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The nth cyclic function is defined by

jn(z)=C
.

n=0

znn

(nn)!
(z ¥ C, 2 [ n ¥N).

We prove that if k is an integer with 1 [ k [ n−1, then

R (n−k)! j (k)n (x)
xn−k
Sa < jn(x) < R (n−k)! j (k)n (x)

xn−k
Sb

holds for all positive real numbers x with the best possible constants

a=1 and b=R2n−k
n
S .
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1. INTRODUCTION

The nth cyclic function jn (2 [ n ¥N) is defined as the solution of the
differential equation

y (n)(z)=y(z), y(0)=1, yŒ(0)=· · ·=y(n−1)(0)=0,

that is, as the entire function

jn(z)=C
.

n=0

znn

(nn)!
=

1
n
C
n−1

n=0
exp(ennz) (en=e2pi/n, z ¥ C).

For n=2 we obtain the classical hyperbolic functions

j2(z)=cosh z and j −2(z)=sinh z.

The cyclic functions jn, j
−

n, ..., j
(n−1)
n have found the attention of several

authors who established many interesting properties of these functions; we
refer to [1] and the references therein.

This paper has been inspired by the known inequalities

sinh x
x

< cosh x < 1 sinh x
x
23 (x > 0).(1.1)

Simple proofs of (1.1) are given in [3] and [4]. Lazarević [3, p. 270]
pointed out that in the second inequality of (1.1) the exponent 3 is best
possible, that is, this inequality is not true for all x > 0, if we replace 3 by a
smaller constant.

Double-inequality (1.1) leads to inequalities involving the arithmetic,
geometric, and logarithmic means of two positive real numbers. Indeed,
setting x=1

2 log ba (b > a > 0) in (1.1), and multiplying by `ab , we obtain

L(a, b) < A(a, b) < (L(a, b))3/(G(a, b))2,

where A(a, b)=1
2 (a+b), G(a, b)=`ab , and L(a, b)= a−b

log a− log b . Related
results can be found in [2, Chap. VI].

Páles [4, 5] provided other interesting applications of inequalities (1.1).
He showed that they play a role in establishing inequalities for differences
of powers and for two-parameter mean value families.

Since (1.1) can be written as

1
x
j −2(x) < j2(x) < 1

1
x
j −2(x)2

3

(x > 0),(1.2)
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it is natural to look for an extension of (1.2) involving jn and its derivatives.
It is the aim of this paper to present such an extension. More precisely, we
answer the following question:

Let n and k be integers with 1 [ k [ n−1. What is the largest number
a=a(n, k) and what is the smallest number b=b(n, k) such that the
inequalities

1 (n−k)! j (k)n (x)
xn−k
2a < jn(x) < 1

(n−k)! j (k)n (x)
xn−k
2b(1.3)

hold for all positive real numbers x?

2. A DISCRETE INEQUALITY

In order to determine the best possible values a and b in (1.3) we need
the following discrete inequality which might be of independent interest.

Theorem 1. Let u, v, x, and y be nonnegative integers such that
(u, v) ] (0, 0) and 1 [ y [ x−1, and let

F(u, v, x, y)=
(x+y)!

(u+x+y)! v!
−

x! y!
(u+x)! (v+y)!

.(2.1)

Then we have

(u+x) F(u, v, x, y)+(v+x) F(v, u, x, y) > 0.(2.2)

Using Euler’s gamma function to define

a!=C(a+1)(2.3)

for nonnegative real numbers a, it is likely that inequality (2.2) holds for all
real numbers u, v, y \ 0 and x \ 1. In fact, a detailed analysis of our proof
of Theorem 1 reveals that (2.2) is valid at least for large parts of this latter
range.

Proof. In what follows we use the abbreviations

H(u, v, x, y)=(u+x) F(u, v, x, y)+(v+x) F(v, u, x, y),

c(s)=C(s+1), and k(s)=Y(s+1)=
CŒ(s+1)
C(s+1)

(0 [ s ¥ R),
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and we employ freely the extension of F(u, v, x, y) to nonnegative real
numbers via (2.3). We have to show that

H(u, v, x, y) > 0.(2.4)

Since H(u, v, x, y) is symmetric in u and v, it suffices to establish (2.4) for
v \ u. We consider three cases.

Case 1: u=v. Since kŒ is strictly decreasing on [0,.), we conclude
from the integral representation

H(u, u, x, y)

=
2(u+x) c(x) c(x+y)
c(u+x) c(u+x+y)

F
y

0

c(s) c(u+x+s)
c(u+s) c(x+s)

F
u+s

s
[kŒ(t)−kŒ(t+x)] dt ds

that

H(u, u, x, y) \ 0,(2.5)

with equality holding if and only if u=0.

Case 2: v \ 2u+1. Let

S(u, x, y)=
(u+x−1)(x+y)!

(u+x+y)!
+

u! x! y!
(u+x)! (u+y)!

.

Then we have

v! H(u, v, x, y)−u! F(u, u, x, y)(2.6)

> S(u, x, y)−
v! x! y!
(v+y)!
5 1
(u+x−1)!

+
(v+y)!

(u+y)! (v+x−1)!
6 .

A simple calculation yields

S(u, x, y) \
u! x! y!

(u+x−1)! (u+y)!
,(2.7)

so that (2.6) and (2.7) lead to

v! H(u, v, x, y)−u! F(u, u, x, y)(2.8)

> x! y! 5 u!
(u+x−1)! (u+y)!

−
v!

(v+y)!
1 1
(u+x−1)!

+
(v+y)!

(u+y)! (v+x−1)!
26 .
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Since y [ x−1 and 2u+1 [ v, we get

(v+y)!
(u+y)! (v+x−1)!

[
1

(u+x−1)!
and

2v!
(v+y)!

[
u!

(u+y)!
.(2.9)

Using (2.9) we obtain

v!
(v+y)!
1 1
(u+x−1)!

+
(v+y)!

(u+y)! (v+x−1)!
2 [ v!

(v+y)!
2

(u+x−1)!

(2.10)

[
u!

(u+x−1)! (u+y)!
.

From (2.8), (2.10), and (2.5) we conclude

H(u, v, x, y) >
u!
v!
F(u, u, x, y)=

u!
2v!

H(u, u, x, y)
u+x

\ 0.

Case 3: 0 < u < v [ 2u. We define

G(t)=Gu, v, x, y(t)=
c(x+t) c(y−t)

c(u+x+t) c(v+y−t)
(−x [ t [ y).

Since

Gv, u, x, y(t)=Gu, v, x, y(y−x−t),

we have the representation

H(u, v, x, y)=[(u+x) Gu, v, x, y(t)+(v+x) Gv, u, x, y(t)]
t=y
t=0

(2.11)

=[(u+x) Gu, v, x, y(t)−(v+x) Gu, v, x, y(t−x)] t=yt=0

=55(u+v+x−s) Gu, v, x, y 1 t−
v−s
v−u

x26
s=v

s=u

6 t=y
t=0

=F
y

0
F
v

u

3 −GŒ(y)+1x(u+x)
v−u

+
x(v−s)
v−u
2 Gœ(y)4 ds dt,

where

y=t−
(v−s) x
v−u

¥ [−x, y].
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Direct computation yields

Gœ(t)=(X2+Y) G(t),(2.12)

where

X=
GŒ(t)
G(t)

(2.13)

and

Y=1GŒ(t)
G(t)
2 −=kŒ(x+t)−kŒ(x+t+u)+kŒ(y−t)−kŒ(y−t+v).(2.14)

Since kŒ is decreasing, we conclude from (2.14) that Y \ 0, so that (2.12)
leads to

Gœ(t) \ 0.(2.15)

From (2.11) and (2.15) we get the estimate

H(u, v, x, y) \ F
y

0
F
v

u

3 −GŒ(y)+
x(u+x)
v−u

Gœ(y)4 ds dt.

Thus, to prove (2.4) it suffices to show that for y ¥ [−x, y]:

0 < −GŒ(y)+
x(u+x)
v−u

Gœ(y)=m(y), say.(2.16)

Let A=x(u+x)
v−u , and let X and Y be as given in (2.13) and (2.14) (with y

instead of t). Then we have

m(y)
A

G(y)
+
1
4

(2.17)

=1AX−
1
2
22+A2Y

\ A2Y

=1x(u+x)
v−u
22 [kŒ(x+y)−kŒ(x+y+u)+kŒ(y− y)−kŒ(y−y+v)]

=Pu, v, x, y(y), say.
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We have u < v [ 2u and y < x. Since kŒ is decreasing and kœ is increasing
on [0,.), we get

Pu, v, x, y(y) \ 1
x(u+x)

u
22 [kŒ(x+y)−kŒ(x+y+u)+kŒ(x−y)−kŒ(x−y+u)]

(2.18)

=Qu, x(y), say.

The function yW Qu, x(y) is even on [−x, x], and since k'− is decreasing on
[0,.), we verify that it is also convex. Hence, it attains its minimum at
y=0. This leads to

Qu, x(y) \ Qu, x(0)(2.19)

=2 1x(u+x)
u
22 [kŒ(x)−kŒ(x+u)]

=2 1x(u+x)
u
22 C

.

k=1

1 1
(x+k)2

−
1

(x+k+u)2
2

\ 2 1x(u+x)
u
22 1 1

(x+1)2
−

1
(x+1+u)2

2

\ 2
x2

(x+1)2

>
1
4
.

From (2.17)–(2.19) we conclude the validity of (2.16) for y ¥ [−x, y]. This
completes the proof of Theorem 1. L

3. MAIN RESULT

We are now in a position to prove the following extension of inequality
(1.2).

Theorem 2. Let n and k be integers with 1 [ k [ n−1. Then we have for
all positive real numbers x:

1 (n−k)! j (k)n (x)
xn−k
2a < jn(x) < 1

(n−k)! j (k)n (x)
xn−k
2b,(3.1)
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with the best possible constants

a=1 and b=R
2n−k

n
S .

Proof. The left-hand inequality of (3.1) with a=1 is an immediate
consequence of the identity

jn(x)−
(n−k)! j (k)n (x)

xn−k
=(n−k)! C

.

n=1

1D
n−k

m=1

11+nn
m
2−12 xnn

(n(n+1)−k)!
.

To prove the second inequality of (3.1) with b=(2n−kn ), we define

f(x)=b log(n−k)!+b log j (k)n (x)−b(n−k) log x− log jn(x).

We have to show that f(x) > 0 for x > 0. Since limtQ 0 f(t)=0, it is
sufficient to prove for x > 0:

fŒ(x)=b
j (k+1)n (x)
j (k)n (x)

−
b(n−k)

x
−
j −n(x)
jn(x)

> 0,

or, equivalently,

bxj (n)n (x) j (k+1)n (x)−b(n−k) j (n)n (x) j (k)n (x)−xj −n(x) j
(k)
n (x) > 0.(3.2)

Expanding the expression on the left-hand side into a power series around
0, inequality (3.2) can be written as

C
.

m=3
C
m−1

n=1

an+am− n
2

xnm−k > 0,(3.3)

where

an=an(m, n, k)=
nnb

(n(m− n−1))! (n(n+1)−k)!
−

1
(nn−k)! (n(m− n)−1)!

.

If we set

u=n(n−1), v=n(m− n−1), and y=n−k,

then we obtain

(u+n) F(u, v, n, y)+(v+n) F(v, u, n, y)=(an+am− n) n!(n−k)!,(3.4)
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where F is given in (2.1). Since m \ 3, 1 [ n [ m−1, and 1 [ k [ n−1
imply u \ 0, v \ 0, (u, v) ] (0, 0), and 1 [ y [ n−1, we conclude from
Theorem 1 and (3.4) that

an+am− n > 0 (n=1, ..., m−1)

which implies (3.3).
It remains to show that the constants a=1 and b=(2n−kn ) are best pos-

sible in (3.1). Let

g(x)=
log jn(x)

log
(n−k)! j (k)n (x)

xn−k

;(3.5)

then double-inequality (3.1) is equivalent to

a < g(x) < b (x > 0).(3.6)

We have

g(x)=
log(1+s(x))
log(1+t(x))

,

with

s(x)=C
.

n=1

xnn

(nn)!
and t(x)=(n−k)! C

.

n=1

xnn

(nn+n−k)!
.

Hence, we obtain

lim
xQ 0

g(x)=lim
xQ 0

sŒ(x)
tŒ(x)

=R
2n−k

n
S .(3.7)

If 1 [ n [ n−1, then we have limxQ. exp((enn−1) x)=0. This implies

lim
xQ.

j (r)n (x)
j (r−1)n (x)

= lim
xQ.

1+;n−1
n=1 exp((enn−1) x) enrn

1+;n−1
n=1 exp((enn−1) x) en(r−1)n

=1 (r=1, ..., n),

which leads to

lim
xQ.

g(x)= lim
xQ.

j −n(x)
jn(x)

1
j (k+1)n (x)
j (k)n (x)

−
n−k
x

=1.(3.8)
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From (3.6)–(3.8) we conclude that in (3.1) the constants a=1 and
b=(2n−kn ) are sharp, which completes the proof of Theorem 2. L

Remark. Numerous computer calculations have led to the conjecture
that the function g, as defined in (3.5), is strictly decreasing on [0,.).
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