JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 152, 296-303 (1990)

Note

A Note on Generalizations of Hölder Inequalities via Convex and Concave Functions

S. Abramovich

Department of Mathematics, Connecticut College, New London, Connecticut 06320

Submitted by J. L. Brenner

Received January 4, 1989

The Hölder inequality [2] can be presented as follows: For every positive vector $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $\mathbf{y} = (y_1, y_2, ..., y_n)$ satisfying

$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i = 1$$
(1)

and for any real p, q with p > 1 the Hölder inequality is

$$\sum_{i=1}^{n} x_{i}^{1/p} y_{i}^{1/q} \leq 1, \qquad p^{-1} + q^{-1} = 1$$
(2)

with equality iff

$$x_i = y_i, \quad i = 1, ..., n.$$
 (3)

The sign of the inequality in (2) is reversed if 0 or <math>p < 0.

To establish an upper bound c lower than 1 for $\sum_{i=1}^{n} x_i^{1/p} y_i^{1/q}$ in case p > 1, and a lower bound c > 1 in case 0 or <math>p < 0, we impose additional constraints on the vectors x and y; we will first prove a theorem concerning a concave (convex) function.

Let us denote the increasing rearrangement of a vector **x** by $\mathbf{x}_{\uparrow} = (x_{(1)}, x_{(2)}, ..., x_{(n)})$ and the decreasing rearrangement by $\mathbf{x}_{\downarrow} = (x_{[1]}, x_{[2]}, ..., x_{[n]})$. See [3].

Our first theorem is as follows.

THEOREM 1. Let $f(x) \in C'$ be a concave function in $0 < a \le x$ and let the vectors $0 < \mathbf{x}$, $0 < \mathbf{d}$, and $0 < \mathbf{y}$ satisfy

$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} d_i = 1.$$
 (4)

0022-247X/90 \$3.00

Copyright © 1990 by Academic Press, Inc. All rights of reproduction in any form reserved.

Let

$$\frac{x_i}{y_i} \ge \frac{d_i}{y_i} \ge \frac{d_j}{y_j} \ge \frac{x_j}{y_j}, \qquad i = 1, ..., m, j = m + 1, ..., n;$$
(5)

then

$$\sum_{i=1}^{n} y_i f\left(\frac{x_i}{y_i}\right) \leqslant \sum_{i=1}^{n} y_i f\left(\frac{d_i}{y_i}\right) \leqslant \sum_{i=1}^{n} y_{(i)} f\left(\frac{d_{(i)}}{y_{(i)}}\right).$$
(6)

If f(x) is convex the inequalities in (6) are reversed.

When we choose $f(x) = x^{1/p}$ we get the following:

COROLLARY. Let $0 < \mathbf{x}$, $0 < \mathbf{y}$, and $0 < \mathbf{d}$ satisfy conditions (4) and (5). Then

$$\sum_{i=1}^{n} x_{i}^{1/p} y_{i}^{1/q} \leq \sum_{i=1}^{n} d_{(i)}^{1/p} y_{(i)}^{1/q}, \qquad p > 1$$
(7)

and

$$\sum_{i=1}^{n} x_{i}^{1/p} y_{i}^{1/q} \ge \sum_{i=1}^{n} d_{(i)}^{1/p} y_{(i)}^{1/q}, \qquad 0
$$(7')$$$$

To prove Theorem 1 we use the following theorems.

THEOREM B [1]. Let F(x), G(x), and M(x) be integrable functions over a measurable set A. Let

$$A_1 = \{ x : F(x) \leq G(x) \}, \qquad A_2 = \{ x : F(x) > G(x) \}$$

and suppose that

$$\int_{A} G(x) \, dx \leqslant \int_{A} F(x) \, dx$$

and either of the conditions

$$0 \leqslant M(x_1) \leqslant M(x_2) \tag{8}$$

$$M(x_1) \leqslant 0 \leqslant M(x_2) \tag{9}$$

is satisfied for every pair x_1, x_2 of points such that $x_1 \in A_1, x_2 \in A_2$. Then

$$\int_{\mathcal{A}} G(x) M(x) dx \leq \int_{\mathcal{A}} F(x) M(x) dx.$$
(10)

S. ABRAMOVICH

We also need the following definition [3, p. 150]:

Let G(x, y) have first partial derivatives. If $(\partial G/\partial x)(x, y)$ is increasing in y, G(x, y) is called L-superadditive.

We need the following theorem too.

THEOREM L [3, p. 156]. For all vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n and all n

$$\sum_{i=1}^{n} G(x_{(i)}, y_{[i]}) \leq \sum_{i=1}^{n} G(x_i, y_i)$$
$$\leq \sum_{i=1}^{n} G(x_{(i)}, y_{(i)}) \qquad iff G(x, y) \text{ is L-superadditive.}$$

Proof of Theorem 1. Let us consider the function

$$H(t) = \sum_{i=1}^{n} y_i f\left(\frac{(1-t)x_i + td_i}{y_i}\right), \qquad 0 \le t \le 1$$

when x_i, d_i, y_i for i = 1, ..., n are as defined in the theorem. Hence,

$$\frac{dH(t)}{dt} = \sum_{i=1}^{n} (d_i - x_i) f'\left(\frac{(1-t)x_i + td_i}{y_i}\right)$$
$$= \sum_{i=1}^{m} (d_i - x_i) f'\left(\frac{(1-t)x_i + td_i}{y_i}\right)$$
$$+ \sum_{j=m+1}^{n} (d_j - x_j) f'\left(\frac{(1-t)x_j + td_j}{y_j}\right).$$

It follows from (5) that

$$\frac{(1-t)x_i + td_i}{y_i} \ge \frac{(1-t)x_j + td_j}{y_j},$$

 $0 \le t \le 1$ for $i = 1, ..., m, j = m+1, ..., n.$

f' is decreasing therefore

$$f'\left(\frac{(1-t)x_i + td_i}{y_i}\right) \\ \leqslant f'\left(\frac{(1-t)x_j + td_j}{y_j}\right) \quad \text{for} \quad i = 1, ..., m, j = m+1, ..., n.$$

Let us assume that f'(x) > 0 because otherwise we will replace f(x) by g(x) = f(x) + kx, where k is chosen to satisfy g'(x) > 0 in the interval we

are interested in, and the inequalities (6) for g(x) generate immediately (6) for f(x).

We will use Theorem B as follows.

Define

$$F(x) = d_i, \quad i - 1 \le x < i$$

$$G(x) = x_i, \quad i - 1 \le x < i$$

$$M(x) = f'\left(\frac{(1-t)x_i + td_i}{y_i}\right), \quad i - 1 \le x < i \quad \text{for} \quad i = 1, ..., n.$$

$$A_1 = \{x : 0 \le x \le m\}, \quad A_2 = \{x : m < x \le n\}.$$

Applying Theorem B to these functions and domains we get that $dH(t)/dt \ge 0$ and in particular $H(0) \le H(1)$ which means that

$$\sum_{i=1}^{n} y_i f\left(\frac{x_i}{y_i}\right) \leqslant \sum_{i=1}^{n} y_i f\left(\frac{d_i}{y_i}\right).$$
(11)

Let us now note that when f(x) is concave, the function G(x, y) = yf(x/y) is *L*-superadditive. Hence applying Theorem L we get

$$\sum_{i=1}^{n} y_i f\left(\frac{d_i}{y_i}\right) \leqslant \sum_{i=1}^{n} y_{(i)} f\left(\frac{d_{(i)}}{y_{(i)}}\right).$$
(12)

Equations (11) and (12) give (6) and Theorem 1 is proven.

The following Theorems 2 and 3 will show us how Theorem 1 can be used to derive lower upper bound c < 1 for $\sum_{i=1}^{n} x_i^{1/p} y_i^{1/q}$ when p > 1 and higher lower bound c > 1 when 0 or <math>p < 0 when we impose some constraints on x and y. In proving these therems we use the following theorems:

THEOREM III [4, p. 165]. Let $p_1, p_2, ..., p_n$ be arbitrary real numbers. If $\mathbf{x} = \mathbf{x}_{\uparrow}$ and $\mathbf{y} = \mathbf{y}_{\uparrow}$ and if

$$\sum_{i=1}^{k} p_i x_i \leq \sum_{i=1}^{k} p_i y_i, \qquad k = 1, 2, ..., n-1$$
$$\sum_{i=1}^{n} p_i x_i = \sum_{i=1}^{n} p_i y_i$$

then inequality

$$\sum_{i=1}^{n} p_i f(x_i) \leq \sum_{i=1}^{n} p_i f(y_i)$$

holds for every concave function f.

THEOREM 2. Let d > 0 and $p_i \ge 1$, i = 1, ..., n-1. Let y > 0 be a given vector satisfying

$$y_{(1)} < d, \qquad y_{(i+1)} \ge p_i y_{(i)} \quad for \quad i = 1, 2, ..., n-1$$

$$\sum_{i=1}^n y_i = 1. \tag{13}$$

Suppose that the set A of vectors $\mathbf{x} > 0$ satisfying

$$x_{(1)} \ge d, \qquad x_{(i+1)} \ge p_i x_{(i)} \quad for \quad i = 1, 2, ..., n-1$$

$$\sum_{i=1}^n x_i = 1 \tag{14}$$

is non-empty. Then there is a vector $0 < \mathbf{d} = (d_1, ..., d_n)$ in A such that

$$d_1 = d$$

 $d_i = p_{i-1} d_{i-1}$ for $i = 2, ..., m$
 $d_i = ky_{(i)}$ for $i = m + 1, ..., n$

when m and k satisfy

$$\frac{d_m}{y_{(m)}} > \frac{1 - \sum_{i=1}^m d_i}{1 - \sum_{i=1}^m y_{(i)}} \equiv k \ge \frac{d_m p_m}{y_{(m+1)}}.$$

The vector $0 < \mathbf{d^*}$ defined by

$$d_{1}^{*} = d$$

$$d_{i}^{*} = p_{i-1} d_{i-1}^{*} \quad for \quad i = 2, ..., n-1$$

$$d_{n}^{*} = 1 - \sum_{i=1}^{n-1} d_{i}^{*}$$

belongs to A. For these **d** and **d*** the following inequalities hold:

$$\sum_{i=1}^{n} y_{[i]} f\left(\frac{d_i^*}{y_{[i]}}\right) \leqslant \sum_{i=1}^{n} y_i f\left(\frac{x_i}{y_i}\right) \leqslant \sum_{i=1}^{n} y_{(i)} f\left(\frac{d_i}{y_{(i)}}\right)$$
(15)

for every $\mathbf{x} \in A$ and every concave function f. In particular

$$\sum_{i=1}^{n} d_{i}^{*1/p} y_{[i]}^{1/q} \leq \sum_{i=1}^{n} x_{i}^{1/p} y_{i}^{1/q}$$
$$\leq \sum_{i=1}^{n} d_{i}^{1/p} y_{(i)}^{1/q} < 1 \qquad \text{when} \quad p > 1.$$
(16)

These inequalities are reversed when 0 or <math>p < 0.

300

Proof. Let us prove first the existence of **d**. Define $\mathbf{d}' = (d'_1, ..., d'_n)$ by

$$d'_{i} = d,$$
 $d'_{i+1} = p_{i} d'_{i}$ for $i = 1, 2, ..., n-1.$

Then by (14)

$$\sum_{i=1}^n d_i' \leqslant \sum_{i=1}^n x_i = 1,$$

hence

$$d'_n \leq 1 - \sum_{i=1}^{n-1} d'_i.$$

Since $y_{(1)} < d = d'_1$, we have

$$\frac{1-d_1'}{1-y_{(1)}} < \frac{d_1'}{y_{(1)}}.$$

Therefore we can determine m (< n) as the largest natural number m for which

$$\frac{1-\sum_{i=1}^{m}d'_{i}}{1-\sum_{i=1}^{m}y_{(i)}} < \frac{d'_{m}}{y_{(m)}}.$$

We claim

$$\frac{1 - \sum_{i=1}^{m} d'_i}{1 - \sum_{i=1}^{m} y_{(i)}} \equiv k \ge \frac{d'_{m+1}}{y_{(m+1)}}.$$

In fact, otherwise we have

$$-\frac{1-\sum_{i=1}^{m+1}d'_i}{1-\sum_{i=1}^{m+1}y_{(i)}} < \frac{d'_{m+1}}{y_{(m+1)}},$$

contradicting the maximum property of m. These m and k meet the requirement for the definition of **d** in A.

It is immediately seen that

$$\frac{x_{(i)}}{y_{(i)}} \ge \frac{d_i}{y_{(i)}} > k = \frac{d_j}{y_{(j)}} \ge \frac{x_{(j)}}{y_{(j)}} \quad \text{for} \quad i = 1, ..., m \text{ and } j = m + 1, ..., n.$$

With a suitable permutation π of $\{1, 2, ..., n\}$ such that $\pi_1 = i$ for i = 1, 2, ..., m, we can see that for some $m' (\ge m)$

$$\frac{x_{(\pi_i)}}{y_{(\pi_i)}} \ge \frac{d_{(\pi_i)}}{y_{(\pi_i)}} \ge \frac{d_{(\pi_j)}}{y_{(\pi_j)}} \ge \frac{x_{(\pi_j)}}{y_{(\pi_j)}} \quad \text{for} \quad i = 1, ..., m' \text{ and } j = m' + 1, ..., n.$$

S. ABRAMOVICH

Therefore (4) and (5) satisfied for $(x_{(\pi_i)}, ..., x_{(\pi_n)})$, $(y_{(\pi_i)}, ..., y_{(\pi_n)})$, and $(d_{\pi_i}, ..., d_{\pi_n})$. Since yf(x/y) is L-superadditive, we have by Theorem 1

$$\sum_{i=1}^{n} y_i f\left(\frac{x_i}{y_i}\right) \leq \sum_{i=1}^{n} y_{(i)} f\left(\frac{x_{(i)}}{y_{(i)}}\right) = \sum_{i=1}^{n} y_{(\pi_i)} f\left(\frac{x_{(\pi_i)}}{y_{(\pi_i)}}\right)$$
$$\leq \sum_{i=1}^{n} y_{(\pi_i)} f\left(\frac{d_{\pi_i}}{y_{(\pi_i)}}\right) = \sum_{i=1}^{n} y_{(i)} f\left(\frac{d_i}{y_{(i)}}\right).$$

This proves the right inequalities of (15) and (16).

The vector **d**^{*} obviously belongs to A. Since yf(x/y) is L-superadditive,

$$\sum_{i=1}^{n} y_{[i]} f\left(\frac{x_{(i)}}{y_{[i]}}\right) \leq \sum_{i=1}^{n} y_i f\left(\frac{x_i}{y_i}\right).$$

Since

$$\frac{x_{(i)}}{y_{[i]}} \leqslant \frac{x_{(i+1)}}{y_{[i+1]}}, \qquad \frac{d_i^*}{y_{[i]}} \leqslant \frac{d_{i+1}^*}{y_{[i+1]}}, \qquad i = 1, ..., n-1$$

and

$$\sum_{i=1}^{k} y_{[i]} \frac{d_{i}^{*}}{y_{[i]}} = \sum_{i=1}^{k} d_{i}^{*}$$
$$\leq \sum_{i=1}^{k} x_{(i)} = \sum_{i=1}^{k} y_{[i]} \frac{x_{(i)}}{y_{[i]}}$$

(with equality for k = n) for k = 1, 2, ..., n, inequality

$$\sum_{i=1}^{n} y_{[i]} f\left(\frac{d_i^*}{y_{[i]}}\right) \leq \sum_{i=1}^{n} y_{[i]} f\left(\frac{x_{(i)}}{y_{[i]}}\right)$$

follows immediately from Theorem III. This proves the left inequalities of (15) and (16).

In a similar way one can prove another example of the use of Theorem 1.

THEOREM 3. Let $\eta > 0$ and let $\mathbf{y} > 0$ be a given vector satisfying

$$y_{(1)} < d, \qquad y_{(1)} \le y_{(2)} - \eta, \qquad \sum_{i=1}^{n} y_i = 1.$$

Suppose that the set A of vectors $\mathbf{x} > 0$ satisfying

$$x_{(1)} \ge d, \qquad x_{(1)} \le x_{(2)} - \eta, \qquad \sum_{i=1}^{n} x_i = 1$$

is non-empty. Then there is a vector $0 < \mathbf{d} = (d_1, ..., d_n)$ in A such that

$$\begin{array}{ll} d_1 = d \\ \\ d_i = d_1 + \eta & for \quad i = 2, ..., m \\ \\ d_i = k y_{(i)} & for \quad i = m+1, ..., n \end{array}$$

when m and k satisfy

$$\frac{d+\eta}{y_{(m)}} > \frac{1-md_i}{1-\sum_{i=1}^m y_{(i)}} \equiv k \ge \frac{d+\eta}{y_{(m+1)}}.$$

The vector $0 < \mathbf{d^*}$ defined by

$$d_{1}^{*} = d$$

$$d_{i}^{*} = d_{1}^{*} + \eta \quad for \quad i = 2, ..., n-1$$

$$d_{n}^{*} = 1 - \sum_{i=1}^{n-1} d_{i}^{*}$$

belongs to A. For these **d** and **d*** the following inequalities hold:

$$\sum_{i=1}^{n} y_{[i]} f\left(\frac{d_i^*}{y_{[i]}}\right) \leq \sum_{i=1}^{n} y_i f\left(\frac{x_i}{y_i}\right) \leq \sum_{i=1}^{n} y_{(i)} f\left(\frac{d_i}{y_{(i)}}\right)$$

for every $\mathbf{x} \in A$ and every concave function f. In particular

$$\sum_{i=1}^{n} d_{i}^{*1/p} y_{[i]}^{1/q} \leq \sum_{i=1}^{n} x_{i}^{1/p} y_{i}^{1/q} \leq \sum_{i=1}^{n} d_{i}^{1/p} y_{(i)}^{1/q}$$

when p > 1. These inequalities are reversed when 0 or <math>p < 0.

References

- 1. P. R. BEESACK, A note on integral inequalities, Proc. Amer. Math. Soc. 8 (1957), 875-879.
- 2. G. H. HARDY, J. E. LITTLEWOOD, AND G. PÓLYA, "Inequalities," Cambridge Univ. Press, Cambridge, 1964.
- A. W. MARSHAL AND I. OLKIN, "Inequalities: Theory of Majorization and Its Applications," Academic Press, New York, 1979.
- 4. D. S. MITRINOVIĆ, "Analytic Inequalities," Springer-Verlag, New York/Berlin, 1970.