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Abstract

In the first five sections, we deal with the class of probability measures with asymptotically periodic
Verblunsky coefficients of p-type bounded variation. The goal is to investigate the perturbation of the
Verblunsky coefficients when we add a pure point to a gap of the essential spectrum.

For the asymptotically constant case, we give an asymptotic formula for the orthonormal polynomials
in the gap, prove that the perturbation term converges and show the limit explicitly. Furthermore, we prove
that the perturbation is of bounded variation. Then we generalize the method to the asymptotically periodic
case and prove similar results.

In the last two sections, we show that the bounded variation condition can be removed if a certain
symmetry condition is satisfied. Finally, we consider the special case when the Verblunsky coefficients are
real with the rate of convergence being cn . We prove that the rate of convergence of the perturbation is in
fact O(cn). In particular, the special case cn = 1/n will serve as a counterexample to the possibility that the
convergence of the perturbed Verblunsky coefficients should be exponentially fast when a point is added to
a gap.
c© 2010 Published by Elsevier Inc.
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1. Introduction

1.1. Background

Suppose dµ is a probability measure on the unit circle ∂D = {z ∈ C : |z| = 1}. We define an
inner product and a norm on L2(∂D, dµ) respectively as follows:
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〈 f, g〉 =
∫
∂D

f (eiθ )g(eiθ )dµ(θ) (1.1)

‖ f ‖dµ =

(∫
∂D
| f (eiθ )|2dµ(θ)

)1/2

. (1.2)

Using the inner product defined above, we can orthogonalize 1, z, z2, . . . to obtain the family
of monic orthogonal polynomials associated with the measure dµ, namely, (Φn(z, dµ))n∈N. We
denote the normalized family as (ϕn(z, dµ))n∈N.

Closely related to Φn(z) is the family of reversed polynomials, defined as Φ∗n (z) = znΦn(1/z).
They obey the well-known Szegő recursion relation

Φn+1(z) = zΦn(z)− αnΦ∗n (z) (1.3)

and αn is known as the n-th Verblunsky coefficient. The Szegő recursion relations for the
normalized families are

ϕn+1(z) = (1− |αn|
2)−1/2(zϕn(z)− αnϕ

∗
n (z)) (1.4)

ϕ∗n+1(z) = (1− |αn|
2)−1/2(ϕ∗n (z)− αnzϕn(z)). (1.5)

These recursion relations will be useful later in this paper. For more on orthogonal polynomi-
als on the unit circle, the reader may refer to [12,26–28,30].

1.2. The point mass problem

We add a point mass ζ = eiω
∈ ∂D with weight 0 < γ < 1 to dµ in the following manner:

dν = (1− γ )dµ+ γ δω. (1.6)

Our goal is to investigate αn(dν).
Remark about notation: From now on, any object without the label (dν) is considered to be

associated with the original measure dµ, unless otherwise stated.
Point mass perturbation has a long history (see the Introduction of [31]). One of the classic

results is the following theorem by Geronimus [12,13]:

Theorem 1.1 (Geronimus). Suppose the probability measure dν is defined as in (1.6). Then

Φn(z, dν) = Φn(z)−
ϕn(z)Kn−1(z, ζ )

(1− γ )γ−1 + Kn−1(ζ, ζ )
(1.7)

where

Kn(z, ζ ) =
n∑

j=0

ϕ j (ζ )ϕ j (z) (1.8)

and all objects without the label (dν) are associated with the measure dµ.

Since Φn(0) = −αn−1, by putting z = 0 into (1.7) one gets a formula relating the Verblunsky
coefficients of dµ and dν.

Formula (1.7) was rediscovered by Nevai [18] for OPRL and by Cachafeiro–Marcellán [4–6]
for OPUC. For general measures on C, the formula is from Cachafeiro–Marcellán [7,8]. Using a
totally different approach, Simon [28] found the following formula for OPUC:
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αn(dν) = αn − q−1
n γ ϕn+1(ζ )

(
n∑

j=0

α j−1
‖Φn+1‖

‖Φ j‖
ϕ j (ζ )

)
(1.9)

where qn = (1− γ )+ γ Kn(ζ, ζ );α−1 = −1.
In [31,32], we applied the Christoffel–Darboux formula to (1.9) and proved the following

formula for αn(dν):

αn(dν) = αn(dµ)+∆n(ζ ) (1.10)

where

∆n(ζ ) =
(1− |αn|

2)1/2ϕn+1(ζ )ϕ
∗
n (ζ )

(1− γ )γ−1 + Kn(ζ, ζ )
; Kn(ζ, ζ ) =

n∑
j=0

|ϕ j (ζ )|
2. (1.11)

This prompted us to study the asymptotic behavior of ϕn(z) on ∂D in order to understand the
asymptotics of (1.11).

In [31], we considered the class of probability measures with `2 Verblunsky coefficients of
bounded variation, i.e.,

∞∑
n=0

|αn|
2 <∞ and

∞∑
n=0

|αn − αn+1| <∞. (1.12)

In this paper, we consider the class of measures with asymptotically periodic Verblunsky
coefficients of p-type bounded variation (this term was first introduced in [20]), i.e., given a
periodic sequence βn of period p,

lim
n→∞

(αn − βn) = 0 and
∞∑

n=0

|αn+p − αn| <∞. (1.13)

First, we handle the special case p = 1; then we generalize the method to any p. It is well-
known that any measure satisfying (1.13) has the same essential spectrum as dµβ (the measure
associated with (βn)n∈N) which is supported on a finite number of bands. The reader may refer
to Chapter 11 of [28] for a detailed discussion of periodic Verblunsky coefficients.

1.3. Gaps and periodicity

Before we move on to stating the results, it would be helpful to have a brief discussion about
gaps and periodicity.

By an application of Weyl’s Theorem to the CMV matrix (see Theorem 4.3.5 of [27]), αn → L
implies that dµ has the same essential spectrum as the measure dµ0 with Verblunsky coefficients
αn(dµ0) ≡ L (the measure dµ0 is known to be associated with the Geronimus polynomials).
Besides, it is known that dµ0 is supported on the arc

ΓL = [θ|L|, 2π − θ|L|] (1.14)

where θ|L| = 2 arcsin(|L|), and dµ0 admits at most one single pure point in [−θ|L|, θ|L|]. In other
words, there is a gap GL in the spectrum, with at most one pure point inside. The reader may
refer to Example 1.6.12 of [27] for a detailed discussion.

Note that αn ≡ L can be seen as a periodic sequence of period 1, in fact, there is a
more general result concerning gaps in the spectrum for measures with periodic Verblunsky
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coefficients. The precise statement reads as follows (see Theorem 11.1.2 of [28]): let (βn)n be a
periodic family of Verblunsky coefficients of period p, i.e., βn = βn+p for all n. Let dµβ be the
associated measure. Then {eiθ

: |Tr(Tp(eiθ ))| ≤ 2} is a closed set which is the union of p closed
intervals B1, . . . , Bp (which can only overlap at the endpoints). Let

B =
p⋃

j=1

B j . (1.15)

Moreover, B is the essential support of the a.c. spectrum. In each disjoint open interval on ∂D\B,
dµ has either no support or a single pure point.

As a result, in both cases that we consider, there are gaps in the spectrum and when z ∈ ∂D is
in one of those open gaps, we have |Tr Tp(z)| > 2.

The reader may refer to Chapter 11 of [28] for a detailed discussion of periodic Verblunsky
coefficients.

2. Results

First, we present a new method for computing the asymptotics of ϕn(z) in the gap of the
spectrum when the family (αn)n∈N is asymptotically constant and of bounded variation (see
formulae (4.54) and (4.55)). Applying that to the point mass formula (1.11), we prove the
following result:

Theorem 2.1. Let (αn)n∈N be the Verblunsky coefficients of the probability measure dµ on ∂D
such that

αn → L ∈ D \ {0} (2.1)
∞∑
j=0

|α j+1 − α j | <∞. (2.2)

Let GL be the gap of the essential spectrum (not including the endpoints). We add a pure point
ζ = eiθ

∈ GL to dµ to form dν as in (1.6). Then one of the following is true:
(1) If µ(ζ ) > 0, then the three sequences (|ϕn(ζ )|)n∈N, (∆n(ζ ))n∈N and (αn(dν)−αn(dµ))n∈N

tend to zero exponentially fast.
(2) If µ(ζ ) = 0, then

(a) limn→∞∆n(ζ ) exists, and

∆∞(ζ ) ≡ lim
n→∞

∆n(ζ ) = h(ζ )1/2
[
(ζ − 1)− h(ζ )1/2

2L

]
(2.3)

where
h(ζ ) = (ζ − 1)2 + 4ζ |L|2 (2.4)

and we choose the branch of logarithm such that (1)1/2 = 1.
(b) Furthermore, |∆∞(ζ )+ L| = |L| and

lim
n→ ∞

αn(dν) = Leiω (2.5)

where

cosω =
2 sin2 ( θ

2

)
− |L|2

|L|2
(2.6)

sinω =
2 sin

(
θ
2

)√
|L|2 − sin2 ( θ

2

)
|L|2

. (2.7)
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(c) (∆n(ζ ))n∈N is of bounded variation, i.e.,
∞∑

n=0

|∆n+1(ζ )−∆n(ζ )| <∞. (2.8)

Three remarks about Theorem 2.1:

(i) Since αn → L 6= 0, this measure has the same essential spectrum as the measure dµ0
with Verblunsky coefficients αn(dµ0) ≡ L , which is supported on the arc Γ|L| as defined in
(2.15).

(ii) Case (1) is a special case of Corollary 24.3 of [29], where Simon proved that varying the
weight of an isolated pure point in the gap will result in exponentially small perturbation to
αn(dµ).

(iii) By (2c), adding a pure point to the gap will preserve the bounded variation property of
(αn)n∈N. Hence, we can add a finite number of points inductively and generalize the result
to finitely many pure points in the gap.

Next, we will generalize the technique developed in the proof of Theorem 2.1 and prove the
following result about measures with asymptotically periodic Verblunsky coefficients:

Theorem 2.2. Let (βn)n∈N be a periodic family of Verblunsky coefficients of period p, i.e., βn =

βn+p for all n, and let dµβ be the measure associated with it. Let Γβ be the union of open arcs
which are the interiors of the bands that form ess supp(dµβ). Suppose the measure dµ has
Verblunsky coefficients (αn)n∈N that are asymptotically p-periodic of bounded variation, i.e.,

lim
n→∞

(αn − βn) = 0, (2.9)

∞∑
n=0

|αn+p − αn| <∞. (2.10)

Now we add a pure point ζ ∈ ∂D \ Γ β to dµ as in (1.10). Then one of the following is true:

(1) µ(ζ ) > 0, then for each fixed 0 ≤ j < p, limk→∞∆kp+ j (ζ ) = 0 exponentially fast.
(2) µ(ζ ) = 0, then for each fixed 0 ≤ j < p, limk→∞∆kp+ j (ζ ) exists and

∞∑
k=0

|∆(k+1)p+ j (ζ )−∆kp+ j (ζ )| <∞. (2.11)

Remark about Theorem 2.2: It is worth noting that if one adds a pure point ζ as in (1.10) to the
support Γβ , then limn→∞∆n(ζ ) = 0. This result was proven by Peherstorfer–Steinbauer (see
Theorem 3 of [20]).

Then we will prove the following result where (αn)n∈N is not necessarily of bounded
variation:

Theorem 2.3. Let ζ ∈ ∂D and µ(ζ ) = 0. Suppose limn→∞ ζ
nαn = L. Then

lim
n→∞

ζ n∆n(ζ ) = −2L . (2.12)

As a result,

lim
n→∞

ζ nαn(dν) = − lim
n→∞

ζ nαn(dµ). (2.13)
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Finally, we use Theorem 2.3 to prove Corollary 2.1 below to illustrate the non-exponential
rate of convergence of ∆n(ζ ) towards its limit. One might have guessed that the convergence
should be exponentially fast, but we will show that this is not the case!

Corollary 2.1. Let αn = L + cn , where L < 0, cn ∈ R and cn → 0. Then

∆n(1) = −2L − 2cn + o (cn) . (2.14)

In particular, when cn = 1/n, we have the rate of convergence being O(1/n) which is not
exponential.

The reader may also refer to [33] in which Wong demonstrated that point perturbation of a
certain class of measures on the real line would result in non-exponential perturbation of the
recurrence coefficients.

There are many papers about measures supported on an interval/arc, and about the perturba-
tion of orthogonal polynomials with periodic recursion coefficients. For example, the reader may
refer to [3,11,19,21,2,1,10].

Bello–López [3] extended the well-known work of Rakhmanov [22–24] and proved the
following: let 0 < a < 1 and θa = 2 arcsin(a). If dµ is supported on the arc

Γa = {ζ ∈ ∂D : | arg(ζ )| > θa} (2.15)

such that the absolutely continuous part w(θ) > 0 on Γa , then limn→∞ |αn| = a. Bello–López’s
result is restricted to measures that are absolutely continuous on the arc, and it was later extended
to measures with infinitely many mass points outside the a.c. part of the support (see for
example, [2] and Theorem 13.4.4 of [28]). However, unlike Theorem 2.1, these results do not
tell us whether ∆n(ζ ) approaches a single point.

In [19], Peherstorfer–Steinbauer considered the situation where dµ is an absolutely
continuous measure on supp(dµ) = Γa with the a.c. part w(θ) satisfying the Szegő condition on
Γa , i.e.,∫

Γa

logw(θ)
sin( θ2 )√

cos2(
θ|a|
2 )− cos2( θ2 )

dθ > −∞. (2.16)

They proved that if we add a finite number of pure points to the gap to form the measure to dτ ,
then limn→∞ αn(dτ) exists and the limit has norm |a|. In the Appendix, we are going to work
out an example that demonstrates the existence of a large class of measures with Verblunsky
coefficients αn → L of bounded variation that fail the Szegő condition (2.16).

Given such a result for orthogonal polynomials on the unit circle, one would expect a similar
result for the real line. In [21], Peherstorfer–Yuditskii gave the following result: for any Jacobi
matrix J whose spectrum is a finite gap set with the a.c. part of the spectral measure satisfying
the Szegő condition, then there is a unique Jacobi matrix J∞ in the isospectral torus such that
the orthogonal polynomials of J and J∞ have the same asymptotics away from the spectrum as
n→∞. In particular, this implies that the Jacobi parameters of J converge to the parameters of
J∞ as n→∞.

3. Tools

For the convenience of the reader, a brief discussion of two major tools used in the proofs will
be presented here.
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3.1. The Cesàro–Stolz Theorem

One of the very important tools for the computation of the limit limn→∞∆n(ζ ) is the
Cesàro–Stolz Theorem, which reads as follows:

Theorem 3.1 (Cesàro–Stolz). Let (Γn)n∈N, (Θn)n∈N be two sequences of numbers such that Θn
is strictly increasing and tends to infinity. If the following limit exists:

lim
n→∞

Γn − Γn−1

Θn −Θn−1
(3.1)

then it is equal to limn→∞ Γn/Θn .

The reader may refer to [9] for the proof.

3.2. Kooman’s Theorem

Another very useful tool is an application of Kooman’s Theorem to the family of An(z)’s as
defined in (4.2). Kooman’s Theorem, adopted for our proof, reads as follows:

Theorem 3.2 (Kooman [16,17]). Let A be an `× ` matrix with distinct eigenvalues. Then there
exists ε > 0 and analytic functions U (B) and D(B) defined on Sε = {B : ‖B − A‖ < ε} such
that

(1) B = UB DBU−1
B , DB commutes with A.

(2) UB is invertible for all B ∈ Sε .
(3) UA = 1, DA = A.
(4) By picking a basis such that A is diagonal, we can have all DB diagonal with entries being

the eigenvalues of B.

Remark: Theorem 3.2 basically follows the formulation of Theorem 12.1.7 of [28], except that
in [28] the statement was intended for quasi-unitary matrices. However, the same proof also holds
when A has distinct eigenvalues.

The original Kooman’s Theorem appeared in Theorem 1.3 of [16]. An application of
Kooman’s theorem to orthogonal polynomials was first made by Golinskii–Nevai [14]. They
applied Kooman’s result to the case when αn → 0 and

∑
n ‖An+1 − An‖ < ∞ to prove that

w(θ) > 0 a.e. on ∂D, where w(θ) is the a.c. part of the measure.

4. Proof of Theorem 2.1

The proof of Theorem 2.1 will be divided into many steps. First, we introduce a few objects
and prove a lemma about them (see Lemma 4.2). Using Lemma 4.2, we will prove that
limn→∞∆n(ζ ) exists. Then we compute that limit explicitly and prove that the sequence
(∆n(ζ ))n∈N is of bounded variation.

4.1. The matrix An(ζ ) and its eigenvalues

Recall the Szegő recursion relations (1.4) and (1.5). Observe that they can be expressed in
matrix form as follows:
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ϕn+1(z)
ϕ∗n+1(z)

)
= (1− |αn|

2)−1/2
(

z −αn
−zαn 1

)(
ϕn(z)
ϕ∗n (z)

)
. (4.1)

Let

An(z) = (1− |αn|
2)−1/2

(
z −αn
−zαn 1

)
(4.2)

A∞(z) = (1− |L|2)−1/2
(

z −L
−zL 1

)
. (4.3)

It is known (see Theorem 11.1.2 of [28]) that eiθ
∈ GL if and only if

|TrA∞(eiθ )| = (1− |L|2)−1/22

∣∣∣∣cos
(
θ

2

)∣∣∣∣ > 2 (4.4)

Since ζ is in the gap, A∞ ≡ A∞(ζ ) is hyperbolic, which implies that A∞ has two distinct
eigenvalues λ1 ≡ λ1(ζ ) and λ2 ≡ λ2(ζ ) such that |λ1| > 1 > |λ2| and λ2 = (λ1)

−1 (see Chapter
10.4 of [28] for an introduction to the group U(1, 1), to which A∞(ζ ) belongs).

Let An ≡ An(ζ ). Since An → A∞ and |TrA∞| > 2, for some large N1,

|TrAn| > 2 ∀n ≥ N1. (4.5)

Hence, for all n > N1, An is hyperbolic and has distinct eigenvalues λ1,n and λ2,n such that
|λ1,n| > 1 > |λ2,n| and λ2,n = (λ1,n)

−1.

4.2. An(ζ ) and Kooman’s Theorem

As seen in Section 4.1 above, A∞ is hyperbolic. Hence, it has distinct eigenvalues and we can
apply Kooman’s Theorem (Theorem 3.2). By Kooman’s Theorem, there is an open neighborhood
Sε around A∞ and an integer N2 such that

An ∈ Sε ∀n ≥ N2 (4.6)

and there exist matrices UAn and DAn such that

An = UAn DAn U−1
An
. (4.7)

Perform a change of basis to make A∞ diagonal, i.e., write

A∞ = G D∞ G−1 (4.8)

where

D∞ =

(
λ1 0
0 λ2

)
. (4.9)

By the construction of the function D, DAn is diagonal under this new basis, so there exists a
diagonal matrix

Dn =

(
λ1,n 0

0 λ2,n

)
(4.10)

such that

DAn = G Dn G−1. (4.11)
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Now we define

Gn = UAn G, (4.12)

and by (4.7), we have the following representation of An :

An = Gn Dn G−1
n . (4.13)

4.3. The vector w

Let N be an integer such that

N > max{N1, N2}, (4.14)

where N1 and N2 are defined in (4.5) and (4.6) respectively. Let w be the vector such that

w =

(
w1
w2

)
= DN G−1

N AN−1 AN−2 · · · A0

(
1
1

)
. (4.15)

We prove the following result about w1 and w2:

Lemma 4.1. Both w1 and w2 are non-zero.

Proof. First of all, observe that eitherw1 orw2 must be non-zero, because both ϕN (ζ ) and ϕ∗N (ζ )
are non-vanishing on ∂D, and both DN and G−1

N are invertible.
Now we prove w2 6= 0 by contradiction. Suppose w2 = 0. Observe that G Nw =

(ϕN+1(ζ ), ϕ
∗

N+1(ζ ))
T and |ϕn(ζ )| = |ϕ

∗
n (ζ )| on ∂D. Hence, w2 = 0 implies that the matrix

elements (G N )1 1 and (G N )2 1 satisfy

|(G N )1 1| = |(G N )2 1|. (4.16)

It will be shown later (see the discussion after (4.63)) that |G2 1/G1 1| = |L| < 1. Since
G N → G, (4.16) cannot be true if N is sufficiently large. By a similar argument, we can also
prove that w1 6= 0. �

4.4. Definitions and asymptotics of f1,n and f2,n

For n > N (N as defined in (4.14)), we let

Pn =

n∏
k=N+1

λ1,k . (4.17)

Furthermore, let f1,n and f2,n be defined implicitly by the equation below:

DnG−1
n Gn−1 Dn−1 · · · DN+1G−1

N+1G Nw = Pn

(
f1,nw1
f2,nw2

)
. (4.18)

We are going to prove the following lemma concerning the asymptotics of f1,n and f2,n :

Lemma 4.2. Let f1,n and f2,n be defined as in (4.18). The following statements hold:

(1) f2,n → 0.
(2) One of the following is true:
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• (2a) There exists a constant C such that | f1,n| ≤ C | f2,n|. Moreover, given any ε > 0,
there exist an integer Nε and a constant Cε such that

| f2,n| ≤ Cε

(∣∣∣∣λ2

λ1

∣∣∣∣+ ε)n

, ∀n ≥ Nε . (4.19)

• (2b) | f2,n/ f1,n| → 0. Furthermore, f1 = limn→∞ f1,n exists and it is non-zero.

Proof. We prove statement (1) of Lemma 4.2. For n ≥ N , let the left hand side of (4.18) be(
w1,n
w2,n

)
≡ w(n) = DnG−1

n Gn−1 Dn−1 · · · DN+1G−1
N+1G Nw. (4.20)

First, we want to show that

‖w(n + 1)− Dn+1w(n)‖ ≤ C‖An+1 − An‖|Pn|
(
| f1,n| + | f2,n|

)
. (4.21)

Note that

w(n + 1)− Dn+1w(n) = Dn+1

(
G−1

n+1Gn − 1
)
w(n). (4.22)

We aim to bound each of the components on the right hand side of (4.22). Since U is analytic
on Sε , on some compact subset of Sε there exist constants η1, η2 > 0 such that

‖Gn − Gn−1‖ ≤ ‖G‖‖UAn −UAn−1‖ ≤ η1‖An − An−1‖ (4.23)

and

‖G−1
n ‖ ≤ ‖G

−1
‖‖U−1

An
‖ ≤ η2. (4.24)

Therefore, for η = η1η2,

‖G−1
n+1Gn − 1‖ = ‖G−1

n+1 (Gn − Gn+1) ‖ ≤ η‖An+1 − An‖. (4.25)

Moreover, for C1 = max{|w1|, |w2|}, we have the following bounds:

sup
n≥N
‖Dn‖ = sup

n≥N
|λ1,n| < 2|λ1|, (4.26)

‖w(n)‖ =

∥∥∥∥( f1,n Pnw1
f2,n Pnw2

)∥∥∥∥ < C1|Pn|
(
| f1,n| + | f2,n|

)
. (4.27)

Combining all the inequalities above and applying them to (4.22), we have

‖w(n + 1)− Dn+1w(n)‖ ≤ C2‖An+1 − An‖|Pn|
(
| f1,n| + | f2,n|

)
(4.28)

where C2 is a constant. This proves (4.21). We shall see why (4.21) is useful as we prove (4.30)
and (4.32) below.

Since Pn+1 = λ1,n+1 Pn and w1,n = Pn f1,nw1, there is a constant C3 such that∣∣ f1,n+1 − f1,n
∣∣ = 1
|w1|

∣∣∣∣w1,n+1 − λ1,n+1w1,n

Pn+1

∣∣∣∣
≤

1
|w1 Pn+1|

‖w(n + 1)− Dn+1w(n)‖. (4.29)

By (4.28), this implies∣∣ f1,n+1 − f1,n
∣∣ ≤ C3‖An+1 − An‖

(
| f1,n| + | f2,n|

)
. (4.30)
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Thus, by the triangle inequality,

| f1,n+1| ≤ | f1,n+1 − f1,n| + | f1,n|

≤ (1+ C3‖An+1 − An‖) | f1,n| + C3‖An+1 − An‖| f2,n|. (4.31)

By a similar argument, one can prove that there is a constant C4 such that∣∣∣∣ f2,n+1 −
λ2,n

λ1,n
f2,n

∣∣∣∣ ≤ C4‖An+1 − An‖
(
| f1,n| + | f2,n|

)
. (4.32)

Similarly, by (4.32) and the fact that |λ2,n/λ1,n| < 1,

| f2,n+1| ≤ (1+ C4‖An+1 − An‖) | f2,n| + C4‖An+1 − An‖| f1,n|. (4.33)

We add (4.31) to (4.33) to obtain

| f1,n+1| + | f2,n+1| ≤ (1+ 2C5‖An+1 − An‖)
(
| f1,n| + | f2,n|

)
, (4.34)

where C5 = max{C3,C4}.
By applying (4.34) recursively, we conclude that

sup
n

(
| f1,n| + | f2,n|

)
<∞. (4.35)

Therefore, (4.30) and (4.32) imply that | f1,n+1− f1,n| and | f2,n+1−λ2,n f2,n/λ1,n| are bounded.
Furthermore, by the triangle inequality, there is a constant C6 such that

| f1,n+1| ≤ | f1,n| + C6‖An+1 − An‖; (4.36)

| f2,n+1| ≤

∣∣∣∣λ2,n

λ1,n
f2,n

∣∣∣∣+ C6‖An+1 − An‖. (4.37)

By applying (4.36) and (4.37) recursively, we conclude that for any fixed M such that
N ≤ M ≤ n,

| f1,n+1| ≤ | f1,M | + C6

n∑
j=M

‖A j+1 − A j‖; (4.38)

| f2,n+1| ≤

n∏
j=M

∣∣∣∣λ2, j

λ1, j

∣∣∣∣ | f2,M | + C6

n∑
j=M

‖A j+1 − A j‖. (4.39)

Without loss of generality, consider n = 2M . Since |λ2,n/λ1,n| → |λ2/λ1| < 1,∏n
j=M

∣∣∣λ2, j
λ1, j

∣∣∣→ 0 as n →∞. Moreover,
∑

j ‖A j+1 − A j‖ <∞ implies that
∑n

j=M ‖A j+1 −

A j‖ → 0 as n→∞.
Therefore, | f2,n| → 0 as n→∞. This proves (1) of Lemma 4.2.

We proceed to prove statement (2) of Lemma 4.2.
There are two possible cases concerning f1,n and f2,n :

Case (1): There exist a fixed integer K and a constant C , | f1,n| ≤ C | f2,n| for all n ≥ K .
Case (2): For any integer K and any constant M , there exists an integer nK ,M ≥ K such that
| f1,nK ,M | > M | f2,nK ,M |.

Case (1): (4.32) implies that for n ≥ max{N , K }, there is a constant C7 such that

| f2,n+1| ≤

(∣∣∣∣λ2,n

λ1,n

∣∣∣∣+ C7‖An+1 − An‖

)
| f2,n|. (4.40)
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Therefore, given any ε > 0, there exist Nε and a constant Cε such that

| f2,n| ≤ Cε

(∣∣∣∣λ2

λ1

∣∣∣∣+ ε)n

∀n ≥ Nε . (4.41)

In other words, f2,n decays exponentially fast; hence, so does f1,n . This proves (2a) of
Lemma 4.2.
Case (2): Let rn = f2,n/ f1,n . First, we want to show that given any ε > 0 there exists an integer
Jε such that |r j | < ε for all j ≥ Jε .

First, we show that both f1,n and f1,n+1 are non-zero, as (4.43) below will involve f1,n and
f1,n+1 in the denominator.

By assumption, we are free to choose any M , so we choose an integer M such that 1/M < ε.
Consider any fixed pair (K ,M) (we will choose K later in the proof). We are guaranteed the
existence of an integer n = nK ,M > K such that |rn| < 1/M = ε, which also implies that
f1,n 6= 0. Furthermore, by the triangle inequality and (4.30),∣∣∣∣ f1,n+1

f1,n

∣∣∣∣ ≥ 1−

∣∣∣∣ f1,n+1 − f1,n

f1,n

∣∣∣∣
≥ 1− C3‖An+1 − An‖(1+ |rn|) > 0. (4.42)

Thus, f1,n+1 is also non-zero.
By the triangle inequality,∣∣∣∣rn+1 −

λ2,n

λ1,n
rn

∣∣∣∣ ≤ ∣∣∣∣ f2,n+1

f1,n+1
−
λ2,n

λ1,n

f2,n

f1,n+1

∣∣∣∣+ ∣∣∣∣λ2,n

λ1,n

∣∣∣∣ ∣∣∣∣ f2,n

f1,n+1
−

f2,n

f1,n

∣∣∣∣
=

∣∣∣∣ f2,n+1 − (λ2,n/λ1,n) f2,n

f1,n+1

∣∣∣∣+ ∣∣∣∣λ2,n

λ1,n
rn

∣∣∣∣ ∣∣∣∣ f1,n − f1,n+1

f1,n+1

∣∣∣∣ . (4.43)

By (4.30) and (4.32), there exists a constant C8 such that∣∣∣∣rn+1 −
λ2,n

λ1,n
rn

∣∣∣∣ ≤ 1+ |rn||λ2,n/λ1,n|

| f1,n+1|
C8‖An+1 − An‖(| f1,n| + | f2,n|)

= C8(1+ |rn||λ2,n/λ1,n|)‖An+1 − An‖
| f1,n|

| f1,n+1|
(1+ |rn|). (4.44)

Furthermore, by inverting (4.42) one gets∣∣∣∣ f1,n

f1,n+1

∣∣∣∣ ≤ 1
1− C3‖An+1 − An‖(1+ |rn|)

. (4.45)

Then we plug this into (4.44) to obtain

|rn+1| ≤

∣∣∣∣λ2,n

λ1,n
rn

∣∣∣∣+ C8(1+ |rn||λ2,n/λ1,n|)(1+ |rn|)

1− C3‖An+1 − An‖(1+ |rn|)
‖An+1 − An‖. (4.46)

Let Rn be the second term on the right hand side of (4.46). Note that the quotient in front of
‖An+1 − An‖ is bounded. Hence, for any sufficiently large K , there exists n ≡ nn,k > K such
that |rn+1| < |rn| < ε.

Applying the same argument to rn+1, we can prove that |rn+2| < ε. Inductively, |r j | < ε for
all large j . This proves | f2,n/ f1,n| → 0, the first claim of (2b) of Lemma 4.2.
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It remains to show that limn→∞ fn exists. We divide both sides of (4.30) by | f1,n|. Since
|rn| → 0,∣∣∣∣ f1,n+1

f1,n
− 1

∣∣∣∣ ≤ C‖An+1 − An‖ (1+ |rn|)→ 0. (4.47)

Moreover, log is analytic near 1, so in an ε-neighborhood of 1 there is a constant E such that

| log z| = | log ζ − log 1| ≤ E |z − 1|. (4.48)

By (4.47),∣∣∣∣log
(

f1,n+1

f1,n

)∣∣∣∣ ≤ C‖An+1 − An‖. (4.49)

Therefore, the series
∑
∞

j=N log
(

f1, j+1/ f1, j
)

is absolutely convergent. Furthermore, as we
have seen in (4.42), f1, j 6= 0 for all large j . Thus, log f1, j is finite and the following limit:

lim
n→∞

log f1,n+1 = lim
n→∞

n∑
j=p

(
log f1, j+1 − log f1, j

)
+ log f1,p (4.50)

exists and is finite. We call the limit limn→∞ f1,n = f1. This proves the second part of (2b) and
concludes the proof of Lemma 4.2. �

Proof of Theorem 2.1. By statement (2) of Lemma 4.2, there are two possible cases:
First case. This corresponds to (2a) of Lemma 4.2. Recall that for n > N ,

Tn

(
1
1

)
= Gn Pn

(
f1,nw1
f2,nw2

)
(4.51)

and Gn = UAn G → G as n→∞. Hence, given any ε > 0, there exists a constant Kε such that∥∥∥∥Tn

(
1
1

)∥∥∥∥ ≤ ‖Gn‖

n∏
j=N

|λ1, j |

∥∥∥∥( f1,nw1
f2,nw2

)∥∥∥∥ ≤ Kε

(∣∣∣∣λ2

λ1

∣∣∣∣+ ε)n

(|λ1| + ε)
n . (4.52)

This means that |ϕn(ζ )| is exponentially decaying. As a result, Kn(ζ, ζ ) converges, µ(ζ ) =
limn→∞ Kn(ζ, ζ )

−1 > 0 and ∆n(ζ ) → 0 exponentially fast. This proves claim (1) of
Theorem 2.1.
Second case. This corresponds to (2b) of Lemma 4.2.

First, we compute limn→∞∆n(ζ ) using the asymptotic expressions of ϕn(ζ ) and ϕ∗n (ζ ). By
definition, Gn → G. Suppose

Gn =

(
g1,n g′1,n
g2,n g′2,n

)
→ G =

(
g1 g′1
g2 g′2

)
. (4.53)

Since ϕn(ζ ) is the first component of the vector Gn Pn( f1,nw1, f2,nw2)
T ,

ϕn(ζ ) = Pn
(
g1,n f1,nw1 + g′1,n f2,nw2

)
= Pn f1,n

(
g1,nw1 + g′1,nrnw2

)
= Pn ( f1g1w1 + o(1)) . (4.54)

Similarly,

ϕ∗n (ζ ) = Pn ( f1g2w1 + o(1)) . (4.55)
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Since Pn → ∞, both ϕn(ζ ) and ϕ∗n (ζ ) → ∞. As a result, (Kn(ζ, ζ ))n∈N is a positive
sequence that tends to infinity. Hence, we can use the Cesàro–Stolz Theorem (Theorem 3.1).
Let

Γn(ζ ) = ϕn+1(ζ )ϕ
∗
n (ζ ) (4.56)

Θn(ζ ) = (1− γ )γ−1
+ Kn(ζ, ζ ). (4.57)

By (4.54) and (4.55),

Γn(ζ ) = Pn+1 Pn

(
| f1|

2
|w1|

2g1g2 + o(1)
)
; (4.58)

Θn(ζ )−Θn−1(ζ ) = |Pn|
2
(
| f1|

2
|w1|

2
|g1|

2
+ o(1)

)
. (4.59)

Using (4.58), (4.59) above and the fact that λ2 = (λ1)
−1, we compute

Γn(ζ )− Γn−1(ζ )

Θn(ζ )−Θn−1(ζ )
=

Pn+1 Pn − Pn Pn−1

|Pn|
2

(
g1g2

|g1|
2 + o(1)

)
=

(
λ1,n+1 −

1
λ1,n

)(
g2

g1
+ o(1)

)
→

(
λ1 − λ2

) (g2

g1

)
. (4.60)

Since the limit in (4.60) exists, limn→∞ Γn(ζ )/Θn(ζ ) exists and is equal to the limit in (4.60). It
remains to compute g2/g1. Note that(

g1
g2

)
= G

(
1
0

)
. (4.61)

By definition, G is the change of basis matrix for A∞. Therefore, g = (g1, g2) is the eigenvector
of A∞ corresponding to the eigenvalue λ1. It suffices to solve (A∞ − λ1)g = 0, which is
equivalent to(

ζ − τ1 −L
−ζ L 1− τ1

)(
g1
g2

)
=

(
0
0

)
; τ1 = (1− |L|2)1/2λ1. (4.62)

Since the matrix on the left hand side of (4.62) has a non-zero vector in its kernel, it must
have rank 1, so the two rows are equivalent. For that reason we only have to look at the first
row. Furthermore, note that we are only concerned about the ratio g2/g1, which is constant upon
multiplication of G by any non-zero constant; therefore, by putting g1 = 1 and we deduce that

g2

g1
=
ζ − τ1

L
. (4.63)

Then by (4.60),

∆∞(ζ ) = (1− |L|2)1/2
(
λ1 − λ2

) ζ − λ1(1− |L|2)1/2

L
. (4.64)

We will simplify (4.64) further. Let τ2 = (1− |L|2)1/2λ2. Observe that τ1, τ2 are eigenvalues
of the matrix

M(ζ ) = (1− |L|2)1/2 A∞(ζ ) =

(
ζ −L
−ζ L 1

)
. (4.65)
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The characteristic polynomial of M(ζ ) is

fM (y) = (ζ − y)(1− y)− ζ |L|2 = y2
− (ζ + 1)y + ζ(1− |L|2) (4.66)

and the eigenvalues of M(ζ ) are

y±(ζ ) =
(ζ + 1)±

√
(ζ + 1)2 − 4ζ(1− |L|2)

2
. (4.67)

We do not know whether y+(ζ ) is τ1 or τ2. We decide in the following manner: observe that
y±(ζ ) is continuous with respect to ζ ; hence if |λ1(ζ0)| > 1 for some ζ0 in the gap, we must
have |λ1(ζ )| > 1 for all ζ in the gap. Otherwise, there must be some ζ1 in the gap such that
|λ1(ζ1)| = 1, contradicting the hyperbolicity of A∞(ζ ) in the gap.

Since ζ = 1 is in the gap, we plug it into (4.67) to obtain

y±(1) = 1± |L|. (4.68)

If we choose the branch of the square root such that
√
|L|2 = |L|, we have y+(ζ ) = τ1(ζ )

and y−(ζ ) = τ2(ζ ), and

τ1 − τ2 =

√
(z − 1)2 + 4z|L|2. (4.69)

Therefore,

∆∞(ζ ) = h(ζ )1/2
(
(ζ − 1)− h(ζ )1/2

2L

)
, (4.70)

where

h(ζ ) = (ζ − 1)2 + 4ζ |L|2. (4.71)

This proves statement (2a) of Theorem 2.1.
Next, we prove statement (2b) of Theorem 2.1. Recall the result of Bello–López mentioned in

the Introduction. Because of that, we expect limn→∞ |αn(dν)| = |∆∞(ζ )+ L| = |L|.
First, observe that for ζ = eiθ ,

ζ − 1 = ζ 1/2
(
ζ 1/2
− ζ−1/2

)
= ζ 1/2 2i sin

(
θ

2

)
. (4.72)

That implies

h(ζ ) = 4ζ
(
|L|2 − sin2

(
θ

2

))
, (4.73)

h(ζ )1/2(ζ − 1) = 4i sin
(
θ

2

)√
|L|2 − sin2

(
θ

2

)
. (4.74)

Now we consider ∆∞(ζ )+ L . Combining (4.70), (4.73) and (4.74), we have

∆∞(ζ )+ L =
i 2 sin

(
θ
2

)√
|L|2 − sin2 ( θ

2

)
+
[
2 sin2 ( θ

2

)
− |L|2

]
L

. (4.75)

Since ζ is in the gap GL if and only if |L|2 > sin2( θ2 ),
√
|L|2 − sin2(θ/2) is real (see Sec-

tion 4.1 above). Therefore, (4.75) implies that
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Re L (∆∞(ζ )+ L) = 2 sin2
(
θ

2

)
− |L|2 (4.76)

Im L (∆∞(ζ )+ L) = 2 sin
(
θ

2

)√
|L|2 − sin2

(
θ

2

)
. (4.77)

Now that we have successfully separated the real and imaginary parts of L(∆∞(ζ )+ L), with
a direct computation we can show that∣∣L(∆∞(ζ )+ L)

∣∣ = |L|2. (4.78)

It remains to compute the phase. Suppose L (∆∞(ζ )+ L) = |L|2eiω. |L|2 cosω and
|L|2 sinω, being the real and imaginary parts of L(∆∞(ζ ) + L) respectively, will be given by
(4.76) and (4.77). This proves statement (2b) of Theorem 2.1.

Now we are going to prove that (∆n(ζ ))n∈N is of bounded variation.
First, we note the following estimates:

(1) By the definition of An(ζ ), ‖An(ζ )− An−1(ζ )‖ = O (|αn − αn−1|).
(2) By (4.30), | f1,n+1 − f1,n| = O(‖An+1(ζ )− An(ζ )‖).
(3) By the definition of Gn in (4.12), both |g1,n+1− g1,n| and |g′1,n+1− g′1,n| are O(‖An+1(ζ )−

An(ζ )‖).
(4) Since λ1,n , λ2,n are the eigenvalues An(ζ ), |λ1,n+1−λ1,n| and |λ2,n+1−λ2,n| are O(|αn+1−

αn|).
(5) By (4.44), |rn+1 − cnrn| = O(‖An+1(ζ )− An(ζ )‖) where

cn =
λ2,n

λ1,n
→ c =

λ2

λ1
(4.79)

has norm strictly less than 1. From now on, we will denote all error terms in the order of
O(|αn − αn−1|) as en .

Recall that ∆n(ζ ) = (1 − |αn|
2)1/2Γn(ζ )/Θn(ζ ). To prove that (∆n(ζ ))n∈N is of bounded

variation, we will consider (1− |αn|
2)1/2 and Γn(ζ )/Θn(ζ ) separately.

First, note that

(1− |αn+1|
2)1/2 − (1− |αn|

2)1/2 = en+1. (4.80)

Recall that f2,n/ f1,n = rn . Hence, by (4.54) and (4.55),

Γn(ζ )

(1− γ )γ−1 + Kn(ζ, ζ )

=
Pn+1 Pn

(1− γ )γ−1 + Kn(ζ, ζ )
f1,n+1 f1,n

(
g1,n+1w1 + g′1,n+1rn+1w2

) (
g2,nw1 + g′2,nrnw2

)
=

λn+1|Pn|
2

(1− γ )γ−1 + Kn(ζ, ζ )︸ ︷︷ ︸
(I)

f1,n+1 f1,n︸ ︷︷ ︸
(II)

×

(
g1,n+1w1 + g′1,n+1rn+1w2

)
︸ ︷︷ ︸

(III)

(
g2,nw1 + g′2,nrnw2

)︸ ︷︷ ︸
(IV)

. (4.81)

Now we will show that (I), (II), (III) and (IV) of (4.81) are of bounded variation.
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We start with the easiest. For (II), note that by estimate (2) above,

f1,n+1 f1,n − f1,n f1,n−1 = en + en−1. (4.82)

The next term we will estimate is (III). We start by showing that (rn)n∈N is of bounded varia-
tion. Observe that

|rn+1 − rn| ≤ |cnrn + en+1 − cn−1rn−1 + en|

≤ |cn||rn − rn−1| + en + en+1

...

≤ |cn . . . c1||r1 − r0| + En + En+1, (4.83)

where

En = O(en + |cn|en−1 + |cncn−1||en−2| + · · · + |cn . . . c2|e1). (4.84)

Hence,

∞∑
n=0

|rn+1 − rn| ≤ |r1 − r0|
∞∑

n=1
|cn . . . c1| + 2

∞∑
n=0

En . (4.85)

The first sum on the right hand side of (4.85) is finite because |cn| → |c| < 1. Now we turn
to the second sum. Upon rearranging,

2
∞∑

n=0

En = O

(
∞∑

n=0

en[1+ |cn+1| + |cn+1cn+2| + · · ·]

)
<∞. (4.86)

Then we observe that(
g1,n+1w1 + g′1,n+1rn+1w2

)
−

(
g1,nw1 + g′1,nrnw2

)
= en+1 + O(|rn+1 − rn|). (4.87)

Therefore, (III) is of bounded variation. With a similar argument we can prove that the same goes
for (IV).

It remains to prove that (I) is of bounded variation. We will make use of the simple equality

1
an+1

−
1
an
=

an+1 − an

an+1an
. (4.88)

As a result, if limn→∞ an = a 6= 0 and (an)n∈N is of bounded variation, then (1/an)n∈N is
also of bounded variation. Thus, it suffices to prove that ([(1 − γ )γ−1

+ Kn(ζ, ζ )]/|Pn|
2)n∈N is

of bounded variation and limn→∞[(1− γ )γ−1
+ Kn(ζ, ζ )]/|Pn|

2
= L > 0.

For the convenience of computation we will define a few more objects below. First, we let

Λn =

{
λ1,n if n ≥ N + 1
1 if 0 ≤ n ≤ N .

(4.89)

Then by (4.17), Pn =
∏n

j=0 Λ j . Moreover, recall the definition of f1,n in (4.18), which was only
defined for n ≥ N . For 0 ≤ n ≤ N , let f1,n f2,n be defined implicitly by (4.54) and (4.55). We
will see later that the introduction of these objects will not affect the result of our computation.

Note that Kn(ζ, ζ ) is the summation of n + 1 terms, so we can write

(1− γ )γ−1
+ Kn(ζ, ζ )

|Pn|
2 =

γ−1

|Pn|
2 + Tn, (4.90)
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where

Tn =

n∑
j=1

|ϕ j (ζ )|
2

|Pn|
2 =

n∑
j=1

| f1, j |
2
|g1, jw1 + g′1, jr jw2|

2

|Λ j+1 · · ·Λn|
2 (4.91)

with the convention that Λ j+1 · · ·Λn = 1 when j = n.
Next, we let

Sn =
Kn−1(ζ, ζ )

|Pn−1|
2 =

n−1∑
j=0

| f1, j |
2
|g1, jw1 + g′1, jr jw2|

2

|Λ j+1 · · ·Λn−1|
2 . (4.92)

Then∣∣∣∣ (1− γ )γ−1
+ Kn(ζ, ζ )

|Pn|
2 −

(1− γ )γ−1
+ Kn−1(ζ, ζ )

|Pn−1|
2

∣∣∣∣
≤

2(1+ γ−1)

|Pn−1|
2 + |Tn − Sn| . (4.93)

We will show that each of the two terms on the right hand side of (4.93) is summable.
Since |Λn|

−1
→ |λ1|

−1 < 1,

∞∑
n=0

2(1+ γ−1)

|Pn|
2 = O

(
∞∑
j=0

1

|λ1|
2 j

)
<∞. (4.94)

Now we will go on to prove that Tn − Sn is summable. Upon relabeling the indices of Sn in
(4.92), we have

Tn − Sn

=

n∑
j=1

[
| f1, j |

2
|g1, jw1 + g′1, jr jw2|

2

|Λ j+1 . . .Λn|
2 −

| f1, j−1|
2
|g1, j−1w1 + g′1, j−1r j−1w2|

2

|Λ j . . .Λn−1|
2

]
(4.95)

and we will compute term by term.
Let

ε j = |g1, jw1 + g′1, jr jw2|
2. (4.96)

Then by (4.95) above,

|Tn − Sn| ≤

n∑
j=1

| f1, j |
2
|ε j − ε j−1|

|Λ j+1 · · ·Λn|
2︸ ︷︷ ︸

(I)

+

n∑
j=1

|| f1, j |
2
−| f1, j−1 |

2
|ε j−1

|Λ j+1 · · ·Λn|
2︸ ︷︷ ︸

(II)

+

n∑
j=1

| f1, j−1|
2ε j−1

∣∣∣∣ 1

|Λ j+1 · · ·Λn|
2 −

1

|Λ j · · ·Λn−1|
2

∣∣∣∣︸ ︷︷ ︸
(III)

. (4.97)

Now we will prove that each of the sums on the right hand side of (4.97) is summable. We
will start with (II).
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Recall that | f1, j − f1, j−1| = O(‖A j − A j−1‖) and that f1, j → f1. Therefore, for some
constant C ,

∞∑
n=1

n∑
j=1

|| f1, j |
2
−| f1, j−1 |

2
|ε j−1

|Λ j+1 · · ·Λn|
2 < C

(
∞∑

n=1

| f1,n − f1,n−1|

)(
∞∑
j=1

1

λ
2 j
1

)
<∞. (4.98)

Since g1, j , g′1, j and r j are all of bounded variation and their limits exist when j goes to
infinity, ε j is of bounded variation. Hence, there exists a constant C such that

∞∑
n=1

n∑
j=1

| f1, j |
2
|ε j − ε j−1|

|Λ j+1 · · ·Λn|
2 < C

(
∞∑
j=1

|ε j − ε j−1|

)(
∞∑
j=1

1

λ
2 j
1

)
<∞. (4.99)

Finally, we will consider (III). Observe that∣∣∣∣ 1

|Λ j+1 · · ·Λn|
2 −

1

|Λ j · · ·Λn−1|
2

∣∣∣∣ = |Λ j |
2
− |Λn|

2

|Λ j · · ·Λn|
2 (4.100)

and that there exists a constant C independent of j, n such that

|Λ j |
2
− |Λn|

2
=

n−1∑
k= j

(
|Λk |

2
− |Λk+1|

2
)
< C

n−1∑
k= j

|Λk − Λk+1|. (4.101)

Hence,

∞∑
n=1

n∑
j=1

∣∣∣∣ 1

|Λ j+1 · · ·Λn|
2 −

1

|Λ j · · ·Λn−1|
2

∣∣∣∣ < C
∞∑

n=1

n∑
j=1

n−1∑
k= j

|Λk+1 − Λk |

|Λ j · · ·Λn|
2 . (4.102)

Next, we count the coefficient of |Λk+1−Λk | in the sum above. From the expression, we know
that j ≤ k < n. Therefore, the coefficient is

∞∑
n=k+1

k∑
j=1

1

|Λ j+1 · · ·Λn|
2 =

k∑
j=1

∞∑
n=k+1

(
1

|Λ j+1 · · ·Λn|
2

)

=

(
k∑

j=1

1

|Λ2 · · ·Λ j |
2

)(
∞∑

n=k+1

1

|Λk+1 · · ·Λn|
2

)
, (4.103)

which is bounded above by a constant B independent of k. This implies that (III) is summable in
n.

As a result, ((1 − γ )γ−1
+ Kn(ζ, ζ )/|Pn|

2)n∈N is of bounded variation and that implies
limn→∞[(1− γ )γ−1

+ Kn(ζ, ζ )]/|Pn|
2 exists. Moreover,

L = lim
n→∞

Kn(ζ, ζ )

|Pn|
2 > lim

n→∞

|ϕn(ζ )|
2

|Pn|
2 > 0. (4.104)

This concludes the proof of Theorem 2.1. �

5. Proof of Theorem 2.2

We will generalize the method developed in Theorem 2.1. First, we define

Bk(ζ ) = A(α(k+1)p−1, z) · · · A(αkp, z); (5.1)

B∞(ζ ) = A(βp−1, z) · · · A(β0, z). (5.2)
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We need to check a few conditions concerning the Bk(ζ )’s. First, note that there exists a
constant C such that

‖Bk+1(ζ )− Bk(ζ )‖ ≤ C
p−1∑
j=0

|α(k+1)p+ j − αkp+ j |. (5.3)

Hence,

∞∑
k=0

‖Bk+1(ζ )− Bk(ζ )‖ ≤ C
∞∑

k=0

p−1∑
j=0

|α(k+1)p+ j − αkp+ j |

= C
∞∑

m=0

|αm+p − αm | <∞. (5.4)

Furthermore, since ζ is in the gap, |TrB∞(ζ )| > 2. Since Bk(ζ ) → B∞(ζ ), for all
large k, |TrBk(ζ )| > 2. As a result, Bk(ζ ) has distinct eigenvalues τ1,k and τ2,k such that
|τ1,k | > 1 > |τ2,k | and |τ1,kτ2,k | = 1. Moreover, τi,k → τi , where τ1, τ2 are the eigenvalues
of B∞(ζ ).

Next, observe that for any fixed 0 ≤ j ≤ p − 1,

Tkp+ j (ζ ) =
(

Akp+ j (ζ ) · · · Akp(ζ )
)

Akp−1 · · · A0(ζ )

=
(

Akp+ j (ζ ) · · · Akp(ζ )
)

Bk−1(ζ )Bk−2(ζ ) · · · B0(ζ ) (5.5)

and Akp+ j (ζ )→ A∞, j (ζ ), where

A∞, j (ζ ) = (1− |β j |
2)−1/2

(
ζ −β j
−ζβ j 1

)
; 0 ≤ j ≤ p − 1. (5.6)

By Kooman’s Theorem and a change of basis, we can express

Bn(ζ ) = Gn DnG−1
n (5.7)

as in (4.13), where Dn is a diagonal matrix with entries being the eigenvalues of Bn(ζ ), and
Gn → G∞, where G∞ is the matrix that diagonalizes B∞(ζ ).

By applying an argument similar to that in Section 4.3 to the family of Bn(ζ )’s, we can show
that there exists a non-zero vector w and an integer N such that

Bn(ζ ) · · · B0(ζ )

(
1
1

)
= Gn(ζ )Pn

(
f1,n 0
0 f2,n

)(
w1
w2

)
, (5.8)

where Pn =
∏n

j=N+1 τ1, j . Moreover, we can show that

f1,n → f1; f2,n → f2;
f1,n

f2,n
→ 0. (5.9)

Furthermore, by (5.5), for each fixed j , we can express Tkp+ j (ζ ) as

Tkp+ j (ζ )v =
(

Akp+ j (ζ ) · · · Akp(ζ )
)

Gk−1 Pk−1

(
f1,k−1 0

0 f2,k−1

)(
w1
w2

)
(5.10)

with the property that

Akp+ j (ζ ) · · · Akp(ζ )Gk−1 → A∞, j (ζ ) · · · A∞,0(ζ )G∞ ≡ M j . (5.11)
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Let

M j =

(
m1, j m1, j ′

m2, j m2′, j

)
. (5.12)

Note that for each n, there are two possible expressions for Tn(ζ )v. We could either write it
as in (5.10) or as follows:

Tkp+ j (ζ )v = Akp+ j (ζ ) · · · A(k−1)p(ζ )Gk−2 Pk−2 Fk−2

(
w1
w2

)
. (5.13)

The reason will be apparent later in the proof.
Consider n = kp + j where 0 ≤ j ≤ p. The asymptotic formulae for ϕn(ζ ) and ϕ∗n (ζ ) are of

the form

ϕn(ζ ) = Pk−1( f1m1, jw1 + o(1)); (5.14)

ϕ∗n (ζ ) = Pk−1( f1m2, j+pw1 + o(1)). (5.15)

The alternate formulae for ϕn(ζ ) and ϕ∗n (ζ ) are

ϕn(ζ ) = Pk−2( f1m1,p+ jw1 + o(1)); (5.16)

ϕ∗n (ζ ) = Pk−1( f1m2, jw1 + o(1)). (5.17)

We define Γn(ζ ) and Θn(ζ ) as in (4.56) and (4.57) respectively. Then

Γn(ζ ) = |Pk−1|
2
(
| f1|

2
|w1|

2m1, j+1m2, j + o(1)
)
, (5.18)

Θn(ζ ) = |Pk−1|
2
(
| f1|

2
|w1|

2
|m1, j |

2
+ o(1)

)
. (5.19)

Moreover, observe that

Γn+p(ζ ) = |Pk |
2
(
| f1|

2
|w1|

2m1, j+1m2, j + o(1)
)
. (5.20)

Instead of (Γn − Γn−1)/(Θn −Θn−1) in the proof of Theorem 2.1, we compute

lim
k→∞

Γ(k+1)p+ j (ζ )− Γkp+ j (ζ )

Θ(k+1)p+ j (ζ )−Θkp+ j (ζ )

= lim
k→∞

(
|Pk |

2
− |Pk−1|

2
) (
| f1|

2
|w1|

2m1, j+1m2, j + o(1)
)

|Pk−1|
2| f1|

2|w1|
2
(
|m1, j+p|

2 + · · · + |m1, j |
2 + o(1)

)
=

(
|τ1|

2
− 1

) m1, j+1m2, j

|m1, j+p|
2 + . . .+ |m1, j |

2 . (5.21)

Combining with the fact that limk→∞(1 − |αkp+ j |
2)1/2 = (1 − |β j |

2)1/2, we conclude that
for each fixed 0 ≤ j < p, limk→∞∆kp+ j (ζ ) exists.

Finally, by an argument similar to that in the proof of Theorem 2.1, one could prove that for
each fixed j , (∆kp+ j (ζ ))k is of bounded variation.

6. Proof of Theorem 2.3

In this section, ζ nαn → L and µ(ζ ) = 0 are the only assumptions that we need. No bounded
variation of the Verblunsky coefficients is required.
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Let

Pn(ζ ) = (1− |αn|
2)1/2ϕn+1(ζ )ϕ

∗
n (ζ ) (6.1)

and Θn(z) be defined as in (4.57).
Note that Pn(ζ )/Θn(ζ ) = ∆n(ζ ). Moreover, since µ(ζ ) = 0, Kn(ζ, ζ )→∞, which allows

us to use the Cesàro–Stolz Theorem.
Let ρn = (1− |αn|

2)1/2. Since ζ ∈ ∂D, we can rewrite Pn(ζ ), Pn−1(ζ ) as follows:

Pn(ζ ) = ρnζ
−1ϕ∗n+1(ζ )ϕn(ζ ), (6.2)

Pn−1(ζ ) = ρn−1ϕn(ζ )ϕ
∗

n−1(ζ ). (6.3)

Moreover,

Θn(ζ )−Θn−1(ζ ) = |ϕn(ζ )|
2 (6.4)

and ϕn 6= 0 on ∂D; therefore we can cancel ϕn(ζ ) and obtain

ζ n Pn(ζ )− ζ
n−1 Pn−1(ζ )

Θn(ζ )−Θn−1(ζ )
=
ζ n−1(ρnϕ

∗

n+1(ζ )− ρn−1ϕ
∗

n−1(ζ ))

ϕn(ζ )
. (6.5)

By (1.5.24) and (1.5.43) in [27] respectively,

ρnϕ
∗

n+1(ζ ) = ϕ
∗
n (ζ )− αnζϕn(ζ ), (6.6)

ρn−1ϕ
∗

n−1(ζ ) = ϕ
∗
n (ζ )+ αn−1ϕn(ζ ). (6.7)

Therefore, (6.5) becomes

ζ n Pn(ζ )− ζ
n−1 Pn−1(ζ )

Θn(ζ )−Θn−1(ζ )
=
ζ n−1

(
ϕ∗n (ζ )− ζαnϕn(ζ )− ϕ

∗
n (ζ )− αn−1ϕn(ζ )

)
ϕn(ζ )

= −(ζ nαn + ζ
n−1αn−1). (6.8)

Since ζ nαn → L , the limit of (6.8) as n → ∞ exists and is equal to −2L . Moreover, since
ζ is not a pure point of dµ, Θn(ζ ) is a strictly increasing sequence that tends to +∞, so we can
apply the Cesàro–Stolz theorem and conclude that ζ n∆n(ζ ) = ζ

n Pn(ζ )/Θn(ζ ) → −2L . This
implies that

ζ nαn(dν) = ζ nαn + ζ
n∆n(ζ )→−L . (6.9)

7. Proof of Corollary 2.1

First, note that αn is real for all n, so by induction on (1.4) we have a closed form for ϕn(1):

ϕn(1) =
n−1∏
j=0

√
1− α j

1+ α j
∈ R. (7.1)

Moreover, since αn → L < 0,
√

1−α j
1+α j

> 1 for large j , ϕn(1) is exponentially increasing towards
+∞. Thus, limn→∞ Kn(1, 1) = ∞ and µ(1) = 0. By Theorem 2.1, we have ∆n(1)→−2L .
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To prove Corollary 2.1, we are going to show that

lim
n→∞

(∆n(1)+ 2L)

cn
= −2. (7.2)

Observe that by (7.1),

(1− |αn|
2)1/2ϕn+1(1) = (1− αn)ϕn(1). (7.3)

Moreover, Kn(1, 1) is exponentially increasing. Therefore,

∆n(1)+ 2L =
(1− αn)ϕn(1)2 + 2L Kn(1, 1)

Kn(1, 1)
+ En (7.4)

where En is exponentially small.
We shall use the Cesàro–Stolz theorem again to prove that the limit in (7.2) exists and is finite.

Let

An = c−1
n

[
(1− αn)ϕn(1)2 + 2L Kn(1, 1)

]
; (7.5)

Bn = Kn(1, 1). (7.6)

First, note that Bn − Bn−1 = ϕn(1)2. Second, note that by (7.1),

(1− αn−1)ϕn−1(1)2 = (1+ αn−1)ϕn(1)2. (7.7)

Therefore,

An − An−1 =

[
c−1

n (1− αn)ϕn(1)2 − c−1
n−1(1+ αn−1)ϕn(1)2

]
+ c−1

n (2L)Kn(1, 1)− c−1
n−1(2L)Kn−1(1, 1). (7.8)

The first sum on the right hand side of (7.8) is[
c−1

n (1− L)− c−1
n−1(1+ L)− 2

]
ϕn(1)2, (7.9)

while the second sum is

2L
[
c−1

n ϕn(1)2 + (c−1
n − c−1

n−1)Kn−1(1, 1)
]
. (7.10)

Combining (7.9) and (7.10), we have

An − An−1

Bn − Bn−1
=

[
(1+ L)(c−1

n − c−1
n−1)− 2

]
+ 2L(c−1

n − c−1
n−1)

Kn−1(1, 1)

ϕn(1)2
. (7.11)

Next, we are going to show that Kn−1(1,1)
ϕn(1)2

exists. To do that, we use the Cesàro–Stolz Theorem
again. Let

Cn = Kn−1(1, 1), (7.12)

Dn = ϕn(1)2. (7.13)
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Recall that by (7.1), ϕn(1)2 =
1−αn
1+αn

ϕn−1(1)2. Hence,

Dn − Dn−1 =

(
1− αn

1+ αn
− 1

)
ϕn−1(1)2. (7.14)

Since Cn − Cn−1 = ϕn−1(1)2, we have

lim
n→∞

Cn − Cn−1

Dn − Dn−1
= lim

n→∞

(
1− αn

1+ αn
− 1

)−1

=
1+ L

−2L
. (7.15)

Therefore, Kn−1(1, 1)/ϕn(1)2 = −(1+ L)/2L . By (7.11) and the Cesàro–Stolz Theorem,

lim
n→∞

An − An−1

Bn − Bn−1
= −2 = lim

n→∞

An

Bn
. (7.16)

As a result,

∆n(1) = −2L − 2cn + o (cn) . (7.17)

This proves Corollary 2.1. In particular, if L = −1/2 and cn = 1/n, we have the rate of
convergence of ∆n(1) being O(1/n), which is clearly not exponential.
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Appendix. The Szegő condition and bounded variation

Both the Szegő condition and bounded variation of recursion coefficients come up in the study
of orthogonal polynomials very often. In this section, we will show that there is a very large class
of measures with Verblunsky coefficients of bounded variation satisfying αn → L 6= 0 yet failing
the Szegő condition (2.16).

Let dγ be a non-trivial measure on R such that for all n,
∫
|x |ndγ <∞. It is well-known that

the family of orthonormal polynomials (pn(x))n∈N obey the following recurrence relation:

xpn(x) = an+1 pn+1(x)+ bn+1 pn(x)+ an pn−1(x) (A.18)

for n ≥ 0. The reader should refer to [25,27] for details.
Remark: The reader should be reminded that the an’s and bn’s in [27] are different from those

in [25]! In fact, an+1 [27] = an [25] and bn+1 [27] = bn [25]. In this paper, we are following the
notation of [27].

Now we consider the measure dγ on R which has recursion coefficients satisfying

bn ≡ 0, an ↗ 1, (A.19)
∞∑

n=1

|an − 1|2 = ∞. (A.20)

This measure, supported on [−2, 2], is purely a.c., and has no eigenvalues outside [−2, 2].
Moreover, if we write dγ (x) = f (x)dx , f (x) is symmetric. By the Killip–Simon Theorem [15],
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condition (A.20) implies that such a measure fails the quasi-Szegő condition, i.e.∫
[−2,2]

(4− x2)1/2 log f (x)dx = −∞, (A.21)

which is weaker than the Szegő condition∫
[−2,2]

(4− x2)−1/2 log f (x)dx = −∞. (A.22)

Now we consider dγy supported on [−y, y] ⊂ [−2, 2], which is defined by scaling dγ :

dγy(x) = dγ
(

2xy−1
)
, 0 < y < 2. (A.23)

Then the a.c. part of dγy(x), supported on [−y, y], is

fy(x) = f (2xy−1)χ[−y,y]. (A.24)

It is well-known that

an(dγy) =
( y

2

)
an(dγ ), bn(dγy) =

( y

2

)
bn(dγ ). (A.25)

Now we apply the inverse Szegő map (see Chapter 13 of [28]) to dγy to form the probability
measure µy on ∂D. Under this map, we have dµy(θ) = wy(θ)

dθ
2π with

wy(θ) = 2π | sin(θ)| fy(2 cos θ)χ[θy ,π−θy ](θ), (A.26)

where

θy = cos−1
( y

2

)
∈

(
0,
π

2

)
. (A.27)

For any g measurable on [−2, 2],∫
g(x)dγy(x) =

∫
g(2 cos θ)dµy(θ). (A.28)

By Corollary 13.1.8 of [28], bn(γy) ≡ 0 if and only if α2n(dµy) ≡ 0. Moreover, by Theorem
13.1.7 of [28], we know that

a2
n+1(dγy) = (1− α2n−1(dµy))(1− α2n(dµy)

2)(1+ α2n+1(dµy))

= (1− α2n−1(dµy))(1+ α2n+1(dµy)). (A.29)

Note that wy(θ) is supported on two arcs, [θy, π − θy] and [π + θy, 2π − θy], and we can
decompose wy(θ) into

wy(θ) = wy(θ)|[θy ,π−θy ] + wy(θ)|[π+θy ,2π−θy ]. (A.30)

Moreover, because γy(x) is symmetric, each of the two components on the right hand side of
(A.30) is symmetric along the imaginary axis. Hence, we can view dµy as a two-fold copy of the
probability measure

dνy(θ) = m y(θ)
dθ
2π

(A.31)
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defined on ∂D with

m y(θ) = 2wy

(
θ

2

)
χ[2θy ,2π−2θy ] (A.32)

(this is also called the sieved orthogonal polynomial; see Example 1.6.14 of [27]). Hence,

α2k−1(dµy) = αk−1(dνy). (A.33)

In other words, the Verblunsky coefficients of dµy are

0, α0(dνy), 0, α1(dνy), 0, α2(dνy) . . . (A.34)

Therefore, (A.29) becomes( y

2

)2
a2

n+1(dγ ) = (1− αn−1(dνy))(1+ αn(dνy)) (A.35)

for n = 0, 1, . . ., with the convention that α−1 = −1.
Now note that dνy is supported on the arc [2θy, 2π − 2θy], so by the Bello–López result [3]

(see also Theorem 9.9.1 of [28]), for ay = sin
(
θy
)
,

lim
n→∞
|αn(dνy)| = ay, (A.36)

lim
n→∞

αn+1(dνy)αn(dνy) = a2
y . (A.37)

Since αn ∈ R, αn(dνy) actually converges. Moreover, recall that θy ∈ (0, π2 ) was defined such
that cos(θy) =

y
2 . Hence,

ay =

√
1− cos2(θy) =

√
1−

( y

2

)2
. (A.38)

We rewrite (A.35) as follows:( y

2

)2 a2
n+1(dγ )

1− αn−1(dνy)
− 1 = αn(dνy). (A.39)

When n = 0, we have α0 = (
y
2 )

a2
1
2 − 1 < 0. Hence, by an inductive argument for (A.39) we

can show that αn < 0 for all n ≥ 0.
Next, we want to prove that (αn(dνy))n∈N is of bounded variation if (an(dγ ))n∈N is. From

now on, we let αn = αn(dνy), an = an(dγ ) and c = (y/2)2 < 1.
By (A.39) above,

αn − αn−1 =
c(a2

n+1 − a2
n)

1− αn−1
+

ca2
n(αn−1 − αn−2)

(1− αn−1)(1− αn−2)
. (A.40)

Therefore, by an inductive argument we conclude that
∑

n(αn(dνy) − αn−1(dνy)) < ∞ for
any 0 < y < 2. Hence to any monotonic sequence of an → 1 and any 0 < y < 2, there
corresponds a family of αn(dνy)’s of bounded variation that converge to −ay < 0.

Finally, we have to show that m y(θ) fails the Szegő condition (2.16). Since f (x) fails the
quasi-Szegő condition (A.21), it also fails the Szegő condition (A.22). Upon scaling, (A.22)
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becomes∫
−y

y

(
log fy(x)

) 1√
y2 − x2

dx = −∞. (A.41)

Finally, by the Szegő map and a change of variables, (A.41) is equivalent to (2.16).
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