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The Holder inequality [2] can be presented as follows: For every
positive vector X = (x;, X5, .., X,) and y=(y,, y,, .., ¥,) satisfying

5= Y yi=1 (1)

1 i=1

IIM:

and for any real p, g with p> 1 the Holder inequality is

Z xll/Pyll/qslg p71+q’1=1 (2)

i=1
with equality iff
xizyi’ l-'-: 1,..., n. (3)

The sign of the inequality in (2) is reversed f 0 < p<1 or p<0.

To establish an upper bound ¢ lower than 1 for 3.7, x!”? y!/¢ in case
p>1, and a lower bound ¢>1 in case O0<p<1 or p<0, we impose
additional constraints on the vectors x and y; we will first prove a theorem
concerning a concave (convex) function.

Let us denote the increasing rearrangement of a vector x by
Xt =(X(), X2y - X)) and the decreasing rearrangement by x =
(X[175 Xp27s w0 Xpa)- Se€ [3].

Our first theorem is as follows.

THEOREM 1. Let f(x)e C' be a concave function in 0 <a < x and let the
vectors 0 <x, 0 <d, and 0 <y satisfy

; d;=1. (4)

1 i=1
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Let
dod x
f—'/—’> 1>ﬁ, i=l.,mj=m+1,.,n (5)
Yo Vi Yy Y

then

St et )

i=1 i=1 i=1 Y
If f(x) is convex the inequalities in (6) are reversed.

When we choose f(x)=x'” we get the following:

CorOLLARY. Let 0<x, 0<y, and 0<d satisfy conditions (4) and (5).
Then

T« eSS dpl p>1 (7)

i=1

and

YoxiPytazy dir i, O<p<lorp<O. (7)

i=1 i=1

To prove Theorem 1 we use the folowing theorems.

THEOREM B [1]. Let F(x), G(x), and M(x) be integrable functions over
a measurable set A. Let

A= {xF(x)<G(x)}, A,={x:F(x)>G(x)}

and suppose that

[ Gt dst F(x) dx

A
and either of the conditions

OSM(Xl)SM(XZ) (8)
M(x,) <0< M(x,) )

is satisfied for every pair x., x, of points such that x,€ A,, x,€ A,. Then

j G(x) M(x) dx sj F(x) M(x) dx. (10)
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We also need the following definition [3, p. 1507:

Let G(x, y) have first partial derivatives. If (0G/dx)(x, y) is increasing in
¥ G(x, y) is called L-superadditive.

We need the following theorem too.

THEOREM L [3, p. 156]. For all vectors x and'y in R" and all n

M=

G(x, y))

1

n

Z G(xu), i) <

i=1 i
<

7

s o0

G(xuy. Yy iff G(x, y) is L-superadditive.
1

Proof of Theorem 1. Let us consider the function

(1=1t)x;+ td,

), 0<r<l
Yi

H()= z v

when x;, d;, y; for i=1, .., n are as defined in the theorem. Hence,

dH() ((1—1) x,+ td,
o -El (di—x) f <—_——‘yi >
= 3 -y p (R ut <)

+. i (dj'—xj)f, (Q;Q;ﬂi)

It follows from (5) that

(1 —t)x,»+tdi>(1 —1)x;+td;
Vi Yi
0«1 for i=1,.,m j=m+1,.., n

£l

[ is decreasing therefore

p ((1 - t)y)j,-+ td,.)

(1 —1t)x;+td;

) for i=1,..mj=m+1,..n
i

sf/<

Let us assume that f’(x)>0 because otherwise we will replace f(x) by
g(x)=f(x)+ kx, where k is chosen to satisfy g’(x)>0 in the interval we
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are interested in, and the inequalities (6) for g(x) generate immediately (6)

for f(x).
We will use Theorem B as foliows.
Define
F(x)=d,, i—I<x<i
G(x)=x,, i—l<x<i
1—18)x,+td,
M(x)=f’<(—L——'>, i—1<x<i for i=1,..,n
Vi
A;={x:0<x<m}, A,={xim<x<nj.

Applying Theorem B to these functions and domains we get that
dH(t)/dt >0 and in particular H(0)< H(1) which means that

1 X; n d,
s (2)< 2 s (%) (1)
igl Vi i§1 Vi
Let us now note that when f(x) is concave, the function G(x, y) = yf (x/y)
is L-superadditive. Hence applying Theorem L we get

S S (%)Si yu>f<d“’>- (12)

i=1 Y

Equations (11) and (12) give (6) and Theorem 1 is proven. ||

The following Theorems 2 and 3 will show us how Theorem 1 can be
used to derive lower upper bound ¢ <1 for 37_, x}”yY4 when p>1 and
higher lower bound ¢>1 when 0 < p<1 or p<0 when we impose some
constraints on x and y. In proving these therems we use the following
theorems:

Tueorem III [4, p. 165]. Let py, p,, ..., P, be arbitrary real numbers. If
X=X; and y=y; and if

H‘M»

k
JARFES Z PiVis k=1,2,.,n—1
1 i=1

Z px;= Z PiVi

i=1 i=1

i

then inequality

Y pfx)< Y pif(y)

i=1 i=1

holds for every concave function f.
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THEOREM 2. Let d>0 and p,=1, i=1,.,n—1. Let y>0 be a given
vector satisfying

Y <d, Yiv 1 Z PV Jor i=12,.,n—1
Y yi=1L (13)

Suppose that the set A of vectors x >0 satisfying

Xy =d, Xiv )= PiXn for i=1,2,..,.n—1
Z x;=1 (14)
i=1
is non-empty. Then there is a vector 0 <d = (d,, .., d,) in A such that
dl :d
d=p,_,d_, for i=2,.,m
di=ky for i=m+1,.,n
when m and k satisfy
d 1->7 d; d
__i> ”11:1 IEkZ mpm.
Yoy 1=27210 Y Yim+1)
The vector 0 < d* defined by
d¥=d
d¥*=p, d*, for i=2,.,n—1
n—1
d¥=1- Z dax

i=1

belongs to A. For these d and d* the following inequalities hold:

“ drx : X “ d;
Z J’[f]f<*‘>< Z yl'f<‘)< Z Y(i)f<“_> (15)
i=1 Yin i=1 Yi i=1 Y
Jor every x € A and every concave function f. In particular
Z d,_*l/pyé/i%g Z x}”’y}/"
i=1 i=1
<Y diPyllv<1 when p>1. (16)

i=1

These inequalities are reversed when 0 < p <1 or p<0.
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Proof. Let us prove first the existence of d.
Define d' = (d/, .., d,)) by

Then by (14)

hence
d,isl—ni] d;
i=1
Since y,,<d=d|, we have
1—d] 4
1‘J’(11)<;(11_>~

Therefore we can determine m (<n) as the largest natural number m for
which

1= d  d,
_—_—<—_

i=1

1= v Yo

We claim
=37 . d!

i=1

k> dl;l+l
=27 v Yim+1)

Il

In fact, otherwise we have
L=3rhtdl dpy
1_27':11}’(:') Y(m+1)’

contradicting the maximum property of m. These m and k meet the require-
ment for the definition of d in A.
It is immediately seen that
ﬂ’l > ,d_’ >k= i >—=
Y Y Yo Yo

for i=1,.,mandj=m+1,..,n

With a suitable permutation 7 of {1,2,..,n} such that n, =i for
i=1,2,.., m, we can see that for some m’ (=m)

X ()

X d d,._
(n;) > (mi) > (m) >
Yy Yy Yy Yy

for i=1,.,m and j=m'+1, .. n
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Therefore (4) and (5) satisfied for (x(n)s - Xz (Vizns o Vimy)» and
(dg,, ... dr,). Since yf(x/y) is L-superadditive, we have by Theorem 1

() E o ()= 2y (G2)

i=1

<% rsin)= 5 vr(5)

This proves the right inequalities of (15) and (16).
The vector d* obviously belongs to A. Since yf (x/y) is L-superadditive,

Srar ()< 500G

dx*
< —=L i=1,.,n—1
Yrn J’[,+1] Yl Yeiv11

Since

*
x(z)<x(1+l) di

and
d *

k

Yri
,; []ym E
k
Z

X = Z )’m
i=1 y[']

(with equality for k=n) for k=1, , n, inequality

2,.
DREE m) £ ()

follows immediately from Theorem III. This proves the left inequalities of
(15) and (16). 1|

In a similar way one can prove another example of the use of Theorem 1.

THEOREM 3. Let >0 and let y >0 be a given vector satisfying

n

Ya)<d YosyYo—n Z i

i=1

Suppose that the set A of vectors x >0 satisfying

Il
-

n
X(1) = d, XX — 1, Z x.=1
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is non-empty. Then there is a vector 0 <d=(d,, .., d,) in A such that
d=d
di=di+n  for i=2,.,m
di=ky. for i=m+1,..,n

when m and k satisfy

d+ 1 —md, d+
'7> mm Ek> n .
Yo 1=2711 b6 Yim+1)

The vector 0 <d* defined by

d¥=d

d*=d¥+n for i=2,.,n—1
n—1

d¥=1- 3 d¥

i=1

belongs to A. For these d and d* the following inequalities hold:

> y[ﬂf(i'i) < ‘21 nf(%) <y ymf<i>

i=1 Y i=1 Y

i=
for every xe A and every concave function f. In particular

n

n n
*1/p,,1/ 1/p ., 1/ 1/p ,1/
zdi py[iﬁgzxipyiqudipy(i)q

i=1 i=1 i=1

when p> 1. These inequalities are reversed when 0 < p<1 or p<0.
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