
<tr>
<td>K6L8</td>
<td>18</td>
<td>116 ± 3</td>
<td>83(15 s)</td>
<td>20(40 s)</td>
</tr>
<tr>
<td>(KL2KL3)2</td>
<td>19</td>
<td>13 ± 5</td>
<td>100(10 s)</td>
<td>7.0(63 s)</td>
</tr>
<tr>
<td>K3I8K3</td>
<td>N/A</td>
<td>N/A</td>
<td>93(12 s/400 s)*</td>
<td>16(140 s)</td>
</tr>
<tr>
<td>K6L16K6</td>
<td>N/A</td>
<td>N/A</td>
<td>95(10 s/1400 s)*</td>
<td>Precipitate</td>
</tr>
</tbody>
</table>

*The characteristic times are calculated by fitting the curves through \(y = y_0 + A\left(1 - \exp\left(-\frac{t}{\tau}\right)\right) + B\left(1 - \exp\left(-\frac{t}{\tau}\right)\right) \); the others are calculated by fitting the curves through \(y = y_0 + A\left(1 - \exp\left(-\frac{t}{\tau}\right)\right) \).

a Minimal inhibitory concentration is defined as the point of nearly 100% inhibition of E. coli's growth compared with the control.

b Fusion or leakage percentage in 1 h. The numbers in the brackets show the corresponding characteristic time.

c Final aggregation number. The characteristic aggregation time is shown in the brackets.
The leakage was very fast in some cases. Since the initial value was known, the fitting still yielded valid kinetic data for comparison. As shown in Table 2, all the 14-mer peptides containing both K and L resulted in faster leakage rates and higher leakage content in 1 h. Replacing L by I or V compromised the leakage by either decreasing the kinetics (K14L8K14) or lowering the leakage percentage (K14V8K14). In the case of K14V8K14, the leakage content in 1 h was only 40%, much lower than those of the others. K14 contains no hydrophobic residues. Its leakage rate was the slowest among the tested peptides. The leakage of the liposome in the presence of the bola-typed peptides can be described by a function of double exponential growth (Eq. 8), and the rate at each stage followed the order of K3L8K3 b K3I8K3 b K3V8K3, suggesting that the bola-typed peptides disrupted the membrane in two steps, and the degree of hydrophobicity was important at each step. Taken together, these data indicated that the hydrophobic residues played a key role in disrupting the membrane.

3.3. Antimicrobial activity

Antibacterial activity of the peptides were tested with E. coli. A MIC value was determined for each peptide, using Broth microdilution protocol [19, 27]. Melittin, a natural antimicrobial peptide, was included in the assays as a reference. While no antibacterial activity was observed for K3I8K3 and K6L16K6 at concentrations of 1.0–64 μg/mL, the activity of the other six peptides were presented in Fig. 4. From which, a MIC value was obtained for each peptide and summarized in Table 2. According to the MICs, the peptides were divided into three groups. Group 1 contains (KL2KL2K)2 only, whose MIC value (2 μM or 8 μg/mL) is the lowest among the tested peptides including melittin (3 μM) (Fig. S1). Group 2 contains K14, K3V8K3, K3L8K3, K6L16, and (KL2KL3)2, whose MIC values range from 9 to 18 μM (16–32 μg/mL). Group 3 contains K14L8K14 and K14V8K14. Interestingly, no antibacterial activity was observed for this group (Fig. S1).

To evaluate their cytotoxicities, CCK-8 assays were performed with cultured HEK293 cells, at concentrations around the identified MIC. The results were presented in Block 2 of each panel in Fig. 4, and summarized in Table 2. It was found that, with the exception of (KL2KL3)2, all the peptides were safe to normal cells at the MIC doses.

The data in Table 2 revealed a non-proportional correlation between liposome leakage and antibacterial activity. For example, around MIC concentration, K3I8K3 caused an extensive liposome leakage, however, no antibacterial activity was observed. Both K14 and K3V8K3 were weak in membrane disrupting as demonstrated by the long leakage characteristic time or low leakage content within 1 h. However, their MIC values were relatively low.

3.4. Effects on liposome aggregation and membrane fusion

To further characterize the behavior of the peptides, two other index assays, liposome aggregation and membrane fusion, were carried out.
Liposome aggregation and membrane fusion accompanied membrane leakage in most cases, occurring earlier or at the same time [18,28]. The kinetics of liposome aggregation and membrane fusion was monitored using time-resolved laser light scattering (LLS) and FRET. The experiment settings were the same as those of liposome leakage assay. The results showed that all the peptides caused liposome aggregation with varying kinetics. The degree of the aggregations was also different, as quantitatively measured by the aggregation number. Since the scattered intensity \(I / I_0 \) is proportional to the molecular weight \(M \) at fixed concentration [29], the aggregation number \(M/M_0 \) can be estimated using \(I/I_0 \) with \(I_0 \) and \(I \) being the excess scattered intensity of the liposome before and after the addition of peptide.

Fig. 5A compares the LLS data of \((KL_2KL_2K)_2, K_{L4}K_4, \) and \(K_{L6}K_6\). LLS data of the other peptides were shown in Fig. S2. Except for \((KL_2KL_2K)_2\) and \(K_{L18}K_6\), Similar aggregation curves were observed for the other peptides. An overshoot curve was observed for \((KL_2KL_2K)_2\) at the very beginning of the assays; while for \(K_{L18}K_6\), extensive precipitation occurred in the assays. Monomodal distributions were observed during the aggregation process (Fig. 5C). The aggregate size and the distribution varied over the course, depending on the type of the peptides (Fig. 5B). Fitting the aggregation curves by Eq. 7 or Eq. 8 yielded a characteristic time for most of the peptides. These values, together with the aggregation numbers after reaching equilibrium, are shown in Table 2. The lowest aggregation number was found with \((KL_2KL_2K)_2\), followed by \((KL_2KL_1)_2\) and \(K_{L8}K_8\). The other peptides resulted in heavy aggregation of the liposomes, even led to macrophase separation in the case of \(K_{L18}K_6\).

Using a similar approach, the kinetics of membrane fusion was determined for each peptide. Fig. 5D compares the membrane fusion mediated by \((KL_2KL_2K)_2, K_{L4}K_4, \) and \(K_{L6}K_6\). Similar fusion curves were observed for the other peptides except \(K_{L18}K_6\), which led to a heavy precipitation (Fig. S3). The characteristic time and the fusion percentage in 1 h are listed in Table 2. The fastest fusion occurred in the presence of \((KL_2KL_2K)_2, K_{L4}K_4, \) and \(K_{L6}K_6\), while \(K_{L4}\) showed the slowest fusion process probably owing to the lack of hydrophobic residues. The degree of fusion was the lowest for \((KL_2KL_2K)_2\), only about 10%. \(K_{L4}K_4\) also led to low level (40%) of membrane fusion.

4. Discussion

A comprehensive data set including the antibacterial activity, the kinetics of membrane leakage, aggregation and fusion, was presented in Table 2. Correlation analysis found that neither the liposome leakage nor the content of \(\alpha\)-helix structure could serve as a sole criterion to predict the antimicrobial activity of the peptides. For example, neither \(K_{L4}\) nor \(K_{L8}K_8\) formed prominent \(\alpha\)-helix conformation in hydrophobic environment, they however exhibited moderate antimicrobial activities. In the cases of \(K_{L6}K_6\) and \(K_{L18}K_6\), a nearly 100% liposome leakages were mediated in 1 h; however, no antimicrobial activity was identified.

Among the tested peptides, \((KL_2KL_2K)_2\) showed the best performance. Its MIC value was 2 \(\mu\)M, a value comparable to that of melittin [30], and much lower than the other peptides. The major difference between \((KL_2KL_2K)_2\) and the other peptides was that it induced negligible liposome aggregation and membrane fusion while mediating heavy membrane leakage. From a view of physics, liposome aggregation, fusion, and leakage followed distinct mechanisms. The aggregation was driven mainly by inter-particle attraction, for example electrostatic interaction. It was a strong and long-ranged interaction, effective in pulling the oppositely charged particles together. This was demonstrated by the fast and efficient aggregation in the presence of \(K_{L4}\). The fusion of membrane depends not only on the inter-particle attraction force, but also on the merging of the outer leaflet of the membrane, which involves hydrophobic interactions. Therefore, liposome aggregation was a prerequisite for fusion. As shown in Table 2, obvious fusion could not occur without aggregation. In contrast, liposome leakage, which resulted from the disruption of the membrane, was closely related to the antimicrobial activity. The pore-forming mechanism, where the interaction mainly was located inside the membrane, was believed to be the
most efficient approach to cause leakage. The “Barrel-stave”, “carpet”, and “toroidal-pore” are the most common models used to describe the membrane disruption mechanism [31]. In all these models, the leakage was more efficient if the peptides were able to insert inside the membrane instead of working in between membranes to cause aggregation or fusion [32,33]. Therefore, the aggregation and the fusion, which did not necessarily generate leakage, alleviated the antimicrobial activity by diversifying the functions of AMPs. (KL2KL3)2 in Table 2 met this criterion. An overshoot in aggregation was thus observed when the interaction location shifts from inter-particle (aggregation) to intra-particle (leakage) (Fig. 5A). The behaviors of K9Δ4 and K9LaK3 also proved this viewpoint. Their chemical composition and chain length are the same as those of (KL2KL3)2, but their antimicrobial activities were much lower. This is likely due to their capability to induce efficient membrane aggregation or fusion. Another example was (KL2KL3)2. Both (KL2KL3)2 and (KL2KL2K)2 formed amphiphilic α-helix structure. The only difference was that the former had a larger hydrophobicity/charge ratio. However, the antimicrobial efficiency of (KL2KL3)2 was significantly reduced. This can be attributed to the non-specificity of (KL2KL3)2 in causing membrane leakage, since relatively strong aggregation and fusion were also observed in the presence of (KL2KL2K)2 at the same conditions.

Table 2 also shows that (KL2KL3)2 exhibited much strong activity in killing normal cells, in agreement with that higher hydrophobicity decreases cell-selectivity [3–5]. Unlike bacteria membrane, cell membrane contains negligible amount of negative charges [31]. The hydrophobic interaction was thus more important than electrostatic interaction when peptide interacts with cell membrane. Assuming leucines formed regular α-helix, the hydrophobic length of 8 connecting leucines was about 1.2 nm (0.15 nm × 8) [34], which was smaller than half of the thickness of cell membrane (the thickness of lipid bilayer is ~3.0 nm). Therefore, the cells were safe for that most of the 14-mer peptides shown in Table 2 cannot penetrate and disrupt the cell membrane. (KL2KL3)2 was an exception. It formed an α-helix of 2.1 nm (more than half of the membrane thickness) and highly hydrophobic, significantly enhanced its power in destroying cell membranes. Although (KL2KL2K)2 had the same length as (KL2KL3)2, its lower hydrophobicity might compromise its ability in disrupting cell membrane. Therefore, both the hydrophobicity/charge ratio and the depth of the peptide inside the membrane were involved in the selectivity. The hydrophobicity/charge ratio should have an optimal value or value range, while the interaction depth, as indicated in our work, was related to the hydrophobicity of the peptide, and was likely in between half to 2/3 of the cell membrane. It was not clear why K9LaK3 and K9LaLeK3 mediated no antimicrobial activities. K9LaLeK3 had a strong tendency to self-aggregate in aqueous solution, leading to a heavy precipitation when contacting with liposome. As for K9LaK3, the α-helix content (Table 1) was much lower than that of K9LaK3. Other undefined reasons might explain the compromised membrane disruption activity of ileucine.

5. Conclusion

In this study, a series of candidate AMPs composing of two amino acids (lysine and leucine in most cases) were designed and tested, in terms of antimicrobial activity, membrane aggregation, fusion, and leakage. No evident correlation was identified between the antimicrobial activity and the property of the peptides such as the sequence, length, hydrophobicity/charge ratio and secondary structure. However, common activities against model membrane were nevertheless found correlated with the antimicrobial activity, in that mediating efficient membrane leakage, negligible membrane fusion and liposome aggregation. These results indicated that when a peptide could mediate an efficient intramembrane interaction, it also leads to higher inhibition on bacteria growth.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (21074005, 21174007).

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.bbamen.2014.08.018.

References
