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Abstract

Fisher’s information and Shannon’s entropy are two complementary information measures of a probability dis-
tribution. Here, the probability distributions which characterize the quantum-mechanical states of a hydrogenic
system are analyzed by means of these two quantities. These distributions are described in terms of Laguerre poly-
nomials and spherical harmonics, whose characteristics are controlled by the three integer quantum numbers of the
corresponding states. We have found the explicit expression for the Fisher information, and a lower bound for the
Shannon entropy with the help of an isoperimetric inequality.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The information theory of quantum-mechanical systems is a great scientific challenge of our present
time because (i) it provides a deeper insight into the internal structure of the systems[10] and (ii) it
is the strongest support of the modern quantum computation and information[12], which is basic for
numerous technological developments[17].Actually even for theone-dimensional single-particle systems
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with an analytically solvable Schrödinger equation, where the wavefunctions of their physical states are
controlled by special functions of mathematical physics (classical orthogonal polynomials, spherical
harmonics, Bessel functions, Mcdonald functions,. . .) [11], the basic information-theoretic quantities
remain to be computed. This is because of the lack of knowledge in the information-theoretic properties
of special functions despite the so many results provided by the theory of orthogonal polynomials and
potential theory[3].
A paradigmatic example among these systems is the hydrogenic system, which consists of a simple

nucleus with a positive charge+Ze and one electron of charge−e bound by the electric force acting
between them. The physical and chemical properties of this system in a given quantum-mechanical state
described by three integer quantum numbers(n, l,m), are controlled by the spread of the probability
density�(r̄) over the whole space. The latter can be quantitatively measured by two complementary
measures of information: the Fisher information defined[6] by

I (�) :=
∫

R3

[∇̄�(r̄)]2
�(r̄)

dr̄ (1)

and the Shannon entropy[15]

S(�) := −
∫

R3
�(r̄) ln �(r̄)dr̄ , (2)

which are local and global measures of (i) the extent and the concentration of the wavefunction of the
system, respectively, as well as (ii) the uncertainty in the spatial localization of the electronic cloud. These
two measures are intimately connected one to another[2,16,5,14].
Up until nowmost efforts have been focussed on the hydrogenic Shannon entropy from both analytical

and numerical standpoints[18,4]; see also[1] for a brief review. Nevertheless its explicit expression is not
yet known, mainly because it involves some entropic integrals of Laguerre and Gegenbauer polynomials
whose analytical calculation is an open problem still nowadays, as it is explained later on in Section
5. On the other hand, the computation of hydrogenic Fisher information has never been attempted for
arbitrary states, to the best of our knowledge. This is certainly striking because this measure (i) predates
the concept of Shannon’s entropy for more than 20 yr (1925 versus 1948), and (ii) may also be a more
intuitive and powerful analytical tool in the approximation theory and quantum physics[7–9].
Here, the Fisher information and the Shannon entropy for arbitrary hydrogenic states are explicitly

calculated and bounded, respectively, in terms of the three quantum numbers(n, l,m)which characterize
them. To do that we only use known properties of Laguerre polynomials and spherical harmonics (which
are the elements which basically conform the hydrogenic wavefunctions) and, for the Shannon case, an
isoperimetric inequality[16,5,14].
The structure of the paper is as follows. First, the necessary physico-mathematical elements to find the

probability distribution of arbitrary hydrogenic states, pertinent to our work, are summarized in Section 2.
Then, in Section 3, the hydrogenic Fisher information is explicitly given in terms of the quantum numbers
(n, l,m) of the state under consideration in a closed and simple form. Briefly, it is found out that this
quantity does not depend on the orbital quantum numberl. Later, in Section 4 the present knowledge
on the hydrogenic Shannon entropy is described, the difficulties to obtain its explicit expression from an
analytical point of view are discussed, and a lower bound in terms of the quantum numbers characterizing
the state is found. Finally, some concluding remarks are pointed out.
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2. Probability distribution of the hydrogenic system

In this section, we briefly summarize the analytical determination of the wavefunctions�(r̄, t) of
the quantum-mechanical states for a hydrogenic system, and consequently the associated probability
distribution densities which are given by the square of the absolute value of the wavefunctions. They
depend on three integer quantum numbers(n, l,m), corresponding to the three degrees of freedom of the
electron.
As usual, we will work in the reference system with polar coordinates(r, �,�) and the origin at the

center of mass of the system, which practically coincides with the position of the nucleus because of its
huge mass relative to that of the electron. Atomic units will be used throughout the paper. The potential
energy of the electron has the Coulomb formV (r)= −Z/r. Then, the stationary states of the system are

�nlm(r̄, t) = �nlm(r̄)exp(−iEnt),

where(En,�nlm) are the eigensolutions of the Schrödinger equation of the system(
− 1

2�
∇̄2 − Z

r

)
�nlm(r̄) = En�nlm(r̄),

where� is the reducedmass of the electron, and the gradient operator onR3 written in polar coordinates is
∇̄ =( �

�r ,
1
r

�
��
, 1
r sin�

�
��
). It is known that the energetic eigenvalues areEn=−�/(2n2), and the associated

eigenfunctions are

�nlm(r̄) = Rnl(r)Ylm(�), (3)

where the principal quantum numbern= 0,1, . . . , the orbital quantum numberl = 0,1, . . . , n− 1, and
the magnetic or azimuthal quantum numberm = −l,−l + 1, . . . ,+l − 1,+l; and the solid angle� is
defined by the angular coordinates(�,�). Moreover, the radial eigenfunctions, duly normalized to unity,
are given by

Rnl(r) = Nnl

(
2Z�

n
r

)l

e−
Z�
n

r
L
(2l+1)
n−l−1

(
2Z�

n
r

)
, (4)

with the normalization factor

Nnl =
[(
2Z�

n

)3
(n − l − 1)!
2n(n + l)!

]1/2
(5)

and the functionL(2l+1)
n−l−1(x) is a particular case of the Laguerre polynomial

L�
p(x) =

p∑
s=0

(−1)s
(
p + �
p − s

)
xs

s! ,

which is known to satisfy the orthogonality property∫ ∞

0
��(x)L

�
p(x)L

�
q(x)dx = 	(� + p + 1)

p! 
pq, (6)

where��(x) := x�e−x is the Laguerre weight function.
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On the other hand, the angular part of the wavefunctions is given by the spherical harmonics

Ylm(�) = MlmP
m
l (cos�)eim�; 0����, 0���2�, (7)

wherePm
l (x) is the associated Legendre function of the first kind and the constantMlm is given by

Mlm =
[
2l + 1

4�

(l − m)!
(l + m)!

]1/2
. (8)

The spherical harmonics fulfill the orthogonality condition∫
Y ∗
lm(�)Yl′m′(�)d� = 
ll′
mm′, (9)

where d� = sin�d�d�, and the Legendre functionsPm
l (x) satisfy the following orthogonality relation-

ships∫ +1

−1
(1− x2)−1Pm

l (x)Pm′
l (x)dx = (l + m)!

m(l − m)! 
mm′, (10)

∫ +1

−1
Pm
l (x)Pm

l′ (x)dx = 2

2l + 1

(l + m)!
(l − m)! 
ll′ (11)

and the recurrence relation

(2l + 1)xPm
l−1(x) = (l + m − 1)Pm

l−2(x) + (l − m)Pm
l (x). (12)

Then, the probability distribution density of the hydrogenic system in the state characterized by the
quantum numbers(n, l,m) is given by

�(r̄) ≡ �nlm(r̄) = |�nlm(r̄)|2 = R2nl(r)|Ylm(�)|2 = M2
lmR

2
nl(r)|Pm

l (cos�)|2,
which with the use of Eq. (4) can be written as

�(r̄) = N2
nl�

−1�2l+1(�)[L(2l+1)
n−l−1(�)]2|Ylm(�)|2. (13)

This quantity gives the probability density for observing the electron as a function ofr and the polar angle
�, since it does not depend on the azimuth.

3. The hydrogenic Fisher information

In this section we show the explicit expression of the Fisher informationI (�), given by Eq. (1), for the
probability distribution�(r̄) of an arbitrary quantum-mechanical state of the hydrogenic system, as given
by Eq. (4) or (10), by use of general properties of the special functions involved in the state wavefunction;
namely, Laguerre polynomials, spherical harmonics and associated Legendre functions of first kind. Our
main result is

I (�) =
(
2Z�

n

)2
n − |m|

n
, (14)
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whereZ and� are the nuclear charge and the reduced mass of the system, and the integer numbers
(n,m) are the principal quantum numbern=0,1, . . . , and the azimuthal quantum numberm=−l,−l+
1, . . . ,+l, which together with the orbital quantum numberl = 0,1, . . . , n − 1 characterize the state
under consideration.
From a physical point of view let us first of all highlight that the Fisher information is independent of

the orbital quantum numberl. Moreover, for statess (which are characterized by the quantum numbers
(n, l=0,m=0)) and for the circular states(n, l=n−1,m=n−1) this quantity equals to(2�Z)2/n2 and
(2�Z)2/n3, respectively. Finally, let us remark that for all cases the Fisher information rapidly decreases
when theprincipal quantumnumber (and so theenergy of the state) is increased,which is a clear prediction
for the electronic cloud to be much less concentrated in excited states.
To prove Eq. (14), we use a method based on the properties of the involved special functions. We

begin with Eq. (1) which gives the Fisher information I for a general density functionP(r̄) on R3.
Taking into account the gradient operator in polar coordinates∇̄ = ( �

�r ,
1
r

�
��
, 1
r sin�

�
��
) and the azimuthal

independence of the probability density for an arbitrary hydrogenic state, as given by Eq. (13), one has
the following expression for the hydrogenic Fisher information

I (�) =
∫

R3

1

�(r̄)

[
��(r̄)

�r

]2
dr̄ +

∫
R3

1

�(r̄)

[
1

r

��(r̄)

��

]2
dr̄ ≡ I1 + I2. (15)

Let us first calculate the integralI1. From Eq. (13) one has

��(r̄)

�r
= N2

nl

2Z�

n
�2le−�

{(
2l

�
− 1

)
[L(2l+1)

n−l−1(�)]2 − 2L(2l+1)
n−l−1(�)L

(2l+2)
n−l−2(�)

}
|Ylm(�,�)|2,

where� = 2Z�
n
r. Then, the integralI1 can be decomposed into a sum of five integrals denoted byI1i ,

i = 1− 5. Taking into account the volume element dr̄ = r2 dr d� and the normalization to unity of the
spherical harmonics, given by Eq. (9), one has the following values for the first four integrals of this sum

I11= 4l2
∫

R3
r−2�(r̄)dr̄ ≡ 4l2〈r−2〉

= 4l2
(
2Z�

n

)
N2
nl

∫ ∞

0
�−1�2l+1(�)[L2l+1n−l−1(�)]2 d�

=
(
2Z�

n

)2 2l2

n(2l + 1)
, (16)

I12= − 8lZ�

n

∫
R3

r−1�(r̄)dr̄ = − 4ln

2Z�
N2
nl

∫ ∞

0
�2l+1(�)[L2l+1n−l−1(�)]2 d�

= −
(
2Z�

n

)22l
n
, (17)
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I13=
(
2Z�

n

)2 ∫
R3

�(r̄)dr̄ = n

2Z�
N2
nl

∫ ∞

0
��2l+1(�)[L2l+1n−l−1(�)]2 d�

=
(
2Z�

n

)2
, (18)

I14= 4
n

2Z�
N2
nl

∫ ∞

0
�2l+2(�)[L(2l+2)

n−l−2(�)]2 d� =
(
2Z�

n

)22(n − l − 1)

n
, (19)

where integrals (16) and (18) can be calculated using (see, e.g.[13])∫ ∞

0
dx xse−xL�

n(x)L

m(x)

= 	(s + 1)
min(n,m)∑

r=0
(−1)n+m

(
s − �
n − r

) (
s − 
m − r

) (
s + r

r

)
(20)

and the fifth integralI15 can be expressed as:

I15= − 4
nN2

nl

2Z�

[
2l

∫ ∞

0
�2l+1L(2l+2)

n−l−2(�)L
(2l+1)
n−l−1(�)d�

−
∫ ∞

0
��2l+1(�)L(2l+2)

n−l−2(�)L
(2l+1)
n−l−1(�)d�

]
, (21)

where��(�) ≡ ��e−� is the weight function with respect to which the Laguerre polynomialsL�
p(�) are

orthogonal on the interval[0,∞]. Then, keeping in mind the orthogonality property (6) of the Laguerre
polynomials we have that (a) the first integral vanishes, and (b) the second integral equals

I15= −
(
2Z�

n

)22(n − l − 1)

n
,

where we have also used the ladder relationship of the Laguerre polynomials

xL�+1
k (x) = (k + � + 1)L�

k(x) − (k + 1)L�
k+1(x),

for the product�L(2l+2)
n−l−2(�).

So, putting together the computed values forI1i , i =1−5, one has the following value for the integral
I1:

I1 ≡
∫

R3

1

�(r̄)

[
��(r̄)

�r

]2
dr̄ =

(
2Z�

n

)21
n

[
n + 2l2

2l + 1
− 2l

]
. (22)

Let us now calculate the integralI2. From Eqs. (10) and (8) one has

��(r̄)

��
= N2

nl�2l(�)L
(2l+1)
n−l−1(�)

�|Ylm(�,�)|2
��

,

�|Ylm(�,�)|2
��

= 2M2
lm

{
l cos�

sin�
[Pm

l (cos�)]2 − l + m

sin�
Pm
l (cos�)Pm

l−1(cos�)
}
,
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for m�0, so that[
1

r

��(r̄)

��

]2
= 4�2(r̄)

r2 sin2 �

[
l cos� − (l + m)

Pm
l−1(cos�)
Pm
l (cos�)

]2
.

Then, a straightforward manipulation shows that the integralI2 can be decomposed into the sum of three
integrals denoted byI2i , i = 1 − 3. Taking into account the orthogonality relations of the Legendre
functions, one has the following value for the first integralI21

I21= l2
∫ ∞

0

∫ �

0

cos2 �

sin�
�(r̄)dr d�

=M2
lml

2〈r−2〉
{∫ +1

−1
(1− x2)−1[Pm

l (x)]2 dx −
∫ +1

−1
[Pm

l (x)]2 dx
}

=
(
2Z�

n

)2
l2

8�nm

(
1− 2m

2l + 1

)

and for the second integral

I22= (l + m)2M2
lm〈r−2〉

∫ +1

−1
(1− x2)−1[Pm

l−1(x)]2 dx =
(
2Z�

n

)2
l2 − m2

8�nm
,

where the properties for the Legendre functions given by Eqs. (10) and (11) have been used.
The integralI23 turns out to be

I23= − 2l(l + m)M2
lm〈r−2〉

∫ +1

−1
x

1− x2
Pm
l (x)Pm

l−1(x)dx

= − 2l(l + m)M2
lm〈r−2〉(l + m − 1)!

(l − m)!
(l − m)

m

= −
(
2Z�

n

)22l(l − m)

8�nm
,

where the orthogonality and the recurrence relations given by Eqs. (10)–(12) have been used.
So, gathering the computed values ofI2i , i = 1− 3, one has the following expression for the integral

I2:

I2 ≡
∫

R3

1

�(r̄)

[
1

r

��(r̄)

��

]2
dr̄ =

(
2Z�

n

)21
n

[
2l − m − 2l2

2l + 1

]
(23)

for m�0; and similarly, just with the opposite sign in front ofm, form�0.
Taking the values of the integralsI1 andI2, as given by Eqs. (22) and (23) respectively, into Eq. (15),

one straightforwardly has the searched hydrogenic Fisher informationI (�) as given by Eq. (14).

4. The hydrogenic Shannon entropy

Recently, Dehesa et al.[18,4]have initiated the investigation of the Shannon information entropy of the
D-dimensional single-particle systems in general central potentials. In doing so, these authors point out
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the need for the previous knowledge of the so-called entropic integrals (or just, entropy) of the classical
orthogonal polynomials and other special functions (e.g., spherical harmonics, Bessel functions,. . .),
depending on the specific analytical form of the potential. Their interest is focussed on the isotropic
harmonic oscillator and the Coulomb potentials, as it is reviewed in Ref.[3]. Even for these simple
systems, the explicit expression for their Shannon entropies is not known because the entropic integrals of
the involved classical orthogonal polynomials (Hermite for the one-dimensional oscillator case, Laguerre
for the Coulomb and D-dimensional (D�2) oscillator cases and Gegenbauer in both cases) have not
yet been successfully computed save for the ground- and very excited states. Indeed, in particular, the
Shannon entropy of a hydrogenic system in an arbitrary state characterized by the quantum numbers
(n, l,m) has been shown in[4,18], according to Eqs. (2) and (13), to have the expression

S(�) ≡ Snlm(�) = Snl(R) + Slm(Y ). (24)

The radial part is

Snl(R) = −
∫ ∞

0
r2R2nl(r) lnR

2
nl(r)dr

= − 3 ln(Z�) − ln

[
4(n − l − 1)!
n4(n + l)!

]

+ 6(n − l − 1)2 + (2l + 2)(6n − 4l − 3)

2n

− 2l

[
2n − 2l − 1

2n
+ �(n + l + 1)

]
+ (n − l − 1)!

2n(n + l)! E1[L
(2l+1)
n−l−1(�)]

= − 3 ln(Z�) − ln

(
4

n4

)
+ 6(n − l − 1)2 + (2l + 2)(6n − 4l − 3)

2n

− 2l

[
2n − 2l − 1

2n
+ �(n + l + 1)

]
+ 1

2n
E1[L̃(2l+1)

n−l−1]. (25)

On the other hand, the angular part is

Slm(Y ) = ln(2�) − 2m

[
�(l + m + 1) − �

(
l + 1

2

)
− ln 2− 1

2l + 1

]
+ E0[C̃m+ 1

2
l−m ]. (26)

In Eqs. (25) and (26) we have used the digamma function�(x) = 	′(x)/	(x), and the entropy-like
integralsEi(p) defined by

Ei(pk) = −
∫ b

a

xip2k(x) lnp
2
k(x)�(x)dx,

for i = 1 and 0, respectively, and wherepk (p̃k) denote the orthogonal (respectively, orthonormal) poly-
nomials with respect to the weight function�(x) on the interval(a, b).
Since the calculation of the entropy-like integrals of the Laguerre and Gegenbauer polynomials (which

are involved in the evaluation of the hydrogenic Shannon entropyS according to Eqs. (24)–(26)) is
a difficult, not-yet-accomplished task, it is very helpful and natural to ask for rigorous and accurate
bounds forS. This is the main purpose of this section: to derive a lower bound for the Shannon entropy
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of a hydrogenic system in an arbitrary quantum-mechanical state described by the quantum numbers
(n, l,m). To this end we will use the isoperimetric inequality[2,5,14]

J (�)I (�)�3,

whereJ (�) = (2�e)−1 exp[23S(�)] defines the Shannon entropy power of the probability density�(r̄).
Then, one has that the Shannon entropyS(�) is bounded from below by the Fisher informationI (�) as

S(�)� 3
2[1+ ln(6�) − ln I (�)]. (27)

For hydrogenic systems the Fisher information is given by Eq. (14) so that

ln I (�)�2 ln(Z�) − ln n − ln |m|,
which saturates for|m| = n

2. Here we have taken into account that|m|(n− |m|)� n2

4 , where the equality
is reached for|m| = n

2.
The last two equations yield the following inequality:

S(�)�
3

2
ln

[
6�en|m|
(Z�)2

]

which gives a lower bound for the Shannon entropy of any hydrogenic state characterized by the quantum
numbers(n, l,m). Sincen=1,2, . . .; l=0,1, . . . , n−1, and|m|� l, it follows that this bound is always
non-negative.

5. Concluding remarks

The analytical determination of two information measures (Fisher, Shannon), which quantitatively and
complementarily describe the spreading and concentration of the electronic cloud of a hydrogenic system
in a general quantum-mechanical state, is considered in terms of the nuclear chargeZ, the reduced mass
� and the quantum numbers(n, l,m) which characterize the system.
We have found an explicit expression for the Fisher information by means of an extensive use of the

algebraic properties of Laguerre polynomials, the associated Legendre functions of first kind and spherical
harmonics. Finally, for the Shannon entropy, let us comment that we have not been able to do the same
task up to now, essentially because the involved entropy-like integrals of Laguerre and Gegenbauer
polynomials are very difficult to compute, save for some exceptional cases (i.e. for the lowest and the
highest values of their degrees). Here, we have derived a lower bound for the hydrogenic Shannon entropy,
valid for all states of the system, with the help of a well-known isoperimetric inequality.
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