Note

A Note on Generalizations of Hölder Inequalities via Convex and Concave Functions

S. Abramovich
Department of Mathematics, Connecticut College, New London, Connecticut 06320
Submitted by J. L. Brenner
Rcceived January 4, 1989

The Hölder inequality [2] can be presented as follows: For cvery positive vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}=1 \tag{1}
\end{equation*}
$$

and for any real p, q with $p>1$ the Hölder inequality is

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{1 / p} y_{i}^{1 / q} \leqslant 1, \quad p^{-1}+q^{-1}=1 \tag{2}
\end{equation*}
$$

with equality iff

$$
\begin{equation*}
x_{i}=y_{i}, \quad i=1, \ldots, n . \tag{3}
\end{equation*}
$$

The sign of the inequality in (2) is reversed if $0<p<1$ or $p<0$.
To establish an upper bound c lower than 1 for $\sum_{i=1}^{n} x_{i}^{1 / p} y_{i}^{1 / q}$ in case $p>1$, and a lower bound $c>1$ in case $0<p<1$ or $p<0$, we impose additional constraints on the vectors \mathbf{x} and \mathbf{y}; we will first prove a theorem concerning a concave (convex) function.

Let us denote the increasing rearrangement of a vector x by $\mathbf{x}_{\uparrow}=\left(x_{(1)}, x_{(2)}, \ldots, x_{(n)}\right)$ and the decreasing rearrangement by $\mathbf{x}_{\downarrow}=$ $\left(x_{[1]}, x_{[2]}, \ldots, x_{[n]}\right)$. See [3].

Our first theorem is as follows.

Theorem 1. Let $f(x) \in C^{\prime}$ be a concave function in $0<a \leqslant x$ and let the vectors $0<\mathbf{x}, 0<\mathbf{d}$, and $0<\mathbf{y}$ satisfy

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} d_{i}=1 \tag{4}
\end{equation*}
$$

Let

$$
\begin{equation*}
\frac{x_{i}}{y_{i}} \geqslant \frac{d_{i}}{y_{i}} \geqslant \frac{d_{j}}{y_{j}} \geqslant \frac{x_{j}}{y_{j}}, \quad i=1, \ldots, m, j=m+1, \ldots, n \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{i=1}^{n} y_{i} f\left(\frac{x_{i}}{y_{i}}\right) \leqslant \sum_{i=1}^{n} y_{i} f\left(\frac{d_{i}}{y_{i}}\right) \leqslant \sum_{i=1}^{n} y_{(i)} f\left(\frac{d_{(i)}}{y_{(i)}}\right) \tag{6}
\end{equation*}
$$

If $f(x)$ is convex the inequalities in (6) are reversed.
When we choose $f(x)=x^{1 / p}$ we get the following:
Corolifary. Let $0<\mathbf{x}, 0<\mathbf{y}$, and $0<\mathbf{d}$ satisfy conditions (4) and (5). Then

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{1 / p} y_{i}^{1 / q} \leqslant \sum_{i=1}^{n} d_{(i)}^{1 / p} y_{(i)}^{1 / q}, \quad p>1 \tag{7}
\end{equation*}
$$

and

$$
\sum_{i=1}^{n} x_{i}^{1 / p} y_{i}^{1 / q} \geqslant \sum_{i=1}^{n} d_{(i)}^{1 / p} y_{(i)}^{1 / q}, \quad 0<p<1 \text { or } p<0
$$

To prove Theorem 1 we use the following theorems.
Theorem B [1]. Let $F(x), G(x)$, and $M(x)$ be integrable functions over a measurable set A. Let

$$
A_{1}=\{x: F(x) \leqslant G(x)\}, \quad A_{2}=\{x: F(x)>G(x)\}
$$

and suppose that

$$
\int_{A} G(x) d x \leqslant \int_{A} F(x) d x
$$

and either of the conditions

$$
\begin{align*}
0 & \leqslant M\left(x_{1}\right) \leqslant M\left(x_{2}\right) \tag{8}\\
M\left(x_{1}\right) & \leqslant 0 \leqslant M\left(x_{2}\right) \tag{9}
\end{align*}
$$

is satisfied for every pair x_{1}, x_{2} of points such that $x_{1} \in A_{1}, x_{2} \in A_{2}$. Then

$$
\begin{equation*}
\int_{A} G(x) M(x) d x \leqslant \int_{A} F(x) M(x) d x \tag{10}
\end{equation*}
$$

We also need the following definition [3, p. 150]:
Let $G(x, y)$ have first partial derivatives. If $(\partial G / \partial x)(x, y)$ is increasing in $y, G(x, y)$ is called L-superadditive.

We need the following theorem too.
ThEOREM L [3, p. 156]. For all vectors \mathbf{x} and \mathbf{y} in R^{n} and all n

$$
\begin{aligned}
\sum_{i=1}^{n} G\left(x_{(i)}, y_{[i]}\right) & \leqslant \sum_{i=1}^{n} G\left(x_{i}, y_{i}\right) \\
& \leqslant \sum_{i=1}^{n} G\left(x_{(i)}, y_{(i)}\right) \quad \text { iff } G(x, y) \text { is } L \text {-superadditive. }
\end{aligned}
$$

Proof of Theorem 1. Let us consider the function

$$
H(t)=\sum_{i=1}^{n} y_{i} f\left(\frac{(1-t) x_{i}+t d_{i}}{y_{i}}\right), \quad 0 \leqslant t \leqslant 1
$$

when x_{i}, d_{i}, y_{i} for $i=1, \ldots, n$ are as defined in the theorem. Hence,

$$
\begin{aligned}
\frac{d H(t)}{d t}= & \sum_{i=1}^{n}\left(d_{i}-x_{i}\right) f^{\prime}\left(\frac{(1-t) x_{i}+t d_{i}}{y_{i}}\right) \\
= & \sum_{i=1}^{m}\left(d_{i}-x_{i}\right) f^{\prime}\left(\frac{(1-t) x_{i}+t d_{i}}{y_{i}}\right) \\
& +\sum_{j=m+1}^{n}\left(d_{j}-x_{j}\right) f^{\prime}\left(\frac{(1-t) x_{j}+t d_{j}}{y_{j}}\right)
\end{aligned}
$$

It follows from (5) that

$$
\frac{(1-t) x_{i}+t d_{i}}{y_{i}} \geqslant \frac{(1-t) x_{j}+t d_{j}}{y_{j}}, \quad \begin{array}{r}
0 \leqslant t \leqslant 1 \quad \text { for } \quad i=1, \ldots, m, j=m+1, \ldots, n .
\end{array}
$$

f^{\prime} is decreasing therefore

$$
\begin{aligned}
& f^{\prime}\left(\frac{(1-t) x_{i}+t d_{i}}{y_{i}}\right) \\
& \quad \leqslant f^{\prime}\left(\frac{(1-t) x_{j}+t d_{j}}{y_{j}}\right) \quad \text { for } \quad i=1, \ldots, m, j=m+1, \ldots, n .
\end{aligned}
$$

Let us assume that $f^{\prime}(x)>0$ because otherwise we will replace $f(x)$ by $g(x)=f(x)+k x$, where k is chosen to satisfy $g^{\prime}(x)>0$ in the interval we
are interested in, and the inequalities (6) for $g(x)$ generate immediately (6) for $f(x)$.

We will use Theorem B as follows.
Define

$$
\begin{aligned}
F(x)=d_{i}, & i-1 \leqslant x<i \\
G(x)=x_{i}, & i-1 \leqslant x<i \\
M(x)=f^{\prime}\left(\frac{(1-t) x_{i}+t d_{i}}{y_{i}}\right), & i-1 \leqslant x<i \quad \text { for } \quad i=1, \ldots, n . \\
A_{1}=\{x: 0 \leqslant x \leqslant m\}, & A_{2}=\{x: m<x \leqslant n\} .
\end{aligned}
$$

Applying Theorem B to these functions and domains we get that $d H(t) / d t \geqslant 0$ and in particular $\dot{H}(0) \leqslant H(1)$ which means that

$$
\begin{equation*}
\sum_{i=1}^{n} y_{i} f\left(\frac{x_{i}}{y_{i}}\right) \leqslant \sum_{i=1}^{n} y_{i} f\left(\frac{d_{i}}{y_{i}}\right) \tag{11}
\end{equation*}
$$

Let us now note that when $f(x)$ is concave, the function $G(x, y)=y f(x / y)$ is L-superadditive. Hence applying Theorem L we get

$$
\begin{equation*}
\sum_{i=1}^{n} y_{i} f\left(\frac{d_{i}}{y_{i}}\right) \leqslant \sum_{i=1}^{n} y_{(i)} f\left(\frac{d_{(i)}}{y_{(i)}}\right) \tag{12}
\end{equation*}
$$

Equations (11) and (12) give (6) and Theorem 1 is proven.
The following Theorems 2 and 3 will show us how Theorem 1 can be used to derive lower upper bound $c<1$ for $\sum_{i=1}^{n} x_{i}^{1 / p} y_{i}^{1 / q}$ when $p>1$ and higher lower bound $c>1$ when $0<p<1$ or $p<0$ when we impose some constraints on \mathbf{x} and \mathbf{y}. In proving these therems we use the following theorems:

Theorem III [4, p. 165]. Let $p_{1}, p_{2}, \ldots, p_{n}$ be arbitrary real numbers. If $\mathbf{x}=\mathbf{x}_{\uparrow}$ and $\mathbf{y}=\mathbf{y}_{\uparrow}$ and if

$$
\begin{aligned}
& \sum_{i=1}^{k} p_{i} x_{i} \leqslant \sum_{i=1}^{k} p_{i} y_{i}, \quad k=1,2, \ldots, n-1 \\
& \sum_{i=1}^{n} p_{i} x_{i}=\sum_{i=1}^{n} p_{i} y_{i}
\end{aligned}
$$

then inequality

$$
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \leqslant \sum_{i=1}^{n} p_{i} f\left(y_{i}\right)
$$

holds for every concave function f.

Theorem 2. Let $d>0$ and $p_{i} \geqslant 1, i=1, \ldots, n-1$. Let $\mathbf{y}>0$ be a given vector satisfying

$$
\begin{gather*}
y_{(1)}<d, \quad y_{(i+1)} \geqslant p_{i} y_{(i)} \quad \text { for } \quad i=1,2, \ldots, n-1 \\
\sum_{i=1}^{n} y_{i}=1 \tag{13}
\end{gather*}
$$

Suppose that the set A of vectors $\mathbf{x}>0$ satisfying

$$
\begin{gather*}
x_{(1)} \geqslant d, \quad x_{(i+1)} \geqslant p_{i} x_{(i)} \quad \text { for } \quad i=1,2, \ldots, n-1 \\
\sum_{i=1}^{n} x_{i}=1 \tag{14}
\end{gather*}
$$

is non-empty. Then there is a vector $0<\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$ in A such that

$$
\begin{array}{ll}
d_{1}=d & \\
d_{i}=p_{i-1} d_{i-1} & \text { for } \quad i=2, \ldots, m \\
d_{i}=k y_{(i)} & \text { for } \quad i=m+1, \ldots, n
\end{array}
$$

when m and k satisfy

$$
\frac{d_{m}}{y_{(m)}}>\frac{1-\sum_{i=1}^{m} d_{i}}{1-\sum_{i=1}^{m} y_{(i)}} \equiv k \geqslant \frac{d_{m} p_{m}}{y_{(m+1)}} .
$$

The vector $0<\mathbf{d}^{*}$ defined by

$$
\begin{aligned}
& d_{1}^{*}=d \\
& d_{i}^{*}=p_{i-1} d_{i-1}^{*} \quad \text { for } \quad i=2, \ldots, n-1 \\
& d_{n}^{*}=1-\sum_{i=1}^{n-1} d_{i}^{*}
\end{aligned}
$$

belongs to A. For these \mathbf{d} and \mathbf{d}^{*} the following inequalities hold:

$$
\begin{equation*}
\sum_{i=1}^{n} y_{[i]} f\left(\frac{d_{i}^{*}}{y_{[i]}}\right) \leqslant \sum_{i=1}^{n} y_{i} f\left(\frac{x_{i}}{y_{i}}\right) \leqslant \sum_{i=1}^{n} y_{(i)} f\left(\frac{d_{i}}{y_{(i)}}\right) \tag{15}
\end{equation*}
$$

for every $\mathbf{x} \in A$ and every concave function f. In particular

$$
\begin{align*}
\sum_{i=1}^{n} d_{i}^{* 1 / p} y_{[i]}^{1 / q} & \leqslant \sum_{i=1}^{n} x_{i}^{1 / p} y_{i}^{1 / q} \\
& \leqslant \sum_{i=1}^{n} d_{i}^{1 / p} y_{(i)}^{1 / q}<1 \quad \text { when } \quad p>1 \tag{16}
\end{align*}
$$

These inequalities are reversed when $0<p<1$ or $p<0$.

Proof. Let us prove first the existence of \mathbf{d}.
Define $\mathbf{d}^{\prime}=\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ by

$$
d_{1}^{\prime}=d, \quad d_{i+1}^{\prime}=p_{i} d_{i}^{\prime} \quad \text { for } \quad i=1,2, \ldots, n-1 .
$$

Then by (14)

$$
\sum_{i=1}^{n} d_{i}^{\prime} \leqslant \sum_{i=1}^{n} x_{i}=1
$$

hence

$$
d_{n}^{\prime} \leqslant 1-\sum_{i=1}^{n-1} d_{i}^{\prime} .
$$

Since $y_{(1)}<d=d_{1}^{\prime}$, we have

$$
\frac{1-d_{1}^{\prime}}{1-y_{(1)}}<\frac{d_{1}^{\prime}}{y_{(1)}} .
$$

Therefore we can determine $m(<n)$ as the largest natural number m for which

$$
\frac{1-\sum_{i=1}^{m} d_{i}^{\prime}}{1-\sum_{i=1}^{m} y_{(i)}}<\frac{d_{m}^{\prime}}{y_{(m)}} .
$$

We claim

$$
\frac{1-\sum_{i=1}^{m} d_{i}^{\prime}}{1-\sum_{i=1}^{m} y_{(i)}} \equiv k \geqslant \frac{d_{m+1}^{\prime}}{y_{(m+1)}^{\prime}} .
$$

In fact, otherwise we have

$$
\frac{1-\sum_{i=1}^{m+1} d_{1}^{\prime}}{1-\sum_{i=1}^{m+1} y_{(i)}}<\frac{d_{m+1}^{\prime}}{y_{(m+1)}^{\prime}}
$$

contradicting the maximum property of m. These m and k meet the requirement for the definition of \mathbf{d} in A.

It is immediately seen that

$$
\frac{x_{(i)}}{y_{(i)}} \geqslant \frac{d_{i}}{y_{(i)}}>k=\frac{d_{j}}{y_{(j)}} \geqslant \frac{x_{(j)}}{y_{(j)}} \quad \text { for } \quad i=1, \ldots, m \text { and } j=m+1, \ldots, n .
$$

With a suitable permutation π of $\{1,2, \ldots, n\}$ such that $\pi_{1}=i$ for $i=1,2, \ldots, m$, we can see that for some $m^{\prime}(\geqslant m)$

$$
\frac{x_{\left(\pi_{i}\right)}}{y_{\left(\pi_{i}\right)}} \geqslant \frac{d_{\left(\pi_{i}\right)}}{y_{\left(\pi_{i}\right)}} \geqslant \frac{d_{\left(\pi_{j}\right)}}{y_{\left(\pi_{j}\right)}} \geqslant \frac{x_{\left(\pi_{j}\right)}}{y_{\left(\pi_{j}\right)}} \quad \text { for } \quad i=1, \ldots, m^{\prime} \text { and } j=m^{\prime}+1, \ldots, n .
$$

Therefore (4) and (5) satisfied for $\left(x_{\left(\pi_{i}\right)}, \ldots, x_{\left(\pi_{n}\right)}\right),\left(y_{\left(\pi_{i}\right)}, \ldots, y_{\left(\pi_{n}\right)}\right)$, and $\left(d_{\pi_{i}}, \ldots, d_{\pi_{n}}\right)$. Since $y f(x / y)$ is L-superadditive, we have by Theorem 1

$$
\begin{aligned}
\sum_{i=1}^{n} y_{i} f\left(\frac{x_{i}}{y_{i}}\right) & \leqslant \sum_{i=1}^{n} y_{(i)} f\left(\frac{x_{(i)}}{y_{(i)}}\right)=\sum_{i=1}^{n} y_{\left(\pi_{i}\right)} f\left(\frac{x_{\left(\pi_{i}\right)}}{y_{\left(\pi_{i}\right)}}\right) \\
& \leqslant \sum_{i=1}^{n} y_{\left(\pi_{i}\right)} f\left(\frac{d_{\pi_{i}}}{y_{\left(\pi_{i}\right)}}\right)=\sum_{i=1}^{n} y_{(i)} f\left(\frac{d_{i}}{y_{(i)}}\right) .
\end{aligned}
$$

This proves the right inequalities of (15) and (16).
The vector \mathbf{d}^{*} obviously belongs to A. Since $y f(x / y)$ is L-superadditive,

$$
\sum_{i=1}^{n} y_{[i]} f\left(\frac{x_{(i)}}{y_{[i]}}\right) \leqslant \sum_{i=1}^{n} y_{i} f\left(\frac{x_{i}}{y_{i}}\right) .
$$

Since

$$
\frac{x_{(i)}}{y_{[i]}} \leqslant \frac{x_{(i+1)}}{y_{[i+1]}}, \quad \frac{d_{i}^{*}}{y_{[i]}} \leqslant \frac{d_{i+1}^{*}}{y_{[i+1]}}, \quad i=1, \ldots, n-1
$$

and

$$
\begin{aligned}
\sum_{i=1}^{k} y_{[i]} \frac{d_{i}^{*}}{y_{[i]}} & =\sum_{i=1}^{k} d_{i}^{*} \\
& \leqslant \sum_{i=1}^{k} x_{(i)}=\sum_{i=1}^{k} y_{[i]} \frac{x_{(i)}}{y_{[i]}}
\end{aligned}
$$

(with equality for $k=n$) for $k=1,2, \ldots, n$, inequality

$$
\sum_{i=1}^{n} y_{[i]} f\left(\frac{d_{i}^{*}}{y_{[i]}}\right) \leqslant \sum_{i=1}^{n} y_{[i]} f\left(\frac{x_{(i)}}{y_{[i]}}\right)
$$

follows immediately from Theorem III. This proves the left inequalities of (15) and (16).

In a similar way one can prove another example of the use of Theorem 1.
Theorem 3. Let $\eta>0$ and let $\mathbf{y}>0$ be a given vector satisfying

$$
y_{(1)}<d, \quad y_{(1)} \leqslant y_{(2)}-\eta, \quad \sum_{i=1}^{n} y_{i}=1 .
$$

Suppose that the set A of vectors $\mathbf{x}>0$ satisfying

$$
x_{(1)} \geqslant d, \quad x_{(1)} \leqslant x_{(2)}-\eta, \quad \sum_{i=1}^{n} x_{i}=1
$$

is non-empty. Then there is a vector $0<\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$ in A such that

$$
\begin{array}{lll}
d_{1}=d & & \\
d_{i}=d_{1}+\eta & \text { for } & i=2, \ldots, m \\
d_{i}=k y_{(i)} & \text { for } & i=m+1, \ldots, n
\end{array}
$$

when m and k satisfy

$$
\frac{d+\eta}{y_{(m)}}>\frac{1-m d_{i}}{1-\sum_{i=1}^{m} y_{(i)}} \equiv k \geqslant \frac{d+\eta}{y_{(m+1)}} .
$$

The vector $0<\mathbf{d}^{*}$ defined by

$$
\begin{aligned}
& d_{1}^{*}=d \\
& d_{i}^{*}=d_{1}^{*}+\eta \quad \text { for } \quad i=2, \ldots, n-1 \\
& d_{n}^{*}=1-\sum_{i=1}^{n-1} d_{i}^{*}
\end{aligned}
$$

belongs to A. For these \mathbf{d} and \mathbf{d}^{*} the following inequalities hold:

$$
\sum_{i=1}^{n} y_{[i]} f\left(\frac{d_{i}^{*}}{y_{[i]}}\right) \leqslant \sum_{i=1}^{n} y_{i} f\left(\frac{x_{i}}{y_{i}}\right) \leqslant \sum_{i=1}^{n} y_{(i)} f\left(\frac{d_{i}}{y_{(i)}}\right)
$$

for every $\mathbf{x} \in A$ and every concave function f. In particular

$$
\sum_{i=1}^{n} d_{i}^{* 1 / p} y_{[i]}^{1 / q} \leqslant \sum_{i=1}^{n} x_{i}^{1 / p} y_{i}^{1 / q} \leqslant \sum_{i=1}^{n} d_{i}^{1 / p} y_{(i)}^{1 / q}
$$

when $p>1$. These inequalities are reversed when $0<p<1$ or $p<0$.

References

1. P. R. Beesack, A note on integral inequalities, Proc. Amer. Math. Sac. 8 (1957), 875-879.
2. G. H. Hardy, J. E. Littlewood, and G. Pólya, "Inequalities," Cambridge Univ. Press, Cambridge, 1964.
3. A. W. Marshal and I. Olkin, "Inequalities: Theory of Majorization and Its Applications," Academic Press, New York, 1979.
4. D. S. Mitrinović, "Analytic Inequalities," Springer-Verlag, New York/Berlin, 1970.
