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The Holder inequality [2] can be presented as follows: For every 
positive vector x = (x1, x2, . . . . x,) and y = (y,, y2, . . . . y,) satisfying 

Zj, xf= ;!I Yl= ’ (1) 

and for any real p, q with p > 1 the Holder inequality is 

i$l X;lpy;l% 1, p-‘+q-‘= 1 (2) 

with equality iff 

xi = Yi, i= 1 ) . ..) n. (3) 

The sign of the inequality in (2) is reversed if 0 < p < 1 or p < 0. 
To establish an upper bound c lower than 1 for XI= I ~f’~y,!‘~ in case 

p > 1, and a lower bound c > 1 in case 0 < p < 1 or p < 0, we impose 
additional constraints on the vectors x and y; we will first prove a theorem 
concerning a concave (convex) function. 

Let us denote the increasing rearrangement of a vector x by 
xy = (X(,), X(2)7 ...2 xc,,)) and the decreasing rearrangement by x1 = 
(xcI1, xc2], . . . . xCnl). See C31. 

Our first theorem is as follows. 

THEOREM 1. Let f(x) E C’ be a concave function in 0 < a <x and let the 
vectors 0 < x, 0 < d, and 0 < y satisfy 

1 xi= c di= 1. 
i= I i= 1 
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Let 

xi>&>$>S 

Yi'Yi'Yj'Yj' 

i= 1, . ..) m, j = m + 1, . . . . n; 

then 

(5) 

(6) 

Zf f (x) is convex the inequalities in (6) are reversed. 

When we choose f(x) = xlIp we get the following: 

COROLLARY. Let 0 <x, 0 < y, and 0 <d satisfy conditions (4) and (5). 
Then 

i xf’p y,!“% ‘f df$’ y;$, p > 1 (7) 
i=l ,=l 

and 

To prove Theorem 1 we use the following theorems. 

THEOREM B [l]. Let F(x), G(x), and M(x) be integrable functions over 
a measurable set A. Let 

A, = {x : F(x) < G(x)}, A, = (x : F(x) > G(x)} 

and suppose that 

s 
G(x) dx < F(x) dx 

A s A 

and either of the conditions 

0 G M(x,) 6 M(x,) (8) 

M(x,) G 0 < M(X*) (9) 

is satisfied for every pair x1, x2 of points such that x, E AI, x2 E A,. Then 

j- G(x) M(x) dx d 1 F(x) M(x) dx. (10) 
A A 
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We also need the following definition [3, p. 1501: 
Let G(x, y) have first partial derivatives. If (dG/dx)(x, y) is increasing in 

y, G(x, y) is called L-superadditive. 
We need the following theorem too. 

THEOREM L [3, p. 1561. For all vectors x and y in R” and all n 

i G(x(i,, Y[~J) d i G(-x,, pi) 
,=l I=1 

6 i G(x,j,, Y,i,) iff G(x, y) is L-superadditive. 
i=l 

Proof of Theorem 1. Let us consider the function 

H(t)= i Yif 
(1- t)xi+ tdj 

Ogt<1 
i=l 

y, 
I 

when xi, dj, yi for i= 1, . . . . n are as defined in the theorem. Hence, 

dH(t) = ‘f (di-xi)f((l-t’x’+ tdi dt 

i=l Yi 

= f (di-xj)f’ (l-t)x’+tdi 
i=l Yi 

+ i (+j-xj) f’ 
j=m+l 

It follows from (5) that 

(l-t)xi+rdi~(l-t)xj+td, 

Yi Yj ’ 

O<t<l for i= 1, . . . . m,j=m+ 1, . . . . n. 

f’ is decreasing therefore 

for i= 1, . . . . m, j=m+ 1, . . . . n. 

Let us assume that f’(x) > 0 because otherwise we will replace f(x) by 
g(x) = f(x) + kx, where k is chosen to satisfy g’(x) > 0 in the interval we 
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are interested in, and the inequalities (6) for g(x) generate immediately (6) 
for f(x). 

We will use Theorem B as follows. 
Define 

F(x) = di, i-ldx<i 

G(x) = xi, i-l<x<i 

M(x) =f’ (1- t)xi+ td, 

> Yi ’ 
i-l<x<i for i=l,...,n. 

A,= {x:0dxdm}, A,= {x:m<x<n}. 

Applying Theorem B to these functions and domains we get that 
dH(t)/dt 2 0 and in particular H(0) < H( 1) which means that 

(11) 

Let us now note that when f(x) is concave, the function G(x, y) = yf(x/y) 
is L-superadditive. Hence applying Theorem L we get 

,jI, Yif ($)G!, YCi,f (2). (12) 

Equations (11) and (12) give (6) and Theorem 1 is proven. 1 

The following Theorems 2 and 3 will show us how Theorem 1 can be 
used to derive lower upper bound c < 1 for C’= I x~‘~Y!‘~ when p > 1 and 
higher lower bound c > 1 when 0 < p < 1 or p < 0 when we impose some 
constraints on x and y. In proving these therems we use the following 
theorems: 

THEOREM III [4, p. 1653. Let pl, p2, . . . . p,, be arbitrary real numbers. Zf 
x=x7 and y=yt and if 

i k Pzx,d c PiYi, k = 1, 2, . . . . n - 1 
i= I i=l 

i Pzxi= i PiYi 
i=l i= 1 

then inequality 

,g, Pif(Xi) G i: P,f(Yi) 
,=I 

holds for every concave function j: 
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THEOREM 2. Let d>O and pi> 1, i= 1, . . ..n- 1. Let y>O be a given 
vector satisfying 

yo,<d yci+l,3pjy,,, for i=l,T...,n-1 

,g, yi= 1. (13) 

Suppose that the set A of vectors x > 0 satisfying 

xc,,>4 ++ I) 2 Pix(,) for i= 1, 2, . . . . n- 1 

igl x, = l (14) 

is non-empty. Then there is a vector 0 <d = (d,, . . . . d,,) in A such that 

d, =d 

di=plm,d,+, for i=2 ,..., m 

di = kY(z) f  or i=m+l,...,n 

when m and k satisfy 

L> l-X”=,4 &> dmpm d 

Y(m) 1 -CY= I Y(i) ‘- Y(m+ I) 

The vector 0 < d* defined by 

d:=d 

d? = pipI di*_ , for i=2,...,n-1 

n-l 
d,* = 1 - c di 

r=l 

belongs to A. For these d and d* the following inequalities hold: 

for every x E A and every concave function J: In particular 

< c d;‘“y;$ < 1 when p> 1. (16) 
i= 1 

These inequalities are reversed when 0 < p < 1 or p < 0. 
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Proof. Let us prove first the existence of d. 
Define d’ = (d,‘, . . . . di) by 

d;=d, d,‘+,=p;d; for i= 1, 2, . . . . n- 1. 

Then by (14) 

hence 
n-l 

d;<l- c d;. 
i=l 

Since y(,,<d=d,‘, we have 

1-d; d; 
-<- 
1 -Y(l) Y(l)’ 

Therefore we can determine m ( <n) as the largest natural number m for 
which 

We claim 

1 -X, 4’ _k> dL,+, 

1 - cz 
/- 

1 Y(r) Y(m+ 1) 

In fact, otherwise we have 

contradicting the maximum property of m. These m and k meet the require- 
ment for the definition of d in A. 

It is immediately seen that 

ti>d,>k=n,>xci, 
Y(z) ’ Y(i) Y(j) ‘Y(I) 

for i= 1, . . . . mandj=m+l,...,n. 

With a suitable permutation rr of { 1, 2, . . . . n} such that rrr = i for 
i = 1, 2, . . . . m, we can see that for some m’ (am) 

d d +A2(,,)>,I xc, J 
for 

Yh,) Y(T) Ym,, Y(,, 
i = 1, . . . . m’ and j = m’ + 1, . . . . n. 
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Therefore (4) and (5) satisfied for (xc,!), . . . . xCz,,), (y(,,,, . . . . y(,,,), and 
(d,,, . . . . d,J. Since yf(x/y) is L-superadditive, we have by Theorem 1 

This proves the right inequalities of (15) and (16). 
The vector d* obviously belongs to A. Since yf(x/y) is L-superadditive, 

Since 

-<X(1+1), di*< di?, ) X(l) i= 1 ) . . . . n - 1 
YCil Yci+ I] Y[il Yet+ 11 

and 
k d,* k 
1 Y[i] G= C di* 
i= 1 1 i=l 

k k 

G 1 x(i)= 1 Y[i] E 
i= I i=l I 

(with equality for k = n) for k = 1, 2, . . . . n, inequality 

follows immediately from Theorem III. This proves the left inequalities of 
(15) and (16). 1 

In a similar way one can prove another example of the use of Theorem 1. 

THEOREM 3. Let q > 0 and let y > 0 be a given vector satisfying 

~(1) < 4 Y(l) d Y(2) -VT ;g, yi= 1. 

Suppose that the set A of vectors x > 0 satisfying 

+,,a4 x(l,~x(,,-% 
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is non-empty. Then there is a vector 0 <d = (d,, . . . . d,) in A such that 

d, =d 

d;=d,+q for i=2 ,..., m 

d,=ky(,, for i=m+l,...,n 

when m and k satisfy 

d+9> 1 -mdi d+v 

1 -c:= I Y(r) 
-k>----. 

Y(m) Y(m+ I) 

The vector 0 < d* defined by 

d:=d 

d,*=d:+rj for i = 2, . . . . n - 1 

n-1 

dX = 1 - 1 d; 
1=1 

belongs to A. For these d and d* the following inequalities hold: 

for every x E A and every concave function f: In particular 

when p > 1. These inequalities are reversed when 0 < p < 1 or p < 0. 
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