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The mechanically-based approach to non-local elastic continuum, will be captured through variational
calculus, based on the assumptions that non-adjacent elements of the solid may exchange central body
forces, monotonically decreasing with their interdistance, depending on the relative displacement, and
on the volume products. Such a mechanical model is investigated introducing primarily the dual state
variables by means of the virtual work principle. The constitutive relations between dual variables are
introduced defining a proper, convex, potential energy. It is proved that the solution of the elastic prob-
lem corresponds to a global minimum of the potential energy functional. Moreover, the Euler–Lagrange
equations together with the natural boundary conditions associated to the total potential energy func-
tional are established with variational calculus and they coincide with analogous relations already
obtained by means of mechanical considerations. Numerical analysis of a tensile specimen has been
introduced to show the capabilities of the proposed approach.

� 2009 Published by Elsevier Ltd.
1. Introduction

The mechanics of elastic continuum has been widely used both
in the scientific literature and engineering applications since the
first apparition at the mid of the 18th century. The main equations
of the linear elasticity theory represented by the equilibrium, the
compatibility and the constitutive relations have been established
both from mechanical and variational considerations. This latter
approach makes it possible to derive important theorems of lin-
ear-Hookean solids, such as the minimum of strain energy func-
tional, the Betti’s, the Castigliano’s and several other theorems on
variational basis. Those theorems enjoy the symmetry of the elastic
coefficients of the material and this character formed the basis for
the formulation of widely-used approximate methods reverting, as
limiting case, to exact solutions when available.

On the one hand, linear elasticity theory has been one of the
mainly investigated methods to represent mechanical behaviour
of solids; on the other hand several unexpected phenomena ob-
served in experimental set ups, such as dispersion of elastic waves
or the presence of shear bands in tensile specimen not predicted by
classical elasticity theory led to abandon the classical Cauchy the-
ory. In this framework different theories have been formulated to
account for the presence of an inner microstructure responsible
of the deviation of experimental data from the results of classical
mechanics. Those deviations have been accounted introducing
additional terms in the constitutive equations that involve gradi-
Elsevier Ltd.
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ents of the strain field (weak non-local theories) or weighted inte-
grals of the strain field (strong non-local theories). Gradient non-
local theories have been formulated at the beginning of the fifties
introducing the micromorphic continuum theories (Eringen,
1967; Mindlin and Eshel, 1968) until more recent studies focusing
on crack growth or damage accumulation (Aifantis, 1994; Gutkin
and Aifantis, 1996, 1997; Aifantis, 2003; Ganghoffer and De Borst,
2000; Peerlings et al., 2001; Askes and Metrikine, 2002; Metrikine
and Askes, 2002). Despite several similarities among different ap-
proaches in gradient theories of non-local elasticity some impor-
tant differences are worthy to be discussed. In more detail,
micromorphic theories may be considered as extensions of micro-
polar elasticity theory (Toupin, 1963) introducing a deformable
elastic microstructure embedded in Cauchy space. The governing
equations of the inner microstructure involves the presence of
microstress and relative stresses between the micro–macro contin-
uum. In such a theory, additional model of external forces, repre-
senting couple forces and double couple are also involved in the
analysis of the microstructure interactions. Such considerations
do not hold for the non-local gradient elasticity (Aifantis, 1994)
that introduces non-local effects in the constitutive equations of
the considered material by means of higher-order gradients of
the strain field. In this context the equilibrium, as well as, the kine-
matic restraints of the non-local elastic continuum theory remain
unchanged but the Navier governing equations of the elastic prob-
lem involves higher-order derivatives of the unknown displace-
ment field. Some recent applications of the gradient theory of
non-local elasticity has been recently proposed in nanoscale engi-
neering applications (Aifantis, 2009; Kioseoglou et al., 2009). Some
recent strategies to provide experimental measures of the elastic
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Fig. 1a. Discretized elastic bar loaded by an external volume force field f ðxÞ.
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Fig. 1b. (b) Equilibrium of the volume element Vj including long-range
interactions.
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Fig. 1c. Long-range forces in the equilibrium of the volume element Vj.
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coefficients of the internal microstructure as well as a mathemat-
ically consistent formulation of the non-standard boundary condi-
tions have been recently proposed (Maraganti and Sharma, 2007;
Polizzotto, 2003).

Non-local integral theories have received growing interest in
the last 60 s since the first pioneer studies (Kroner, 1967; Kru-
mhanls, 1967; Eringen, 1972; Eringen and Edelen, 1972). These
theories may explain some smoothing effects in stress singularities
observed with local elasticity or in plastic behaviour. The non-local
integral model mainly consists in postulating that the stress at a gi-
ven point is related to the strain at that location and to a non-local
contribution due to the surrounding medium given by convolution
integral involving the strain field and a weighting attenuation
function that accounts for long-distance effects. In this framework,
recently, various contributions are available (Rogula, 1982; Polizz-
otto and Borino, 1998; Polizzotto, 2001; Bažant and Belytschko,
1984; Pijadier-Cabot and Bažant, 1987; Bažant and Jirásek, 2002;
Borino et al., 2003) to cite just a few. It has to be stressed, that
the Eringen stress–strain relation is not based on a proper mechan-
ical model, and this produces some ambiguities in the correct def-
initions of the mechanical boundary conditions, for a bounded
domain. Moreover, non-local elastic models, based on the intro-
duction in stress–strain relations of the weighted strain field, do
not fulfil the well-known theorems of elasticity such as the sym-
metry of the elastic operators and some, ad hoc, strategies have
been proposed, recently, introducing suitable modifications of the
weighting functions (Marotti De Sciarra, 2008).

A different approach, based upon the concept of long-range po-
tential has been proposed, in the context of peridynamic theory of
elasticity (Silling, 2000; Silling and Lehoucq, 2008) without the
consideration of the contact forces between adjacent volume ele-
ments, that yields some drawbacks in presence of mechanical
boundary conditions. Moreover, the absence of contact forces be-
tween interacting elements correspond to discontinuous displace-
ment field for an 1D elastic solid with concentrated forces (Silling
et al., 2003).

In a recent study a long-range cohesive interaction model has
been proposed (Di Paola and Zingales, 2008) introducing non-local
effects upon different considerations; This approach leads to phys-
ical model of non-local elasticity as: (i) A point-spring elastic net-
work fully equivalent to discrete lattice models. (ii) A continuum
model including the long-range interactions as central volume
forces depending on the displacements of the volumes and on a
distance-decaying function.

The relations of the physically-based approach to non-local
elasticity coalesce, in unbounded domain, with the Eringen model
of non-local elasticity, but, for a bounded bar, such equivalence
could not be established and the constitutive law remains quite
different with respect to the Eringen model. The physically-based
non-local contribution in the constitutive law for a bounded bar
is represented, in fact, by a double integral, instead of a simple con-
volution integral leading to the correct derivation of the mechani-
cal boundary conditions (Di Paola et al., 2009). It was also shown
that by selecting the distance-decaying function proportional to
the absolute value of distance in power �(1 + a); a 2 R the convo-
lution integral, representing the non-local interactions, reverts to
Marchaud fractional derivatives (Di Paola and Zingales, 2008; Cot-
tone et al., 2009).

In this paper, the variational formulation of the problem is pre-
sented showing the mathematical consistency of the proposed
model of the linearly elastic problem with long-range interactions.
The virtual work theorem in presence of long-range interactions
has been also reported to introduce the proper static-kinematic
duality between the state variables of the elastic problem. The
elastic potential energy of the solid has been introduced as a sym-
metric, convex and positive definite function of the state variables
yielding the corresponding Euler–Lagrange equations, with the
associate natural boundary conditions. A numerical application
involving an 1D case in simple traction has been also reported to
show the effects of the various parameters involved in the pro-
posed, non-local elastic model.

2. The physically-based approach to non-local elasticity

In this section, some introductory remarks about fundamentals
of non-local 1D mechanics, detailed in previous studies (Di Paola
and Zingales, 2008; Di Paola et al., 2009), will be reported for clar-
ity’s sake and to introduce appropriate notations, as well. Exten-
sion to multi-dimensional elastic continuum is forthcoming in a
separate study.

Let us discretize a simple bar into m volume elements:
DVj ¼ AjDx as depicted in Fig. 1a, being Aj ¼ A xj

� �
the cross-section

area. Any volume element DVj (Fig. 1b) is loaded by an external
body-force field f xj

� �
DVj, the contact forces Nj and Njþ1 exerted

by adjacent volume elements Vj�1 and Vjþ1, and by the resultant
of the long-range forces Qj from the non-adjacent volumes. The lat-
ter is the novel aspect of the model introduced in Di Paola et al.
(2009), since Nj and Njþ1 are the well-known actions in classical
mechanics. Therefore, particular attention is devoted to this long-
range interactions resultant Qj, that is described by the sum of cen-
tral forces applied on the centroids of the interacting volumes, de-
picted in Fig. 1c, and expressed as:

Qj ¼
X1

h¼�1
Q ðj;hÞ ð1Þ
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with each component Q ðh;jÞ represented, as commonly used in the
context of lattice theories, by volume products of interacting ele-
ments (Krumhanls, 1963; Kunin, 1967; Lax, 1963):

Q ðj;hÞ ¼ qðj;hÞVhVj ¼ �qðh;jÞVhVj ð2Þ

and the specific long-range forces qðh;jÞ qðh;jÞ
� �

¼ FL�6
� �

has been as-
sumed as in previous study:

qðj;hÞ ¼ gðxh; xjÞðuh � ujÞ ð3Þ

where uj ¼ uðxjÞ and uh ¼ uðxhÞ are the axial displacements of the
centroids of both volumes Vj; Vh and function
gðxh; xjÞ ¼ gðxj; xhÞ ¼ gðjxh � xjjÞ is a symmetric and positive func-
tion, monotonically decreasing with the distance jxj � xhj with
ð½gðx; nÞ� ¼ L�1Þ. It is to be remarked that in a previous paper (Di Pao-
la and Zingales, 2008) a slightly different, but fully equivalent
expression for the definition reported in Eq. (3) was used in order
to yield explicit fractional derivatives in the governing equation.

Thus, the equilibrium equation of a discretized bar framed into
non-local continuum theory can be withdrawn from Fig. 1b as:

DNj þ Q j þ f ðxjÞAjDx ¼ DNj þ
Xm

h¼0

qðj;hÞAjAhDx2 þ f ðxjÞAjDx ¼ 0 ð4Þ

with DNj ¼ Njþ1 � Nj in which Eqs. (2) and (3) have been accounted
for.

Now the crucial point is to find out a physical point of view be-
side this theory. To aim at this, a close observation of Eq. (4) leads
to consider a point spring model that will have an equivalent equi-
librium equation such that this mechanical model restores the
physical aspect to this theory.

In fact let us consider a discrete model of linearly elastic spring as
shown in Fig. 2 (with only four points for clarity). Non-local effects
may be captured considering linear-elastic springs of distance-
decaying stiffness, in particular between two adjacent points
Pj and Ph the interaction is depending on the stiffness: Kl

j ¼
EAj=Dx (where E ¼ b1E, E being the Young modulus, 0 6 b1 6 1 a
positive material constant) and Knl

jh ¼ AjAhDx2gðjxj � xhjÞ. Between
two non-adjacent points (j,h) interaction is only dependent on the
stiffness: Knl

jh ¼ AjAhDx2gðjxj � xhjÞ. Based on this assumption, it is
apparent that the equilibrium equation of the point spring model
is just Eq. (4). The mechanical scheme here discussed will be used
to provide an approximate solution of the elastic problem with
long-range interactions reported in Section 5.

Once the physical model of this proposed theory has been de-
clared, we continue in determining all governing equations. Then,
dividing Eq. (4) by Dx and letting Dx! 0, Eq. (4) may be rewritten
as:

drl

dx
þ
Z L

0
AðnÞqðx; nÞdn ¼ �f ðxÞ ð5Þ
24K

13K

14K

3 41 2

4F1F

nl
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Fig. 2. Discrete non-local model with non-local linearly-elastic springs of distance-
decaying stiffness.
Since rlðxÞ ¼ NðxÞ=AðxÞ is the local stress due to the contact forces, it
follows that the integral terms in Eq. (5) are non-local contributions
due to the long-range forces. Concisely it leads to:

drlðxÞ
dx

þ drnlðxÞ
dx

¼ drðxÞ
dx

¼ �f ðxÞ ð6Þ

where function rnlðxÞ is the non-local stress and rðxÞ is the overall
stress at location x. Critical comparison between Eqs. (5) and (6)
suggests to represent the non-local stress through the double
integral:

rnlðxÞ ¼
Z x

n1¼0

Z L

n2¼x
Aðn2Þqðn1; n2Þdn2 dn1 ð7Þ

As in fact the following relation:

d
dx

Z L

n1¼x

Z x

n2¼0
Aðn2Þqðn1; n2Þdn2 dn1 ¼

Z L

0
AðnÞqðx; nÞdn ð8Þ

holds true once the third Newton law for the long-range interac-
tions have been accounted for as qðn; xÞ ¼ �qðx; nÞ.

The governing equilibrium equation (5) of the 1D continuum
with long-range forces may be written in terms of the displace-
ment function introducing the kinematic compatibility
eðxÞ ¼ duðxÞ=dx and the stress–strain relation rlðxÞ ¼ EeðxÞ:

E
d2uðxÞ

dx2 þ
Z L

0
AðnÞ½uðnÞ � uðxÞ�gðx; nÞdn ¼ �f ðxÞ ð9Þ

this integro-differential equation rules the displacement field along
the bar accounting for the long-range forces qðx; nÞ expressed as in
Eq. (3).

Summing up the elastic problem of the non-local 1D continuum
may be written in terms of equilibrium, compatibility and consti-
tutive law as follows:

drðxÞ
dx

¼ drl

dx
þ
Z L

0
AðnÞ½uðnÞ � uðxÞ�gðx; nÞdn

duðxÞ
dx
¼ eðxÞ

rðxÞ ¼ rlðxÞ þ rnlðxÞ ¼ EeðxÞ þ
Z x

n1¼0

Z L

n2¼x
Aðn2Þ

�½uðn2Þ � uðn1Þ�gðn1; n2Þdn2 dn1

8>>>>>>>>>><>>>>>>>>>>:
ð10a — cÞ

Together with the kinematic and static boundary conditions

uð0Þ ¼ u0; uðLÞ ¼ uL ð11aÞ
rlð0ÞAð0Þ ¼ �F0; rlðLÞAðLÞ ¼ FL ð11bÞ

It is worth noting, that conditions in Eq. (11b) are valid, since the
double integral in Eq. (10c) vanishes at the boundaries. In fact the
external forces are equilibrated, at the boundaries of the bar, only
by the local internal stresses, such that the static boundary condi-
tions may be enforced without difficulties, since they involve the
first derivative of the displacement field, as in classic mechanics.

Moreover, the constitutive relation reported in Eq. (10c) reverts
to the well-known Eringen model of strong non-local elasticity
(Eringen, 1972):

rðxÞ ¼ EeðxÞ þ
Z 1

�1
A�gðx; nÞeðnÞdn ð12Þ

being �gðx; nÞ the model attenuation function, under the conditions:
(i) Uniform cross-section of the 1D model AðnÞ ¼ A ¼ const. (ii)

Unbounded domain that implies no impending boundaries. (iii) An
exponential or fractional-type distance-decaying function (Di Pao-
la and Zingales, 2008; Di Paola et al., 2009). Those conditions en-
sures that the proposed model of long-range forces coalesces
with the Eringen model in the unbounded domain under restrictive
assumption on the attenuation function. For a bounded domain the
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constitutive law must be expressed as in Eq. (10c) that does not
coalesce with Eringen model being (see Di Paola et al., 2009 for
details):Z L

0
AðnÞ�gðx; nÞeðnÞdn –

Z L

n1¼x

Z x

n2¼0
AðnÞgðn1; n2Þ½uðn2Þ

� uðn1Þ�dn2 dn1 ð13Þ

On this solid ground in the next sections the fundamental
identity and the variational theorems applied to the proposed
model of long-range forces will be addressed and discussed in
detail.
3. The fundamental relations in presence of long-range central
interactions

The fundamental relations of the continuum mechanics with
long-range interactions may be obtained, as in classical continuum
mechanics, by evaluating the internal work done by the contact
forces and by long-range interactions. By looking at Fig. 3, where
there is depicted a simplified model with only four elements for
clearness sake, the resultants of the long range forces, namely
Qj ðj ¼ 1; . . . ;4Þ take the following form:

Q 1 ¼ Q ð1;2Þ þ Q ð1;3Þ þ Q ð1;4Þ; Q 2 ¼ Q ð2;3Þ þ Q ð2;4Þ � Q ð1;2Þ

Q 3 ¼ Q ð3;4Þ � Q ð2;3Þ � Q ð1;3Þ; Q 4 ¼ �Q ð1;4Þ � Q ð2;4Þ � Q ð3;4Þ
ð14Þ

the internal work associated to the displacement uj ¼ uðxjÞ ðj ¼
1; . . . ;4Þ is given as:

Lint ¼ N1u1 þ ðN2 � N1Þu2 þ ðN3 � N2Þu3 � N3u4

þ Q ð1;2Þ þ Q ð1;3Þ þ Q ð1;4Þ
� �

u1 þ Q ð2;3Þ þ Q ð2;4Þ
� �

u2

� Q ð1;2Þu2 þ Q ð3;4Þu3 � Q ð2;3Þ þ Q ð1;3Þ
� �

u3

� Q ð2;4Þ þ Q ð3;4Þ þ Q ð1;4Þ
� �

u4 ð15Þ

Which, extended to the case of an arbitrary number m of volumes, is
written as:

Lint ¼
Xm

j¼1

ðNj � Nj�1Þuj þ
Xm

j¼1

Xm

r¼jþ1

Q ðj;rÞ �
Xj�1

h¼1

Q ðh;jÞ
 !

uj ð16Þ

Introducing Eq. (2) into Eq. (16) it yields:

Lint ¼
Xm

j¼1

ðNj � Nj�1Þ
Dx

ujDx

þ
Xm

j¼1

Xm

r¼jþ1

qðj;rÞAjAr �
Xj�1

h¼1

qðh;jÞAjAh

 !
ujDx2 ð17Þ
u
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Fig. 3. Evaluation of the internal work in
whose limit for Dx! 0 is:

Lint ¼
Z L

0

dNðxÞ
dx

uðxÞdx

þ
Z L

0

Z L

x
AðxÞAðnÞqðx; nÞdn�

Z x

0
AðxÞAðnÞqðn; xÞdn

� 	
uðxÞdx

¼
Z L

0

dNðxÞ
dx

uðxÞdxþ
Z L

0

Z L

0
AðxÞAðnÞqðx; nÞuðxÞdx

ð18Þ
where the latter equality has been established with qðn; xÞ ¼ �qðx; nÞ.
The latter contains two terms: (i) the contribution related to the
work done by the contact forces NðxÞ and (ii) the contribution due
to the work done by the long-range interactions qðx; nÞ. The expres-
sion of the internal work done by long-range interactions and contact
forces reported in Eq. (18) has been simply derived on the basis of
physical model at hand but it does not contain the state variables
of the elastic problem.

Moreover, in order to write Eq. (18) in terms of the state vari-
able, that is a fundamental step in the formulation of a linear the-
ory of elasticity accounting for long-range interactions, it needs to
recast Eq. (17) in the equivalent form:

Lint ¼ �
Xm

j¼1

Nj
ðujþ1 � ujÞ

Dx
Dx�

Xm

j¼1

Xm

i¼jþ1

qðj;iÞAiAj

 !
ðuj � uiÞDx2 ð19Þ

yielding at the limit, the expression of the internal work as:

Lint ¼ �
Z L

0
NðxÞ du

dx
dxþ

Z L

0

Z L

x
AðxÞAðnÞqðx; nÞðuðnÞ � uðxÞÞdn

� 	
dx

ð20Þ
At this stage, it is worthy mentioning that the internal work repre-
sented in Eq. (19) and derived by means of mechanical consider-
ations involves a double sum with recursive index, yielding the x-
dependence of the inner integration boundary, reported in Eq.
(20). On the other hand, Eq. (19) may also be rewritten in the equiv-
alent form (adding all the contributions from the right) as:

Lint ¼ �
Xm

j¼1

Nj
ðujþ1 � ujÞ

Dx
Dxþ

Xm

j¼1

Xjþ1

i¼1

qði;jÞAiAj

 !
ðui � ujÞDx2 ð21Þ

and summing Eqs. (19) and (21) and taking the limit for Dx! 0
yields the equivalent expression of the internal work in the follow-
ing form:

Lint ¼ �
Xm

j¼1

Nj
ðujþ1 � ujÞ

Dx
Dxþ 1

2

Xm

j¼1

Xm

i¼1

qðj;iÞAiAj

 !
ðui � ujÞDx2

ð22aÞ

Lint ¼ �
Z L

0
NðxÞ du

dx
dx

þ 1
2

Z L

0

Z L

0
AðxÞAðnÞqðx; nÞðuðnÞ � uðxÞÞdn

� 	
dx ð22bÞ
u

Q

Q

2N 3N

4u

Q

Q

Q

3N

3u

(3,4Q( )3,4

Q( )1,3

)2,3

( )1,3

( )2,3Q
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u
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presence of long-range interactions.
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that does not involve moving integration boundaries and it still in-
volves relative displacements between volume elements of the bar.
Eq. (22b) is the more convenient expression for the extension to
multidimensional case as well as for the development of approxi-
mate solutions of elastic problems with long-range interactions.

The equivalent expressions reported in Eqs. (18) and (20) and in
Eq. (22) are valid for any class of long-range interactions with the
only requirement to be central forces proportional to the volumes
of the interacting elements.

The first term in Eq. (20) and in Eq. (22) could also be obtained
integrating by parts the first integral in Eq. (18), whereas the sec-
ond integral term is the internal work done by the long-range
interactions by relative displacement of the interacting volumes.
These concepts are the two crucial steps necessary to formulate
the fundamental relations of the non-local continuum mechanics
with long-range forces.

To this aim let us suppose that ~uðxÞ is a compatible displace-
ment field satisfying the kinematic boundary conditions of the
1D solid and let us define r̂ðxÞ ¼ r̂lðxÞ þ r̂nlðxÞ an equilibrated
stress field with respect to volume forces f̂ ðxÞ and forces bF 0; bF L

at the borders.
The work done by the body force field f̂ ðxÞ through the axial dis-

placement ~uðxÞ is written in the left-hand side of the following
identity:Z L

0
AðxÞf̂ ðxÞ~uðxÞdx ¼ �

Z L

0
AðxÞdr̂

dx
~uðxÞdx

¼ �
Z L

0
AðxÞ~uðxÞ dr̂l

dx
dxþ

Z L

0
AðxÞ~uðxÞ dr̂nl

dx
dx


 �
ð23Þ

since Eq. (6) holds true. Integrating by parts the first term at the
right-hand side of Eq. (23) after some straightforward algebra, it
leads to the fundamental identity of mechanics Lext ¼ Lint being
external Lext and internal Lint virtual work expressed, respectively:

Lext ¼ ~uð0ÞbF 0 þ ~uðLÞbF L þ
Z L

0
AðxÞf̂ ðxÞ~uðxÞdx ð24Þ

Lint ¼
Z L

0
AðxÞr̂lðxÞ

d~u
dx

dx� 1
2

Z L

0

Z L

0
AðxÞAðnÞq̂ðn; xÞ~gðx; nÞdn

� 	
dx

ð25Þ

Interestingly Eq. (25) shows that, the internal virtual work, in pres-
ence of long-range cohesive interactions, is composed by two differ-
ent contributions: (i) the virtual work done by the local stress r̂lðxÞ
by the first derivative d~uðxÞ=dx that is perfectly analogous to the
classical mechanics case and (ii) the virtual work done by the
long-range interactions q̂ðx; nÞ by the relative displacement
~gðx; nÞ ¼ ~uðnÞ � ~uðxÞ.

At this stage it is necessary to point out the importance of the
fundamental identity in the context of the proposed, physically-
based, approach to non-local continuum, introducing the long-
range interactions q̂ðx; nÞ. The equivalence Lext ¼ Lint stands the ba-
sis to represent, consistently, the static-kinematic duality and
henceforth to lead to the correct representation of the state vari-
able, ~gðx; nÞ ¼ ~uðnÞ � ~uðxÞ, dual to the long-range forces q̂ðx; nÞ.

The fundamental identity for the 1D continuum including long-
range central interactions may be particularized in three different
forms as follows.

3.1. Principle of virtual displacements

Let us assume that rðxÞ; f ðxÞ and F0; FL are the (equilibrated)
real stress and external loads applied on the 1D solid, while
~uðxÞ ¼ duðxÞ and ~eðxÞ ¼ deðxÞ ¼ d duðxÞ

dx ¼ d
dx duðxÞ are arbitrary varia-
tion dð�Þ of a kinematically admissible displacement field. In this
context the relation Lext ¼ Lint is rewritten in the following form:

duð0ÞF0 þ duðLÞFL þ
Z L

0
AðxÞf ðxÞduðxÞdx

¼
Z L

0
AðxÞrlðxÞd

duðxÞ
dx

dx

� 1
2

Z L

0

Z L

0
AðxÞAðnÞqðn; xÞdðuðnÞ � uðxÞÞdn

� 	
dx

¼
Z L

0
AðxÞrlðxÞ

d
dx

duðxÞdx�
Z L

0

Z L

0
AðxÞAðnÞqðn; xÞduðnÞdndx

ð26Þ

Eq. (26) holds true for any displacement field duðxÞ under the kine-
matic condition d

dx duðxÞ ¼ d d
dx uðxÞ ¼ de so that the equilibrium

equations in Eq. (11) are satisfied for the real stress field rðxÞ and
the external loads f ðxÞ and F0; FL.

3.2. Principle of virtual forces

Let us assume that uðxÞ and eðxÞ are the real displacement field,
the axial strains and relative displacement field gðx; nÞ and that
r̂lðxÞ¼ drlðxÞ; f̂ ðxÞ¼ df ðxÞ; bF 0¼ dF0; bF L¼ dFL and q̂ðx;nÞ¼ dqðx;nÞ are
arbitrary, but equilibrated local stress and long-range forces under
variations of the applied loads df ðxÞ; dF0; dFL. The fundamental
relation Lext ¼ Lint is represented as:

u0dF0 þ uLdFL þ
Z L

0
AðxÞdf ðxÞuðxÞdx

¼
Z L

0
AðxÞdrlðxÞeðxÞdx� 1

2

Z L

0

Z L

0
AðxÞAðnÞdqðn; xÞgðx; nÞdn

� 	
dx

ð27Þ

may be transformed accounting for the equilibrium equations:

ddrlðxÞ
dx

þ
Z L

0
AðnÞdqðx; nÞdn

¼ �df ðxÞdrlð0ÞAð0Þ ¼ �dF0; drlðLÞAðLÞ ¼ dFL ð28a;bÞ

and multiplying Eq. (28a) by AðxÞuðxÞ it yields, after integration in
½0; L�, the following identity:

uðxÞAðxÞdrlðxÞjL0 �
Z L

0
AðxÞduðxÞ

dx
drlðxÞdxþ

Z L

0
A xð Þu xð Þdf xð Þdx

þ
Z L

0

Z L

0
AðxÞAðnÞdqðx; nÞdn

� 	
uðxÞdx ¼ 0 ð29Þ

that added to the right-hand side of Eq. (27) and accounting for Eqs.
(18) and (22) and Eqs. (28b) it yields

ðu0 � uð0ÞÞdF0 þ ðuL � uðLÞÞdFL

¼
Z L

0
AðxÞ eðxÞ � duðxÞ

dx

� 	
drlðxÞdx

þ 1
2

Z L

0

Z L

0
AðxÞAðnÞ½gðx; nÞ � ðuðnÞ � uðxÞÞ�dqðx; nÞdndx ð30Þ

and since the equilibrium equations are satisfied for any static vari-
ables r̂lðxÞ ¼ drlðxÞ; f̂ ðxÞ ¼ df ðxÞ; bF 0 ¼ dF0; bF L ¼ dFL and q̂ðx; nÞ ¼
dqðx; nÞ that satisfy the equilibrium relation, Eq. (30) the field condi-
tions eðxÞ ¼ duðxÞ=dx; gðx; nÞ ¼ uðxÞ � uðnÞ as well as the essential
boundary conditions u0 ¼ uð0Þ; uL ¼ uðLÞ.

3.3. Energy balance

The energy balance between the applied loads and the corre-
sponding strain energy stored in the bar is obtained under the
assumption that in the fundamental equation ðLext ¼ LintÞ the
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kinematic variables uðxÞ and eðxÞ and the static variables
rlðxÞ and qðx; nÞ are the actual ones (compatible and equilibrated
solutions). Under these assumptions:

Lext ¼ uð0ÞF0 þ uðLÞFL þ
Z L

0
AðxÞf ðxÞuðxÞdx

¼
Z L

0
AðxÞrlðxÞ

duðxÞ
dx

dx

þ 1
2

Z L

0

Z L

0
AðxÞAðnÞqðx; nÞðuðxÞ � uðnÞÞdn

� 	
dx ¼ Lint ð31Þ

Eq. (31) coalesces with Eq. (22b) since AðxÞrlðxÞ ¼ NðxÞ. In the en-
ergy balance the first term is the well-known local contribution to
the strain energy, while the second one is the contribution of the
long-range terms to the internal stored energy of the body.

4. The variational theorems of 1D continuum with long-range
forces

The elastic potential energy and the complementary elastic po-
tential energy stored in the 1D continuum with long-range forces
may now easily derived from the results obtained in the previous
section.

Let us introduce the constitutive relations rlðxÞ ¼ EeðxÞ and
those about long-range forces introduced in Eq. (3a) into the en-
ergy balance reported in Eq. (31)

1
2

uð0ÞF0 þ uðLÞFL þ
Z L

0
AðxÞf ðxÞuðxÞdx


 �
¼ 1

2

Z L

0
AðxÞEeðxÞ2 dxþ 1

2

Z L

0

Z L

0
gAðx; nÞðuðxÞ � uðnÞÞ2 dn

� 	
dx


 �
ð32Þ

where we set the symmetric distance-decaying function
gAðx; nÞ ¼ AðxÞAðnÞgðx; nÞ for simplicity of notation. We define the
right-hand side of Eq. (32) as the potential elastic energy Uðe;gÞ
in the following form:

Uðe;gÞ ¼ UlðeÞ þUnlðgÞ

¼
Z L

0
ulðeÞdxþ 1

2

Z L

0

Z L

0
unlðgðx; nÞÞdndx ð33Þ

with gðx; nÞ the relative displacement field and the local ulðeÞ and
non-local unlðgðx; nÞÞ potential energy density (for unitary length)
defined as:

ulðeÞ ¼
1
2

AðxÞEe2; unlðgÞ ¼
1
2

gAðx; nÞðgðx; nÞÞ
2 ð34a;bÞ

The potential densities defined in Eq. (34a) and (34b) have been
introduced upon the kinematic variables eðxÞ ¼ du=dx and gðx; nÞ
and are composed of two contributions: (i) a local contribution rep-
resented by the first term in Eq. (33) and (ii) a non-local contribu-
tion depending on the state variable gðx; nÞ ¼ uðxÞ � uðnÞ,
consistently associated to the long-range cohesive interaction
qðx; nÞ.

Similar arguments may be used to define the dual elastic poten-
tial energy of the 1D solid including long-range effects, dubbed W,
as:

W ¼ WlðrlÞ þWnlðqÞ

¼
Z L

0
wlðrlÞdxþ 1

2

Z L

0

Z L

0
wnlðqðx; nÞÞdndx ð35Þ

With the local complementary energy density and the non-local
counterpart, namely wlðrlÞ and wnlðqðx; nÞÞ defined, respectively:

wlðrlÞ ¼
AðxÞr2

l

2E
; wnlðqÞ ¼ ðAðxÞAðnÞÞ

2 qðx; nÞ2

2gAðx; nÞ
ð36a;bÞ
The mathematical consistency, of the introduced elastic potential
energy density, may be assessed deriving the densities
ulðeÞ and unlðgðx; nÞÞ with respect to the state variables as:

rl ¼
1

AðxÞ
oul

oe
¼ Ee; qðx; nÞ ¼ 1

AðxÞAðnÞ
ounl

og
¼ gðx; nÞgðx; nÞ ð37a;bÞ

that are fully correspondent to the used constitutive relations for
the local Cauchy stress rl and the non-local central forces qðx; nÞ.
The inverse constitutive relations may be obtained by differentiat-
ing the complementary densities wlðrlÞ and wnlðqÞ with respect to
the state variables yielding:

e ¼ 1
AðxÞ

owl

orl
¼ rl

E
; gðx; nÞ ¼ 1

AðxÞAðnÞ
ownl

oq
¼ qðx; nÞ

gðx; nÞ ð38a;bÞ

Corresponding to the inverse constitutive relations that can also be
obtained from simple manipulation of Eq. (3).

The constitutive relations between the dual variables g and q,
reported in Eqs. (37b) and (38b) deserves some further consider-
ations about the requirements of the function gðx; nÞ. Such a dis-
tance decaying function has been introduced, based upon the
mechanical consideration that the long-range cohesive interac-
tions oppose to relative displacements so that function gðx; nÞ
was assumed symmetric and positive definite. Once the elastic po-
tential energy unlðgÞ or the complementary elastic energy wnlðqÞ
has been introduced the same requirements may be withdrawn
from energetic considerations. In this context, in fact, the revers-
ible transformations of linear elasticity may be guaranteed if and
only if the elastic potential energy of the elastic body is a symmet-
ric, convex and positive definite functional of the state variables.
This consideration leads to conclude that the distance-decaying
function gðx; nÞ must be symmetric and positive definite yielding
convex elastic potentials in Eqs. (34b) and (36b). Moreover it has
been proved that the Drucker stability criterion is locally fulfilled
only if the decaying function is strictly positive in the whole do-
main (Di Paola et al., 2009).

Some further comments must be reported, at this stage, about
the differences between the proposed model of elastic potential
energy provided by the physically-based approach and the elastic
potential energy of the strong non-local theories (Kroner, 1967).
In this latter models the elastic potential energy of the generalized
continuum has been obtained in the following form (with the
appropriate symbols, see Eq. (22) Kroner, 1967):

UK ¼
1
2

Z L

0
EAðxÞeðxÞ2 dxþ 1

4

Z L

0

Z L

0
A2�gðx; nÞeðxÞeðnÞdndxþUr

ð39Þ

where Ur is some residual energy that vanishes by enforcing some
conditions in the interior domain and the border of the solid (see
Eqs. (13)–(15), Kroner, 1967) that de facto are limitations on the func-
tion �gðx; nÞ. By enforcing such conditions in Eq. (39) and properly
manipulating the double integral, the Eringen model expressed in
Eq. (12) is restored also for a bounded domain. This means that, in or-
der to set Ur ¼ 0, the mathematical restrictions on the kernel to de-
rive the Eringen model require the knowledge of the specific surface
and specific volume at microstructure level close to the borders that
are seldom available. On the other hand, in the authors’ opinion the
distance-decaying function must only depend on the material prop-
erties of the body and not on its boundary conditions and this condi-
tion may be achieved with proper definition of the elastic potential
energy obtained by combination of Eqs. (33) and (34) yielding:

U ¼ 1
2

Z L

0
AðxÞEeðxÞ2 dxþ 1

4

Z L

0

Z L

0
gAðx; nÞðuðxÞ � uðnÞÞ2 dndx

ð40Þ
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By comparing Eq. (39) to Eq. (40) we may state that in the proposed
model the residual energy Ur is not present and the ingredients of
the first term at the right-hand side of Eq. (39) are the same, that
is contact forces are related to the strain. Moreover, the main differ-
ence between Eqs. (39) and (40) remains in the presence of strains
products in the integral term that can be achieved only under se-
vere restrictions about the functional class of the attenuation func-
tion that must be the solution of a proper boundary value problem
involving also, as parameters, the specific surface and the specific
volume of the solid material. This difference is substantial since
Eq. (40), obtained with the aid of physical model, allows a consis-
tent formulation of the elastic problem involving long-range forces
in bounded domain. As in fact from Eq. (40) the governing Eq. (10a)
and (10c) and the boundary conditions both kinematic and static
(Eqs. (11a) and (11b)) may be fully restored, without any mathe-
matical assumption on the class of the distance-decaying functions,
as it will be shown in the following. The previous considerations
lead us to conclude that the inconsistencies in the Eringen model
for a bounded domain arises from the assumption that in the poten-
tial energy the non-local contribution is postulated without an
underlying mechanical model.

4.1. The minimum of the total potential energy functional

Once the potential energy densities have been defined, the var-
iational approach to the mechanics of 1D solid with long-range
forces may be reported. To this aim let us suppose that the external
force field f ðxÞ can be derived by an opportune potential function
PðuÞ as f ¼ �dPðuÞ=du so that they are conservative. The total po-
tential energy Pðu; e;gÞ is represented by the relation
Pðu; e;gÞ ¼ Uðg; eÞ þ PðuÞ that is a function of the strain field and
of the displacement field of the body. Under the assumption that
uðxÞ and eðxÞ are, respectively, the displacement and the strain
field solution of the elastic problem with long-range forces, the
first variation of Pðu; e;gÞ reads:

dPðu; e;gÞ ¼ dUðe;gÞ �
Z L

0
Af ðxÞduðxÞdxþ FLduðLÞ þ F0duð0Þ


 �
ð41Þ

with the first variation of the elastic potential energy defined as:

dUðe;gÞ ¼
Z L

0
AðxÞeðxÞEdedxþ 1

2

Z L

0

Z L

0
gAðx; nÞgðx; nÞdgdn

� 	
dx

ð42Þ

The first variation of the total elastic potential energy in Eq. (42)
vanishes as dPðu; e;gÞ ¼ 0 in correspondence of the solution of
the elastic problem, since it represents the equivalence between
the work done by external loads and by internal elastic forces, as
predicted by the two sides of the energy balance in Eq. (31).

The introduction of the functional relation represented by the
total elastic potential energy Pðu; e;gÞ yields a minimum theorem
for the total potential energy function Pðu; e;gÞ, totally analogous
to the case of classical elasticity.

The evidence of such a theorem may be performed evaluating
the difference Pðuþ du; eþ de;gþ dgÞ �Pðu; e;gÞ as:

Pðuþ du; eþ de;gþ dgÞ �Pðu; e;gÞ

¼
Z L

0
½ulðeþ deÞ �ulðeÞ�dx

þ 1
2

Z L

0

Z L

0
½unlðgþ dgÞ �unlðgÞ�dndx

�
Z L

0
AðxÞf ðxÞduðxÞdxþ FLduðLÞ þ F0duð0Þ


 �
ð43Þ
and introducing Taylor series expansion of local and non-local po-
tential energies truncated to the second-order terms as:

ulðeÞ ffi ulðeÞ þ
oulðeÞ

oe
deþ 1

2
o2ulðeÞ

oe2 ðdeÞ2

unlðgÞ ffi unlðgÞ þ
ounlðgÞ

og
dgþ 1

2
o2ulðgÞ

og2 ðdgÞ2
ð44a;bÞ

in Eq. (40), and accounting for dPðu; e;gÞ ¼ 0 as from Eq. (38), it
yields:

Pðuþ du; eþ de;gþ dgÞ �Pðu; e;gÞ

ffi 1
2

Z L

0
AðxÞEðdeÞ2 dxþ 1

4

Z L

0

Z L

0
gAðx; nÞðdgÞ

2 dn

� 	
dx P 0 ð45Þ

leading to conclude that the solution of the elastic problem of the
1D solid with non-local interactions corresponds to a minimum of
the total elastic potential energy.

Similar arguments may also be invoked for the dual functional,
the total complementary energy as well as for all the others theo-
rems of linear elasticity as the Betti’s and Clapeyron work theo-
rems and they are not reported for shortness sake.

4.2. The Euler–Lagrange equations of the elastic problem with long-
range forces

The total elastic potential energy proposed in Section 4.1 pro-
vides, with the usual rules of variational calculus, the Euler–La-
grange equations and the natural boundary conditions of the
elastic continuum with long-range forces. This formulation serves
to validate the physically-based model of non-local elasticity also
on variational basis, that means by directly postulating the poten-
tial elastic energy functional Uðe;gÞ as defined from Eq. (33).

To this aim we perform the first variation dPðu; e;gÞ ¼ 0 with
respect to the arguments namely duðxÞ; deðxÞ and dgðxÞ yielding:

dPðu;g; eÞ ¼
Z L

0
AðxÞEeðxÞdedxþ 1

2

Z L

0

Z L

0
gAðx; nÞgðx; nÞdgdn

� 	
dx

� 	
�
Z L

0
f ðxÞAðxÞduðxÞdxþ F0duð0Þ � FLduðLÞ

ð46Þ

And, after some straightforward algebra, accounting for Eqs. (18) and
(22) representing the internal work the following equality holds:

1
2

Z L

0

Z L

0
gAðx; nÞgðx; nÞdgdndx

¼
Z L

0

Z L�x

0
gAðx; nÞgðx; nÞdgdndx

¼
Z L

0

Z L

0
gAðx; nÞðuðnÞ � uðxÞÞdn

� 	
duðxÞdx ð47Þ

The left-hand side is the first variation of the non-local contribution
to strain energy and it can be derived as dUnl ¼ Unlðgþ dgÞ �UnlðgÞ
and the right-hand side of Eq. (47) is the variation of the internal
virtual work due to variation of the displacement field duðxÞ. Eq.
(47) may be introduced into Eq. (43) yielding:

dPðu;g; eÞ ¼ E �
Z L

0
AðxÞ de

dx
duðxÞdxþ AðxÞeðxÞduðxÞjL0

� 	
þ
Z L

0

Z L

0
gAðx; nÞ½uðnÞ � uðxÞ�dnduðxÞdx

�
Z L

0
f ðxÞAduðxÞdxþ F0duð0Þ � FLduðLÞ ð48Þ

in which the local contribution has been integrated by parts. Eq.
(48) may be recast in more convenient form:



0 1000 2000 3000 4000 5000 6000 7000 8000 9000

number of volume elements Vj

0.01

0.02

0.03

0.04

0.05

0.06

St
ra

in
 e

ne
rg

y 
[d

aN
cm

]

λ=5 cm

λ=10 cm

E=2.1×106 daNcm-2; A=1 cm2

L=100 cm ; F=100 daN

F F

L

Fig. 4a. Exponential decaying function (51): strain energy response for b1 ¼ 0:7 and
different internal lengths k.

546 M. Di Paola et al. / International Journal of Solids and Structures 47 (2010) 539–548
dPðg; eÞ ¼
Z L

0
�EAðxÞd

2u

dx2 �
Z L

0
½uðnÞ � uðxÞ�gAðx; nÞdn

 

�f ðxÞAðxÞ
!

duðxÞdxþ F0 þ EAð0ÞeðxÞ
� �

duð0Þ

� FL � EAðLÞeðxÞ
� �

duðLÞ ð49Þ

yielding dP ¼ 0 8duðxÞ only if:

E
d2u

dx2 þ
Z L

0
AðnÞ½uðnÞ � uðxÞ�gðx; nÞdn ¼ f ðxÞ ð50aÞ

EAð0Þeð0Þ ¼ Arlð0Þ ¼ �F0; EAðLÞeðLÞ ¼ ArlðLÞ ¼ FL ð50bÞ
that is Eqs. (50a) and (50b) are the Euler–Lagrange equations of the
posed mechanical problem together with the natural boundary con-
ditions. It may be observed, by direct comparison, that Eqs. (50a)
and (50b) coalesce with the governing integro-differential equa-
tions and mechanical boundary conditions of the proposed 1D con-
tinuum with long-range interactions already derived in Eq. (9) on
mechanical considerations.

Summing up the total potential energy function of the kine-
matic state variables of the problem, involving the convex poten-
tial elastic energy and the potential of external load has been
introduced. The first variation of such a functional provides, in
the context of variational approach, the Euler–Lagrange differential
equations and the natural boundary conditions associated to the
total elastic potential energy. It has been proved that such Euler–
Lagrange equations and the associated natural boundary condi-
tions coalesce with the governing integro-differential equation
and the static boundary conditions already introduced on physical
bases. This consideration yields the conclusion that the elastic
equilibrium problem with the introduction of long-range interac-
tions on physical considerations is well-posed and hence it pro-
vides an unique solution.

5. Numerical application

In this section, the proposed model of non-local elastic solid
with long-range interactions is applied to a simple 1D case showing
the class of displacement field obtained with the proposed model.

Let us consider a 1D bar acted upon by two self-equilibrated
point forces F applied at the bar ends. For the long-range forces
in Eq. (3), the exponential form

gðjx� njÞ ¼ ð1� b1ÞE
2A2k

expð�jx� nj=kÞ ð51Þ

is taken for the distance-decaying function gðjx� njÞ, where k is the
internal length corresponding to the influence distance beyond
which the non-local effects may be neglected. Assume the following
values of the bar geometrical and mechanical parameters:
A = 1 cm2, E ¼ 2:1� 106 daN cm�2, L = 100 cm, F = 100 daN. The
solution of the boundary value integrodifferential problem reported
in Eqs. (50a) and (50b) will be obtained introducing a finite differ-
ence operator d=dx ffi D=Dx and, introducing a discrete grid with
abscissas xj ¼ ðj� 1ÞDx ðj ¼ 1;2; . . . ;mþ 1Þ with Dx ¼ L=m the fol-
lowing system of algebraic equation is obtained:

Klu1 � Klu2 þ
Xm

h¼2

Knl
1hðu1 � uhÞ ¼ F1Dx

� � �
� Kluj�1 þ 2Kluj � Klujþ1 þ

Xm

h¼1
h–j

Knl
jhðuj � uhÞ ¼ FjDx

� � �
Klum � Klumþ1 þ

Xm

h¼2

Knl
mhðum � uhÞ ¼ FmDx

ð52Þ
with Kl ¼ EA=Dx, and the springs connecting non-adjacent points in
the position h and j possess a distance-decaying stiffness
Knl

jh ¼ A2Dx2gðjxj � xhjÞ. The first terms in Eq. (52) are the contact
forces between adjacent points while the summations are non-local
forces exerted on points xj by the surrounding elements located at
abscissas xh. Also, in the right-hand side of Eq. (52) Fj ¼ Af ðxjÞ are
the external nodal forces per unit length. At the limit, when
Dx! 0 Eq. (52) reverts exactly to Eq. (50) and this enables us to af-
firm that the point-spring model is equivalent to that proposed in
Section 2. Be Kl the tridiagonal matrix:

Kl ¼

Kl �Kl 0 0 � � � 0
2Kl �Kl 0 � � � 0

� � � � � � � � � � � �
SYM 2Kl �Kl

Kl

26666664

37777775 ð53Þ

and Knl the fully populated non-local stiffness matrix given as

Knl ¼

Knl
11 �Knl

12 �Knl
13 � � � � � � �Knl

1m

Knl
22 �Knl

23 � � � � � � �Knl
2m

� � � � � � � � � � � �
SYM Knl

m�1m�1 �Knl
m�1m

Knl
mm

266666664

377777775 ð54Þ

where we denoted Knl
jj ¼

Pm
h¼1
h–j

Knl
jh. The equilibrium relation reported

in Eq. (52) may be rewritten in the following matrix form:

Ku ¼ ðKl þ KnlÞu ¼ f ð55Þ

where the load vector reads: fT ¼ Dx F1 F2 � � � Fm½ �. The matrix
equation in Eq. (55) corresponds to the governing equations of
the point-spring equivalent model introduced in Section 3, as phys-
ically equivalent to the proposed elastic model with long-range
interactions.

In Fig. 4a, the strain energy in Eq. (42) has been reported as the
number N of volume elements increases, for selected values of
parameters k, b1. Convergence up to the first three digits is gener-
ally encountered for N P 6000. Therefore, solutions obtained for
N ¼ 9000 of Eq. (52) will be taken as sufficiently accurate solutions
for all the response variables shown in the following.
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Fig. 4b. Exponential attenuation function (51): displacement response for b1 ¼ 0:7
and different internal lengths k.
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Sample of the axial displacement has been reported in Fig. 4b
for different values of the internal length scale to highlight the
deviation of the displacement field from the linear behaviour pre-
dicted by continuum mechanics as the internal length k increases.
Observation of Fig. 4b shows also that there is a central core of the
bar that maintains a linear displacement function and the size of
the core is strictly influenced by the values of internal length k.
At the limit for k! 0 no edge-effects are detected and the dis-
placement field is linear with vanishing non-local effects. Some
further details about parametric effects may be found in other
studies (Di Paola et al., 2009).

The proposed approach to the solution of the integrodifferential
boundary value problem expressed in Eqs. (50a) and (50b) has
been developed from the physically-based model of non-local elas-
ticity proposed in Section 2. Some other solution strategies for the
proposed boundary value problem has been reported in the recent
literature (Failla et al., 2009).
6. Conclusions

In this paper, a physically-based approach to mechanics of non-
local elastic continuum has been investigated within variational
context. This approach is the intermediate step in the formulation
of the non-local elasticity theory with long-range interactions for
tridimensional solids, since it provides the static and kinematic
variables of the proposed non-local model.

Despite formulation of such a problem may be provided on
mechanical ground the need for variational approaches that in-
volve weak formulations of the elastic problem in terms of elastic
potential energy is a necessary step toward the development of
analytical approximate solutions and of reliable numerical meth-
ods. As in fact numerical stability and convergence of such meth-
ods may be assessed only for well-posed elastic problems. To this
aim it has been shown that, by the particularization of the virtual
work principle, all the well-known theorems of continuum
mechanics may be restored introducing additional variables re-
lated to the work done by the long-range interactions by the rela-
tive displacement of the interacting volumes. The provided
expressions of the virtual work theorems allow to introduce the,
mathematically and mechanically consistent, state variables of
the elastic problem. The state variables of the elastic problem have
been used in the context of energy balance, to establish the func-
tional form of the elastic potential and complementary elastic po-
tential of the solid model with long-range interactions. The
assumption of quadratic functionals of the state variables of the
elastic problem yields the constitutive equations between static-
kinematic variables that coincide with the relations postulated
on mechanical considerations. The specific class of the distance
decaying function that relates the strength of the interactions be-
tween non-adjacent volumes, already postulated on physical con-
siderations, has also been discussed in energetic context to yield
the reversible transformations of linear elasticity. It has been
shown that, as soon as the distance-decaying function is symmet-
ric and positive definite, both the elastic potential and the comple-
mentary elastic potential are convex functionals of the state
variables of the problems. Thus an unique elastic solution exists
as in the context of classical elasticity theory corresponding to
minimize the total potential energy of the solid.

The proposed approach has been further investigated, with re-
spect to the governing equations and the position of natural
boundary conditions, by the Euler–Lagrange equation of the prob-
lem associated to the introduced functional of total elastic poten-
tial energy. As in fact the Euler–Lagrange equations of the
problem, and the associated natural boundary conditions coincide
with the governing equations obtained by means of mechanical
considerations. The assessment of a convex potential energy func-
tional of the elastic continuum problem with long-range forces
yields to conclude, in addition, that the elastic operators intro-
duced in the model are symmetric functional of the state variables.
This consideration is worthy to be reported since all the well-
known theorems such as the Betti–Maxwell’s reciprocity theorems,
Clapeyron work theorem among others, still hold for the proposed
physically-based model of non-local elasticity theory. Analogous
theorems could not be established, in general, for other integral
models non-local elasticity in which symmetry of elastic operators
could not be guaranteed in general frameworks. A numerical appli-
cation has been also reported to show the capabilities of the pro-
posed approach providing also a numerical solution strategy of
the governing equations of the elastic problem. It may be shown
that the non-local elasticity in conjunction with the introduction
of long-range interactions in the elastic model allows for the intro-
duction of a proper length scale, material dependent, that rules the
decay of the long-range internal forces beside classical parameters
of elasticity theory.
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