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Abstract. The aim of this paper is to investigate the soundness and completeness of the intersection
type discipline (for terms of the (untyped) A-calculus) with respect to the F-semantics (F-
soundness and F-completeness). '

As pointed out by Scott, if D is the domain of a A-model, there is a subset F of D whose
elements are the ‘canonical’ representatives of functions. The F-semantics of types takes into
account that the intuitive meaning of “o - 7 is ‘the type of functions with domain o and range
7’ and interprets o - r as a subset of F.

The type theories which induce F-complete type assignments are characterized. It follows that
a type assignment is F-complete iff equal terms get equal types and, whenever M has a type
¢ A @" > w, where ¢ is a type variable and w is the ‘universal’ type, the term Az,...z,. Mz, ... z,
has type ¢. Here we assume that z,, ..., z, do not occur free in M.
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Introduction

A rigorous polymorphic type discipline for terms of the (untyped) A-calculus was
first introduced by Curry [15, Chapter 8; 16, Chapter 17; 20]. In Curry’s approach,
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types are built inductively from a set At of type variables by means of the exponentia-
tion operator “~>”. Types are assigned to terms by a natural deduction system,; ir
general, a term may have more than one type.

In [7, 8, 11, 12, 2, 9], an extension of the set of types has been proposed by
adding the constant type “w”, which plays the role of universal type, and the
intersection operator “A” of type formation (intersection type discipline). By this we
obtain a set of type assignment systems, one for each preorder relation on type:
which satisfy some conditions (type theory) (cf. Definitions 1.2 and 1.4). The feature:
of the system presented in [2] essentially are that all solvable terms have types othe:
than w while a term has a normal form iff it has a type without @ occurrences.

In [30], Milner gives a polymorphic type discipline for a (nonimperative) fragmen:
of the language ML. This system can be viewed as an extension of that of Curry
for a A- calculus augmented with operators such as if...then...else..., fix..
and let... . In [4], the intersection type discipline is modlﬁed to handle thl‘
fragment of ML, obtaining a type for many functions which have no type in Milner’s
discipline.

A different extension of Curry’s types (quantification type discipline) has beer
described in [32, 31]. This type discipline is based on the F-system of Girard [19°
(called second-order lambda-calculus in [33, 18]).

Leivant [27] has recently compared the above polymorphic type disciplines anc
proved that the type system of [2] is the most powerful in the sense that the set of
terms that are typable in it strictly contains the sets of terms typable in all othe:
disciplines.

Given a system of type assignment it is natural to ask for a semantlcs of types.
In literature there are essentially four different ways of interpreting Curry’s types
in a model of the untyped A-calculus which can be naturally extended to intersectior
types. We will mostly follow the nomenclature of [21].

Given a A-model (D, ., [ ]) (for the definition of A-model see [1, Chapter 5; 25]
the simple semantics of types associates to each valuation of type variables ¥": At-
P (D) a valuation of types inductively defined as follows:

(1) ¥Y(0)=D,

(2) Y(o»7)={de D|Vce V(o):dce V(7)},

3) V(orn)=V(a)n V(7).

This semantics has been proposed in [35].

Following Scott [37], the quotient set semantics takes into account that we want
to consider two functions as being equivalent iff they give equivalent results when
applied to equivalent arguments. Types are interpreted as equivalence relations on
subsets of D rather than simply as subsets of D. In this case a valuation ¥ of type
variables associates to each type variable ¢ a transitive and symmetric relation ~
on D.

- ¥ can be extended to all types by defining inductively

(1*) d ~Y d' for all d, d'e D,

(%) d~),,d'"iff V¢, ¢’such that c~Y ¢, dc~Y d'.c,
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(3*) d~_..diffd~)d andd~)d"
If we define ¥(7) ={d|d ~Y d}, we have that ~ is an equivalence relation on ¥(7).

As Scott has pointed out [38], the key of a A-model is the set F< D of the
elements which represent functions. In fact, using F we can obtain a first-order
axiomatization of the notion of A-model [38]. Each element d € D represents a
function (since “.” is always defined), but the interpretation [ ] of terms chooses
‘canonical representatives’ of functions, i.e., elements which are meanings of terms
starting with an initial abstraction (in a suitable environment). More precisely, in

[21] F is defined by
F={de D|3y, M, ¢ such that d =[Ay.M],}.

Notice that F may also be defined as the range of the retraction £ =[Axy.xy], (£ is
arbitrary). We can show that each representable function from D to D has a unique
canonical representative in F.

The F-semantics of types (as defined in [21]) takes into account that the intuitive
meaning of “o - 7" is ‘the type of functions with domain o and range 7’ and
interprets o — 7 as a subset of F. Therefore, the F-semantics is obtained from the
simple semantics by replacing clause (2) with

(2) Y(o>1)={deF|VceV(o):d.ce V(7)}.

It is easy to prove (cf. the discussion after Definition 1.3) that in this semantics
¥ (w > @)= F. Notice that other semantics could be defined by choosing a subset
of D different from F.

Lastly, the semantics of types proposed by Scott in [36] is obtained from the
quotient set semantics taking into account the relations between F and o - 7 for
all types o, 7 (F-quotient set semantics). More precisely, the elements which are
~ ¥, .-equivalent must belong to F, i.e., clause (2*) is replaced by:

(2" d~Y,.d' iff ddeFandVc c'suchthatc~Yc";dc~Yd'.c'.

In [30], the semantic domain D is a cpo satisfying a suitable domain equation,
and types are interpreted as ideals, i.e., downward closed and direct complete subsets
of D (Milner’s semantics).

The semantics of the quantification type disciplines is given in [32, 31].

Once one has introduced formal systems of type assignment and type valuations,
it is natural to ask for soundness and completeness results. Coppo has proved [21]
that for Curry’s type discipline, completeness for the simple semantics implies
completeness for the quotient set semantics. This is because the simple semantics
is a particular case of the quotient set semantics. Coppo’s argument naturally extends
to the intersection type discipline, giving completeness for the (F-)quotient set
semantics from the completeness for the (F-)simple semantics.

For Curry’s types, soundness for the simple semantics has been proved in [3]
and for the other semantics in [21]. In order to prove the completeness result, the
most natural way is to prove that a type system is complete with respect to a fixed
A-model. Different completeness proofs for the four semantics have been done using
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terms models [21, 22] and the graph model P, [6]. In [2] Curry’s system has been
proved complete for the simple semantics using a filter A-model (also defined in [2]).

The type assignment of [2] is proved to be sound and complete for the simple
semantics in [2] using a filter A-model and in [23] using a term model. On the other
hand, it is easy to see that this type system is neither sound nor complete with
respect to F-semantics (cf. the remarks after Theorems 2.9 and 4.6). In [9] (using
filter A-models), and in [13] (using the term model) the type theories which yield
complete type assignments for the simple semantics are characterized. It turns out
that a type assignment is complete iff ® <w-> w belongs to the associated type
theory and equal terms get equal types.

In the case of ML, both Milner’s type discipline and the extension of [4] have
been proved to be sound, but there are very simple examples that they are not
complete with respect to Milner’s semantics. In [5, 14], a nontrivial subset of ML
is given for which Milner’s type assignment is complete. Moreover, a semantics
characterization of typed terms is exhibited.

In [31], Mitchell proves soundness and completeness results for the quantification
type discipline using the term model of B-equality.

The aim of the present paper is to investigate the soundness and completeness
for the F-semantics (F-soundness and F-completeness) of the intersection type
discipline. As noted by Hindley [21], this type discipline seems to be strong enough
to express the differences between the simple semantics and the F-semantics of
types by the following arguments.

(1) As mentioned before, the system of [2] is sound and complete for the simple
semantics but neither F-sound nor F-complete.

(2) P, and the filter A-models used to prove completeness for the simple semantics
are sensible, while we must look at non-sensible A-models to prove F-completeness
(recall that a A-model is sensible iff its theory equates all unsolvable terms, cf. [1,
Chapter 16]). Let A = Az.zz. We cannot deduce @ - wAA4 in the systems discussed
in Section 4 while [AA], € F (since [Ay.A4], € F) for all sensible models and all
environments £ This is contradictory since (as mentioned before) ¥ (w » w)=F in
the F-semantics.

(3) (This argument is due to Coppo.) The term model of B-equality Iz does
not help in proving the F-completeness for the system —° as defined in Definition
4.1. First we notice that if £(z) =[Z] and there are y, M such that ZI-»zAy. M,
then, a fortiori, Z1 -5 Ay.M’ for some M’ (where, as usual, I = Au.u and 1= Auv.uv).
So [Z1], € F implies [Z1], € F for all environment £ Therefore, we have:

(cp»go)-)w»wz}f-w—)wzl

=Wy, (¢> @)~ 0> wzE 0> ol
by J-F-soundness (proved in Theorem 4.6)

=>§U€B,(:p—>cp)—>w—>wzl; w - wzl
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from above since F = ¥(w - ). It is, however, easy to check that

s
(> ¢)>w-»>wz¥ w—> wzl.

Notice that -° is proved to be Fcomplete (cf. Theorem 4.8).

(4) The following rule scheme (proposed by Hindley) is sound for the F-semantics

(cf. Theorem 2.9)
oA >oM .

(HR) P YSRIY V — if yi,..., v, €FV(M).
Notice that this is not a derived rule for the system of [2].

The present paper is a systematic exposition and a development of some results
and ideas which have been discussed at length by Coppo and Hindley with the
present authors. The main result is the characterization of the type theories which
induce F-complete type assignments (Theorem 2.9).

In Section 1 we will define the notions of type theory, of type assignment and
we will characterize the type theories yielding (F-filter) A-models (Theorem 1.12).
In Section 2 we will prove that a type assignment induced by a type theory is
F-complete iff (Eqg) and (HR) are derived rules. In Section 3 we will prove an
Approximation Theorem for F-filter A-models satisfying suitable conditions. In
Section 4 we will discuss four particular type theories. We will prove that all these
theories give rise to F-filter A-models but only two of the induced type assignments
are F-complete. In Section 5 we will look at a new syntax of types by limiting the
application of the operator “A” of intersection. We will prove that this does not
change the set of typable terms, but it is the only system (presented in this paper)
in which the Normal Form and the Head Normal Form Theorems hold (Theorem
5.6) and which is also F-complete (Theorem 5.11).

Reference [17] is a preliminary and incomplete version of this paper which has
been presented at the ‘International Symposium on the Semantics of Data Types’
(Sophia Antipolis, 1984).

1. Type theories and F-filter A-models

We introduce the notions of type scheme and of type theory mostly fol-
lowing [2, 9].

1.1. Definition. (1) The set T of type schemes is inductively defined by
(i) @o, @1,-..€ T type variables, w € T type constant,
(ii) 0, 7e T=>(0>17),(orT)eT.
(2) The preorder relation < on T is the smallest relation satisfying:
(i) 7=¢0;
(i) 1> w<;0->w;
(ill) r<¢TAT;
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(iv) orT<¢0, OANT (T,
V) (e>7)A(o>7)<s0->(7AT);
(Vi) o0, r<;7T'DorT<;0'AT;
(vil) o' Sf0, < T'=Do>r<,0'>7
plus transitivity and reflexivity.
(3) o~c7iff o <f7<;0.

Note that, e.g., w » 0 » 0 <; 0> w > o for all o, but the converse does not hold.

In what follows, we will simply say ‘types’ instead of ‘type schemes’. We will
write equality “=" between types, with the convention that cA7=71r0,0=0 A 0,
and (o>7)a(o>7)=0->(7r 7).

1.2. Definition. (1) If o, 7€ T, then o< 7 is a formula.

(2) A type theory T is any set of formulas closed under (i)-(vii) of Definition
1.1(2) plus reflexivity and trans1t1v1ty o<grstandsforo<re J. Wewrite 0 ~5 7
fto<gr=<gzo.

(3) If E is any set of formulas, then J(2) is the minimal type theory which
includes 3. We will write <3 for <gs,.

J¢ denotes the least type theory, ie., Ic= T (P) (where ® is the empty set).
Obviously, ;< J for all type theories J.

The difference between the notion of type theory introduced here and that of [9]
is that each type theory of [9] contains w < w - w. We had to exclude this formula
for considering F-semantics, as will become clear later on (cf. the discussions after
Definition 1.3 and before 4.1).

Following [21] we want to interpret the types, taking into account that we can
distinguish between the elements of the domain D of a A-calculus model those
elements which are interpretations of terms of the shape Ay.M and those that are
not (M need not be closed). More precisely, if M=(D,.,[ ™ is a A-model and
£ is a valuation of term variables in D, we define F={d e D|3y, M, ¢£: d = [[z\y.M]]?‘}'

1.3. Definition (F-semantics). Let ¥V :{¢;|jeN}>PD={X|X < D}. Then, %
extends to all 7€ T as follows (¥ is a type interpretation):

(1) ¥(e)=D,

(2) Y(o>1)={de F|Vce V(o): dce V(1)},

3) V(oar)=V(o)n V(7).

Clearly, if M is an extensional A-model, then F = D and the F-semantics coincide:
with the simple semantics of types as Hindley proved in [21, Section 4].
From Definition 1.3 it follows that, for all ¥ and -,

V(r>w)={deF|Vce ¥(1): d.ce V(w)}
={de F|Vce ¥(7r):dce D}=F.
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The motivation for the definition of <; is that o ~;p (0 <;p) implies for all I,
V: V(o)=Y (p) (V(c)< V(p)) (this will be proved in Theorem 2.4(3)). Therefore,
we may assume 7> w ~;@w-> @ for all 7. On the contrary, we cannot assume
® <;w-> w (as in [2]) since we would obtain, for all M, V. V(w)<c ¥V(w > w), i.c.,
D c F and this means that we would restrict our attention to extensional A-models.

Each type theory J induces a system of type assignment, in the sense of [2], for
the set A of terms. ’

1.4. Definition. (1) A statement is of the form M with re T and M € A. M is the
subject and 7 the predicate of M.

(2) A basis B is a set of statements with only variables as subjects.

(3) The type assignment induced by the type theory J is defined by the following
natural deduction system:

[oy]
TM o>7M oN
I, —— P ——
(>0 o->71Ay.M () (> E) TMN
(a I): oM ™ (r E): onTM oaTM
" oaTM oM ™
oM o=g47
<g): — - —
(<o) =TT W) —

(*): if y is not free in assumptions on which *M depends other than oy.
(4) B+7 M if 7™ is derivable from the basis B in the system induced by 7. If
9 is a derivation showing this, we write &: B+ ™.

Rule (A E) is superfluous, since it is directly derivable from rule (<g).

Notice that typing is preserved under substitution in the type assignment induced
by 7, but this is not true for an arbitrary J (cf. the examples after Definition 4.1).

We are interested in building the complete algebraic lattices whose elements are
(abstract) filters of types. In Theorem 1.12 we will give a characterization of the
type theories which give rise to lattices which are domains of A-calculus models.
Similar results with a slightly different definition of type theory have been shown
in [9, 13].

1.5. Definition. Let J be a type theory.
(1) An abstract filter of J is a subset d = T such that
(i) wed,
(i) o, red=>orTEd,
(iii) o g= red=>0oed.
(2) If S< T, 718 is the minimal abstract filter of J which includes S. We use
the abbreviation 717 for 71{7}.
(3) |7 is the set of abstract filters of 7.
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Notice that (7T, w, Con, -4), where Con consists of all finite subsets of T and
{oy,..., 0. Fg7iff 0yA- - - A0, <g 7 (for some type theory 7), is an information
system in the sense of Scott [39]. Moreover, | 7] is the domain determined by this
information system.

1.6. Lemma. (|7, <) is a complete algebraic lattice, where 71w and T are the leas:
and the largest elements (respectively). Moreover, if d, c ||, then
(i) dUe=71(duc);
(ii) dMc=(dnc);
(ili) if X <|J] is a directed set, then L} X =\ X;
(iv) the finite elements are exactly the principal filters, i.e., d =\J{717|71r < d}.

The proof is a simple routine (cf. [39]).

1.7. Lemma. (1) {7|B+7 M} is an abstract filter.

(2) BT oyooe?Mr|ye Bor r=w}.

(3) If TM is derived from o M, . . ., 0,,M by means of rules (A I), (A E), and (<g4)
only, then 7 4= oA+ - A O,

Proof. (1): By rules (w), (A I) and (<g4).
(2): By induction on derivations.
(3): From (2) since, in the rules in question, M behaves as a variable. [

B/ z denotes the basis obtained from B by deleting all statements whose subject
is the variable z:

B/z={ry|rye Band y # z}.

B | M denotes the basis obtained by considering only those statements of B whose
subjects are variables occurring free in the term M:

B| M ={7y|7ye Band ye FV(M)}.
1.8. Lemma. (1) B-7 *MN, r #50=>30€ T:
T g

[B-o->7M and B oN].

T 7

(2) Vo, = [B/yu{oy}-™ = B/yu{oy}+ 7N]

T g

= Vp:[B+-pAy.M = B+ pAy.N].

(3) BF7+M iff B} M+7 =M.
(4) B/yu{oy}+? M and z¢ FV(M)=B/zu{oz} -7 tM[y/z].

The proof of (1)-(4) is done by induction on derivations.
We now introduce a notion of application *“.” between abstract filters and an
interpretation [ % of terms in |7].
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1.9. Definition. Let J be a type theory.
(1) For d, ce|J] define dc=7twu{r|3oec: 0> red).
(2) Let V be the set of term variables and £: V- |J|. Then, B, ={oy|o € é&(y)}.
(3) For Me A, define [M]{ ={r| B,+7 *M} (|| by Lemma 1.7(1)).
@) £3(y)="Molo=w or oye B},

1.10. Lemma. (1) d, ce|T|=>d.ce|T].
(2) B TM & B,z -7 ™.

Proof. (1): Let S={r|3oec: 0> red}.
o->7€ed = o>wed (by<y)

and therefore, S # ®< 71w < S. So it is sufficient to verify that S # ®=>Se|J].

(i) weS;
(i) 7, €S = oy, 00€c: 0> 1,0,>1Ed

= (o a0y)> (1 AT)ed

= T,AT,ES;
(iii) 7€ S, r<gp = Joecc: o>7€ed

= o->ped = pes.

(2): Routine. O

Now we are able to characterize the type theories such that My =(|7],.,[ 1)
are A-models (F-filter A-models). We point out that we are using the definition of
A-model given in [25], which is essentially equivalent to other accepted definitions
(cf.[1, Chapter 5]). Our result is that M5 is an F-filter A-model iff types are invariant
under B-conversion of terms, i.e., iff the following rule:

™N

(Eqp):
is derivable in the system 7.

1.11. Lemma. Let J be a type theory such that (Eqg) is a derived rule for the type
assignment induced by J; then

g g
B+o->1Ay.M & B/yu{oy}+— ™.

Proof. (<=): This is immediate by rule (- I) and Lemma 1.8(3).
=)

B ,;’; o->71Ay.M = B/zu{oz} lZ T(Ay.M)z where z¢ FV(M)
= B/zu{oz}E tM[y/z] by hypothesis

= B/yu{oy} ™ by Lemma 1.8(4). [J
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1.12. Theorem. I is an F-filter \-model iff rule (Eqg) is a derived rule for the type
assignment induced by J.

Proof. (<=): Just mimic the proof of [2, Theorem 3.5] using Lemmas 1.7, 1.8, 1.11,
and the definition of A-model given in [25].
(=>): Immediate from the definition of A-model. [

If J yields an F-filter A-model, we call Fy the subset of |J| whose elements
represent functions, i.e.,

Fy={de|J]||3y, M, ¢ such that d =[Ay.M]7}

T
={d €|71]|3y, M, Bsuchthat re d< B~ 7Ay.M}.

2. Hindley’s rule and F-completeness results

The following rule scheme (HR) of type assignment has been suggested by Hindley
during many discussions we had about F-semantics for the intersection type disci-
pline. He has proved that (HR) is sound for the F-semantics, so each F-complete
type assignment must satisfy (HR).

The idea under this rule is that if the meaning of a term M is the ‘canonical’
representative of an n-ary function, then the meaning of M coincides with the
meaning of Az,...z,. Mz, ...z, where z,,..., z, 2 FV(M). This will be formalized
in Lemma 2.6.

Let " - @ abbreviate

WO 0.
e ——

n

2.1. Definition (Hindley’s rule scheme).

(HR) —2re > oM

if z,,...,z, 2 FV(M
QAZ,...Z,. Mz, ...z, 2.2 (M)

for all type variables ¢.
We define, as usual, the notion of semantics satisfiability (=).

2.2. Definition. Let M=(D,.,[ ]™) be a A-model.
1) METEM S I[M]]?ee Y(7);
M&EVEB © M E VEox forall oxe B
BET™ S VYMEV:M, & VEBID, E ViETM.

(2) Zy={o=<7|Y(0)c V(7)}.
(3) V agrees with J ifft T< T(3,).
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(4) M, B=7 tMSVE ¥ which agree with T
M ¢&VEB=MEVE M.

BE tM & VI: I, BE M.
(5) Yo(@)={d €|T]|ped} for all type variables ¢.

2.3. Definition. Let J be a type theory.
(1) The type assignment 7 is F-sound iff B—? tM=>B = 7M.
(2) The type assignment —7 is I-F-sound iff B-? tM=>B =7 M.
(3) The type assignment 7 is F-complete iff B= tM=>B 7 M.

The J-F-soundness of all type assignments induced by type theories is easily
proved.

2.4. Theorem (J-F-soundness). (1) o <4 7=>VIM, V which agree with J: V(o)<
V(7).

(2) B2 tM=BE? M.

3) o=V, V' V(o) V().

(4) B tM=Bk ™.

Proof. (1): Immediate from Definition 2.2(3).
(2): By induction on derivations. For rule (<g) use (1).
(3): By induction on <;.
(4): As(2). O

Theorem 2.4(3) means that I, is F-sound, i.e., that if o <;re€ J;, then this
containment between types is valid in all models.

We now show that (HR) characterizes the F-completeness of type assignment
systems induced by type theories (provided that they yield F-filter A-models). To
this aim, following [38] we introduce a further classification of the elements of the
domain of a A-model. If we distinguish, inside the domain D of a A-model, the
subset F of elements which represent functions, a further (natural) step is then to
distinguish inside F the elements which represent one-place functions, two-place
functions, etc. In this way we obtain a chain of subsets of D, which can be used to
define the notion of A-model, as suggested by Scott [38].

2.5. Definition. Let M=(D,.,[ ™ be a A-model, then F™ is inductively defined
as follows:

FO=pD  F™VY={deF|VceD:dce F™}.

It is easy to verify that F = F and, for all n>0, F™ < F"™V,
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2.6. Lemma. For all A-models I,
(1) ¥(w" > w)=F®",
(2) de Fod=[Az,...2,.M]T for some z,,...,z2,, M, £,
(3) de FP&d=[Az,...z2,y2,... 2]y a1 for n=0.

Proof. (1) and (2) are proved by induction on n.
(3) («): Trivial.
(=): de F"=>d =[Az,...z, M]¥ for some z,,..., z,, M, £ by (2). Then,

d=[Az,...z,.(Az, ...z, M)z, ... z,.]]?* by B-conversion

=[Azy... 2,92, ... z,,]]?fymzl_usz]ﬂg] by [25, Lemma 2.8]
=[Azy...2,.¥z, ... z,,II?fy,d]. O

Theorem 2.6(3) for n =1 is proved in [22]. The proof in the general case has also
been given in Hindley [24].

2.7. Lemma. Let J be a type theory such that (Eqgz) and (HR) are derived rules for
the induced type assignment.

(1) Vde|9|: [o»>wed&de Fsyl

(2) Yo(r)={de|T||red)} forall 7€ T.

(3) M., ¢35, Vo= B.

(4) o<g7VIM, V which agree with T: V(o)< V(7).

Proof. (1): By Lemma 2.6(3), it is sufficient to prove that

wo>wed & d=|I/\Z-yz]l§|Ey/d]-

(«<): Trivial.

(=>): We prove that if w > @ € d, and (Eqg), (HR) are derived rules for the type
assignment induced by 7, then oced & ae[Azyz], 4 Use induction on o for
“=”, and induction on the derivation @: By, oAzyz for “<”. For “=>" the
only interesting case is o= ¢:

ped=>By, a1+’ ¢ nw>wy by Definition 1.9(2)
= By, a7 @Azyz by (HR)

=e@€ ﬂ/\z.yz]]?[,,/,,].
For “&”, if the last applied rule is (= I), we have
[ 2]
iy

—_— (> 1).
M= VAZYZ
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By Lemmas 1.8(1) and 1.7(2), if u > v # 7 @ »> w, there is p such that u <z p and
Bey/a +7 p - vy. Therefore, by (<g), By 7 u - vy which implies p>ved
since [ylZ,/4;=d.

(2): By induction on 7. The only interesting case is 7= o - p.

<1/'g'('1') = {d € Fg—che Vg’(a"): dce c1/.3;'([1)}
={de Fy|Vc>0:d.c>p} by the induction hypothesis
={deFy|lo»ped} by definition of “.”.

Notice that o> ped=>w->wed (by <z)=>d € Fy (by (1)). Therefore, ¥4(7)=
{de|.7||0'—>ped}.
(3): 1ve B=>re[y]Zz (by Definition 1.9(3) and (4))=>[ylZ e ¥(r) (by (2)).
(4): (=): Immediate from Definition 2.2(3).
(&): Take M=WMy, V' =V (V4 agrees with I by (2)).

VYo(o) S Vo(r)=>{de|T||ced}c{de|T||red}>o <. O

The meaning of Lemma 2.7(4)(<) is that the type theory J is semantically
complete, i.e., every containment between types that is valid in all models is a
formula of 7.

From Lemma 2.7(1) we easily obtain a property of the elements of |7| when
(Eqg) and (HR) are provable in 7.

2.8. Corollary. Let T be a type theory such that (Eqg) and (HR) are derived rules
for the induced type assignment. Then Vd € |J]|: eitherd € Fy, orVee|J|: de="1w.
Proof
de#7to=>30->71ed by definition of “.”
Sw->wed sinCe o->T<gw->w

=>d e F5 by Lemma 2.7(1). O

In other words, if f2 :|F|~>|J] is the function always equal to 71w, then each
d €|J] which represents a function different from f_ belongs to Fo. That is, only
7 is represented by more than one filter of |7] (for example, 71w and 7fw >
both represent 7).

2.9. Theorem. Let T bea type theory. The induced type assignment system is F-complete
iff (Eqg) and (HR) are derived rules.

Proof. (=>): To have F-completeness we must obviously require invariance of types
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under B-conversion of subjects. We show that (HR) is sound for all IR, & ¥ (this
proof is due to Hindley).
MEVEQr0">0M = [M]FeV(p)n F™
by Lemma 2.6(1). Let d =[M]¥; then,

de F™ = d=[Az,...2,.yz... z,1%,/a7 by Lemma 2.6(3)
= d=[Az,...2,.Mz,...2]7 by [25, Theorem 2.8]
= [Az,...2,.Mz, ... 2,]Te V(p)
=M EVEQrzy...2,. Mz, ... 2,.

(&): Notice that M5 is a A-model by Theorem 1.12.
BET™ = Mgy, &5, Vo= ™ by Lemma 2.7(3)

= [M]Ze Vy(r) by Definition 2.2(1)
= re[M]Z by Lemma 2.7(2)
= Bk ™M by Definition 1.9(3)
T
= B+—7™M by Lemma 1.10(2). |

Notice that N5 is the A-model used in Theorem 2.9 to prove the completeness
of 7.

As an immediate consequence of Theorem 2.9, we have that the type assignment
of [2] is not F-complete.

3. Approximation Theorem

In this section we prove, under suitable conditions on J, an Approximation
Theorem for the F-filter A-models I 5. This result, which is similar to the Approxima-
tion Theorem proved in [26, 42] for D,, and P, is interesting in itself and useful
in subsequent sections.

We use a variant of A -Q-calculus (called A -Q*-calculus here and A - 8-Q,-calculus
in [29], cf. also [28]) obtained from A-calculus by adding the constant () to the
formation rules of terms and the reduction rule ((2*): QM - (), only (besides rules
a and B). The congruence relations =g« and =gq« are defined as usual. A A-)*-term
A is B-Q*-normal form (B-Q*-nf.) iff A cannot be further reduced. A S-Q*-n.f.
A is the B-Q*-n.f. of a A-Q*-term M iff M reduces to A using rules o, B8 and Q*.

Let M be a A-Q*-term and A a B-Q*-nf., A is an approximate normal form
(a.nf.) of M (Ac* M) iff IM’ =5 M such that A matches M’ except at occurrences
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of ( in A. Lastly, define #*(M)={A|A =* M}. As usual, we say that a A-Q*-term
M is of order 0 if there are no y, N such that M = g Ay.N.

The type assignment given in Definition 1.4(3) can be extended to A-Q*-terms
without modifications.

We need some properties of approximants.

3.1. Lemma. (1) VM: A*(M) is a directed set with respect to =*.
(2) If A=* Mz and z¢ FV(M), then there is A’ =* M such that A =g+ A'z.
(3) If A=* M and A’ is the B-Q*-n.f. of AQ, then A'=* MN for all N.
(4) B-7 aQ implies w ~ 4 0.

Proof. (1): Confer [28, Proposition 3.2].

(2): If M is not of order 0, i.e., AzzMz =4 M, we have A'= Az.A. If M is of order
0and A=Q,thenA'=Q.If Misoforder0and A=xA, ... A,z,thenA'=xA, ... A,.

(3): Immediate from A=* M and VN: Qc=* N.

(4): By induction on deductions (notice that we can use only rules (o), (A I),
(A E),and (=g4)). O

It is easy to check that if (Eqg) is a derived rule for ~7, then also

TM M =ﬂﬂ* N
™

(Eqgos):

is a derived rule for 7.

3.2. Lemma. If (Eqg) is a derived rule for the type assignment induced by 7, then
(Eqga») is a derived rule, too.

Proof. First we show that 0> 7 ~5 @ implies 7 ~5 w. It is easy to check that if
o> T ~gw,then {gz} -7 7y for all variables z, y:

(0)
WAX.y (<)
o> TAX.Y oz (> E)
T(Ax.y)z

and {oz}—7 7(Ax.y)z implies {oz}~7 zy by (Eqg). But {oz}+7 7y implies 7 71w
by Lemma 1.7(2), i.e., 7 ~5 w. Let
™M M == N

TN

(Eqg-):

Clearly, (Eqgq~) is derivable iff both (Eqg) and (Eqq-) are derivable. So it is sufficient
to prove that B+7 7QM=>B +7 7. This proof is by induction on the deduction
9: B+7 rQ M. If the last applied rule is (w), (A E), (A I), or (<g4), it is trivial. If
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the last applied rule is (= E),

c->17) oM
OM

(= E),

by Lemma 3.1(4), 0> 7 ~ 5 @ which implies 7 ~5 » by the remarks above. [

The technique used to state the Approximation Theorem is a variant of Tait’s
‘computability’ [41] proposed in [13] (a similar technique is used also by Stenlund
[40]).

We define sets of ‘approximable’ and ‘computable’ terms. The computable terms
are defined by induction on types, and every computable term is shown to be
approximable. Using induction on typings, we then show that every term is compu-
table.

3.3. Definition. Let J be a type theory:

(1)  Apps(B,7, M) & 3Aec A*(M): BL 7A.

(2) Compg(B, w, M) is true,
Compg(B, ¢, M) = Appg(B, ¢, M),
Compg(B,oc>7,M)and 7 ~y@ < Apps(B,o->1, M),
Compg(B,o>r,M)and 7 # s w

& [Compy (B, 0, N) = Compg(Bu B', r, MN)],

Compy(B, o r1, M) & Compgy(B, g, M) and Compgy(B, 7, M).

It is easy to verify, by induction on types, that Compy is invariant under
B-Q*-conversion of terms. That is, if M =gg+« N, then Compg(B, r, M) iff
Compg(B, 7, N).

We can show that in the systems 7 for which (Eqg) is derivable, B’ 7A and
Ac* M imply B+7 M as follows. By definition, there is M’ =4 M such that A
matches M’ except at occurrences of ) in A. Thanks to Lemma 3.1(4) and (<g4)
we may simply obtain a deduction of B 7 M’ by using rule (w) to assign type w
to the terms which are replaced by Q in A. Lastly we have B+7 M by (Eq,).

We characterize the type theories for which the converse holds (i.e., B 7 M
implies that there is an A<* M such that B+7 7A). They are all and the only
theories J such that

(i) rule (Eqg) is derivable in the system +7;
(ii) o <g r implies Compg4(B, o, M)=>Compg(B, 7, M).
The proof of the sufficiency of these conditions is done by showing (by induction
on types using condition (i)) that Comp4(B, 7, M) implies Apps(B, 7, M) and by
showing (by induction on deductions using condition (ii)) that B 7 M implies
Comp (B, 7, M). The necessity of conditions (i) and (ii) are shown in Theorem
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3.10. Notice that, given a term M and a basis B, we can assume that there are
infinitely many variables which are all distinct and do not occur in B and in M.
This is proved in [21, 23].

Let M denote a sequence M,,..., M, (n=0) of terms and let xM stand for
xM, ... M,. FV(B) is the set of variables which are subjects of statements in B.

34. Lemma. Let J be a type theory such that (Eqg) is a derived rule for the induced
type assignment.

(1) Apps(B, 7, xM)=>Compy(B, 1, xM).

(2) Compg(B, 7, M)=Apps(B, v, M).

Proof. We prove (1) and (2) simultaneously by inductionon 7. r=¢, 7=w,7=0->p
with p ~g o follows from the definition. 7= o A p is easily proved.

T=0->p, p#gw. We prove (1) first. Note that Compg(B’, o, N) implies
Appgs(B', o, N) by the induction hypothesis. Therefore, from Apps(B, o~ p, xM)
and Appg(B’, 0, N) we have Apps(Bu B’, p, xMN) which implies Comp4(Bu
B', p, xMN) again by the induction hypothesis. We conclude Comp4(B, o - p, xM).

(2): Take zg FV(M)UFV(B). Notice that, by (1), Apps({oz}, o, z) implies
Compg({oz}, o, z). Hence, Comp (B, o> p, M) and

Compg-({O'Z}, o, Z) = Comp.?'(B o {0'2}, D, MZ)

= Apps(Bu{oz}, p, Mz) by the induction
hypothesis

= JA* Mz

such that Bu {oz} 7 pA.
Notice that A =* Mz implies that there is an A'=* M such that A =g,. A’z by
Lemma 3.1(2).

Bu{oz} IZ pA = Bu{oz} i pA'z
by (Eqgpqa+) (cf. Lemma 3.2)
= Apu: Bu{a-z}i u->pA and Buf{oz}+7 puz
by Lemma 1.8(1)
= du: Bu{crz}!fz u->pA" and o<=gzpu
by Lemma 1.7(2) since z ¢ FV(B)

g
= Bu{oz}o->pA' by(sg)

= B IZ o> pA’
by Lemma 1.8(3) since z¢ FV(M)
= Appg(B,O'ﬁp, M)' O
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3.5. Definition. A type theory J is approximable if o <g7 implies
Compg(B, o, M)=>Compg(B, 7, M).

3.6. Lemma. Let 3 be a set of formulas such that o<grteZX implies
Compys)(B, o, M)=>Compg (B, 7, M). Then, J(X) is an approximable type
theory.

The proof is done by induction on <gx,.

3.7. Lemma. Let J be an approximable theory, B={ox,,...,0.x,} and
Compg(B;, 0;, N;) for 1<i=<n. Then, B+7 tM=Compg(B,u B,u---UB,, 7,
M[xl/le xZ/NZ’ mecy xn/Nn])-

Proof. By induction on the derivation 2: B 7 +M. If the last applied rule is (<g),
use Definition 3.5. If the last applied rule is (= E), i.e.,, M= PQ and

o->71P oQ
7PQ

(= E),

we have

Compg(B,v-:--UB,, 0->71, P[x;/Ny,...,x./N,])
and

Compg(B,u---UB,, o, Q[x,/Ny,..., X%,/ N1
by the induction hypothesis which implies

Compg(By,u- - -UB,, 7, PQ[X;/Ny, ..., %X,/ Ny])

by definition. If the last applied ruleis (= I), let M = Ax. P. We distinguish two cases:
Case 1: r=0->p with p ~ g w:

[ox]
pP
—_— I).
o~ pAx.P (>
In this case, we have App4(B, o> p, Ax.P) since Ax.Q =* Ax.P and
[ox
=l
o)
) (=9)
—=— D,
o~ pAx.)

so Compg (B, o - p, M) by definition.
Case 2: r=o0- p with p # s w:

[ox]
P

R, S — I'
o> pAx.P D
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Compgy(B', o, N) implies

Compgy(B'UB,U---UB,, p, P[x/N,x,/Ny,..., %,/ N,])
by the induction hypothesis. Then we have

Compg(B'UB U --UB,, p,(Ax.P[x;/Ny,...,x,/N,J)N)

since Compg is invariant under B-Q*-conversion (note that x £ FV(N)). Hence,
by definition,

Compg(B,u---UB,, 0> p, AX.P[x;/ Ny, ..., x,/ N.]).

The other cases are trivial. []

3.8. Theorem. Let J be an approximable theory such that (Eqg) is a derived rule for
the type assignment induced by . B+—7 tM &3 A =* M such that B+7 zA.

Proof. (<): Obvious (cf. the discussion after Definition 3.3).
(=>): Notice that ox € B=Compg(B, o, x) by Lemma 3.4(1).

B ™M = Compy(B,7, M) by Lemma 3.7
= Appgs(B,7, M) by Lemma 3.4(2). O

Letus extend [ ]7 to A-Q*-terms by assuming [Q]7 = 7} w. Notice that, by Lemma
3.1(4), 7tw ={7| B, 7 7Q} for all ¢

3.9. Theorem (Approximation Theorem for M4). Let T be an approximable theory
such that (Eqg) is a derived rule for the type assignment induced by I. Then IM]] =
LI{TAIZ | Ae st*(M)).

The proof is immediate from Theorem 3.8.

When J satisfies the conditions of Theorem 3.9, the local structure of the A-model
Mo has some interesting properties. Firstly, [M 17 =71 for all unsolvable terms
of order 0 and all environments £ Moreover, defining the tree T(M) of a term M
and the partial order relation < between trees as in [29], we have that T(M) < T(N)
implies that the value of M is less than or equal to the value of N in Ma. In fact,
it is easy to verify that Ac* M iff T(A)< T(M). An immediate consequence of
this is that all fixed point combinators of the A-calculus coincide (since they have
the same tree) and represent the fixed point operator in .

In [10], the class of A-models M, for all F is characterized, proving that it
properly includes (up to isomorphism) all D.,~A-models [34]. So we can argue that
different J”s induce A-models with different local structures.

3.10. Theorem. Let J be a type theory which does not satisfy one of the conditions of
Theorem 3.9. Then the Approximation Theorem fails for M.
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Proof. If (Eqg) is not a derived rule for 7, M4 is not a A-model.

If 7 is not an approximable theory, let o <57, Compg4(B, o, M) =true and
Compg(B, 7, M) =false. Assume, in order to derive a contradiction, that the
Approximation Theorem holds for It .

Recalling the conventions about ““="" between types, it is easy to verify that, for
each type v, we can find types ui{”,..., ul?, ¢ (where n,=0 and 1<i<m) such
that

v=A pi’=>oul)sy®

1<i<m

and each ¥'” is w or a type variable.

Therefore, Comp(B, 7, M) =false implies that we can assume, without loss of
generality, 7=pu,~>- - ->u, > ¢ Ap (n=0), where ¢ is @ or a type variable and
Compg(B, uy = -+ > u, >, M) =false.

Compg(B.o, M) = Apps(B, o, M) by Lemma 3.4(2)
=Apps(B, gy~ -+ > p. > ¥, M)

since 0 Sg > > U, >

g
= Bru,»> > u,>y¢yM.
Moreover, for 1<isn,

Compgy(B;, ui, N;) = Apps(B;, w:, N;) by Lemma 3.4(2)

g
= B;+ u;N;.
Therefore, we conclude BUB,uU---U B, -7 yMN;, ... N,.

g
BUB]U' * 'UBnl'-(IIMNl...Nn
= Appg(BUB,U---UB,, ¥ MN,...N,) by hypothesis
= Compg(BUB,U---UB,, ¢, MN,... N,) by Definition 3.3(2)

= Compg(B, u; > "> u, >y, M) by Definition 3.3(2).
O

4. Some type assignments

In this section we study four type assignments induced by type theories. The
choice of these theories has been suggested by the following considerations.

Type theories J which give rise to always empty interpretations of types are
pathological since, if J implies ¥ (7)=®, the type assignment 7x can never be
satisfied. In this case, {rx} =7 &M will hold for every o and M.
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Therefore, in addition to J;, we consider type theories in which some relations
between type variables and w > @ are axiomatized. More precisely, we study:

(1) the type theory J. which forces the interpretation of each type variable to
be a subset of F (Vo: ¥ (¢) < F),

(2) the type theory J; which forces the interpretation of each type variable to
contain F (Vo: F< V(¢));

(3) the type theory I, which forces the intersection between F and the interpreta-
tion of the type variable ¢ to be the interpretation of the type w » ¢ (Vo: Fn ¥V(9) =
V(v @)).

4.1. Definition. (1) Z;=®, X ={p;<sw->w|jeN}, Z={o>w<g]|jeN}, I =
{w>orp~w->¢|jeN}

2) I,=9(Z,) for x=f, e, i, s.

(3) <4, ~x,... are short for <5, ~4,... where x=f, ¢, i, s.

Clearly, < is as defined in Definition 1.1(2). In the type assignments - and —*
typing is not preserved by substitution since, for example, {w->oy}-oy, {0->
oy} o>y and {0>w Ay} w-> ey, {0>0Ae> @y} 0> 0 oy

In order to prove that M, (for x=f, e, i, s) are F-filter A-models we need two
technical lemmas.

4.2. Definition. #(7) is inductively defined by
(i) #(¢;)=#(w)=0for all jeN,
(i) #(o->71)=1+#(7),
(ili) #(o A 7) =max(#(o), #(7)).

4.3. Lemma. For x=f1, ¢, i, s, if (1> v))A" - A(un>Vp) < 0>7and if 7 #, o,
then there are p,,...,p,€{1,...,n} such that p, A+ Ap, =0 and v A- - - A

Vp, =T

Proof. Let
Y=(1>V)A A(Ba > V) AQ A" A G,
S=(0y>T)A " A(Op>Te) A@j; A" " A Q.
Define the properties (P1), ..., (P5) as follows:
(P1) VIQAslI<n)3h(1shs<n): #(o> 1) <#(mn->m);
(P2)  {j1,---simd2{jts---5imhs

(P3x) VI(l<lI<n'): 7 #,0 implies 3I{hy,...,h}<{l,...,n} such that
Vhs--- Vh, are #, o and

Hp A**t A Pp, xZ O, U A* AV, ST
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for x=f, e, 1,s;

(P4) Vi(lsl<n'): 7 #,0 implies I{h,,...,K}c{l,..., n} Hr,..., e
{ji,.-->Jm} such that v, ,..., v, are # o,

WA A Ay =0 and VA AVR AQ AT AP, ST

(P5) Vg(lsg=sm')3{h,,...,k}cs{1,...,n}, ;r,...,r}<{j1,...,jm} such
that v, ..., vy, are #, o,

WA A Ao and VA AV AQL AT AP, S @

By straightforward induction on the definitions of <, <., =<;, and <, we can
prove that
(i) y=¢8=(P1), (P2), (P3f).
(ii) y <. 86=>(P2), (P3e).
(iii) ¥ =; 6=(P1), (P3i).
(iv) y=s,6=(P1), (P4), (P5). O

Remarks. (1) In properties (P4) and (P5), one of the two sets can be empty. This
is true, for example, for (P4) in the case w > w A ¢ <, 0> ¢ (Where o #, w), and
for (P5) in the case w~> ¢ <, ¢.
© (2) =, does not satisfy (P1) (take ¢ <. 0w~ w).
(3) =; does not satisfy (P2). Take, for example, 0 »> o <; ¢.
(4) =<, does not satisfy (P2) (take w > ¢ <, ¢), and
(P3s) (take w > w A @ <, 0> @).

44. Lemma. For x=f, e, i, s,
(1) B="o->mAy.M=B/yu{oy}+" ™,
(2) Rule (Eqg) is a derived rule for the systems -*.

Proof. (1): We may suppose 7 # , w. Let u; > »Ay.M (1=<j < n) be all the statements
in 9: B+-* 0> 7Ay.M on which o~ 7Ay.M depends and which are conclusions of
(»I):
[py]
“] -> Vj/\y.M

By Lemma 1.7(3),

(= I).

(l“l-’l’l)/\' : 'A(l"n")yn) $x0'—)7.

By Lemma 4.3, there are p;,...,p,€{l,...,n} such that u, A---Apu, .= o and
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Vp Ao - Ay, <, 7. Therefore,
ay
(<4)
HpY .
: Isk=g
M
VPk (/\ I)
vy A -/\quM
(=x).
™

(2): Clearly, it is sufficient to prove

Br r(Ay.M)N & B rM[y/N] forr #, .

(=): BF"7(A\y.M)N and 7 #,.0 imply 30: B0~ 7Ay.M and B+*oN by
Lemma 1.8(1). Hence, 30: B/yu{oy} "M and B+"oN by (1).

Therefore, we obtain a deduction of B —*tM[y/ N] by replacing each premise
oy by a deduction of oN and y by N in @: B/yu {oy} " ™™.

(<): If y does not occur in M, this is trivial. Otherwise, let 9: B+*tM[y/ N]
and o N, ..., 0,N be all the statements in & whose subject is N. Then we can
obtain a deduction 9': B/y u{o,y,..., oy} "M by simply replacing the deduc-
tion of o; N by the premise o;y for 1<j=<n and N by y in &. Lastly, by applying
rules (A E), (= I), (a I), and (- E), we conclude B—*7(Ay. M)N. O

4.5. Theorem. IR, =(|TF|,.,[ ]*) are F-filter \-models, for x =f, e, i, s.

The proof is immediate from Theorem 1.12 and Lemma 4.4(2).
From Theorem 2.4 we have the following theorem.

4.6. Theorem (7 -F-soundness). For x=f, e, i,s, B-*tM=BE* M.

Notice that the system —* of [2] is not F-sound. In fact, if A = Ax.xx, we have
H* w > wAA (using o < w > w). However, in the F-filter A\-model :;, say, we have,
since the Approximation Theorem holds (cf. Theorem 4.13):

[AA]i="tw g F;=Y (0> w) forall & ¥.

In fact, Mo and o -> @ have the same functional behavior (i.e., Vd €|7]: Tw.d =
10> w.d="0) and Mo > o € F; by Lemma 2.6(3) since

[4y. 2015ty =T =@ for all &.

Moreover, it is easy to verify that <, ', and * are not F-sound.
Thanks to Theorem 2.9, if we want to establish whether the type assignments =
(x=f, e, i, s) are F-complete, we need only know if (HR) is provable in them.

4.7. Lemma. (1) (HR) is a derived rule in the type assignments +—* for x =i, s.
(2) (HR) is not a derived rule in the type assignments > for x =f, e.
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Proof. (1): For x =i,

[wz,]
(w)
WAZ,...2,.Nz, ...z, (> 1)
._)
®W->wA2,...2,.Nz;...2, (<)
©Az,...2,.Nz, ...z, e
For x=s,
oArw">wN Aw" > oN
(ss) n ¢ (/\ E)
w->¢eN [wz] o">oN [wz]
(—) E) n—1 (—> E)
¢Nz, - wNz, (r 1)
A
eA@" > 0Nz,
(pNz,....z,, (> 1)
w">@Azy...2,.Nz, ...z, (<.).

@Az, ...2,.Nz,... 2,
(2): {w> oAy} przyz for x=f,e. [

4.8. Theorem (F-completeness), The type assignments +' and +* are F-complete
while ' and —° are not F-complete.

4.9. Remark. Notice that whereas, for all ¥, ¥ agrees with J; by Theorem 2.4(3)
and ¥, agrees with J, for x =i, s (by Lemma 2.7(2) and Lemma 4.7(1)), ¥. does
not agree with J.. In fact, let ¢ be any type variable; we have, by definition,
1o € V(¢) and from <., ¥.(¢) < ¥.(w > @) which would imply “}¢ € F,. But “}¢
for all type variables ¢ and “} @ > o have the same functional behavior (i.e., Vd € |7|:
“4¢.d =*o > w.d =°tw) and therefore, they cannot be all elements of F,. “two>we
F. by Lemma 2.6(3) since [Ay.zyl¢. /1001 = "T@ > o, for all &

It is natural to consider the type assignments obtained by adding (HR) to +°, ',
We call these systems —7¢, —™, respectively. The following lemma compares deriva-

bility in the systems with and without (HR).

4.10. Lemma. For x=f, e,
(1) BF tM=B+" M,
(2) BF"sM=3M’ such that M -, M' and B+*1M’.

Proof. (1): Trivial.
(2): Simply replace each application of (HR)

eAw">oN
@Az, ...2,.Nz, ...z,

(HR) if z,, ..., z, 2 FV(N)

by an application of (A E)
erw">wN
¢oN

(A E). U
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It is easy to see that —'™* and - are not F-complete since types are not invariant
under subject expansion. In fact, {¢ A w > wy}"* pAz.yz while

Hx
{o Aw—> oy} F <pAz.(Au.yz)v for x=f, e.

This also proves that (| 7], ., [ 1) is not an F-filter A-model (if we define [M]}* =
{r| B, +"*tM}) for x=f, e. Instead, "' and +"° satisfy the subject reduction
property.

4.11. Lemma (Subject reduction for ™). For x=f, e,
(1) BF**7MN, r #, 0w 30: B-""o-> M, B oN;
(2) BF™ o> mny.M& B/yu{oy} ="M,
(3) BF™tM, M »g M'=>B+""7M".

Proof. (1): Immediate from the proof of Lemma 1.8(1) since the last applied rule
cannot be (HR).

(2): The proof of Lemma 4.4(1) remains valid since (HR) assigns only type
variables.

(3): Just mimic the proof of Lemma 4.4(2) (=). O

Notice that the systems " and "*# obtained by adding (Eq,) to " and "¢
do not induce F-filter A-models since property (2) of Lemma 1.8 fails. In fact, if B
is any basis, from B/y u {¢ A w > wy}, we assign only type w to yz and ¢z, but

Hxpg
B/yu{pArw—>wy} — @Azyz and

HxB
B/yu{eArw-> wy} A~ @rztz (x=f,e).

However, the question whether these systems are F-complete remains open.
To prove the Approximation Theorem for I, , we show that 7, are approximable
(x=f, e, i, s).

4.12. Lemma. The type theories I, for x =f, e, i, s are approximable.

Proof. By Lemma 3.6 it is sufficient to show that o=<,reX,  implies
Compg, (B, 0, M)=Compg (B, 7, M). For X, the proof is trivial. For X, and 3,
the proof is easy using Definition 3.3.

For X, we have to prove:

Comp,(B, @ » w A ¢, M) & Comp,(B, 0~ ¢, M),
which, by Definition 3.3, is equivalent to

Appy(B,w~>w, M) and App,(B, ¢, M) & VN:App,(B, ¢, MN).
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Notice that (Eqggo+) is a derived rule for —* by Lemmas 4.4(2) and 3.2.
=):

App.(B, © > w, M) and App,(B, ¢, M)

= JA,, Aye 4*(M): BF- 0~ 0A, and B& pA,
= JA'c f*(M): A, =* A, A,=* A’
since #*(M) is directed
Bt w->wA’ and BlicpA'

by the discussion after Definition 3.3

= B:—w—npA’ by (A I) and (<)
= Brs—qu’Q by (@) and (= E)

= B+ pA"
where A" is the B-Q*-n.f. of A’Q (by (Eqgq~))
=> VN App.(B, ¢, MN)
since A”=* MN by Lemma 3.1(3).
(&): VN: App,(B, ¢, MN)=>App.(B, ¢, Mz), where z £ FV(M)uFV(B)
= JAc* Mz such that B+ pA

= JA’'c* M such that B- A’z
by Lemma 3.1(2) and (Eqggq«)

= JA'c* M such that BF o > A’ and B+ wz
by Lemmas 1.8(1) and 1.7(2) since z ¢ FV(B)

= JA'c=* M such that B RN A’ by (<))
= App(B, o> oA ¢, M). O

4.13. Theorem. For x=f, e, i, s,
(1) BF*TM&3JA=* M such that B+ 7A,
(2) The Approximation Theorem holds for I, ;
(3) M, are not sensible.

Proof. (1) and (2) are immediate from Theorems 3.8 and 3.9, and Lemmas 4.4(2)
and 4.12.
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(3): Simply notice that *(44) = {Q}, while A*(xy.44) ={Q, Ay.Q}, so [44]; =
*tw, whereas [Ay.44]; ="tw > w, for all £ [

In the remainder of the present section we will connect the types that can be
assigned to the terms with the normalization properties of the terms themselves.
More precisely, we will prove that

(1) in the systems H, 5, 5, =" and "¢, all and only the terms with head
normal form (h.n.f.) have tailproper types (see Definition 4.14 below);

(2) in the systems ', -, =" and ", all and only the terms with normal form
(n.f.) have types without w-occurrences.

4.14. Definition. The set TT of tailproper types schemes is defined by:
$o, P15 - - -ETT,

T7€Tl = o->1,0AT,7TA0eTT foralloeT.

4.15. Lemma. For x=f, e, s,
(1) os,rand o TT=7¢TT;
(2) B+*7A, where A is an unsolvable B-Q*-nf.=>1£ TT.

Proof. (1): By induction on =<,.
(2): By induction on derivations using (1). O

Similar properties do not hold for + since, for example, - pAy.Q} and ' ¢ >
eAyz.0). Notice that w > w <; ¢, o > w £ TT, and ¢ TT.

4.16. Theorem. For x=f, e, s, 3B, e TT: [B+*TM])& M has a h.nf.

Proof. (=): 3B, 7 TT: B-"TM=>3Ac* M such that B+-"rA by Theorem
4.13(1) implying that A is solvable by Lemma 4.15(2), whence M is solvable.

(<): LetAz,...z,.yM, ... M,, bethehnf.of Mand ye FV(M). Clearly, {0™ ~>
oy} > oyM, ... M,, using (w) and (- E) and therefore, by applying (» I), we
obtain

{w™ > oy} F "> QAZ, ...z, yM, ... M,,.

The case y £ FV(M) is similar. O
4.17. Theorem. For x=f, e, 3B, : [B+*rM and v not in B, v]< M has a n.f.

Proof. (=): BF*TM=>3Ac=* M: B+”* 7A by Theorem 4.13(1). We prove that ()
does not occur in A by induction on A. The only interesting case is A= zA, ... A,.
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X
B;TZAI...A,,=>30'1,...,0'":BI-—O'l_). -+>ag,»7z and

BE 0A; 1sI<nbyLemma 1.8(1)
20,20, 30, >T,Z (U2 V)A A fm > V) A@ A"
AN®js
where {1, %12, ..., m > VmZ, @32, . .., ;,2} S B by Lemma 1.7(2),
=3{hy,...., k}<{l,...,m} such that oy <, p, A" - A,
and 0, >0, > T, = Y A AV,

since for x =f, e, P3x holds (cf. the proof of Lemma 4.3)

=B Ha A" AR A by (5).
Reasoning in a similar way from
02> DO, > T ZVpy A AV,
we can prove that, for each A, 2<I<n, Iu’, ..., u’ which occur in B such that

B u’a-- - Aul’ A, Now, the inductive hypothesis can be applied.

(&): By structural induction on the n.f. of M. [

A counterexample to the Normal Form Theorem for the system —° (due to the
fact that property P3s of Lemma 4.3 is not true for -°) is
{o A > Yy} @y(A4).

Moreover, notice that although property P3i of Lemma 4.3 holds, the Normal Form
Theorem fails for the system + since it does not satisfy Theorem 4.16.

4.18. Theorem. For x =f, e,
(1) 3B, 7€ TT: [B+"*tM]& M has an h.n.f,;
(2) 3B, 7:[B+""7M and @ not in B, 11 M has an n.f.

Proof. (1) (=):

Hx x
B+-™ = 3AM:M-»,M B+ M' byLemma 4.10(2)
= M’ has h.n.f. by Theorem 4.16
= M has h.n.f.

(&): M has h.nf. implies 3B, 7€ TT: B+"7M by Theorem 4.16, whence
B+"*rM by Lemma 4.10(1).
(2) is proved in a similar way. [
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5. Restricted types

In the preceding sections we have seen that many of the problems of F-complete-
ness arise from the necessity of giving a type interpretation ¥ such that ¥(¢)n F
is nonempty.

These type interpretations are necessary because interpretation of types like
¢ A w - » should not always be empty. An alternative approach could be to avoid
intersections of this kind by allowing *““A™ to be a partial function satisfying some
conditions. Informally, o A 7 is legal only if o and 7 have the same number of “->"’s
or o2 TT (as defined in Definition 4.14) has less “~>’’s than 7.

The type assignment X, constructed on this subset RT< T of restricted types,
is the only system (to the author’s knowledge) which is F-sound and F-complete.
Another interesting feature of this system is that the Head Normal Form and Normal
Form Theorems hold. Moreover, we want to mark the connection between H* and
{ established in Theorem 5.5. This result is relevant and rather unexpected since
the definitions and motivations for ¢ and I look at first sight, totally unrelated.

Note that (HR) is now irrelevant since ¢ A 0" > w £ RT.

5.1. Definition. (1) The set RT< T of restricted types is inductively defined by

(i) @0, ¢1,...€RT;
(i) @ €RT;
(ili) o, Te RT=>0~> 7€ RT;
(iv) o, 7eRT, #(0)=#(7)=0 AT RT;
(v) 0, 7eRT, o2 TT, and #(0)<#(7)=>0 A7, TA0eRT.

2) osgriffo,7eRTand o <¢s7. o ~g7iff o<g T <y 0.

B) IJr={o<t|o=x 71}

Notice that o->7Au->veRT implies 7AveRT. Let us remark that
(RT, w,Cong,+g), where {oy,...,0,}€Cong if oyA---A0,eRT and
{oy,...,0,}Fr7iff oy A- - - A 0, <g 7,15 an information system in the sense of Scott
[39].

In order to build the formal system of type assignment —® we need to modify
the definitions of Section 1 slightly.

5.2. Definition. (1) A set S<RT is consistent iff o and 7€ S imply o A 7eRT.

(2) A restricted basis B is defined by adding to Definition 1.4(2) the condition
that, for each variable y, B | y is consistent.

(3) B+® vM iff M is derivable from the restricted basis B in the type assignment
induced by Iz, where (A I) has been restricted as follows:

oM ™™ oA71eRT

(x ) ornT™
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(4) R is the type assignment obtained by adding rule (Eqg) to HX.

It is straightforward to verify (by induction on deductions) that if @: B+® M,
then each predicate of statement which occurs in & belongs to RT. In particular,
7€ RT.

It is easy to show that the subject reduction property holds for —*.

53. Lemma. (1) If (u,»v)A - A(up>v,) Sg 0> 7 and 7 #x o, then there are
Pis--->Pg€{l,..., n} such that, for 1<j<gq, Bpr= 0 and v, A- - AV, SyT.

(2) If o 7M is derived from (u,~> v)M, ..., (u, > v,)M only by means of rules
(AI'), (AE), and (<g), pi>1€RT for I<l<n and 7 #gw, then there are
Pi,--->Pg€{l,..., n} such that, for 1<j<gq, p,r= o and v, r--- AV, <gT.

(3) BFY TMN, 7 #r 0=>3J0 € RT:

R’ ’
[Bro->TtM and BF oN].

(4) B-¥ o> mAy.M=B/yu{oy} -~ M.
(5) BF¥ tM, M»;M'=B+* tM".

Proof. (1): By Lemma 4.3, there are p,,...,p, €11, ..., n} such that
Hp A App =0 and v, A-c Ay, <¢T.

Notice that o€ RT since o> 7€RT and v, A+ - - A vp, €RT since (u;>v)Aa-- A
(pn~> v,) € RT. However, p, A+ - - A #p, € RT can be false.

(2): Byinductions on derivations one can show that if (g2 1)A - A(op> 1) M
is derived from (u,-> »)M,...,(p,~> v,)M only by means of rules (AI'), (AE),
and (<g), then, VI (1<I<m) such that 7, #x , there are p,,...,p,e{l,...,n}
such that, for 1<j=<gq, u, x= oy and v, A~ - - A vp, <r 7. If the last applied rule is
(=<gr) use (1) and the induction hypothesis.

(3): By induction on derivations.

(4and 5): Just mimic the proof of Lemma 4.4(1) and (2) (=) using (2) and (3). O

Contrary to the subject reduction property, subject expansion fails for —X. For
example,

{(p=>@)» 017, ((p> ) > 0> ¥)}> oy b IO,
while
{(p>9)> 012, (¢ ¥) > 9> ¥)}> oy ¥ (ALzt(y))L

So Y is not F-complete. We will prove instead the F-completeness of FX.
We will prove that when B is restricted and 7€ RT, the inference systems ' and
+® have the same expressive power.
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54. Lemma. p <¢0,~>--->0,,~>7and 7 #; w implies
p=(p> > puR> v a A (uf > p 1) ap!

for some p,(]) o, D, vY such that u = o, with (1<i<m), (1<j<s), and
A A < r

Proof. By induction on m: Let 7=0,,.,~> 7. By the induction hypothesis,

p=(uP> o uQ> D) n A (i p > ) ap!
for some p,(’) .. p.E,’,), ) such that p,(” = o;, with (1<sism), (1<j<5s), and
v A <f 7. Without loss of generality, we can assume

1)

VD A AP = (> B A A (@ B)A G A A G

By (P3f) as defined in the proof of Lemma 4.3, there exist {p,,...,p}={1,..., 1}
such that

7 ’
Qp A" AQp (= Opyy and B, A AB, <¢7T.

Therefore, we can conclude (recall that (y—»>8)A(y>8)=y->848"):

(h(p) _, B 5 B YA A
1 1

(h(p,))

p=(pi > W

("L(h(pq)) _>"" - apq—)BPq) Ap”’
where h:{p;,...,p,}>{1,...,s} is defined by h(p,)=j iff v =(a,~>B,)r "
for some 7). [
5.5. Theorem. Let B be restricted and € RT, then B tM & B-R M,

Proof. (=>): Notice that B+"7M implies 3Ae *(M) such that B+7A by
Theorem 4.13(1). We prove by induction on A that B-R7A. A=xA,... A,
(m=0) and 7 #;w. B 1xA, ... A,, implies 30, ..., 0,, such that B g,4, (1<
ism)and B-oy»--->0,>m™ by Lemma 1.8(1).

f

Broy»:--»0on>m

=3Ip)X,...,pXEB:pyA-- AP, S¢0,>+>0,>T Lemma 1.7(2)

Spinccapa=(piP> o uP > v A (o w5 ) A
forsome u{, ..., u, vV suchthat u’ = o, (1<ism)(1<j<s)and vPr- - -2
»*) <, r by Lemma 5.4.

B oA = Bi—p,f’)A for 1<j<s by (<o)

R .
= B+uP A, forlsj<s

by the induction hypothesis since u{’ € RT. Therefore, we obtain a deduction of
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B +R A as follows:

X...
P PnX (AI")
PiA "t AppX (<2 :
P R ) I R uhA, .
D5 505 p00xA (= E)
3 k Hm = V7 XA,
pP>vIxA, . AL, pPA,, (> E)
V(j)xAl e Am ( I')
A
YIa A v %A, AL (<q)
™A, ... A, TRE

Notice that p; A« - - A p,, ¥V a---aA )€ RT since B is a restricted basis.

A=Ay.A'. Notice that B+ p A vA=>B+ puAand B-R uA, BFRvA=BHR A
vA using (AI') since uAveRT. So we can restrict our attention to the case
Brfo->pAy A’

£ £
B+ o pAy.A' = B/yu{oy}+ pA’ by Lemma 4.4(1)

R
= Bro-pAy.A’ by the induction hypothesis

(notice that B/y u{oy} is a restricted basis and p € RT)

= Bﬁa»p)ay.A' by (= I).

Now, from B —® 7A with Ae #*(M), we have B —* 7M. Just mimic the argument
given after Definition 3.3 (notice that (Eqg) is a rule of +X).
(<): Immediate since (Eqg) is a derived rule for .0

As a consequence of Theorem 5.5 we have the Head Normal Form and the Normal
Form Theorems for the system F~.

5.6. Theorem. (1) 3B, 7 TT: [B+" tM]< M has an h.n.f.
(2) 3B, 7: [B+" M and o not in B, 1< M has an n.f.

Proof. (1) (=>): By Theorems 5.5 and 4.16.
(«): The proof of Theorem 4.16 (&) remains valid.
(2) (=): By Theorems 5.5 and 4.17.
(«): Let || ||: A>N be defined by
@) lzll=1,
(i) |MN|=max(||M|+1, |N]),
(iii) laz. M| =] M].
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Clearly, if M is an n.f., || M|| is the maximum number of components of the subterms
of M. We will prove by structural induction on the n.f. M that Vn=||M|:3B, 7
such that
(i) B-R7M;

(il) @ not in B, 7;

(iii) py € B implies #(p)=n.

M =Az M’ is trivially proved.

M=:zM, ... M, (m=0). By the induction hypothesis there are B;, o; such that
B; " o:M;, » not in B;, o, and py € B; implies #(p) = n. Notice that if n= || M|,
then n=m. It is easy to verify that a correct choice is 7=¢,,,;> - > ¢, > ¢ and

B=B,v-::-UB,u{o,> >0, 1z} O
The F-soundness of —X follows from Theorem 5.5 and Lemma 2.4(4).

5.7. Theorem ( F-soundness).

BFRTM=>B = ™™,

To prove the F-completeness of —* we use (|74, ., [ 1 which we know from Lemma
4.5 to be an F-filter A-model. Therefore, we interpret the types belonging to RT as
subsets of | 7. Notice that (|J%|,.,[ I¥) is not an F-filter A-model since ¢ - ¢,
(¢ ¥)~> o~ pe[rxx]s, but (¢ > @) A ((p>¢)> o> ) £RT.

5.8. Definition. (1) R(7)={d €|J{|r e d}, where e RT.
(2) Yr(®)=R(op).
(3) The set FT< T of functional types is defined by
(i) weFT,
(i) o, re T=>0-> 7€ FT,
(ili) o, Te FT=0 A T€FT.
(4) The set AT< T of argument types is defined by
(i) ®o, @1,...€AT,
(ii) w € AT,
(iii) o, re AT=0 A T€AT.

Notice that RT ¢ FTU AT < T since, for example, (¢ A ¢ > ¢) > ¢ € FT, but g RT
and prA@-> e T but 2FTUAT.

59. Lemma. (1) 0€FT, 0 <, r=>7<FT.
(2) Let S=B | y. If 1S# " w and S FT then, for all 7, B HryoBH rAzyz
(3) 1S #"w and S FT imply 1S € F;.
(4) S being consistent implies ¥ ce|T|: AU consistent such that 4 S.c =" U.
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Proof. (1) is proved by induction on <.

(2) =): B Fry=30,x,...,0,x€ B such that o A" Ao, <(7T by Lemma
1.7(2) implying that 7€ FT by (1) since o, A - * - A 0,,, € FT by hypothesis.

The proof of B+ 7Azyz by induction on 7 is straightforward.

(&): We will prove B+ 7Azyz=> B+ 7y by induction on .

Case 1: 7=0-p, p ~; w. By hypothesis, there is a uy € B such that u #; w and
p € FT which imply that u <;0- p since p ~; w.

Case 2: r=0->p, p #;w. B-"o->pArzyz implies 3v: B/zU{oz} vz and
B/zu{oz}+ v py by Lemmas 4.4(1) and 1.8(1). Hence, 3v: o <; v and B/zu
{oz} ~f v py by Lemma 1.7(2). And thus, B - 7y by (<,) and Lemma 1.8(3).

(3): SSFT=S<FT by (1). Let d =%S. Then

f ..
d =[yletysay={o| Bgyay+ 0y} by Definition 1.9(3)
f
= {0" Bg[y/d] (o O'AZ.yZ} by (2)
= /\z-szIE[y /d] by Definition 1.9(3).

So we conclude d € F; by Lemma 2.6(3).
(4): It is easy to verify using Lemma 4.3 that a correct choice is

U={r|r=wor3cec:o->r1e S} O
5.10. Lemma. (1) Yx(7)=R(7) for all T€ AT.
(2) VYr(7)< R(7) for all TeRT.

(3) S consistent and T< S imply 1S e V(7).
(4) M,, &5, Vr = B for every restricted basis B.

Proof. (1): By cases on 7. The only interesting case is T=¢@; A - A @,.

Vr(r)=Vr(@1) N -0 Vr(en)
=R(¢))n: N R(e,) by Definition 5.8(2)
={de|T{|le1,...,pncd} by Definition 5.8(1)
= R(1).

(2 and 3): Simultaneously by induction on 7. The only interesting case is 7= o - p.
We first prove (2)

de Vr(r) = Vce Vr(o): dce Vr(p)

= d"oe Vr(p)
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since o € ¥r() by the induction hypothesis
= pedffo

since ¥Vr(p) < R(p) by the induction hypothesis. Hence, 7€ d by definition of “.”.

For (3), recall that ¥Yg(o > p)={de F;|Vce Vr(o): d.ce Vr(p)}. By Lemma
5.9(3), 1S € F; since € S and S consistent imply S # 1w and S FT.

If ce ¥r(o), then oec (by the induction hypothesis) which implies peS.c
since o> p € S. By Lemma 5.9(4), 3U consistent such that *S.c = U. Therefore,
by the induction hypothesis, 18.ce Vr(p), so we conclude S e V(7).

(4): Let S={7|1y€ B or 7= w}. By Lemma 1.7(2) and Definition 1.9(3), [y]{;=
f48. S is consistent since B is a restricted basis. Therefore, Iyl gge Vr(7) forall e S
by (3). O

5.11. Theorem (F-completeness). Let B be restricted and 1€ RT. BE tM=
B+R M.

Proof
BE ™™ = D, &5, YrE= ™ by Lemma 5.10(4)

= [M]ire Vr(7) by Definition 2.2(1)
= re[Mlg by Lemma 5.10(2)
= B+ ™ by Definition 1.9(3)
= B M by Lemma 1.10(2)
= B I5 ™ by Theorem 5.5. O

Conclusion

The present paper has not been intended to be a final answer to the problem of
finding a type system of the intersection type discipline which is complete for the
F-semantics. We simply propose three natural answers to this problem, i.e., the
inference systems ', —°, and F~.

Lastly, we mention that Hindley [24] has proposed another semantics of types,
which takes into account the meaning of FY’ < D for j=0 as defined in Definition
2.5. More precisely, each FY’ is the set of elements which represents j-place
functions, and therefore, Hindley defines the valuation of o, > - - > g; > ¢ for all
types o3, ..., 0; and type variable ¢ as a subset of FV:

V(0> 01> )

={de FP|Vc,e V(ay),...,Vge ¥(a)): dec,..... ¢e V(e)}.
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As noted by Coppo, the problem with this semantics is that also Curry’s system
becomes not sound since, for example, we have - (¢ = ) > ¢ > YyAy.y, but clearly,
[Ay.y]T e F for all M, £ The same example shows that typings are not preserved
by substitution since = ¢->@Ay.y, but ¥ (¢ > ¢) > ¢ > YAy.y.
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