
Theoretical Computer  Science 45 (1986) 121-157 

North-Holland 

121 

A CHARACTERIZATION OF F-COMPLETE TYPE 
ASSIGNMENTS*  

Mariangiola DEZANI-CIANCAGLINI** 
Centro Linceo lnterdisciplinare di Scienze Matematiche e loro Applieazioni, Roma, Italy 

Ines MARGARIA 
Dipartimento di lnformatica, Universitfi di Torino, 10125 Torino, Italy 

Communicated by R. Milner 
Received March 1985 
Revised March 1986 

Abstract. The aim of  this paper  is to investigate the soundness and completeness of  the intersection 
type discipline (for terms of the (untyped) A-calculus) with respect to the F-semantics (F- 
soundness and F-completeness). 

As pointed out by Scott, if D is the domain of a A-model, there is a subset F of  D whose 
elements are the 'canonical '  representatives of  functions. The F-semantics of types takes into 
account that the intuitive meaning of "¢r-~ ¢" is ' the type of  functions with domain ~r and range 
¢' and interprets or-* ~- as a subset of  F. 

The type theories which induce F-complete type assignments are characterized. It follows that 
a type assignment is F-complete iit equal terms get equal types and, whenever M has a type 
~0 A to" --> w, where @ is a type variable and w is the 'universal' type, the term Az~ . . .  z , .  Mz  I . . .  z,  
has type tp. Here we assume that z t . . . .  , z, do not occur free in Mr. 
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Introduction 

A rigorous polymorphic type discipline for terms of the (untyped) A-calculus was 
first introduced by Curry [15, Chapter 8; 16, Chapter 17; 20]. In Curry's approach, 
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types are built inductively from a set At of type variables by means of the exponentia- 
tion operator "'->". Types are assigned to terms by a natural deduction system; ir 
general, a term may have more than one type. 

In [7, 8, 11, 12, 2, 9], an extension of the set of types has been proposed b3 
adding the constant type "to", which plays the role of universal type, and th~ 
intersection operator " ^ "  of type formation (intersection type discipline). By this w~ 
obtain a set of type assignment systems, one for each preorder relation on type,, 
which satisfy some conditions (type theory) (cf. Definitions 1.2 and 1.4). The feature, 
of the system presented in [2] essentially are that all solvable terms have types othel 
than to while a term has a normal form iff it has a type without to occurrences. 

In [30], Milner gives a polymorphic type discipline for a (nonimperative) fragmenl 
of the language ML. This system can be viewed as an extension of that of Curr) 
for a A-calculus augmented with operators such as i f . . .  t hen . . ,  e l s e . . . ,  f ix . . .  
and le t . . ,  in . . . .  In [4], the intersection type discipline is modified to handle thi, 
fragment of ML, obtaining a type for many functions which have no type in Milner', 
discipline. 

A different extension of Curry's types (quantification type discipline) has beer 
described in [32, 31]. This type discipline is based on the F-system of Girard [191 
(called second-order lambda-calculus in [33, 18]). 

Leivant [27] has recently compared the above polymorphic type disciplines anc 
proved that the type system of [2] is the most powerful in the sense that the set ol 
terms that are typable in it strictly contains the sets of terms typable in all othel 
disciplines. 

Given a system of type assignment it is natural to ask for a semantics of types 
In literature there are essentially four different ways of interpreting Curry's type~, 
in a model of the untyped A-calculus which can be naturally extended to intersectior 
types. We will mostly follow the nomenclature of [21]. 

Given a A-model (D , . ,  [[ B) (for the definition of A-model see [1, Chapter 5; 25]~ 
the simple semantics of types associates to each valuation of type variables °V: At-* 
~ ( D )  a valuation of types inductively defined as follows: 

(1) "//'(to) = D, 
(2) 'F'(o'~ ~')= {d ~ O]Vc~  °l/'(o') • d.c~'V(1")}, 
(3) °V(t7 ̂  ~ ' ) :  °V(or) ra °V(~-). 

This semantics has been proposed in [35]. 
Following Scott [37], the quotient set semantics takes into account that we wan1 

to consider two functions as being equivalent iff they give equivalent results when 
applied to equivalent arguments. Types are interpreted as equivalence relations on 
subsets of D rather than simply as subsets of D. In this case a valuation ~V of type 
variables associates to each type variable ~p a transitive and symmetric relation ~ ,  
on D. 

°V can be extended to all types by defining inductively 
(1") d ---*',~ d'  for all d, d '~  D, 

t (2*) d ---~_,~ d'  iff '¢c, c' such that c ~ c ,  d.c ~ , d ' . c ' ,  
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(3*) d "-~^~ d'  if[ d "- Y d ' ~  and d ---Y d'. 
~" d},  we have that --- Y is an equivalence relation on OF(T). If we define °F(Y) = { d i d  ~ 

As Scott has pointed out [38], the key of a A-model is the set F___ D of the 
elements which represent functions. In fact, using F we can obtain a first-order 
axiomatization of the notion of A-model [38]. Each element d ~ D represents a 
function (since "." is always defined), but the interpretation ~ ~ of terms chooses 
'canonical representatives' of functions, i.e., elements which are meanings of terms 
starting with an initial abstraction (in a suitable environment). More precisely, in 
[21] F is defined by 

F = {d ~ D I :ly, M, s r such that d = ~Ay .M~} .  

Notice that F may also be defined as the range of the retraction e = ~Axy.xy]~ (~ is 
arbitrary). We can show that each representable function from D to D has a unique 

canonical representative in F. 
The  F-semantics of types (as defined in [21]) takes into account that the intuitive 

meaning of "or-* ~-" is 'the type of functions with domain or and range ~,' and 
interprets or-* ~" as a subset of F. Therefore, the F-semantics is obtained from the 
simple semantics by replacing clause (2) with 

(2') oF(or-* ~') ={d  ~ F I V c ~  °F(or): d.c~ OF(~')}. 

It is easy to prove (of. the discussion after Definition 1.3) that in this semantics 
oF(to -* to)= F. Notice that other semantics could be defined by choosing a subset 
of D different from F. 

Lastly, the semantics of types proposed by Scott in [36] is obtained from the 
quotient set semantics taking into account the relations between F and or-* z for 
all types or, • (F-quotient  set semantics).  More precisely, the elements which are 

~_,~-equivalent must belong to F, i.e., clause (2*) is replaced by: 

" d.c --~ ~ d'.c' .  (2") d --~'r d '  iff d, d '  e F and Vc, c' such that c ~ ~ c ,  

In [30], the semantic domain D is a cpo satisfying a suitable domain equation, 
and types are interpreted as ideals, i.e., downward closed and direct complete subsets 
of D ( Mi lner ' s  semantics) .  

The semantics of the quantification type disciplines is given in [32, 31]. 
Once one has introduced formal systems of type assignment and type valuations, 

it is natural to ask for soundness and completeness results. Coppo has proved [21] 
that for Curry's type discipline, completeness for the simple semantics implies 
completeness for the quotient set semantics. This is because the simple semantics 
is a particular case of the quotient set semantics. Coppo's argument naturally extends 
to the intersection type discipline, giving completeness for the (F-)quotient set 
semantics from the completeness for the (F-)simple semantics. 

For Curry's types, soundness for the simple semantics has been proved in [3] 
and for the other semantics in [21]. In order to prove the completeness result, the 
most natural way is to prove that a type system is complete with respect to a fixed 
A-model. Different completeness proofs for the four semantics have been done using 
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terms models [21, 22] and the graph model P,o [6]. In [2] Curry's system has been 
proved complete for the simple semantics using a filter A-model (also defined in [2]). 

The type assignment of [2] is proved to be sound and complete for the simple 
semantics in [2] using a filter A-model and in [23] using a term model. On the other 
hand, it is easy to see that this type system is neither sound nor complete with 
respect to F-semantics (cf. the remarks after Theorems 2.9 and 4.6). In [9] (using 
filter A-models), and in [13] (using the term model) the type theories which yield 
complete type assignments for the simple semantics are characterized. It turns out 
that a type assignment is complete if[ oJ <~ o~-~ ~o belongs to the associated type 
theory and equal terms get equal types. 

In the case of ML, both Milner's type discipline and the extension of [4] have 
been proved to be sound, but there are very simple examples that they are not 
complete with respect to Milner's semantics. In [5, 14], a nontrivial subset of ML 
is given for which Milner's type assignment is complete. Moreover, a semantics 
characterization of typed terms is exhibited. 

In [31], Mitchell proves soundness and completeness results for the quantification 
type discipline using the term model of/3-equality. 

The aim of the present paper is to investigate the soundness and completeness 
for the F-semantics (F-soundness and F-completeness) of the intersection type 
discipline. As noted by Hindley [21], this type discipline seems to be strong enough 
to express the differences between the simple semantics and the F-semantics of 
types by the following arguments. 

(1) As mentioned before, the system of [2] is sound and complete for the simple 
semantics but neither F-sound nor F-complete. 

(2) P~o and the filter A-models used to prove completeness for the simple semantics 
are sensible, while we must look at non-sensible A-models to prove F-completeness 
(recall that a A-model is sensible iff its theory equates all unsolvable terms, cf. [1, 
Chapter 16]). Let A---Az.zz. We cannot deduce ~o-> oJAA in the systems discussed 
in Section 4 while ~AAR~ ~ F (since ~Ay.AA~¢ ~ F) for all sensible models and all 
environments ~. This is contradictory since (as mentioned before) W(~o ~ ~o) = F in 
the F-semantics. 

(3) (This argument is due to Coppo.) The term model of E-equality ~ z  does 
not help in proving the F-completeness for the system ~s as defined in Definition 
4.1. First we notice that i f  ~(z)=  [Z] and there are y, M such that Z l - ~ z  Ay.M, 
then, a fortiori, Z1 --~z Ay.M' for some M'  (where, as usual, I-- Au~u and 1 •= Auv.uv). 
So [ZIR¢ ~ F implies ~ZI]~ ~ F for all environment ~. Therefore, we have: 

S 

(¢ -} ~)-* o~ -* o~z }- oJ -} oJzl 

$ 

=>~z ,  (¢ -~ ~o)-} o~ ~ ~oz~ oJ -~ ~oI 

by / f -F-soundness  (proved in Theorem 4.6) 

S 
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from above since F = °//'(to --~ to). It is, however, easy to check that 

S 

(~,-~ ~)-~ to-~ toz ~ to --~ tozl. 

Notice that ~_s is proved to be F-complete (cf. Theorem 4.8). 
(4) The following rule scheme (proposed by Hindley) is sound for the F-semantics 

(cf. Theorem 2.9) 

(HR) ~P ̂  to" -~ toM if Yl, • • •, Y~ ~ FV(M). 
tpA y l  . . .  y , , . M y l  . . .  Yn 

Notice that this is not a derived rule for the system of [2]. 
The present paper is a systematic exposition and a development of some results 

and ideas which have been discussed at length by Coppo and Hindley with the 
present authors. The main result is the characterization of the type theories which 
induce F-complete type assignments (Theorem 2.9). 

In Section 1 we will define the notions of type theory, of type assignment and 
we will characterize the type theories yielding (F-filter) A-models (Theorem 1.12). 
In Section 2 we will prove that a type assignment induced by a type theory is 
F-complete iff (Eq~) and (HR) are derived rules. In Section 3 we will prove an 
Approximation Theorem for F-filter A-models satisfying suitable conditions. In 
Section 4 we will discuss four particular type theories. We will prove that all these 
theories give rise to F-filter A-models but only two of the induced type assignments 
are F-complete. In Section 5 we will look at a new syntax of types by limiting the 
application of the operator " ^ "  of intersection. We will prove that this does not 
change the set of typable terms, but it is the only system (presented in this paper) 
in which the Normal Form and the Head Normal Form Theorems hold (Theorem 
5.6) and which is also F-complete (Theorem 5.11). 

Reference [17] is a preliminary and incomplete version of this paper which has 
been presented at the 'International Symposium on the Semantics of Data Types' 
(Sophia Antipolis, 1984). 

1. Type theories and F-filter A-models 

We introduce the notions of type scheme and of type theory mostly fol- 
lowing [2, 9]. 

1.1. Definition. (1) The set T of t ype  s c h e m e s  is inductively defined by 
(i) ~o, ~1 , . . .~  T type variables, to ~ T type constant, 

(ii) tr, 7 ~ T=O(tr ~ 7), (or ^ 7) ~ T. 
(2) The preorder relation ~ f  on T is the smallest relation satisfying: 

(i) 7 ~t to;  
(ii) 7~ to  <~fto--)~; 

(iii) 7 <~r 7 ^ 7; 
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(iv) tr ^ r ~ f  tr, tr ^ ~- <~f r;  

(v) 
(vi) ~r ~<f or', r ~ f  ~ " ~ o "  ^ T ~ f  19" ^ Tt; 

(vii) tr' <~fo', ~" ~f 'r'~o'--> T ~f oft'-> T' 

plus transitivity and reflexivity. 

(3) if[ r % 

Note that, e.g., to --> to --> to <~f or--> to --> to for all or, but  the converse does not hold. 

In what follows, we will simply say ' types'  instead of  ' type schemes'. We will 

write equality " = "  between types, with the convention that o- ^ r = ~- ̂  ~r, ~ = ¢r ^ ~o, 
and (or--> z) ^ (~r --> r ') = cr ->(z ^ r'). 

1.2. Definit ion.  (1) If  o-, ~- ~ T, then o- ~< ~- is a formula. 
(2) A type theory 3" is any set of formulas dosed  under  (i)-(vii) of Definition 

1.1(2) plus reflexivity and transitivity, or <~e~ ~" stands for cr ~< ~, ~ 3". We write or "e~ ~" 

iff ~r <~er~" ~<er o'. 

(3) I f  -Y is any set of formulas, then 3"(,Y) is the minimal type theory which 
includes ? .  We will write ~ z  for <~e~c~)- 

3"f denotes the least type theory, i.e., 3"f= 3"(O) (where O is the empty set). 

Obviously, 3"f___ 3" for all type theories 3 .  

The difference between the notion of  type theory introduced here and that of [9] 

is that each type theory of [9] contains ~o ~< ~o -> ~o. We had to exclude this formula 

for considering F-semantics, as will become clear later on (of. the discussions after 
Definition 1.3 and before 4.1). 

Following [21] we want to interpret the types, taking into account that we can 

distinguish between the elements of the domain D of a A-calculus model those 

elements which are interpretations of  terms of the shape Ay.M and those that  are 

not ( M  need not be dosed) .  More precisely, if  ~r~ = ( D , . ,  [ ira) is a A-model and 

~: is a valuation of term variables in D, we define F = {d ~ D I 3y, M, ~: d = [Ay.M]~} 

1.3. Definition (F-semantics). Let ~:{~p~Ij~N}-*~D={X[Xc_D}. 
extends to all r e  T as follows ( 7  is a type interpretation): 

(1) °F(co) = D, 

(2) °F(cT-*z)={d~FIVc~ ~(or): d.cc o//-(~.)}, 

( 3 )  ^ = n 

Then, o~ 

Clearly, if~2 is an extensional A-model, then F = D and the F-semantics coincide~ 
with the simple semantics of types as Hindley proved in [21, Section 4]. 

From Definition 1.3 it follows that,  for all T" and 7, 

°//'(~'-* ~o) -" {d ~ FlVc~ 'F'(r): d.c~ °//'(to)} 

---{d ~ FIVc~ ~(~')" d.c~ D} = F. 



Characterization of F-complete type assignments 127 

The motivation for the definition of <~f is that  or ~ f p  (or ~fp) implies for all ~IR, 
°F: °F(or) = OF(p) (oF(or) _ OF(p)) (this will be proved in Theorem 2.4(3)). Therefore, 
we may assume ~-->to ~f to->to for all ~. On the contrary, we cannot assume 
w <~fto ~ to (as in [2]) since we would obtain,  for all ~ ,  OF: oF(to)_c °//'(to--> to), i.e., 
D c F and this means that we would restrict our attention to extensional A-models. 

Each type theory 3- induces a system of  type assignment, in the sense of  [2], for 
the set A of  terms. 

1.4. Definition. (1) A statement is of  the form ~'M with ~" e T and M e A. M is the 
subject and ¢ the predicate of ¢M. 

(2) A basis B is a set of  statements with only variables as subjects. 
(3) The type assignment induced by the type theory 3" is defined by the following 

natural deduction system: 

[oy] 

~'M 
I): (,) E): 

or-> 7"A y.M 

orM ~'M 
(A I ) :  (A E) :  

orA ~'M 

orM or ~<~r ~" 
(to): 

¢M toM 

or-> ~M crN 

7MN 

orAcM orAT"M 

.~,M ¢M 

(*): if y is not free in assumptions on which ~'M depends other than cry. 
(4) B t -er cM if cM is derivable from the basis B in the system induced by 3". I f  
is a derivation showing this, we write ~ : B I -~" ¢M. 

Rule (^ E )  is superfluous, since it is directly derivable from rule (~<~,). 
Notice that  typing is preserved under substitution in the type assignment induced 

by 3-f, but this is not true for an arbitrary 3 (cf. the examples after Definition 4.1). 
We are interested inbui ld ing  the complete algebraic lattices whose elements are 

(abstract) filters of  types. In Theorem 1.12 we will give a characterization of the 
type theories which give rise to lattices which are domains of A-calculus models. 
Similar results with a slightly different definition of  type theory have been shown 

in [9, 13]. 

1.5. Definition. Let 3 be a type theory. 
(1) An abstract filter of  3" is a subset d _ T such that 

(i) to~d ,  
(ii) tr, ee.d=:~or^¢~d, 

(iii) or~,~ ¢~d=~o'cd.  
(2) If  S ~ T, ~rts is the minimal abstract  filter of 3" which includes S. We use 

the abbreviation ~rt~" for ~rt{~'}. 
(3) [3"[ is the set of  abstract filters of  3". 
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Notice that (T, to, Con, t-a-), where Con consists of all finite subsets of T and 
{ t r l , . . . ,  on} t-a-¢ iff or1 ̂ " • • ̂  tr, -.-<a- ~ (for some type theory ~) ,  is an information 
system in the sense of Scott [39]. Moreover, I B r] is the domain determined by this 
information system. 

1.6. Lemma. (lffl, c )  is a complete algebraic lattice, where ~r~ to and T are the leasJ 
and the largest elements (respectively). Moreover, if  d, c ~ Iffl, then 

(i) d II c = a-~'(d u c); 
(ii) 

(iii) 
(iv) 

d R c = ( d  c~c); 

i f  x I is a directed set, then l i X = U x ;  
the finite elements are exactly the principal filters, i.e., d = U {a-l'zl a-l'~'--q d}. 

The proof is a simple routine (cf. [39]). 

1.7. Lemma. (1) { 'IB t-~r1"M} is an abstract filter. 
(2) Bt-a- oyC=~r~r'~{¢lcy~ B or zffi-to}. 

(3) I f  T"M is derived from t r iM, . . .  , cruMby means of  rules (^ I),  (^ E),  and (<~a-) 
only, then ¢ a->~ ¢r 1 ̂ " • • ̂  on. 

Proof. (1): By rules (to), (^ I) and (<~a-). 
(2): By induction on derivations. 
(3): From (2) since, in the rules in question, M behaves as a variable. [] 

B / z  denotes the basis obtained from B by deleting all statements whose subject 
is the variable z: 

B / z  = {~'Y I ~T~ B a n d y ~  z}. 

B I M denotes the basis obtained by considering only those statements of B whose 
subjects are variables occurring free in the term M: 

B ~ M = { ~ y l ~ ' y ~ B  and y ~ F V ( M ) } .  

1.8. Lemma. (1) B I--a- ~'MN, ¢ 7C~rto=:~::lcr~ T: 

~r a- 
[ B t- cr..-* ¢M and B t- crN]. 

a- a- 
(2) Voq ¢:. [ B / y u { o y } t -  ¢M =~ B / y u { c r y } t -  ¢N] 

a- j- 

Vp: [B t- pAy.M :=~ B t- pAy.N]. 

(3) B t-a- cM /ff B ~' M t-a- ~'M. 
(4) B/  y u {03,} t -er "rM and z ~ FV( M):=~ B /  z u {crz} t -a  1"M[y/ z]. 

The proof of (1)-(4) is done by induction on derivations. 
We now introduce a notion of application "." between abstract filters and an 

interpretation [ ]a- of terms in IN 
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1.9. Definition. Let ff  be a type theory. 
(1) For d, c~13l define d.c=~r~oaw{¢13~r~c: ~r-->z~d}. 
(2) Let V be the set of term variables and ~: V-* 1~'1. Then, B¢={o3,l~r~ ~:(y)}. 
(3) For M ~ A ,  de f ine l [M]~={¢ lB¢~-M}  (~[ff[ by Lemma 1.7(1)). 
(4) ~(y)=~'~'{~,l~r-o~ or o-y~B}. 

1.10. Lemma. (1) d, c lerl d.c l l. 
(2) B ~ r e M  C~ Be~ b-errM. 

ProoL (1): Let S={~ ' [3o ' ec :  c r a z e d } .  

o ' - > ¢ e d  ~ or-~toed (by<~er) 

and therefore, S ¢  ~ ¢ ,  ~l'oJ ___ S. So it is sufficient to verify that S ¢  ~ S e  13']. 
(i) a~ c S; 

(ii) z~ , r2~S ~ 30rl, O'2EC." Crl-->'rl, cr2-->'r2Ed 
:=> (° ' I  ^ 0"2) "> (% ^ ¢2) ~ d 

(iii) ~'~S, Z<~rp ~ 3~r~C: cr->¢~d 
cr-->p~d ~ p~S. 

(2): Routine. [] 

Now we are able to characterize the type theories such that ~2~r = ( lff l , . ,  [ ~-) 
are A-models (F-filter A-models). We point out that we are using the definition of 
A-model given in [25], which is essentially equivalent to other accepted definitions 
(of. [1, Chapter 5]). Our result is that ~ is an F-filter A-model iff types are invariant 
under/3-conversion of terms, i.e., iff the following rule: 

7M M = ~ N  
(Eqa): rN 

is derivable in the system ~-~ 

1.11. I.emma. Let 3" be a type theory such that (Eqa) is a derived rule for the type 
assignment induced by if; then 

3" f f  

B ~ o'--> eAy.M ¢=~ B/y  u {cry} ~- ~'M. 

ProoL (<=:): This is immediate by rule (~ I)  and Lemma 1.8(3). 

B ~ o~--> ~'Ay.M ==> B/zu{~rz} F- ~'(Ay.M)z where z ~ FV( M) 

B/  z u {o'z} F- ~'M[y/ z] by hypothesis 

~r 
==~ B/y  u {cry} ~ eM by Lemma 1.8(4). [] 
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1.12. Theorem. ~0~ is an F-filter A-model iff rule (Eq~) is a derived rule fer  the type 
assignment induced by ~Y. 

Proof. (¢=): Just mimic the proof of [2, Theorem 3.5] using Lemmas 1.7, 1.8, 1.11, 
and the definition of A-model given in [25]. 

(~) :  Immediate from the definition of A-model. [] 

If ~ yields an F-filter A-model, we call F~ the subset of 13-1 whose elements 
represent functions, i.e., 

F~ = {d ~ I~113y, M, s r such that d = [[Ay.M]]g} 

~r 

= {d ~ [~'[13y , M, B such that "re dC:~B ~- "rAy.M}. 

2. Hindley's rule and F-completeness results 

The following rule scheme (HR) of type assignment has been suggested by Hindley 
during many discussions we had about F-semantics for the intersection type disci- 
pline. He has proved that (HR) is sound for the F-semantics, so each F-complete 
type assignment must satisfy (HR). 

The idea under this rule is that if the meaning of a term M is the 'canonical' 
representative of an n-ary function, then the meaning of M coincides with the 
meaning of A z l . . .  Zn. Mz~ . . .  Zn where z~, . . . ,  z, ~ FV(M). This will be formalized 
in Lemma 2.6. 

Let ,to" --> to abbreviate 

• s 

2.1. Definition ( Hindley's rule scheme). 

(HR) tp ^ ta n --> toM if z l , . . . ,  zn ~ FV(M) 
tpAzl . . .  zn.Mzl . . .  zn 

for all type variables tp. 

We define, as usual, the notion of semantics satisfiability (~). 

2.2. Definition. Let ~2R=(D,., ~ ]~) be a A-model. 

(1) ~R, ~, o//.~ "rM <=~ [ M ] ~  ~("r); 

• " ~ , g , ~ B  ¢ : ~ , ~ , ~ t r x  fo ra l lo -x~B.  

B ~  "rM <=~ V~JR,~, ~:  ~J~, s~, ~ B=~YlI~, ~, ~ ' ~  "rM. 

(2) .X-r={o'<~"rl ~(o')c_ T'("r)}. 
(3) ~ agrees with ~r iff ~__q ~r(,x~.). 
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(4) ~02, B ~er ~'MC~'Cg, T" which agree with if: 

~[Y~, s r, ~ B  ==> ~[Y~, ~, ~ rM. 

B ~ ~'M ¢=~ VY.IR: Yffd, B ~ zM. 

(5) Y'~(~p) -- {d ~ lifllq~ ~ d} for all type variables ~o. 
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2.3. Definition. Let i f  be a type theory. 
(1) The type assignment ~-ff is F-sound iff B ~-~ ~ -M~B ~ ~M. 
(2) The type assignment ~-~ is if-F-sound iff B ~-~zM=~B ~ ~'M. 
(3) The type assignment t - ~  is F-complete iff B ~ ~ ' M ~ B  ~-~'~'M. 

The / f -F-soundness  of all type assignments induced by type theories is easily 
proved. 

2A. Theorem (/f-F-soundness).  (1) cr ~<~ z~V~02, T" which agree with if: T'(cr)c 

(2) B F - ~ z M ~ B  ~ zM. 
(3) T'(z). 
(4) B ~-~' z M ~ B  ~ zM. 

Proof. (1): Immediate from Definition 2.2(3). 
(2): By induction on derivations. For rule (~<~) use (1). 
(3): By induction on <~f. 
(4): As (2). [] 

Theorem 2.4(3) means that iff is F-sound, i.e., that i f  cr ~<f ~-~ iff, then this 
containment between types is valid in all models. 

We now show that (HR) characterizes the F-completeness of type assignment 
systems induced by type theories (provided that they yield F-filter A-models). To 
this aim, following [38] we introduce a further classification of the elements of the 
domain of a A-model. If we distinguish, inside the domain D of a A-model, the 
subset F of elements which represent functions, a further (natural) step is then to 
distinguish inside F the elements which represent one-place functions, two-place 
functions, etc. In this way we obtain a chain of subsets of D, which can be used to 
define the notion of A-model, as suggested by Scott [38]. 

2.5. Definition. Let ~ = (D,. ,  [[ ] ~  be a A-model, then F (") is inductively defined 

as follows: 

F(°)=D, F("+~)={d~FIVc~D: d.c~F(")}. 

It is easy to verify that F (1) = F and, for all n > 0, F (") ~_ F ("-~). 
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2.6. Lemma. For all A-models ~ ,  

(1) y'(o," -, ,,,) = F° ' ) ;  
(2) d ~ F(")¢=> d = [Azx • •. z , . M ] ~  for some z ~ , . . . ,  z , ,  M, ~; 

(3) d ~ F(")¢:~ d ~Xz~ . z..yz~ = . . . . .  Zn] ¢[y/d] for n >t O. 

Proof. (1) and (2) are proved by induction on n. 
(3) (~ ) :  Trivial. 
(~ ) :  d ~ F ( ' ° ~ d  =[Az~ . . .  z , , . M ~  for some z~,. . . ,  z,,, M,  ~ by (2). Then, 

d = ~Az~. . .  z . . (Az~ . . ,  z . . M ) z , . . ,  z . ~  by/3-conversion 

= ~Az~. . .  z , , .yz~. . .  Z.~ety/~...~..Mle ~ by [25, Lemma 2.8] 

~ A z 1  • .  • z n . y z l  . . . Zn]e[y /d] .  [ ]  

Theorem 2.6(3) for n = 1 is proved in [22]. The proof in the general case has also 
been given in Hindley [24]. 

2.7. Lemma. Let f f  be a type theory such that (Eq~) and (HR) are derived rules for  

the induced type assignment. 

(1) V d ~ l f f l :  [oJ- '>o~dc~d~Fer] .  

(2) Y~(~') = {d  ~ I,~ll~ ~ d} for all ~'~ T. 

(3) ~,, ~ ,  ~ ' ~  B. 
(4) cr ~<e~ r¢~'¢~t~, ~ which agree with if: T '(o ')~ T'(7"). 

Proof. 

( ~ ) :  

(3): 

(1): By Lemma 2.6(3), it is sufficient to prove that 

~o --> w ~ d <:~ d = ~Az . y z ]~r /d ] .  

Trivial. 
We prove that if  oJ --> ¢o ~ d, and (Eq~), (HR) are derived rules for the type 

assignment induced by if, then c r ~  dc::~o'e~Az.yz]g[y/d ]. Use induction on tr f01 
" 3 " ,  and induction on the derivation ~ :  Bery/dj J~Az.yz for "~" .  For " 3 "  the 
only interesting ease is or-  ,p: 

~o ~ d=>Bay/d I ~-v ~o ̂  oJ-.oJy by Definition 1.9(2) 

::=~ B~[y/a ] ~er ¢pAz.yz by (HR) 

~ o  e[Az.yz~/~. 

For " ~ " ,  if  the last applied rule is (-, I), we have 

[ tzz] 

vyz 
(-* I). 

p, ---> vAz.yz 
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By Lemmas 1.8(1) and 1.7(2), if/z--> ~, 7~o--> a~, there is p such that /z  <~erp and 
B¢ty/ d ] l" -3p - ,  ~'y. Therefore, by (<~er), Be[y/d ] ~ erl~ "-> ~'Y which implies p --> p~ d 
since e~ Ity] eb,/d] = d. 

(2): By induction on r. The only interesting case is z - o ' ~  p. 

°Fgr(z) ={d ~ F rlVc  d.c  

={d ~ Fz-IVc 9or: d .c~p}  by the induction hypothesis 

= { d ~ F ~ - l o ' - , p ~ d  } by definition of ".". 

Notice that or -> p ~ d ~ oJ --> oJ e d (by <~ er) ~ d e F~- (by (1)). Therefore, oyff(~.) = 

{d 13-11 d}. 
(3): ~ B ~ ' ~ [ y l ] ~ I  (by Definition 1.9(3) and ( 4 ) ) ~ [ y ] ] ~ e  ~(z)  (by (2)). 
(4): (~ ) :  Immediate from Definition 2.2(3). 
(~ ) :  Take ~l~=~2~r, ~ =  °//'~r (~ff agrees with 3" by (2)). 

 13"llo  {d  13"ll '  "r. [] 

The meaning of Lemma 2.7(4)(~) is that the type theory 3- is semantically 
complete, i.e., every containment between types that is valid in all models is a 
formula of 3". 

From Lemma 2.7(1) we easily obtain a property of the elements of 13"1 when 
(Eqa) and (HR) are provable in F-~ 

2.8. Corollary. Let 3- be a type theory such that (Eq~) and (HR) are derived rules 

for  the induced type assignment. Then Vd  ~ 13-[: either d ~ F~r, or Ve ~ 13-1: d.e = Ytw.  

Proof 

d. e ~ a-t a~ :=*, ::l o" --> "re d 

=¢,¢o--> ¢o ~ d 

=:~ d ~ Fs  

by def in i t ion  o f  "'." 

s ince or-* ~- ~< ff o~ -* oJ 

by L e m m a  2.7(1) .  [] 

In other words, if f ~ :  [3~- , [3  I is the function always equal to ~1'¢o, then each 
d ~]3~ which represents a function different from f ~  belongs to F~r. That is, only 
f ~  is represented by more than one filter of [3-] (for example, ~rl'~o and ~rl'~o-> oJ 

both represent f~ ) .  

2.9. Theorem. Let 3-be a type theory. The induced type assignment system is F-complete 

iff  (Eq~) and (HR) are derived rules. 

Proof. ( 3 ) :  To have F-completeness we must obviously require invarianee of types 
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under fl-conversion of subjects. We show that (HR) is sound for all ~2, g, ~ (this 
proof is due to Hindley). 

~ , ~ ,  ~ (p AWn->coM ~ ~ M ] ~  OF((p)c~F ~) 

by Lemma 2.6(1). Let d = ~ M ] ~ ;  then, 

d e F <~) ~ d = ~Az~. . .  z~.yz~. . ,  z~]ay/a ] by Lemma 2.6(3) 

d = ~Az~. . .  z~ .MZl . . ,  z~]~ by [25, Theorem 2.8] 

~AZ 1 . . . z n . M Z  1 . . . Z n ~  E OF(~O) 

=::> ~Y~, ~, °F ~ ~pAzl . . .  z,,.Mz~ . . . zn. 

(~ ) :  Notice that ~2sr is a A-model by Theorem 1.12. 

B ~ TM =:> ~ 3 - , ~ ,  OF3-~ TM 

[M]~'~ ~ OF3-(z) 

3- 
B~g ~- zM 

3" 
B ~ M  

by Lemma 2.7(3) 

by Definition 2.2(1) 

by Lemma 2.7(2) 

by Definition 1.9(3) 

by Lemma 1.10(2). [] 

Notice that ~3- is the A-model used in Theorem 2.9 to prove the completeness 
of ~ .  

As an immediate consequence of Theorem 2.9, we have that the type assignment 
of [2] is not F-complete. 

3. Approximation Theorem 

In this section we prove, under suitable conditions on 3, an Approximation 
Theorem for the F-filter A-models ~3-. This result, which is similar to the Approxima- 
tion Theorem proved in [26, 42] for D~ and P,o, is interesting in itself and useful 
in subsequent sections. 

We use a variant of A-II-calculus (called A-12*-calculus here and A-fl-12rcalculus 
in [29], cf. also [28]) obtained from A-calculus by adding the constant fl  to the 
formation rules of terms and the reduction rule (12"): I IM- ,  l'l, only (besides rules 
a and/3). The congruence relations =a* and --- ma* are defined as usual. A A-II*-term 
A is ~-12*-normalform (/3-1"l*-n.f.) iff A cannot be further reduced. A/3-[l*-n.f. 
A is the ~l-l~*-n.f. of a A-12*-term M iff M reduces to A using rules % 13 and [1". 

Let M be a A-12*-term and A a fl-II*-n.f., A is an approximate normal form 
(a.n.f.) o f M  (A  ~*  M )  iff =lM' =t3 M such that A matches M'  except at occurrences 
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of f l  in A. Lastly, define ~ * ( M )  = {A[ A ~* M}. As usual, we say that a )t-ll*-term 
M is of order 0 if there are no y, N such that M =~ ay.N. 

The type assignment given in Definition 1.4(3) can be extended to h-fl*-terms 
without modifications. 

We need some properties of approximants. 

3.1. Lemma. (1) VM: M*(M) is a directed set with respect to ~*.  

(2) I f  A ~ *  Mz  and z ~  F V ( M ) ,  then there is A'  ~ *  M such that A =~a* A'z. 

(3) I f  A ~ *  M and A'  is the ~-II*-n.f .  o f  A l l ,  then A'  ~*  M N  for all N. 
(4) B ~ er crl'l implies ¢o - ~ cr. 

Proof. (1): Confer [28, Proposition 3.2]. 
(2): If M is not of order 0, i.e., Az.Mz =~ M, we have A ' -  Az.A. If M is of order 

0 and A-~ fI, then A'-:  t'l. If M is of order 0 and A =- xA1 . . .  A,z,  then A' =- xA~ . . .  A , .  

(3): Immediate from A ~* M and VN: II ~* N. 
(4): By induction on deductions (notice that we can use only rules (oJ), (^ I), 

(^ E), and (~<e,)). [] 

It is easy to check that if (Eq,)  is a derived rule for ~ ,  then also 

z M  M =/m. N 
(Eq~n*): r N  

is a derived rule for ~ 

3.2. Lemma. / f (Eqa)  is a derived rule for  the type assignment induced by if, then 
(Eqaa*) is a derived rule, too. 

Proof. First we show that cr ~ ¢---~ ~o implies z - ~  ~o. It is easy to check that if 
cr-~ ¢ ~,~o, then {o-z} t-~'.ry for all variables z, y: 

(o,) 
a~Xx.y ( ~ ~.) 
cr ~ ~'Ax.y ¢rz 

r(Xx.y)z (-> E) 

and {crz}~Jr(Ax .y )z  implies {~rz}F--~zy by (Eqa). But {o-z}~e~ry implies ~e~t~o 
by Lemma 1.7(2), i.e., r ~ro~. Let 

(Eqa*): 
r M  M = a . N  

z N  

Clearly, (Eq~n*) is derivable iff both (.Eq~) and (Eqa*) are derivable. So it is sufficient 
to prove that B I - ~  ~'~M=~B t - ~ ~ .  This proof is by induction on the deduction 
~: B~-~I"~M. If the last applied rule is (~o), (^ E),  (^ I), or ( ~ ) ,  it is trivial. If 
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the last applied rule is (~ E),  

cr-~ ¢1) trM 

¢f~M 
(-~ E), 

by Lemma 3.1 (4), cr-~ r ~ ~r to which implies r ~ ~r to by the remarks above. [] 

The technique used to state the Approximation Theorem is a variant of Tait's 
'computability' [41] proposed in [13] (a similar technique is used also by Stenlund 
[40]). 

We define sets of 'approximable' and 'computable' terms. The computable terms 
are defined by induction on types, and every computable term is shown to be 
approximable. Using induction on typings, we then show that every term is compu- 
table. 

3.3. Definition. Let 

(1) 

(2) 

f f  be a type theory: 
ff 

App~r(B, ¢, M) <:> :IA ~ ~t*(M): B ~- ¢/L 

Comp~,(B, to, M) is true, 

Comp~,(B, tp, M) = App, (B,  tp, M),  

Compy(B, or--> ¢, M) and ¢ - ~ o  <:> App,(B,  or--> ¢, M), 

Comps(B,  tr-~ r, M)  and ¢ ~ t o  

¢~ [Comp~.(B', tr, N)  ~ Compm(BwB',  ¢, MN)] ,  

Comps(B,  tr ^ T, M) ¢:> Compm(B, tr, M) and Comps(B, ¢, M). 

It is easy to verify, by induction on types, that Comp~r is invariant under 
fl-fl*-conversion of terms. That is, if  M =~n* N, then Comp~r(B, ¢ ,M) iff 
Comp~r(B, r, N). 

We can show that in the systems ~ '  for which (Eq,)  is derivable, B ~ r  ¢A and 
A T *  M imply B ~ r r M  as follows. By definition, there is M'  =~ M such that A 
matches M '  except at occurrences of t l  in A. Thanks to Lemma 3.1(4) and (~<~r) 
we may simply obtain a deduction of B t -~r rM'  by using rule (to) to assign type to 
to the terms which are replaced by fl  in A. Lastly we have B t--~rM by (Eq~). 

We characterize the type theories for which the converse holds (i.e., B ~_~r ¢M 
implies that there is an A ~* M such that B ~-~rrA). They are all and the only 

theories f f  such that 
(i) rule (Eqo) is derivable in the system ~-ff; 

(ii) tr <~r ¢ implies Comp~r(B, tr, M)=~Comp~r(B, r, M). 
The proof of the sufficiency of these conditions is done by showing (by induction 
on types using condition (i)) that Comps(B,  r, M) implies App~r(B, ¢, M)  and by 
showing (by induction on deductions using condition (ii)) that B ~-~rrM implies 
Comp~-(B, ¢, M). The necessity of conditions (i) and (ii) are shown in Theorem 
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3.10. Notice that, given a term M and a basis B, we can assume that there are 
infinitely many variables which are all distinct and do not occur in B and in M. 
This is proved in [21,231. 

Let M denote a sequence M 1 , . . . ,  M,  (n I> 0) of terms and let x M  stand for 
xM~ . . .  M, .  FV(B)  is the set of variables which are subjects of statements in B. 

3.4. Lemma. Let f f  be a type theory such that (Eq~) is a derived rule for the induced 

type assignment. 

(1) App~-(B, ~', xM)==>Compe~(B, T, x M ) .  

(2) Comp~-(B, ~', M)=:>App~-(B, % M). 

Proof. We prove (1) and (2) simultaneously by induction on z. • ~ q~, •--- to, r -  cr--> p 
with p -er  o~ follows from the definition, z-= cr ̂  p is easily proved. 

~'--cr-->p, p ~r~o. We prove (1) first. Note that Comp~-(B',cr, N) implies 
Appe~(B', cr, N)  by the induction hypothesis. Therefore, from Appff(B, o'--> p, x M )  

and Appy(B' ,  or, N)  we have Appe~(B u B', p, xMN) which implies Comp~r(Bu 
B', p, x M N )  again by the induction hypothesis. We conclude Comper(B, o'--> 19, xM). 

(2): Take z ~ F V ( M ) u F V ( B ) .  Notice that, by (1), Appff({crz},mz) implies 
Comp~({crz}, ~r, z). Hence, Compe~(B, or--> p, M) and 

Comp~({o'z}, or, z) =:> Comp~-(B u {o'z}, p, Mz)  

Appsr( B u {crz}, p, Mz) 

=:~ ::I A ~ * Mz  

by the induction 
hypothesis 

such that B u {o'z} t-er pA. 

Notice that A ,--* Mz  implies that there is an A' ~* M such that A =an* A 'z  by 
Lemma 3.1 (2). 

~- ~r 

B u {o'z} pA =,, 13 u {o'z} pA'  z 

by (Eq~n*) (el. Lemma 3.2) 
f f  

3~" B u {crz} ~ ~ ~ pA' and Bu{crz} ~ / ~ z  

by l_emma 1.8(1) 

3it" B u { o'z } F- tt --> pA ' and 

by Lemma 1.7(2) since z~ FV(B) 

~r 

Bu{trz}F-cr-->pA' by(~<~ -) 

~r 

=:> B ~ cr--> pA'  

by [,emma 1.8(3) since z~ FV(M) 

Apps-(B, tr--> p, M). [] 



138 M. Dezani-Cianeaglini, L Margaria 

3.5. Definition. A type theory ff  is approx imable  if ¢r ~ < ~  implies 
Comp~(B, o-, M ) ~ C o m p m ( B ,  ~', M). 

3.6. Lemma. L e t  ,~ be a set o f  f o r m u l a s  such that  cr <<- ~r ~" ~ ,~ implies 

Comp~<z)(B, or, M)~Comp~r<z)(B, ~, M ) .  Then,  8-(,Y,) is an approximable type 

theory. 

The proof is done by induction on ~<~<z). 

3.7. Lemma. L e t  f f  be an approximable  theory, B - ' { c r ~ x ~ , . . . , c r ,  x , }  a n d  

Comp~-(B~,~, N~)for  l < ~ i ~ n .  Then, B F - ~ ' ¢ M ~ C o m p ~ r ( B I u  B 2 u  " " "u  B~, ~, 

M [ x ~ /  N1,  x l /  Nu ,  . . . , x , /  N , ] ) .  

Proof. By induction on the derivation ~ :  B ~ rM. If the last applied rule is (<~),  
use Definition 3.5. If the last applied rule is (--> E), i.e., M m  PC) and 

~r-> ~P ~rO 
(-, E), 

rPQ 

we have 

and 

Compsr(B1 u " . " u Bn, or-> r, P [ x l /  N1,  . . . , x , /  N , ] )  

Comp~r(B1 u • • • u B,,, o', Q [ x , / N ~ , . . . , x , , / N , , ] )  

by the induction hypothesis which implies 

Comp~r(B1 u . . . u B,,, r, P Q [ x I /  N , ,  . . . , x , , /  N,,]) 

by definition. If  the last applied rule is (-* I), let M =- Ax.P. We distinguish two cases: 
Case  1: ~--= o--->p with p ~ e o :  

[ox] 

p P  

-> p A x . P  
(-~ I). 

In this case, we have App~r(B, o'-~p, Ax.P) since Ax:f /~* AxP and 

[ox] 
(,o) 

~o12 

pn 
(--> I),  

~r-, p~x.la 

so Comps(B, ~r-, p, M)  by definition. 
Case 2: ~--ffi cr--~p with p ~ o :  

[ox] 

ae 
(-~ I ) .  

o'-> p A x . P  
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Comp~(B', tr, N) implies 

Comp~(B' u B~ u . . . u B, ,  p, P [ x /  N, x~/ N1, . . . , x , /  N~]) 

by the induction hypothesis. Then we have 

Comp~(B' ~ B~ ~ .  • . ~  B,,  p, ( A x . P [ x ~ / N ~ , . . . ,  x , / N , ] ) N )  

since Comp~ is invariant under/~-I'l*-conversion (note that x~ FV(N)). Hence, 
by definition, 

Compsr(B~ u " . . u B~, tr--> p, Ax.P[x~/ N~, . . . , x J  N~]). 

The other cases are trivial. [] 

3.8. Theorem. Let 3" be an approximable theory such that (Eqo) is a derived rule for 
the type assignment induced by 3". B ~ ~'M C~3A ~ *  M such that B ~ A .  

Proof. (~ ) :  Obvious (cf. the discussion after Definition 3.3). 
(~ ) :  Notice that oxE B~Comp~r(B, o', x) by Lemma 3.4(1). 

B ~ ~'M ~ Compy(B, % M) by Lemma 3.7 

App~r(B, ~', M) by [,emma 3.4(2). [] 

Let us extend [ ] g to A-II*-terms by assuming [[l] ~ = ~l'oJ. Notice that, by Lemma 
3.1(4),  to,= for all 

3.9. Theorem (Approximation Theorem for ~l~) .  Let 3" be an approximable theory 

such that (Eq~) is a derived rule for the type assignment induced by 3". Then [ M ~ =  
[.]{~AD~IA e ~t*(M)} .  

The proof is immediate from Theorem 3.8. 
When 3 satisfies the conditions of Theorem 3.9, the local structure'of the A-model 

~ -  has some interesting properties. Firstly, ~ M ] ~ =  ~ o  for all unsolvable terms 
of order 0 and all environments ~. Moreover, defining the tree T ( M )  of a term M 
and the partial order relation ~ between trees as in [29], we have that T ( M )  c_ T ( N )  

implies that the value of M is less than or equal to the value of N in ~0~. In fact, 
it is easy to verify that A ~* M iff T ( A )  c_ T ( M ) .  An  immediate consequence of 
this is that all fixed point combinators of the A-calculus coincide (since they have 
the same tree) and represent the fixed point operator in ~2~. 

In [10], the class of A-models ~ f f  for all 3 is characterized, proving that it 
properly includes (up to isomorphism) all Doo-A-models [34]. So we can argue that 
different 3.'s induce A-models with different local structures. 

3.10. Theorem. Let 3" be a type theory which does not satisfy one o f  the conditions o f  
Theorem 3.9. Then the Approximation Theorem fails  for ~sr .  
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Proof. I f  (Eqo) is not a derived rule for )__st, ~0~sr is not  a A-model. 

If  ~Y is not  an approximable theory, let tr ~<sr~', C o m p s r ( B ,  tr, M ) = t r u e  and 
Compsr(B, ¢, M ) = f a l s e .  Assume, in order to derive a contradiction, that the 
Approximat ion Theorem holds for ~Rsr. 

Recalling the conventions about " '="  between types, it is easy to verify that, for 

each type v, we can find types/z~ i) . o) ~(i) (where 'hi i> 0 and 1 ~< i ~ m) such 

that 

, "  = A " ,1, 
l~ i~m 

and each ¢~o is to or a type variable. 

Therefore, Comp(B, ¢, M ) =  false implies that  we can assume, without loss of 

generality, ¢ = t z l - > " ' - > p . , - - > g / a p  ( n > ~ O ) ,  where @ is to or a type variable and 
Compsr(B,/zl  --). -. -->/z, ~ ~b, M)  = false. 

Comp~-(B.tr, M )  ~ Appm(B, o', M)  by Lemma 3.4(2) 

==~Appm(B,/~ ->. • • -->/~, --> ~b, M)  

since cr ~<s-~->" • "-)/~,-> ~ 

~r 

B )- /~i->""" -->/~, --> ¢M. 

Moreover,  for l <~ i ~< n, 

Compsr(B~,/~, N~) ~ Apps~(B~,/~, Ni) by Lemma 3.4(2) 

sr 
B, mN,. 

Therefore, we conclude B u B I  u . . • u B,) )--~- d / M N ~  . . . N , , .  

B w B ~  ~ . . . w B .  I-- C M N ~  . . . I V .  

=:) A p p ~ - ( B ~  B ~ u .  . . ~  B , , ,  cb, M N ~  . . .  N , )  

Comps-(B ~ B~ u . . • ~ B , ,  ~ ,  M N ~  . . . N , )  

Comps~(B, ~ --> • • • --> ~t, --> ¢, M)  

by hypothesis 

by Definition 3.3(2) 

by Definition 3.3(2). 

[] 

4. Some type assignments 

In this section we study four type assignments induced by type theories. The 
choice of  these theories has been suggested by the following considerations. 

Type theories ff  which give rise to always empty interpretations of  types are 
pathological  since, if  ~Y implies W ( r ) =  ~,  the type assignment ~x can never be 
satisfied. In this case, {~x} ~ r t r M  will hold for every tr and M. 
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Therefore,  in addition to ~f ,  we consider type theories in which some relations 
between type variables and w-~ w are axiomatized. More precisely, we study: 

(1) the type theory ~~ which forces the interpretation of  each type variable to 
be a subset of  F (V~0: ~(~o) _ F) ;  

(2) the type theory ff~ which forces the interpretation of  each type variable to 
contain F (V~0: F_q ~(cp)); 

(3) the type theory ~~ which forces the intersection between F and the interpreta- 
tion of the type variable ~p to be the interpretation of  the type ~o -~ ~p (V~p: F ~ ~(q~) = 

4.1. Definition. (1) Z f = ~ ,  ~ , = { ~ o j ~ a ~ w l j ~ N } ,  ~ i - - - { ¢ o - ~ w ~ 0 ~ l j ~ } ,  
{ ~o -* ~o ^ ¢pj -~ o~ -* ~ l j e ~} .  

(2) ~,~ = ~r(Zx) for x = f, e, i, s. 
(3) ~<~, ~ , . . .  are short for ~<~,, - - ~ , . . .  where x = f, e, i, s. 

Clearly, <~-f is as defined in Definition 1.1(2). In the type assignments ~_._i and t -~ 
typing is not  preserved by substitution since, for example, {wotoy}F- t~oy ,  {w-- ,  

g0y} [y~i ~ ...> ¢py a n d  {¢o ~ ~o ^ ~py} ~ ~o --, q~y, {o~ -~ ~o ^ ~, -..., #y} ~ o~ -~ ~p --, ~oy. 

In order to prove that ~R~ (for x = f, e, i, s) are F-filter A-models we need two 

technical lemmas.  

4.2. Definition. # ( ¢ )  is inductively defined by 
(i) # ( ~ o ~ ) = # ( w ) = O  for all j ~ N ,  

( i i )  # ( o ' ~  a-) = 1 + #(~'),  
(iii) #(or  ^ ¢ ) = m a x ( # ( ~ r ) ,  # (¢) ) .  

4.3. Lemma. F o r  x = f ,  e, i, s, i f  (izl--> vl)  ^ . . " ̂  (p,,, ~ v,,) <~,~--> ¢ a n d  i f  ~" C-o, oJ, 

then there are  p l , . . .  , pa  e { 1 , . . . ,  n} such that  I~v~ ̂ "  " " ^  Izv, x >~ cr a n d  v w a .  • .  ^ 

Ppq ~x 7. 

ProoL Let 

3' = ( ~ 1  -~  v ~ )  ^ -  • • ^ ( ~ n  --> v n )  ^ ~0j 1 ^" • "^  ~pj. ,  

8 : (o-~ -> r~ )  ^ . . -  ^ (o -n , -~  ~-n,) ^ ~ ^ . .  • ^ ~,j;~. 

Define the properties ( P 1 ) , . . . ,  (P5) as follows: 

(P1) V l ( l < . l < ~ n  ' ) 3 h ( l < ~ h < ~ n ) :  # ( O ' z ~ ¢ t ) < ~ # ( / a . h o V h ) ;  

(P2) { j l , . . . , jm}D_{ j~ , . . . , j 'm ,} ' ,  

(P3x) V l ( l < ~ l < - n ' ) :  ~'tC~xw implies 3 { h l , . . . , h k } c _ { 1 , . . . , n }  

v h x , . . . ,  Vhk are ~x  ~o and 

/ . t h l  ^ " " " ^ / . t h k  x ~ 0"1, / ' h i  ^ • • • A Vhk ~ x  "rl 

such that  
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for x = f ,  e, i, s; 

(P4) Vl(l<~l<-n'): a'tT~sto impl ies  3 { h l , . . . , h k } c _ { 1 , . . . , n }  3{r~,.. . ,rp}c_ 
{j~, . . .  ,jm} sueh tha t  Vh~,... ,  vh~ are 7*~ ~o, 

OJAtZh~^' ' 'A/Zh~s ~>oq and  Vh~^'''AVh~^~O n ^ ' ' ' ^ ~ o , ~ s z ~ .  

(P5) V q ( l < ~ q < - m ' ) 3 { h ~ , . . . , h k } : _ { 1 , . . . , n } ,  : l { r ~ , . . . , r p } ~ { j ~ , . . . , j , }  such 

that Vh,, . . . ,  Vh~ are 7% ~, 

A jtZh, A " " " A jL~ht s : ~  O) and  Vh, A " " " A Phi  A ~Or, A " " " A ~rp ~ s  ~Oj~. 

By s t ra ight forward  

prove that  

(i) y ~<fcS=::>(P1), 
(ii) Y ~<, 8 ~ ( P 2 ) ,  

(iii) y <~ ~ ( P 1 ) ,  

(iv) y <~, ~5~(P1) ,  

induct ion  on  the  defini t ions o f  <~-f, ~<e, ~<i, and  ~<~ we can 

(v2), (v3f). 
(P3e). 
(P3i). 
(v4), (P5). [] 

Remarks. (1) In  propert ies  (P4) and  (P5), one o f  the two sets can  be empty. This 

is true, for  example ,  for (P4) in the  case oJ ~ ~o ̂  ~ ~<s o ro  ~o (where  ~r 7% ~o), and 

for (P5) in the  ease ~o -> ~o ~<s ~0. 

(2) ~e  does no t  satisfy (P1) ( take ~o <~e a~ ~ ~o). 
(3) ~<i does no t  satisfy (P2). Take,  for  example,  o~ ~ oJ ~<i ~. 
(4) ~<~ does no t  satisfy (P2) ( take ~o ~ ~ ~<~ ~),  and  

(P3s) ( take oJ->w ^ ~o ~<~ w ~ ~o). 

4.4. Lemma. For x = f, e, i, s, 
(1) B r-~ oro r A y . M ~ B / y w { o y }  ~_x zM; 
(2) Rule (Eq~)  is a derived rule for the systems ~-". 

ProoL (1): We may  suppose ~" ¢- x a~. Let /zj  ~ vjay.M (1 ~<j ~< n)  be all the statements 
in ~: B ~_x or~ ~Ay.M on which or--> ¢ay.M depends  and  which  are conclusions of  

1): 

v i M  (-* I) .  
Izj -'> vjA y .M 

By 1.emma 1.7(3), 

( /~-- ,  v~) ^-  • • ̂  (/~,, ~ v,,) <~x o'--> ~r. 

By L e m m a  4.3,  there are P l , . . . ,  Pq ~ { 1 , . . . ,  n} such  t h a t / z ~  ^-  • • A/zpq x ~  > tr and  
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up, A • • • ̂  v~ <~ z. Therefore, 

try (<~x) 

/~Y 
l<~k<~q 

vp~ M 

vp, ^" • • A Vt'~ M 
(<-x). 

~'M 

(2): Clearly, it is sufficient to prove 

B ~ - 7 ( A y . M ) N  ~ B ~ r M [ y / N ]  for~'~-xto. 

( 3 ) :  B~-x~-(Ay .M)N and ~'Tc~to imply :1o-: B ~ - ~ t r + r A y . M  and B ~ X t r N  by 

Lemma 1.8(1). Hence, ::ltr: B / y u { o y }  ~ r M  and B ~ o - N  by (1). 

Therefore, we obtain a deduction of B ~ ~ 'M[y /N]  by replacing each premise 
try by a deduction of t rN and y by N in ~ :  B / y u { o ' y } ~ - ~ z M .  

( ~ ) :  If  y does not occur in M, this is trivial. Otherwise, let ~:  B ~ - ~ - M [ y / N ]  

and o-~N, . . . ,  o'~N be all the statements in ~ whose subject is N. Then we can 

obtain a deduction ~ ' :  B / y  ~ {trlY, • • •, o-~} ~ z M  by simply replacing the deduc- 
tion of  o )N by the premise try for 1 ~j<~ n and N by y in ~. Lastly, by applying 
rules (^ E) ,  (+ I) ,  (^ I ) ,  and (+ E),  we conclude B t -x  z ( A y . M ) N .  [] 

4.5. Theorem. ~ = are F-filter A-models, for x = f, e, i, s. 

The proof  is immediate from Theorem 1.12 and Lemma 4.4(2). 
From Theorem 2.4 we have the following theorem. 

4.6. Theorem ( i f -F-soundness) .  For x = f, e, i, s, B ~_x z M ~ B  ~ '  rM. 

Notice that the system ~* of  [2] is not F-sound. In fact, if  A = Ax.xx, we have 

~* to -+ o~AA (using to <~ to + ~o). However, in the F-filter A-model ~ f ,  say, we have, 
since the Approximation Theorem holds (cf. Theorem 4.13): 

In fact, fl'~o and rl'co + co have the same functional behavior (i.e., Vd e[fr["  rl'~o.d = 
fl' to + o~.d = r 1' to) and ft to + ~o e F¢ b y  L e m m a  2 . 6 ( 3 )  since 

f f ~y.zy|¢tz/Toj--,oj]=fTo.~-*(,o for all ~. 

Moreover, it is easy to verify that F -e, ~_i, and r -s are not F-sound.  

Thanks to Theorem 2.9, if we want to establish whether the type assignments ~ '  
(x = f, e, i, s) are F-complete,  we need only know if (HR) is provable in them. 

4.7. Lemma. (1) (HR) is a derived rule in the type assignments ~-X for x = i ,  s. 
• (2) (HR) is not a derived rule in the type assignments F-Xfor x = f, e. 
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Proof. (1): For x = i, 

[COZ1] 

COAz 2 ... zn.Nz I ... z. 

to -~ COAz] .. . z..Nz] . . . z. 

For x = s, 
q~Az] . . .  z,,.Nz~ . . .  z ,  

(CO) 
(--> I)  

~p A CO n .-.> c o N  ( 
CO--> [COz]] 

(-, E) 
~p N z  ] 

tp A CO" "-> C O N  

CO"-, COn [COz,] 
, - - 1  CO --> CO N z  ] 

~0 A COn-]  ..> C O N z  1 

~o N z  l" . •. z ,  

CO n "> ¢PAZl • • " Z n . N Z l  • • • Zn 

¢ p A Z t  . . . z . . N z ]  . . . z .  

(2): {CO-->CO^~¢y}~'~pAz.yz f o r x = f ,  e. [] 

(--> I)  

(^ E) 
(-, 

(A 

4.8. Theorem (F-completeness) ,  The type ass ignments  F i a n d  ~" are F-complete  

while ~-f and  ~-~ are not  F-complete• 

4.9. Remark. Notice that whereas, for all T', T" agrees with fff by Theorem 2.4(3) 
and T'x agrees with fix for x = i ,  s (by Lemma 2.7(2) and Lemma 4.7(1)), T'c does 
not agree with fie. In fact, let ~p be any type variable; we have, by definition, 
Cl'~p e T'c(~p) and from <~e, T'e(q~) c T'~(oJ --> to) which would imply ~t~p e Ft.  But Cl'~p 
for all type variables ~p and ~l'co -> co have the same functional behavior  (i.e., Vd e I ff~]: 
el'~p.d = el'co --> co.d = ¢1'co) and therefore, they cannot be all elements of  F, .  "l'co -'> to e 
F~ by Lemma 2.6(3) since [Ay.zy]~tz/ot,~_,o, ] = el'co ~ to, for all ~. 

It is natural to consider the type assignments obtained by adding (HR) to t -c, I ' ' f .  
We call these systems ~Hc, ~Hf, respectively. The following lemma compares deriva- 
bility in the systems with and without (HR). 

4.10. Lemma. For  x = f, e, 
(I) B ~:" ~ 'M~B ~H,, ~'M, 
(2) B ~_H,, " r M ~ B M '  such that  M - - ~  .M' and  B ~:" r M ' .  

Proof. (1): Trivial. 
(2): Simply replace each application of  (HR) 

~p ̂  co"~ con 

~pAz~ . • •  z , . N z ~  . . .  z,, 

by an application of  (^ E)  

(p ^ co"-~ con 
(hE) .  [] 

~ N  

(HR) if  zl, • • •, z, ~ FV(N)  
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It is easy to see that [...He and ~.Hf are not F-complete since types are not invariant 
under subject expansion. In fact, {~o ^ ~ -> 07y} t -Iax ~Az.yz while 

H x  
{,p ^ 07 -> a,y}/-- ~oXz.(Xu.yz)v for x = f, e. 

This also proves that (13~x[,., [ 
for x = f ,  e. 

property. 

B HA) is not an F-filter A-model (if we define [ M ] ~  ~ = 
Instead, I --Hf and t -He satisfy the subject reduction 

4.11. 
(1) 
(2) 
(3) 

Lemma (Subject reduction for I-"Hx). For x = f, e, 
B [.._Hx TMN, ~" ~ x  07 ¢~ :]or: B ~...Hx or ...> ~'M, B t -H~ orN; 
B [....Hx or_> ~'Ay.MCC, B / y  u {ory} t -HA ~'M; 
B t -Hx ~'M, M --~, M ' ~  B ~_H~ zM'.  

Proof. 
cannot be (HR). 

(2): The proof of Lemma 4.4(1) remains valid 
variables. 

(3): Just mimic the proof  of Lemma ~.4(2) ( 3 ) .  

(1): Immediate from the proof of Lemma 1.8(1) since the last applied rule 

since (HR) assigns only type 

[] 

Notice that the systems t -Hf~ and ~ae~ obtained by adding (Eq~) to ~_af and t -ae 

do not induce F-filter A-models since property (2) of  Lemma 1.8 fails. In fact, if  B 
is any basis, from B / y  u {cp ̂  ¢o -> 07y}, we assign only type co to yz  and tz, but 

HxO 
B / y u { ~ p  A07->07y} ~- cpAz.yz and 

Hx~ 
B / y u  {cp A 07 -> 07y} A- ~pAz.tz (x=f ,e ) .  

However, the question whether these systems are F-complete remains open. 
To prove the Approximation Theorem for ~l~x, we show that 3x are approximable 

(x = f, e, i, s). 

4.12. Lemma. The type theories 3"~ f o r  x = f, e, i, s are approximable. 

Proof. By Lemma 3.6 it is sufficient to show that or<~xz~2:x implies 
Compyx(B , or, M)=OComp~rx(B , ~', M) .  For 27f, the proof is trivial. For 2~e and -Yi, 
the proof  is easy using Definition 3.3. 

For 2:s, we have to prove: 

Comps(B, ~o -> co ^ ~p, M)  ¢:~ Comps(B, 07 -> ~p, M),  

which, by Definition 3.3, is equivalent to 

Apps(B, 07->07, M )  and Apps(B,~0, M)¢ :~  V N : A p p s ( B ,  cp, M N ) .  
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Notice that (Eqon.) is a derived rule for ~_s by Lemmas 4.4(2) and 3.2. 

App,(B, to --> to, M) and App$(B, q~, M) 

$ $ 

:IA~, A2 E s~*(M): B t- to --> a~A1 and B ~ ~A2 

:=> : lA'~ ~I*(M): A1 ~* A ' ,A2~* A' 

since M*(M) is directed 

$ S 

B ~ ~o --> ¢aA' and B ~ CA' 

by the discussion after Definition 3.3 

S 

B ~ to--> q~A' by (^ I )  and (<~s) 

$ 

B ~- ~pA'll by (to) and (--> E)  

$ 

B k- ~pA" 

where A" is the fl-fl*-n.f, of A'f l  (by (Eq~m)) 

V N App$(B, ~, MN)  

since A" ~* M N  by Lemma 3.1(3). 
( ~ ) :  VN:  Apps(B, ~, MN)=>App$(B, ~, Mz), where z~ F V ( M ) u  FV(B) 

$ 

=~ 3 A ~* Mz such that B ~- ~pA 

$ 

3A'  m* M such that B ~- ~pA'z 

by Lemma 3.1(2) and (EqBn,) 

S $ 

3A'  ~* M such that B r-- to --> ~pA' and B b- ¢oz 

by Lemmas 1.8(1) and 1.7(2) since z~ FV(B) 

$ 

3A'  ~* M such that B t- to --> oJ A ~pA' by (~<s) 

Apps(B, to --> to ^ tp, M) .  [] 

4.13. Theorem. For x = f, e, i, s, 
(1) B ~" ~'MCC3A c* M such that B F -x ~'A; 
(2) The Approximation Theorem holds for ~ , ;  
(3) ~[R,, are not sensible. 

Proof. (1) and (2) are immediate from Theorems 3.8 and 3.9, and Lemmas 4.4(2) 
and 4.12. 
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(3): Simply notice that ~t*(AA) = {f~}, while .d*(hy.AA) = {fl, Ay.fl}, so ~AAB~ = 

xl'go, whereas ~Ay.AA]~ = ~'~go .4 to, for all ~. [] 

In the remainder of the present section we will connect the types that can be 
assigned to the terms with the normalization properties of the terms themselves. 
More precisely, we will prove that 

(1) in the systems ~-f, ~-~, ~-~, ~_.Hf and ~_H¢, all and only the terms with head 

normal form (h.n.f.) have tailproper types (see Definition 4.14 below); 
(2) in the systems ~f, ~-~, ~Hf, and ~H,, all and only the terms with normal form 

(n.f.) have types without o~-occurrences. 

4.14. Definition. The set "IT of tailproper types schemes is defined by: 

¢Po, ~Pl,... ~ TI', 

¢ ~ T T ~  o ' . 4 % c r ^ % ¢ ^ ~ T T  forall~r~T. 

4.15. Lemma. For x = f, e, s, 
(1) cr<~x ~" and t r ~ ' I T ~ T T ;  

(2) B b-X ~'A, where A is an unsolvable f l - l~*-n . f .~¢~ TT. 

Proof. (1): By induction on <~ ~. 
(2): By induction on derivations using (1). [] 

Similar properties do not hold for ]....i since, for example, ~._i ~t~Ay.~'~ and I"i ~p-4 
~pAyz.l). Notice that to .4 ~o <~i q~, to .4 to ~ Tr ,  and ~ e TT. 

4.16. Theorem. For x = f, e, s, 3B,  ~ e TTf : [ B b-X ~-M]c=~ M has a h.n.f 

PreoL ( 3 ) :  3B, ¢~TI' :  B ~ - X e M = ~ 3 A ~ * M  such that B~-~¢A by Theorem 
4.13(1) implying that A is solvable by Lcmma 4.15(2), whence M is solvable. 

(~ ) :  Let Az~ . . .  z , . y M ~ . . .  Mm be the h.n.f, of M and y ~ FV(M). Clearly, {wm -> 
¢py} ~-~" q~yM~...  M s  using (go) and (.4 E) and therefore, by applying (.4 I),  we 

obtain 

J¢ 
{¢0  m ._> q ~ y }  ~ gO n ._> ~OAZl  . . . zn.yM1. . . Mm. 

The case y ~ FV(M) is similar. [] 

4.17. Theorem. For x = f ,  e, 3B,  ¢: [ B ~ X e M  and go not in B, ¢]¢~ M has a n . f  

Proof. ( 3 ) :  B t-" e M ~ 3 A  m* M :  B ~-" cA by Theorem 4.13(1). We prove that f l  
does not occur in A by induction on ,4. The only interesting ease is A =-- z A 1 . . .  An. 
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X 

B ~- ~A1 • • • An ~ 3 o-1, • • •, o.n. B ~- o'1 -'>" • "--> o-n -> 7z and  

X 

B ~- o-~At 1 <~ l ~  < n by L e m m a  1.8(1) 

=:~o.~-, o-2-~. • .-+ o.n-~ 7xJ> ( ~ - ,  v ~ ) ^ . . "  ^ (~m-*  Vs) ^ ej~^" " " 
^ tp),, 

where  {/~1 --> ~hz,. • • , /~s  --> ~,sz, ~0j, z , . . . ,  %pz} _~ B by L e m m a  1.7(2), 

~ 3 { h ~ , . . . ,  h k } _ { 1 , . . . ,  m} such that  o-1 ~<~/~h~^" " " ̂ ~s~ 

and  o'2-> • • --> o-~-> 7 ~  > ~%^- • • ̂  Vhk 

since for x = f, e, P3x holds  (of. the  p r o o f  o f  L e m m a  4.3) 

X 

~ B  ~-/~s~ ̂ " " " ̂ /~s~A~ by (<~).  

Reason ing  in a similar  way f rom 

o'2">" " ""> o'n--> ¢x>"" ~h~ ^ " " " ^  ~hk, 

we can prove that,  for each At, 2 <~ l ~  < n, 3/~t),...,/~p~'<z) which  occur  in B such that  

• (~)a Now,  the  induct ive  hypothes is  can be appl ied .  B ~_x/~) ^ . . .  ^ ~ ,  ,~- 
( ~ ) :  By structural induc t ion  on the  n.f. o f  M. [] 

A coun te rexample  to the Norma l  F o r m  Theorem for the  system ~s (due to the 

fact  that  p roper ty  P3s o f  L e m m a  4.3 is no t  true for ~-s) is 

$ 

{cp ^ ~l,"> Oy} ~- tpy(AA ). 

Moreover ,  not ice  that  a l though proper ty  P3i o f  L e m m a  4.3 holds ,  the  Normal  Form 

T h e o r e m  fails for the  system ~...i since it does  not  satisfy Theo rem 4.16. 

4.111. Theorem. For x = f, e, 
(1) 3B, 7 ~ T T :  [B~-HXTM]<=~Mhas an h.n.f.; 

(2) 3B, 7: [B ~ H ~ ¢ M  and to not in B, 7]¢=~M has an n . f  

Proof.  (1) ( ~ ) :  

I"I3¢ X 

B ~- 7M ~ 3M': M - - ~  M' B ~- 7M'  

M '  has h.n.f. 

M has h.n.f. 

( ~ ) :  M has h.n.f, implies 3B,  ¢ ~ T r :  
B t --Hx e M  by L e m m a  4.10(1). 

(2) is p roved  in a similar  way. []  

by L e m m a  4.10(2) 

by Theo rem 4.16 

B ~-XTM by T h e o r e m  4.16, whence  
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5. Restricted types  

In the preceding sections we have seen that  many of  the problems of  F-complete- 
ness arise from the necessity of  giving a type interpretation T" such that °F(q) n F 

is nonempty.  
These type interpretations are necessary because interpretation of types like 

~o ̂  ~o -> ~o should not  always be empty. An alternative approach could be to avoid 

intersections of this k ind by allowing "A" tO be a partial function satisfying some 

conditions. Informally,  ~r ̂  ~- is legal only if  ~r and T have the same number of  "-*"s 

or cr~ TT (as defined in Definition 4.14) has less "->"s than ~. 
The type assignment ~R, constructed on this subset RT___ T of  restricted types, 

is the only system (to the author's knowledge) which is F-sound and F-complete. 

Another  interesting feature of  this system is that  the Head Normal Form and Normal 
Form Theorems hold. Moreover, we want to mark the connection between F -R and 

~-f established in Theorem 5.5. This result is relevant and rather unexpected since 

the definitions and motivations for fff and 3"R look at first sight, totally unrelated. 
Note that (HR) is now irrelevant since ~o ̂  w" -> ~o ~ RT. 

5.1. Definition. (1) The set RTc_ T of  restricted types is inductively defined by 

( i)  q~o, ~P , , . . .  ~ RT; 
( i i )  ¢o ~ RT; 

(iii) or, r ~ R T ~  or-, r ~ RT; 

(iv) or, ~'~RT, # ( o r ) = # ( r ) ~ c r ^  r ~ R T ;  

(v) or, ~'~RT, o ~ T T ,  and #(cr)-~<#(r)==>~r A r, r ^ ~ r ~ R T .  
(2) O'<~R ~" iff ~, ~'¢ RT and cr ~<f¢. Cr--R ~" iff O" ~R'/" ~R O'. 
(3) ~'R={cr~<~{cr<~R~}. 

Notice that o---> ~- A p --> 1, ~ RT implies ~ ^ 7, ~ RT. Let us remark that 

(RT, w, ConR, F-R), where {crx,... , ¢7n} E ConR iff or 1 A" • • ̂  O', e RT and 

{ ~ , , . . . ,  or,} I-- R r i f f  or1 A" • • A or, ~<R % is an information system in the sense of Scott 

[39]. 
In order to build the formal system of  type assignment [.._S w e  need to modify 

the definitions of  Section 1 slightly. 

5.2. Definition. (1) A set S ~  RT is consistent iff cr and ~ S imply cr A ~'~ RT. 

(2) A restricted basis B is defined by adding to Definition 1.4(2) the condition 

that, for each variable y, B F Y is consistent. 
(3) B F -R' ~-M iff ~-M is derivable from the restricted basis B in the type assignment 

induced by ~R, where (A I )  has been restricted as follows: 

o'M TM or A ~" ~ RT 
(^ I') 

O'ArM 
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(4) ~_R is the type assignment obtained by adding rule (Eqo) to ~_R'. 

It is straightforward to verify (by induction on deductions) that if ~ :  B ~_R ¢M, 
then each predicate of  statement which occurs in ~ belongs to RT. In particular, 
~-~ RT. 

It is easy to show that the subject reduction property holds for ~_w. 

5.3. I,emma. (1) I f  (/t~-> Z q ) h . - - ^  (/z,-* v,) ~ R O r ~ 7  and T~LRgO, then there are 

p~, . . . , pq ~ {1, . . . , n} such that, for  l <~j<<-q, iZpjx>~ or and U~ h . • " h Vp~ <~R ¢. 

(2) I f  or--> ¢ M  is derived f r o m  (Izz-> Vl)M, •. •, ( Iz ,  -> ~ , ) M  only by means  o f  rules 

( h i ' ) ,  ( h E ) ,  and (<~s), /z~->~,~eRT for  l<~l<~n and ¢¢'R~0, then there are 

P I , . . . , P q e { 1 , . . . ,  n} such that, for  l<<-j<<-q, ix~R>~ or and ~ ^ "  " " h ~p~ <~R ¢. 

(3) B ~R' z M N ,  r ~R ~a:=~3or ~ RT: 

R t R r 

[ B + - o r ~ ¢ M  and B t - o r N ] .  

(4) B ~_R' or_, T A y . M = ~ B / y  w {try} ~.__R' ¢M. 
(5) B ~R' ~'M, M-'~ o M'=~B ~R' TM'. 

Proof.  (1): By Lemma 4.3, there are P l , . . . ,  Pq ~ { 1 , . . . ,  n} such that 

~ p , ^ ' - ' h ~ p ~ o r  and vp~^.- .hVp <~f~'. 

Notice that or~RT since or-> ~'~ RT and Vp, h" • • h Vpq ~ RT since (/zl-> z,~) ̂ - • • ̂  
( /z ,  --> v,) ~ RT. However,/Zp, h" • • ̂  gpq ~ RT can be false. 

(2): By inductions on derivations one can show that if(or~ -, T~) ̂ " • • h (or,, -> cm)M 
is derived from ( /~-> u 0 M , . . . ,  (# , ->  v , ) M  only by means of rules (h i ' ) ,  (hE) ,  
and (~<R), then, V1 (1 ~< l~< m) such that ~'z ~-s ~o, there are p~ , . . .  , p q ~ { 1 , . . . ,  n} 
such that, for 1 <~j <~ q, l% R ~ ort and Z,p~ h- • • h Vp, ~<R ~'t- If  the last applied rule is 
(~<R) use (1) and the induction hypothesis. 

(3): By induction on derivations. 

(4 and 5): Just mimic the proof  of  Lemma 4.4(1) and (2) ( ~ )  using (2) and (3). [] 

Contrary  to the subject reduction property, subject expansion fails for ~R'. For 
example,  

R ~ 

{(¢  ,p) --> or-  ,-z, ((q, . .  ,p o y  r z 1 ( y l ) ,  

while 
a s 

{(q, --> q,)-> or-> ¢z, ((q,-~ ~ ) - ,  q,-~ ~)}- ,  try ~ (At .z t(yt))I .  

So ~_R, is not F-complete. We will prove instead the F-completeness of  ~_R. 
We will prove that when B is restricted and ~" ~ RT, the inference systems ~-f and 

~R have the same expressive power. 
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5.4. Lemma. p <~fc~ x ->. • .-> o" m --> T and 7" ~fo~ implies 

for  some / ~ J ) , . . . , / ~ ) ,  ~o) such that /~/) f~> o-~, with (l~<i~<m), (l~<j<~s), and 
p(~)  ^ . . .  ^ p ( s )  ~ f  I.. 

Proof .  By induction on m: Let ¢ =  (rm+~-> ¢'. By the induction hypothesis, 

for some f t [ J ) , . . . ,  p,~), t o )  such tha t /~J )  f~  (r~, w i th  (1 <~ i <~ m), (1 ~<j ~< s), and 
~(~) ̂ .  - • ^ ),(~) ~<f ~. Wi thout  loss o f  generality, we can assume 

r(~) ^ . . .  ^ ~ ( * )  = ( a ~ - ) / ~ )  ^ . . .  ^ (a, -) /~,)  ^ ~ ,  ^ . . .  ^ ~ , .  

By (P3f) as defined in the proof  o f  Lemma 4.3, there exist { p ~ , . . . ,  pq} ~_ { 1 , . . . ,  t} 
such that 

Otp~ A " " " A O~pq f ~  O ' m +  1 and pp~ ̂  • • • ̂  ~pq ~ f  T'. 

Therefore, we can conclude (recall that (y--> 8) ^ (T-> 8') = y-> 8 A 8'): 

. ( h ( p , ) )  p = ( ~ h ( ~ , ) ) - ~ -  • - - ~  ~ m  - * %  - ~ , ) ^ -  • - ^  

. (h(~))_> __> tips) ^ p,,, ( ~ ( P ~ ) ) - ,  . .  _, ~ ~ %~ 

where h : { p ~ , . . .  , pq} ->{1 , . . . , s}  is defined by h ( p t ) = j  iff v(J)=(%,-~/~,~)^ p(J) 

for some po). [] 

5.5. Theorem. Let B be restricted and ~ ~ RT, then B t - f  ~ M  <=~ B ~_R ~'M. 

Proof. ( 3 ) :  Notice that  B~feM implies = ; A e ~ * ( M )  such that B)-f¢A by 

Theorem 4.13(1). We prove by induction on A that B~-R~'A. A - - - x A ~ . . . A , ,  

(m ~> 0) and  • ~ f  ox B ~-f ~ x A 1 . . .  Am implies =lcr~,.. . ,  cr m such that B )-f (r.,Ai (1 <~ 
i ~  < m) and B )-f or1-> • • .-> c%-> rx by Lemma 1.8(1). 

f 
B F- o-1--> • • .-> O-m--> 7. x 

~ 3 p l X )  . . . , p n  X E B ' -  P l  A "  • • A P n  ~ f  Orl - > "  " " -'> Orrn "-> T Lemma 1.7(2) 

~ p ,  ^ . . .  ^ p .  =(~? ) - , - _~  ~>-) ~,>) ̂ . .  ^ (~?) - , . ._ ,  ~>-) ~,>) ̂  p' 

for some f t ~ J ) , . . . , / ~ ) ,  ~(J) such that p~J) f~ (ri (1 <~ i<~ m) (1 ~<j<~ s) and v o ) ^ . . .  ^ 

~,(*) <~f ~" by Lemma 5.4. 

f f 
B I-- cr~A~ :=~ B I- p.~J)A~ for 1 <~j <~ s by (<~f) 

B ) -  A~ f o r l ~ j ~ s  

by the induct ion hypothesis since ~ J ) ~  RT. Therefore, we obtain a deduction of 
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B r --g zA as follows: 

p l x . . • p, ,x 

P l  ^ " " " A pnX 
(^1') 
(<-~) 

f t~J)A1 

~ (J)-> . . .--> I.L~)-..> v ( J ) X A l  
(-* E )  

t z ~  )'> v O ) x A t  . . . Am-1 ~ ) A m  

v ( J ) x A l  • • • A m  

v <~) ̂  • • • ^ v (S )xA l  • • .  A m  

z x A 1 .  . . A =  

( h i ' )  

(<-~). 

(--> E )  

Notice that  pl ^ • " "^ P., v°) ^" " • ̂  vts) ~ RT since B is a restricted basis. 
A --  Xy .A' .  Notice that B F --f/z ^ v A ~  B F --f t z A  and B t ---g i.tA, B F --R v A ~  B t - g  f t  ^ 

v A  using ( ^ I ' )  since /.t ^ v e RT. So we can restrict our attention to the case 
B F -f o" --> p A y . A ' .  

f f 
B t-- o'-> p A y . A '  ~ B / y  u {try} F-- p A '  by Lemma 4.4(1) 

R 
:::¢, B ~ o'.-> pA y . A  ' by the induction hypothesis 

(notice that  B / y  u {try} is a restricted basis and p ~ RT) 

R 
:::> B ~ o'--> p A y . A '  by ( 4  I) .  

Now, from B t --R ¢A with A ~ M*(M),  we have B t --R 1-M. Just mimic the argument 

given after Definit ion 3.3 (notice that (Eq0) is a rule of  ~_R). 
(<=): Immediate  since (Eqo) is a derived rule for r -f. [] 

As a consequence of  Theorem 5.5 we have the Head Normal  Form and the Normal  

Form Theorems for the system ~_R. 

5.6. Theorem. (1) 3B, z~TF: [B ~x z M ] C O M  has an h.n.f. 
(2) 3B, ¢: [B ~--g ~'M and w not in B, ¢]¢~M has an n.f. 

Proof. (1) ( 3 ) :  By Theorems 5.5 and 4.16• 
(<=): The p roo f  of  Theorem 4.16 ( ~ )  remains valid. 
(2) ( 3 ) :  By Theorems 5.5 and 4.17. 

( ~ ) :  Let I] I]: A-* N be defined by 

( i)  Uzll = 1, 
(ii) HMN]]  =max(l iMit  + 1, ][N]]), 

(iii) IlXz.MII- IIMII. 
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Clearly, if M is an  n.f., 11M II is the maximum number of  components  of  the subterms 

of  M. We will prove by structural induct ion on the n.f. M that  Vn i> IIMII: 3B, 
such that 

(i) B t --R ~'M; 

(ii) ~o not  in B, ¢; 

(iii) p y •  B implies # ( p )  = n. 
M =--Az.M' is trivially proved. 

M =- zM~ . . .  M s  (m ~> 0). By the induction hypothesis there are B ,  or~ such that 
B~ t'-R o'~M, ~o not  in B~, or~ and p y • B ~  implies # ( p ) =  n. Notice that  if n~> IIMII, 
then n >1 m. lit is easy to verify that  a correct choice is ~--= ~p,,,+~ -->- • • --, cp, ~ ¢ and 

B = Bt  u " " " u B,, u { orl -> " " " --> Orm --> ZZ}. [] 

The F-soundness  of  t --R follows from Theorem 5.5 and Lemma 2.4(4). 

5.7. Theorem (F-soundness).  

B ~_R ~'M=~B ~ ~'M. 

To prove the F-completeness oft  --R we use (]~d, -, [ If) which we know from Lemma 

4.5 to be an F-filter A-model. Therefore, we interpret the types belonging to RT as 

subsets of Iffd. Notice that is not an F-filter A-model since ¢--> ¢, 
(~p~ ¢)-> ¢-> ~,b ~ [Ax.x]~, but (¢p --> ~,) ^ ((cp --~ ¢)-> ~p-* ~ ) ~  RT. 

5.8. Definition. (1) R(¢)  = {d • Iffd [ a" • d}, where ¢ • RT. 
(2) ~R(~P)= R(cp). 
(3) The set FTc_ T o f  functional  types is defined by 

(i) a~ e FT, 

(ii) or, r •  T ~ o r ~ r • F T ,  
(iii) or, ~ - e F T ~ c r ^ z • F T .  

(4) The set AT__q T of argument types is defined by 

(i) ~Po, ~ 1 , . . . •  AT, 
(ii) ~o • AT, 

(iii) or, ¢ ~ A T ~  or ̂  ~" • AT. 

Notice that  R T ~  F T u  ATE T since, for example, (~p ̂  ~o --> ~b) ~ ~, • FT, but ~ RT 
and ¢ ^ ~p--, # e  T, but  ~ F T u A T .  

5.9. Lemma. (1) o ' e FT ,  or ~<fI"==~¢EFT. 

(2) Let S =  B ~ y. I f f ~ s # f ~ ¢ o  and  S c _ F T  then, for  aU % Bt--f  ~-yC~Bt-f eAz.yz. 
(3) f~ S # f~ w and S c_ FT imply f~ S e Ft. 

(4) S being consistent implies Wc • [~'~: 3 U consistent such that f'[S.c = f~ U. 
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Proof. (1) is proved by induction on <~f. 
(2) ( ~ ) :  B ~-f r y ~ : l o r ~ x , . . . ,  or,,x e B such that or~ ̂ -  •. ^ or,, ~<f ~- by Lemma 

1.7(2) implying that ~'~ FT by (1) since or1 ̂ . . - ^  or,, e FI" by hypothesis. 
The proof  of B ~-f "rAz.yz by induction on ~" is straightforward. 
( ~ ) :  We will prove B ~-f'rAz.yz=:>B F-fTy by induction on ~'. 

Case 1: ~" = or--> p, p ~ f  O9. By hypothesis, there is a /zy  ~ B such tha t /z  7% to and 
/x ~ FT which imply t ha t / z  <~f or--> p since p ~ f  to. 

Case 2: ~'=--or-.->p, p ¢-.fto. B ~ f  or..->pAz.yz implies :i~,: B / z u { o r z } ~ f  r,z and 
B / z w { o r z }  ~-~ v ~  py by Lemmas 4.4(1) and 1.8(1). Hence, :lz,: or <~f v and B / z u  
{orz} ~f 1, --> py by Lemma 1.7(2). And thus, B ~f 73, by (<~f) and Lemma 1.8(3). 

(3): S ~  FT~f~'S~_ FT by (1). Let d=f'~S.  Then 

f a =[y]f  
¢tyld] = {orl Bety/a] ~- oy )  

= {or l B¢tr/,,] ~ orXz.yz} 

by Definition 1 . 9 ( 3 )  

by(2)  

= ~ xz. yzll ~t,/~1 by Definition 1.9(3). 

So we conclude d ~ Ff by Lemma 2.6(3). 
(4): It is easy to verify using Lemma 4.3 that a correct choice is 

U = { z l ~- - o~ o r =l or ~ c : or -> z ~ S }. [] 

5.10. Lemma. (1) °FR(7) = R(~') for  all 7 e A T .  
(2) ~R(I")C_ R(z)  f o r  all ~'eRT. 
(3) S consistent and ~'~ S imply f ~ s ~  °//'R(7 ). 
(4) ~lRf, ~f ,  ~R ~ B for  every restricted basis B. 

P r o o f .  (1 ) :  B y  c a s e s  o n  ~'. T h e  o n l y  i n t e r e s t i n g  c a s e  is ~ ' -  ~1 ^ " • " ̂  ~o.. 

~rR(~) = ~ r R ( , , ) n . . . n  ° r ~ ( , . )  

= R ( t p , ) c ~ . . .  n R(~p,) 

= R O ' ) .  

by Definition 5.8(2) 

by Definition 5.8(1) 

(2 a n d  3):  Simultaneously by induction on ~'. The only interesting case is ~" -~ or-, p. 

We first prove (2) 

~ ' to  ~ erR(p) 
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since fl'cr ~ °FR(~r) by the induction hypothesis 

pc  

since °FR(p) c_ R(p) by the induction hypothesis. Hence, r ~ d by definition of " . ' .  
For (3), recall that °FR(O~-> p) = {d ~ Ff I Vc ~ °FR(Or): d.c ~ °FR(p)}. By Lemma 

5.9(3), f l ' s e  Ff since r e  S and S consistent imply f~s~ f~to and S_~ FT. 
If ce  °FR(tr), then tre c (by the induction hypothesis) which implies p ~ f~S.c 

since or--> p e S. By Lemma 5.9(4), :l U consistent such that f~S.c = f~ U. Therefore, 
by the induction hypothesis, f~S.c ~ °FR(p), so we conclude fl'S ~ °FR(~'). 

(4): Let $ = {~'[ D' e B or ~'-~ to}. By Lemma 1.7(2) and Definition 1.9(3), ~y]~[= 
f~'s. S is consistent since B is a restricted basis. Therefore, [y]~[e T'R(¢) for all ~'e S 

by (3). [] 

5.11. Theorem (F-completeness). Let B be restricted and ~'eRT. B ~  ~ 'M~ 
B F -R ~M. 

Proof 

B ~ cM =~ ~ f ,  ~r~, ~R ~ ~'M 

f 
=~ B~ ~- ~'M 

f 
B ~ ,rM 

R 
B F - ~ ' M  

by Lemma 5.10(4) 

by Definition 2.2(1) 

by Lemma 5.10(2) 

by Definition 1.9(3) 

by Lemma 1.10(2) 

by Theorem 5.5. [] 

Conclusion 

The present paper has not been intended to be a final answer to the problem of 
finding a type system of the intersection type discipline which is complete for the 
F-semantics. We simply propose three natural answers to this problem, i.e., the 
inference systems ~i, ~,, and ~R. 

Lastly, we mention that Hindley [24] has proposed another semantics of types, 
which takes into account the meaning of F <j) _q D for j I> 0 as defined in Definition 
2.5. More precisely, each F °) is the set of elements which represents j-place 
functions, and therefore, Hindley defines the valuation of or1 -*- • • -* %-* ~p for all 
types or1,... ,  % and type variable g, as a subset of F(J): 

T'(crl-* • • ---> %-* '0) 

= {d ~ FCJ)lVcl ~ T'(crl) , . . . ,  Vc~ ~ °F(%): d.c~ . . . . .  c~ ~ T'(~p)}. 
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As noted by Coppo, the problem with this semantics is that also Curry's system 
becomes not sound since, for example, we have t- (~p --> ~) ~ q~ --> d/Ay.y, but clearly, 
[[Ay.y~ F ~2) for all ~R, ~:. The same example shows that typings are not preserved 
by substitution since ~ tp--> tpAy.y, but ~ (¢p--> ~b)--> ¢--> ~bAy.y. 
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