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a b s t r a c t

Consider the following system of delay differential equations
x′1(t) = −F(x1(t))+ G(x2(t − r2)),
x′2(t) = −F(x2(t))+ G(x3(t − r3)),
x′3(t) = −F(x3(t))+ G(x1(t − r1)),

where r1, r2 and r3 are positive constants, F , G ∈ C(R1), and F is nondecreasing on R1.
These systems have important practical applications and also are a three-dimensional
generalization of the Bernfeld–Haddock conjecture. In this paper, by using comparative
technique, we obtain the asymptotic behavior of solutions that each bounded solution of
the systems tends to a constant vector under a desirable condition.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the 1976 international conference on nonlinear systems and their applications, Bernfeld and Haddock [1] proposed
the following conjecture:

Conjecture ([1]). : Every solution of the delay differential equation

x′(t) = −x
1
3 (t)+ x

1
3 (t − r), (1.1)

where r > 0, tends to a constant as t −→∞.

Jehu [2] first confirmed the above conjecture, and Krisztin [3], Arino–Seguier [4] also asserted it independently. The
higher-dimensional generalizations with applications to compartmental systems, including the non-smooth nonlinearity
x1/3, were given also in [5,6]. Recently, Ding [7–9], Yi and Huang [10] considered the following more general equation

x′(t) = −F(x(t))+ G(x(t − r)), (1.2)

where r > 0 is a constant, F , G : R1 → R1 are continuous functions satisfying either G(x) ≥ F(x) for all x ∈ R1 or G(x) ≤ F(x)
for all x ∈ R1. It was shown in [7] (see also [8–10]) that if F is strictly increasing then each bounded solution of (1.2) tends
to a constant as t →∞.
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Moreover, Yi and Huang [11,12] consider a two-dimensional generalization of the Bernfeld–Haddock conjecture. More
precisely, the system considered by [12] is{

x′1(t) = −F(x1(t))+ G(x2(t − r2)),
x′2(t) = −F(x2(t))+ G(x1(t − r1)),

(1.3)

where r1 and r2 are positive constants, F , G ∈ C(R1), and F is nondecreasing on R1. Variants of system (1.3), which have been
used as models for various phenomena such as some population growth, the spread of epidemics, the dynamics of capital
stocks, etc. have recently received considerable attention in the literature (see, e.g., [13–23] and the references therein).
Moreover, Yi and Huang [11] assumes that the following assumptions are satisfied:
(H+) (i) G ≥ F ;
(ii) If α ∈ R1, G(α) = F(α) and α = s(α), then there exist ε > 0 and L ∈ R1 such that−F(x)+ F(α) ≥ −L(x− α) for all

x ∈ [α, α + ε], where s(α) = sup{β ∈ R1 : F(β) = F(α)};
(H−) (i) G ≤ F ;
(ii) If α ∈ R1, G(α) = F(α) and α = i(α), then there exist ε > 0 and L ∈ R1 such that−F(x)+ F(α) ≤ −L(x− α) for all

x ∈ [α − ε, α], where i(α) = inf{β ∈ R1 : F(β) = F(α)}.
By using monotonicity arguments, it is proved in [11] that every bounded solution of system (1.3) tends to a constant

vector as t →∞ provided (1.3) satisfies one of the two assumptions (H+) and (H−). Unfortunately, the assumptions (H±)
exclude the situation of F(x) = x

1
3 . Hence, a natural question arises: Does every bounded solution of system (1.3) tend to a

constant vector as t →∞ provided either G(x) ≥ F(x) for all x ∈ R1 or G(x) ≤ F(x) for all x ∈ R1. Our goal in this paper is
to answer this question about three dimension as following system:x

′

1(t) = −F(x1(t))+ G(x2(t − r2)),
x′2(t) = −F(x2(t))+ G(x3(t − r3)),
x′3(t) = −F(x3(t))+ G(x1(t − r1)).

(1.4)

The paper is organized as follows. In Section 2, we introduce some necessary notations and establish some preliminary
results, which are important in the proofs of our main results. Based on the preparations in Section 2, we state and prove
our main results in Section 3.

2. Preliminary results

In this section, some important properties of system (1.4) will be presented, which are of importance in proving ourmain
results in Section 3.
Throughout this paper, we assume that F , G ∈ C(R1), and F is nondecreasing on R1. We will use R1

+
to denote the set of

all nonnegative real numbers and R3
+
denote the set of all nonnegative vectors in R3. Define

C = C([−r1, 0], R1)× C([−r2, 0], R1)× C([−r3, 0], R1)

as the Banach space equipped with a supremum norm. Define

C+ = C([−r1, 0], R1+)× C([−r2, 0], R
1
+
)× C([−r3, 0], R1+).

It follows that C+ is an order cone in C and hence, C+ induces a closed partial ordered relation on C . For any ϕ,ψ ∈ C
and A ⊆ C , the following notations will be used: ϕ ≤ ψ iff ψ − ϕ ∈ C+, ϕ < ψ iff ϕ ≤ ψ and ϕ 6= ψ , ϕ � ψ iff
ψ − ϕ ∈ Int C+, ϕ ≤ A iff ϕ ≤ ψ for anyψ ∈ A, ϕ < A iff ϕ < ψ for anyψ ∈ A, ϕ � A iff ϕ � ψ for anyψ ∈ A. Notations
such as ‘‘≥’’, ‘‘>’’ and ‘‘�’’ have the natural meanings.
Furthermore, for the sake of convenience, we introduce the following auxiliary systemx

′

1(t) = −F(x1(t))+ F(x2(t − r2))
x′2(t) = −F(x2(t))+ F(x3(t − r3))
x′3(t) = −F(x3(t))+ F(x1(t − r1)).

(2.1)

By using [24, Lemma 3.2], we can easily get by induction that both the initial value problems (1.4) and (2.1) have unique
solutions on [0,+∞). Given ϕ ∈ C , we denote by xt(ϕ) (x(t, ϕ)) the solution of (1.4) with the initial data x0(ϕ) = ϕ.
Denote by xt(ϕ, F) (x(t, ϕ, F)) the solution of (2.1), together with the initial data x0(ϕ, F) = ϕ. For any x ∈ R3, we define
x̂ = (( x̂ )1, ( x̂ )2, ( x̂ )3) by ( x̂ )i(θ) = xi, θ ∈ [−ri, 0], i = 1, 2, 3.
Before continuing, it is convenient to introduce the following notations and establish some convention. Set

EF = {e ∈ R3 : F(e1) = F(e2) = F(e3)}.

Define the positive semi-orbit by O(ϕ) = {xt(ϕ) : t ≥ 0}. If O(ϕ) is bounded, then O(ϕ) is compact in C , where O(ϕ) denotes
the closure of O(ϕ). If O(ϕ) is bounded, define

ω(ϕ) =
⋂
t≥0

O(xt(ϕ)),
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i.e., ω(ϕ) = {ψ ∈ C : there exists a subsequence tk → +∞ such that xtk(ϕ) → ψ}. It follows that ω(x) is nonempty,
compact, invariant and connected. Similarly, we can define the positive semi-orbit O(ϕ, F) and the omega limit set ω(ϕ, F)
of the solution xt(ϕ, F) of (2.1), respectively.
We make the following key definition.

Definition 2.1. [a, b] is called an admitting closed super-interval with respect to F if F(a) = F(b) and a = i(a). [a, b] is
called an admitting closed sub-interval with respect to F if F(a) = F(b) and b = s(b).

Lemma 2.1. Let G ≥ F . Then for anyϕ,ψ ∈ C withψ ≥ ϕ, we have xt(ψ) ≥ xt(ϕ, F) for all t ∈ R1+. Hence, xt(ψ, F) ≥ xt(ϕ, F)
for all t ∈ R1

+
. Moreover, if ϕ ∈ EF , then xt(ψ) ≥ ϕ for all t ∈ R1+.

Proof. Lemma 2.1 follows by applying [25, Proposition 1.1]. �

Lemma 2.2. Assume that G ≥ F , ϕ ∈ C, α ∈ EF and ϕ ≥ α̂, then xt(ϕ) ≥ α̂,∀ t ∈ R1+. In addition, the following conclusions
hold:

(i) If i ∈ {1, 2, 3}, and αi < s(αi), ϕi(0) > αi, then xi(t, ϕ) > αi, ∀ t ∈ R1+.
(ii) If α1 = α2 = α3 = s(α1) and ϕ1(0) > α1, then x3(r1, ϕ) > α3.
(iii) If α1 = α2 = α3 = s(α1) and ϕ2(0) > α2, then x1(r2, ϕ) > α1.
(iv) If α1 = α2 = α3 = s(α1) and ϕ3(0) > α3, then x2(r3, ϕ) > α2.

Proof. It follows from Lemma 2.1 and ϕ ≥ α̂ that xt(ϕ) ≥ xt(ϕ, F) ≥ xt (̂α, F) = α̂, t ≥ 0. Now, we prove the remaining
conclusions.
(i) We only consider the case where i = 1 since the case where i = 2, 3 can be dealt with similarly. Assume, by way of

contradiction, that conclusion (i) does not hold. Then

t1 = inf{t > 0 : x1(t, ϕ) = α1} ∈ (0,∞).

It follows from Lemma 2.1 that x1(t1, ϕ) = α1 and x′1(t1, ϕ) = 0. In view of (1.4), G ≥ F and xt(ϕ) ≥ α̂ for all t ≥ 0, we
obtain

x′1(t, ϕ) = −F(x1(t, ϕ))+ G(x2(t − r2, ϕ))
≥ −F(x1(t, ϕ))+ F(x2(t − r2, ϕ))
≥ −F(x1(t, ϕ))+ F(α2), ∀ t ≥ 0.

It follows from x1(t1, ϕ) = α1 < s(α1) that there exists a constant δ such that t1 > δ > 0, and

α1 ≤ x1(t, ϕ) < s(α1), ∀ t ∈ (t1 − δ, t1 + δ).

Thus, for t ∈ [t1 − δ, t1],

x′1(t, ϕ) ≥ −F(s(α1))+ F(α2) = 0.

Then, for t1 − δ < t ≤ t1, we get

α1 ≤ x1(t, ϕ) ≤ x1(t1, α) = α1.

Therefore, x1(t1 − δ/2, ϕ) = α1, a contradiction to the choice of t1. Hence conclusion (i) follows.
(ii) If ϕ1(0) > α1, α1 = α2 = α3 = s(α1). We will show that x3(r1, ϕ) > α3. By way of contradiction, x′3(r1, ϕ) = 0 and

x3(r1, ϕ) = α3. From (1.4), it follows that

x′3(r1, ϕ) = −F(x3(r1, ϕ))+ G(x1(0, ϕ))
≥ −F(α3)+ F(ϕ1(0))
> −F(α3)+ F(α1) = 0.

This contradiction implies that conclusion (ii) holds.
By using a similar argument as in the proof of conclusion (ii), we can prove that the conclusions (iii) and (iv) hold. This

completes the proof. �

Lemma 2.3. Let [a, b] be an admitting closed super-interval with respect to F , α ∈ [a, b), β = a, then for any M > 0, there
exists εM > 0 such that:

(i) lim
t→∞x(t, ϕ, F) ≥ (α, β, β), where ϕ ≥

̂(α +M, β − εM , β − εM).

(ii) lim
t→∞x(t, ϕ, F) ≥ (β, α, β), where ϕ ≥

̂(β − εM , α +M, β − εM).

(iii) lim
t→∞x(t, ϕ, F) ≥ (β, β, α), where ϕ ≥

̂(β − εM , β − εM , α +M).
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Proof. We only consider case (i) since case (ii) (case (iii)) can be dealt with similarly.Without loss of generality, let F(a) = 0
and M ∈ (0, b − α). If r(x) = α + M − 2x + F(β − x)(r2 + r3), then limx→0+ r(x) = α + M . Thus, there exists εM > 0
such that r(εM) ≥ α + εM . Next we will show that εM satisfies this lemma. Let dεM = (α + M, β − εM , β − εM) ∈ R

3 and
x(t) = x ̂(t, dεM , F), t ≥ 0. From Lemma 2.1, we obtain x(t) ≤ (α +M, β, β)(∀t ≥ 0). Set

t1 = inf{t ≥ 0 : x1(t) ≤ α}.

Next we will show that t1 = +∞, otherwise t1 < +∞, x1(t1) = α and x1(t) > α,∀t ∈ [−r1, t1]. From (2.1), for t ∈ [0, t1]
we getx

′

1(t) = F(x2(t − r2)),
x′2(t) = −F(x2(t))+ F(x3(t − r3)),
x′3(t) = −F(x3(t)).

(2.2)

We claim that t1 > r2. In fact, if t1 ≤ r2, then, from x1(0) = α +M, F(β − εM) < F(β) = 0 and t1 < r2 + r3, we obtain

α = x1(t1)

= x1(0)+
∫ t1

0
F(x2(s− r2))ds

= x1(0)+ t1F(β − εM)
≥ α +M − 2εM + F(β − εM)(r2 + r3)+ 2εM
≥ r(εM)+ 2εM
≥ α + 3εM .

This contradiction implies that t1 > r2.
Furthermore, we claim that t1 > r2 + r3. In fact, if t1 ≤ r2 + r3, then

α = x1(t1)

= x1(0)+
∫ t1

0
F(x2(s− r2))ds

= x1(0)+
∫ t1−r2

−r2
F(x2(s))ds

= x1(0)+
∫ 0

−r2
F(x2(s))ds+

∫ t1−r2

0
(−x′2(s)+ F(x3(t − r3)))ds

= x1(0)+ F(β − εM)r2 + x2(0)− x2(t1 − r2)+ (t1 − r2)F(β − εM)
≥ α +M + β − εM − β + F(β − εM)(r2 + r3)
≥ r(εM)+ εM
≥ α + 2εM .

This contradiction implies that t1 > r2 + r3.
Now, integrating (2.2), it results that

x1(t1) = x1(0)+
∫ t1−r2

−r2
F(x2(s))ds

x2(t1 − r2) = x2(0)−
∫ t1−r2

0
F(x2(s))ds+

∫ t1−r2−r3

−r3
F(x3(s))ds

x3(t1 − r2 − r3) = x3(0)−
∫ t1−r2−r3

0
F(x3(s))ds

then

x1(t1) =
3∑
i=1

xi(0)+
3∑
i=2

∫ 0

−ri
F(xi(s))ds− x2(t1 − r2)− x3(t1 − r2 − r3).

So x1(t1) ≥ α +M + 2(β − εM)+ F(β − εM)(r2 + r3)− 2β , i.e., x1(t1) ≥ α + εM > α, this is a contradiction. This implies
that t1 = +∞. Moreover from (2.2) we know that x1(·)(x3(·)) separately is decreasing (nondecreasing) on [0,∞). Thus, for
any t > 0, x′3(t) ≥ 0.
We claim that x2(t) ≤ x3(t − r3) for all t ≥ r3. Otherwise, there exists t∗ > r3, such that x2(t∗) > x3(t∗ − r3) and

x′2(t
∗) > x′3(t

∗
− r3) ≥ 0. From (2.1), we have x′2(t

∗) = −F(x2(t∗))+ F(x3(t∗− r3)), then x′2(t
∗) ≤ 0. This is a contradiction.
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From the above claim and (2.1), we get x′2(t) ≥ 0 for all t ≥ r3, so there exists d ∈ R
3 such that limt→∞ x(t) = d, and

d1 ≥ α, d2 ≤ β, d3 ≤ β . Hence d2 = d3 = β and d ∈ EF . This completes the proof. �

From the compactness of ω(x) and the definition of EF , we can show that:

Lemma 2.4. Assume that G ≥ F and ϕ ∈ C such that O(ϕ) is bounded, then, there exists α∗ ∈ R3 such that α∗ = sup{e ∈ EF :
ê ≤ ω(ϕ)} and α̂∗ ≤ ω(ϕ).

Proof. Since O(ϕ) is bounded, ω(ϕ) is compact. Hence, there exists α ∈ R1 such that

̂(α, α, α) ≤ ω(ϕ).

Let

D+ϕ = {e ∈ EF : ê ≤ ω(ϕ)}, D = {e ∈ D+ϕ : (α, α, α) ≤ e} ⊆ R
3.

Then D is compact. By Zorn’s lemma, D contains amaximal element andwe denote it by e∗ = (e∗1, e
∗

2, e
∗

3). Next wewill show
that supD = e∗. If not, then there exist e1, e2, e3 ∈ R1 such that (e1, e2, e3) ∈ D and (e∗− (e1, e2, e3)) 6∈ R3+. Without loss of
generality, we may assume that e∗1 > e1, e

∗

2 > e2 and e
∗

3 < e3. By the definition of D, we obtain

̂(e∗1, e
∗

2, e3) ≤ ω(ϕ) and F(e∗1) = F(e3).

Therefore,

̂(e∗1, e
∗

2, e3) ∈ D and (e∗1, e
∗

2, e
∗

3) < (e∗1, e
∗

2, e3),

a contradiction to the definition of e∗. It follows that supD+ϕ = e
∗. This completes the proof. �

Lemma 2.5. Assume that all the conditions of Lemma 2.4 hold, α∗ be defined in Lemma 2.4, if ω(ϕ) \ {α̂∗} 6= ∅, then
α∗1 = α

∗

2 = α
∗

3 = s(α
∗

1).

Proof. Assume, bywayof contradiction, that the conclusions donot hold. Then, there exits i ∈ {1, 2, 3} such thatα∗i < s(α
∗

1).
We shall consider seven cases as follows:
Case 1. α∗i < s(α

∗

1),∀ i = 1, 2, 3.
By ω(ϕ) \ {α̂∗} 6= ∅ and the invariance of ω(ϕ), without loss of generality, we may assume that there exists ψ ∈ ω(ϕ)

such that ψ1(0) > α∗1 . From Lemma 2.2(i), we obtain

x1(t, ψ) > α∗1 , ∀ t ∈ R
1
+
.

Thus, there existsM > 0 such that

α∗1 + 3M < s(α∗1) xr1(ψ) ≥ ̂(α∗1 + 3M, α
∗

2 , α
∗

3).

Let a = i(α∗1), b = s(α
∗

1), α = M + α
∗

1 , β = a. From Lemma 2.3, there exists εM > 0 such that

lim
t→∞

x(t, η) ≥ (α, β, β), where η ≥ ̂(α +M, β − εM , β − εM).

By the choice ofM > 0, we obtain

xr1(ψ)� ̂(α +M, β − εM , β − εM).

In view of the definition of ω(ϕ), there exists t1 > 0 such that

xt1(ϕ) ≥ ̂(α +M, β − εM , β − εM).

Then
lim

t →∞
x(t, ϕ) ≥ (α, β, β).

Thus

ω(ϕ) ≥ ̂(α∗1 +M, α
∗

2 , α
∗

3),

Again by the choice ofM > 0, we obtain(α∗1 +M, α
∗

2 , α
∗

3) ∈ EF , a contradiction to the choice of α
∗.

Case 2. α∗1 < s(α
∗

1), α
∗

2 < s(α
∗

1) and α
∗

3 = s(α
∗

1).
By using a similar argument as in the proof of Case (i), we can prove: ∀ψ ∈ ω(ϕ), ψi(θ) = α∗i , ∀ θ ∈ [−ri, 0], i = 1, 2.

Again from ω(ϕ) \ {α̂∗} 6= ∅, we get that there exists ψ ∈ ω(ϕ) such that ψ3(0) > α∗3 . By (1.4) and the above claim, we
have

0 = x′2(r3, ψ) = −F(x2(r3, ψ))+ G(x3(0, ψ)),

i.e. , F(α∗2) = G(ψ3(0)) ≥ F(ψ3(0)) > F(α
∗

3), a contradiction to α
∗
∈ EF .
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Case 3. α∗1 = s(α
∗

1), α
∗

2 < s(α
∗

1) and α
∗

3 < s(α
∗

1). By using a similar argument as in the proof of Case 2, we can derive
contradictions.
Case 4. α∗1 < s(α

∗

1), α
∗

2 = s(α
∗

1) and α
∗

3 < s(α
∗

1). By using a similar argument as in the proof of Case 2, we can derive
contradictions.
Case 5. α∗1 = s(α

∗

1), α
∗

2 = s(α
∗

1) and α
∗

3 < s(α
∗

1).
By using a similar argument as in the proof of Case (i), We can prove: ∀ψ ∈ ω(ϕ), ψ3(θ) = α∗3 , ∀ θ ∈ [−r3, 0]. Again

from 1.4, we obtain

0 = x′3(t, ψ) = −F(x3(t, ψ))+ G(x1(t − r1, ψ)), ∀ t ∈ R
1
+
.

Thus,

F(α∗3) = G(x1(t − r1, ψ)) ≥ F(x1(t − r1, ψ)).

From α∗1 = s(α
∗

1), ω(ϕ) ≥ α̂
∗ and α∗ ∈ EF , we get

x1(t − r1, ψ) = α∗1 , ∀ t ∈ R
1
+
.

By using a similar argument we can show that x2(t, ψ) = α∗2 ,∀ t ∈ [−r2,+∞), a contradiction to ω(ϕ) \ {α̂∗} 6= ∅.
Case 6. α∗1 = s(α

∗

1), α
∗

2 < s(α
∗

1) and α
∗

3 = s(α
∗

1). By using a similar argument as in the proof of Case 5, we can derive
contradictions.
Case 7. α∗1 < s(α

∗

1), α
∗

2 = s(α
∗

1) and α
∗

3 = s(α
∗

1). By using a similar argument as in the proof of Case 5, we can derive
contradictions.
In view of all the discussions above, we conclude that α∗1 = α

∗

2 = α
∗

3 = s(α
∗

1). This completes the proof. �

Lemma 2.6. Assume that all the conditions of Lemma 2.5 hold. Then, we obtain

(i) ∀ ψ ∈ ω(ϕ) \ {α̂∗}, i = {1, 2, 3}, there exists s∗ ∈ [0, r1 + r2 + r3] such that

xi(s∗, ψ) = α∗i ;

(ii) ∀ ψ ∈ ω(ϕ) \ {α̂∗}, there exists t∗ ∈ [0, r1 + r2 + r3] such that{x1(t∗ + k(r1 + r2 + r3), ψ) = α∗1 ,
x2(t∗ + k(r1 + r2 + r3)+ r1 + r3, ψ) = α∗2 ,
x3(t∗ + k(r1 + r2 + r3)+ r1, ψ) = α∗3 ,

for all nonnegative integers k ≥ 0.

Proof. From ω(ϕ) \ {α̂∗} 6= ∅ and Lemma 2.5, we have

α∗1 = α
∗

2 = α
∗

3 = s(α
∗

1).

(i) Assume, by way of contradiction, that conclusion (i) does not hold. Then, there exits ψ ∈ ω(ϕ) \ {α̂∗} such that

x1(t, ψ) > α∗1 , ∀ t ∈ [0, r1 + r2 + r3].

By Lemma 2.2 (ii), we have x3(t, ψ) > α∗3 , ∀ t ∈ [r1, r1 + r2 + r3], again by Lemma 2.2 (iv), we get x2(t1, ψ) > α∗2 ,
∀ t ∈ [r1 + r3, r1 + r2 + r3], and from the definition of ‘‘�’’, then

xr1+r2+r3(ψ)� α̂∗.

Together with the definition of ω(ϕ) and Lemma 2.2, we obtain that ω(ϕ) � α̂∗, a contradiction to the choice of α∗. This
implies that conclusion (i) holds.
(ii) Set{Ak = {t ∈ [0, r1 + r2 + r3] : x1(t + k(r1 + r2 + r3), ψ) = α∗1},

Bk = {t ∈ [0, r1 + r2 + r3] : x2(t + k(r1 + r2 + r3)+ r1 + r3, ψ) = α∗2},
Ck = {t ∈ [0, r1 + r2 + r3] : x3(t + k(r1 + r2 + r3)+ r1, ψ) = α∗3},

where k ≥ 0. From Lemma 2.2(ii), (iii) and (iv), we get Ak ⊆ Bk−1, Bk ⊆ Ck and Ck ⊆ Ak, ∀ k ≥ 1. Thus

Ak ⊆ Ak−1 Bk ⊆ Bk−1 Ck ⊆ Ck−1, ∀ k ≥ 1.

By the compactness of [0, r1 + r2 + r3], we have⋂
k≥1

Ak =
⋂
k≥1

Bk =
⋂
k≥1

Ck 6= ∅.

Choose t∗ ∈
⋂
k≥1 Ak, then t

∗ meet the requirement of conclusion (ii). This completes the proof. �
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3. Main results

With the preparations in Section 2, we are ready to state and prove our main results.

Theorem 3.1. Assume that G ≥ F , ϕ ∈ C such that O(ϕ) is bounded, then, there exists α∗ ∈ R3 such that ω(ϕ) = {α̂∗}.

Proof. Let α∗ = sup{α ∈ EF : α̂ ≤ ω(ϕ)}. We shall show that ω(ϕ) = {α̂∗}. If not, then ω(ϕ) \ {α̂∗} 6= ∅. From Lemma 2.5,
we obtain α∗1 = α

∗

2 = α
∗

3 = s(α
∗

1). In view of Lemma 2.6, we can suppose that there exists ψ ∈ ω(ϕ) \ {α̂∗} such that{x1(k(r1 + r2 + r3), ψ) = α∗1 ,
x2(k(r1 + r2 + r3)+ r1 + r3, ψ) = α∗2 ,
x3(k(r1 + r2 + r3)+ r1, ψ) = α∗3 ,

where k ≥ 1.
Let x(t) = x(t, ψ). For s ∈ [0, r1 + r2 + r3] and k ≥ 0, integrating (1.4), we obtain

∫ (k+1)(r1+r2+r3)

k(r1+r2+r3)+s
x′1(t)dt =

∫ (k+1)(r1+r2+r3)

k(r1+r2+r3)+s
[−F(x1(t))+ G(x2(t − r2))]dt∫ (k+1)(r1+r2+r3)+r1+r3

k(r1+r2+r3)+r1+r3+s
x′2(t)dt =

∫ (k+1)(r1+r2+r3)+r1+r3

k(r1+r2+r3)+r1+r3+s
[−F(x2(t))+ G(x3(t − r3))]dt∫ (k+1)(r1+r2+r3)+r1

k(r1+r2+r3)+r1+s
x′3(t)dt =

∫ (k+1)(r1+r2+r3)+r1

k(r1+r2+r3)+r1+s
[−F(x3(t))+ G(x1(t − r1))]dt.

Set 

ak(s) =
∫ (k+1)(r1+r2+r3)

k(r1+r2+r3)+s
F(x1(t))dt

Ak(s) =
∫ (k+1)(r1+r2+r3)

k(r1+r2+r3)+s
G(x1(t))dt

bk(s) =
∫ (k+1)(r1+r2+r3)+r1+r3

k(r1+r2+r3)+r1+r3+s
F(x2(t))dt

Bk(s) =
∫ (k+1)(r1+r2+r3)+r1+r3

k(r1+r2+r3)+r1+r3+s
G(x2(t))dt

ck(s) =
∫ (k+1)(r1+r2+r3)+r1

k(r1+r2+r3)+r1+s
F(x3(t))dt

Ck(s) =
∫ (k+1)(r1+r2+r3)+r1

k(r1+r2+r3)+r1+s
G(x3(t))dt

and {y1(k(r1 + r2 + r3)+ s) = x1(k(r1 + r2 + r3)+ s)− α∗1 ,
y2(k(r1 + r2 + r3)+ s) = x2(k(r1 + r2 + r3)+ r1 + r3 + s)− α∗1 ,
y3(k(r1 + r2 + r3)+ s) = x3(k(r1 + r2 + r3)+ r1 + s)− α∗1 ,

then {0 ≤ y1(k(r1 + r2 + r3)+ s) = ak(s)− Bk−1(s) ≤ ak(s)− bk−1(s),
0 ≤ y2(k(r1 + r2 + r3)+ s) = bk(s)− Ck(s) ≤ bk(s)− ck(s),
0 ≤ y3(k(r1 + r2 + r3)+ s) = ck(s)− Ak(s) ≤ ck(s)− ak(s),

hence
n∑
k=1

3∑
i=1

yi(k(r1 + r2 + r3)+ s) ≤
n∑
k=1

(bk(s)− bk−1(s)) ≤ bn(s)− b0(s).

Together with the compactness and invariance of ω(ϕ), it follows that there exists M > 0 such that |bk(s)| ≤ M for any
k ≥ 0, s ∈ [0, r1 + r2 + r3]. So

n∑
k=1

3∑
i=1

yi(k(r1 + r2 + r3)+ s) ≤ 2M, ∀ n ≥ 1.
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Thus, yi(k(r1 + r2 + r3)+ s) uniformly converges to 0 for s ∈ [0, r1 + r2 + r3]. Then,

lim
k→∞

ak(0) = lim
k→∞

bk(0) = lim
k→∞

ck(0) = F(α∗1)(r1 + r2 + r3).

Again from the discussions above and the choice of ψ , we obtain{ak(0) ≥ bk−1(0),
bk(0) ≥ ck(0),
ck(0) ≥ ak(0)

where k ≥ 0. Hence

ak(0) ≥ a0(0) bk(0) ≥ b0(0) and ck(0) ≥ c0(0), ∀ k ≥ 0.

In view of ψ ∈ ω(ϕ) \ {α̂∗} and α∗1 = α
∗

2 = α
∗

3 = s(α
∗

1), we get

max{ak(0), bk(0), ck(0)} ≥ max{a0(0), b0(0), c0(0)} > F(α∗1)(r1 + r2 + r3),

a contradiction to limk→∞(max{ak(0), bk(0), ck(0)}) = F(α∗1)(r1 + r2 + r3). Thus ω(ϕ) = {α̂∗}. This completes the proof.
�

Theorem 3.2. Assume that G ≤ F , ϕ ∈ C such that O(ϕ) is bounded, then, there exists α∗ ∈ R3 such that ω(ϕ) = {α̂∗}.

Proof. Let f (−x) = −F(x), g(x) = −G(−x), then f is nondecreasing, g ≥ f . Set yi(t) = −xi(t, ϕ), ∀t ≥ −ri, theny
′

1(t) = −f (y1(t))+ g(y2(t − r2)),
y′2(t) = −f (y2(t))+ g(y3(t − r3)),
y′3(t) = −f (y3(t))+ g(y1(t − r1)).

It follows from Theorem 3.1 that there exists β∗ ∈ R3 such that limt→∞(y1(t), y2(t), y3(t)) = β∗. Set α∗ = −β∗, then
ω(ϕ) = {α̂∗}. This completes the proof. �

Corollary 3.1. If F is nondecreasing, then, each solution of{
x′1(t) = −F(x1(t))+ F(x2(t − r2)),
x′2(t) = −F(x2(t))+ F(x1(t − r1)),

tends to a constant vector as t −→∞.

Corollary 3.2. If F is nondecreasing, G ≥ F or G ≤ F , then, each bounded solution of

x′(t) = −F(x(t))+ G(x(t − r))

tends to a constant as t −→∞.

Proof. Consider the synchronization solution of (1.4), together with Theorem 3.1. or Theorem 3.2., we can prove that the
conclusions hold. �

Remark 1. Corollary 3.2 also gives an improvement of the results in Ding [7–9] and a new form of proof on the
Bernfeld–Haddock conjecture.
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