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Let g be a complex simple Lie algebra and let Ψ be an extremal
set of positive roots. After Chari and Greenstein (2009) [9], one
associates with Ψ an infinite dimensional Koszul algebra Sg

Ψ which
is a graded subalgebra of the locally finite part of ((End V)op ⊗
S(g))g, where V is the direct sum of all simple finite dimensional
g-modules. We describe the structure of the algebra Sg

Ψ explicitly
in terms of an infinite quiver with relations for g of types A and C .
We also describe several infinite families of quivers and finite
dimensional associative algebras arising from this construction.

© 2009 Elsevier Inc. All rights reserved.

Introduction

One of the classical methods in the representation theory is to replace a category one wishes to
study by an equivalent category of modules over an associative algebra. This approach was extensively
used in the study of the category O (cf. for example [1–4,12,19–21]) and in many other situations
and led to the introduction of highest weight categories in [4]. The associative algebra in question
is usually the endomorphism algebra of a generator or a co-generator of the category. On the other
hand, it is also known that endomorphism algebras often give rise to nice associative algebras (for
example, in the case of the category O these algebras are Koszul). However, describing them in terms
of generators and relations, or in terms of quivers with relations, is usually a rather involved task (cf.
for example [20]).

In [8] the category G of graded finite dimensional modules over the polynomial current alge-
bra g[t] = g ⊗ C[t] of a finite dimensional complex Lie algebra g was studied. That category can
be perceived as a non-semisimple “deformation” of the semisimple category of finite dimensional g-
modules. We proved that the category G is highest weight in the sense of [4]. We also studied a family
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of quivers arising from the endomorphism algebras of injective co-generators of certain Serre subcat-
egories with finitely many simples in the cases when they are hereditary. For example, all Dynkin
quivers can be realised in this way. We also considered an example where the endomorphism algebra
was not hereditary and computed the relations in that algebra. However, it was already clear from
that computation that describing quivers and relations for these algebras in general would be rather
difficult.

The situation becomes more manageable if we pass to the truncated current algebra g ⊗ C[t]/(t2)

which is isomorphic to the semidirect product g � g of g with its adjoint representation. The motiva-
tion for the study of graded representation of that algebra stems from the fact that several interesting
families of indecomposable objects in G can be regarded as modules over g � g, namely the classical
limits of Kirillov–Reshetikhin modules for g of classical types [15] or more generally, of the minimal
affinisations [5,6]. The category G2 of graded modules over g � g was studied in [9]. In particular, we
studied families of Serre subcategories of G2 associated with sets of roots maximising some linear
functional. We call these sets extremal since they correspond to faces of the convex hull of roots of g.
A study of these subcategories was motivated by the observation that, after [6,10], there is a natural
extremal set of positive roots associated with a Kirillov–Reshetikhin module. Extremal sets have many
interesting combinatorial properties and were studied in [7] (in particular, their complete list for g of
classical types was provided). After [9], given an extremal set Ψ contained in a fixed set of positive
roots of g, one obtains a family of Serre subcategories which have enough projectives and for which
the endomorphism algebra of a projective generator is Koszul. Then one constructs an infinite dimen-
sional Koszul algebra Sg

Ψ which is “approximated” by these finite dimensional Koszul algebras. The
advantage of this infinite dimensional algebra is that it allows us to study all these finite dimensional
subalgebras simultaneously.

The aim of the present paper is to describe the structure of algebras Sg

Ψ . We show that they can
be realised as path algebras of quite nice quivers with relations. In some cases these quivers admit
very explicit combinatorial realisations. We compute all relations in these algebras for g of types A
and C . Quite expectedly, that turns out to be rather difficult and uses monomial bases of the universal
enveloping algebra of the lower triangular part of g. Due to very restrictive properties of extremal sets,
in types A and C we can perform all computations using only the monomial bases in type A which
are known very explicitly [16]. On the other hand, it is quite remarkable that to study the relations
in Sg

Ψ we only need the most elementary properties of the extremal sets described in [9]. It should
also be noted that, although an extremal set is conjugate under the action of the Weyl group to the
set of roots of an abelian ideal in a suitable Borel subalgebra (cf. [7]), the algebras Sg

Ψ behave quite
differently even for conjugate sets Ψ . For example, depending on whether the highest root of g is
contained in Ψ , all connected subalgebras of Sg

Ψ are infinite or finite dimensional.
The paper is organised as follows. In Section 1 we briefly review the construction of the alge-

bras Sg

Ψ and present the main results. In Section 2 we develop the technique for computing relations,
while in Section 3 we consider several relatively simple examples which illustrate how these methods
are applied. In Section 4 we construct a family of elements in the universal enveloping algebra of a
Borel subalgebra of g corresponding to parabolic subalgebras with the Levi factor of type A which
play the central role in our computations. Finally, in Sections 5 and 6 we undertake a systematic
study of relations in the algebras Sg

Ψ for g of types A and C . We also describe several infinite families
of quivers arising from the study of connected subalgebras of Sg

Ψ when Ψ satisfies some “regularity”
condition.

1. Main results

Throughout this paper we denote by Z+ the set of non-negative integers and by C the field of
complex numbers. We consider Z+ ∪ {+∞} as a totally ordered semigroup with +∞ > n and +∞ +
n = +∞ for all n ∈ Z+ . All algebras and vector spaces are considered over C. Tensor products and
Hom spaces are taken over C unless specified otherwise. For an associative algebra A, Aop denotes its
opposite algebra. For a vector space V , V ∗ = Hom(V ,C). Given a Lie algebra a, we denote by U (a)

its universal enveloping algebra and by U (a)+ the augmentation ideal in U (a). In particular, if a is
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abelian, U (a) is the symmetric algebra S(a). Given an a-module V we denote by V a the subspace
of a-invariant elements in V , that is V a = {v ∈ V : xv = 0, ∀x ∈ a}.

1.1. Let g be a finite dimensional simple complex Lie algebra and fix its Cartan subalgebra h. The
Killing form of g induces a non-degenerate bilinear form (·,·) on h∗ . Let P ⊂ h∗ be a weight lattice
and let R ⊂ P be the set of roots of g with respect to h. Choose the set of simple roots αi ∈ R ,
i ∈ I := {1, . . . ,dimh} and the corresponding fundamental weights �i ∈ P . Let P+ ⊂ P be the Z+-
span of the �i and let R+ be the intersection of R with the Z+-span of the αi . Given β ∈ R , set for
all i ∈ I ,

εi(β) = max{t ∈ Z+: β + tαi ∈ R}, ϕi(β) = max{t ∈ Z+: β − tαi ∈ R}

and define

ε(β) :=
∑
i∈I

εi(β)�i, ϕ(β) :=
∑
i∈I

ϕi(β)�i .

Clearly, ε(β),ϕ(β) ∈ P+ . It is well known that ϕ(β) = ε(β)+β . For α ∈ R let gα be the corresponding
root subspace of g and, given Ψ ⊂ R+ , let n

±
Ψ = ⊕

α∈Ψ g±α . In particular, we write n± = n
±
R+ and

set b = h ⊕ n− .
We say that Ψ ⊂ R is extremal if there exists ξ ∈ P \ {0} such that

Ψ =
{
α ∈ R: (ξ,α) = max

β∈R
(ξ,β)

}
.

Geometrically, an extremal subset of R is the intersection with R of a face of the convex hull of R
in the euclidean space spanned by R . Note that if ξ ∈ P+ then Ψ ⊂ R+ . We will need the following
property of extremal sets.

Lemma. (See [9, Lemma 2.3].) Let Ψ ⊂ R be extremal and suppose that

∑
α∈R

mαα =
∑
β∈Ψ

nββ, mα,nβ ∈ Z+.

Then

∑
β∈Ψ

nβ �
∑
α∈R

mα (1.1)

with equality if and only if mα = 0 for all α /∈ Ψ .

We note the following

Corollary. Let Ψ ⊂ R be extremal. Then Ψ + Ψ ∩ (R ∪ {0}) = ∅ and

α,β ∈ R, α + β ∈ Ψ + Ψ �⇒ α,β ∈ Ψ.

Remark. It is shown in [7] that this property characterises extremal sets.
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1.2. Let Ψ ⊂ R+ be extremal. In [9] two infinite dimensional Koszul algebras Sg

Ψ and Eg

Ψ were
constructed and it was shown that (Eg

Ψ )op is the quadratic dual of Sg

Ψ and the left global dimension
of Sg

Ψ equals |Ψ |. This construction was motivated by the study of categories of graded representations
of current algebras initiated in [8].

Given λ ∈ P+ , let V (λ) be the unique, up to an isomorphism, simple finite dimensional g-module
of highest weight λ. Let

V =
⊕
λ∈P+

V (λ), V� =
⊕
λ∈P+

V (λ)∗.

Then V� ⊗ V with the product given by

( f ⊗ v)(g ⊗ w) = g(v) f ⊗ w, f , g ∈ V�, v, w ∈ V

is isomorphic to a subalgebra of the associative algebra (EndC V)op and hence for any associative
algebra A, the space A = A ⊗ V� ⊗ V has a natural structure of an associative algebra. Moreover,
if A =⊕

n∈Z+ A[n] is a Z+-graded associative algebra, we obtain a grading on A by assigning to the
elements of V� ⊗ V the grade zero, that is, A[k] = A[k]⊗ V� ⊗ V. In the rest of the paper, we identify
the algebra A with V� ⊗ A ⊗ V under the natural isomorphism of g-modules and with the induced
algebra structure given by

( f ⊗ a ⊗ v)(g ⊗ b ⊗ w) = g(v) f ⊗ ab ⊗ w, a,b ∈ A, f , g ∈ V�, v, w ∈ V.

We write T (respectively, S, E) for A with A the tensor algebra T (g) of g (respectively, the sym-
metric algebra S(g) and the exterior algebra

∧
g). In particular, in these cases A is a g-module with

respect to the diagonal action, hence A is also a g-module and the multiplication is a homomorphism
of g-modules. It follows that Ag is a subalgebra of A. From now on, we let A be one of the algebras T,
S or E. Given λ ∈ P+ , the algebra Ag contains a primitive idempotent 1λ corresponding to the canon-
ical g-invariant element in V (λ)∗ ⊗ V (λ), or, equivalently to the identity element in End V (λ). Then
we have

Ag =
⊕

λ,μ∈P+
1λAg1μ, 1λAg1μ = (

V (λ)∗ ⊗ A ⊗ V (μ)
)g

.

1.3. Given Ψ ⊂ R+ , define a relation �Ψ on P by λ �Ψ μ if μ − λ ∈ Z+Ψ . It is straightforward to
check that �Ψ is a partial order. In particular, � := �R+ is the standard partial order on P . If λ �Ψ μ
and λ �= μ we write λ <Ψ μ. Note that for all λ ∈ P and for all Ψ ⊂ R+ , the set {μ ∈ P+: μ �Ψ λ} is
finite. Define a function dΨ : {(λ,μ) ∈ P+ × P+: λ �Ψ μ} → Z+ by

dΨ (λ,μ) = min

{∑
α∈Ψ

mα: μ − λ =
∑
α∈Ψ

mαα, mα ∈ Z+
}
.

Clearly, dΨ (λ,μ) = 0 if and only if λ = μ and dΨ (λ,μ) + dΨ (μ,ν) � dΨ (λ,ν) for all λ �Ψ μ �Ψ ν .
Furthermore, if Ψ is extremal, we have

dΨ (λ,μ) + dΨ (μ,ν) = dΨ (λ,ν)

and if μ covers λ then dΨ (λ,μ) = 1. In particular, in this case dΨ is the unique distance function for
the poset (P+,�Ψ ).
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Fix an extremal set Ψ ⊂ R+ . Given F ⊂ P+ , define

Ag

Ψ (F ) =
⊕

λ,μ∈F : λ�Ψ μ

1λAg
[
dΨ (λ,μ)

]
1μ.

It is not hard to check that Ag

Ψ (F ) is a subalgebra of Ag . Let Ag

Ψ := Ag

Ψ (P+). Given λ,μ ∈ P+ , define
the following subsets of P+

�Ψ λ = {
ν ∈ P+: ν �Ψ λ

}
, μ �Ψ = {

μ �Ψ ν: ν ∈ P+}
and [μ,λ]Ψ = (�Ψ λ) ∩ (μ �Ψ ). We say that F ⊂ P+ is interval closed in the partial order �Ψ

if λ,μ ∈ F implies that [λ,μ]Ψ ⊂ F .
The main properties of the algebras Sg

Ψ established in [9] are summarised below.

Theorem 1. (See [9, Theorem 1].) Let Ψ be an extremal set of positive roots.

(i) Let μ,ν ∈ P+ . The subalgebras Sg

Ψ (�Ψ ν), Sg

Ψ (μ �Ψ ) and Sg

Ψ ([μ,ν]Ψ ) of Sg

Ψ are Koszul and have global
dimension at most |Ψ |. The bound is attained for some μ′, ν ′ ∈ P+ with μ′ �Ψ ν ′ .

(ii) The algebra Sg

Ψ is Koszul and has left global dimension |Ψ |.

Remark. The argument of [9, Proposition 4.5] actually proves that Sg

Ψ (F ) is Koszul for any F ⊂ P+
interval closed in the partial order �Ψ .

1.4. Being Koszul, the algebras Sg

Ψ are quadratic and so to describe all relations in them it is enough
to describe the quadratic relations. A convenient language for that is provided by quivers. We mostly
follow the conventions from [18]. Let us briefly review the quiver terminology which will be used in
the sequel.

Recall that a quiver Δ is a pair Δ = (Δ0,Δ1) where Δ0 is the vertex set, Δ1 is the set of arrows.
In this paper we only consider quivers without multiple arrows, that is, for any pair x, y ∈ Δ0, there is
at most one arrow x ← y ∈ Δ1 (in other words, Δ1 identifies with a subset of Δ0 × Δ0). A path of
length k in such a quiver is a sequence x0, . . . , xk ∈ Δ0 such that for all 0 � i < k, there is an arrow
xi ← xi+1 ∈ Δ1. Denote by Δ(x, y) the set of all paths in Δ from y to x. With every vertex x ∈ Δ0 we
associate a trivial path 1x of length 0.

The opposite quiver Δop of Δ is the quiver with the same vertex set obtained by reversing all
arrows. The underlying graph Δ̄ of Δ is obtained from Δ by forgetting the orientation of the arrows.
We say that Δ is connected if Δ̄ is connected. A connected quiver Δ is said to be of type X (re-
spectively, of type X̃), where X = A, D, E if Δ̄ is the Dynkin diagram (respectively, extended Dynkin
diagram) of a simple finite dimensional Lie algebra of type X .

A vertex x is said to be a direct successor (respectively, predecessor) of y if there is an arrow
x ← y (respectively, y ← x) in Δ1. The set of direct successors (predecessors) of x ∈ Δ0 is denoted
by x+ (respectively, x−). A vertex x ∈ Δ0 is called a source if x− = ∅ and a sink if x+ = ∅.

Given Δ′
0 ⊂ Δ0, the full subquiver of Δ defined by Δ′

0 is Δ′ = (Δ′
0,Δ

′
1) where Δ′

1 is the set of all
arrows in Δ1 with starting and ending points in Δ′

0. A subquiver Δ′ of Δ is called convex if for any
vertices x, y ∈ Δ′

0 we have Δ′(x, y) = Δ(x, y), that is a path in Δ from y to x is completely contained
in Δ′ . In particular, a convex subquiver is full. A connected component of Δ is a full subquiver Δ′
such that Δ̄′ is a connected component of Δ̄. Then Δ is a disjoint union of its connected components.
Given x ∈ Δ0, we denote the connected component of Δ containing x by Δ[x].

A full embedding of quivers Δ → Δ′ is a pair of injective maps F0 : Δ0 → Δ′
0 and F1 : Δ1 → Δ′

1
which are compatible in a natural way and such that (F0(Δ0), F1(Δ1)) is a full subquiver of Δ′ . If
both maps are bijective we say that Δ is isomorphic to Δ′ .

Given a quiver Δ = (Δ0,Δ1), let CΔ be the complex vector space with the basis consisting of all
finite paths in Δ. The product of two paths is set to be their composition when they are composable,
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and zero otherwise. This defines on CΔ a structure of a Z+-graded associative algebra, the grading
being given by the length of paths. In particular, the 1x , x ∈ Δ0 are primitive orthogonal idempotents
and CΔ[0] is commutative and semisimple. Clearly, C(Δop) ∼= (CΔ)op . The group (C×)Δ1 acts natu-
rally on CΔ[1] and for all z ∈ (C×)Δ1 the action of z extends to an automorphism of CΔ preserving
the grading and the 1x , x ∈ Δ0. Clearly, an isomorphism of quivers induces an isomorphisms of the
corresponding path algebras.

A relation on Δ is a linear combination of paths from x to y for some x, y ∈ Δ0. In particular,
a relation of the form p, where p is a path, is called a zero relation, while a relation of the form
p − p′ is called a commutativity relation. Given a quiver Δ and a set of relations R , we can form
an algebra C(Δ, R) = C(Δ, V ) := CΔ/〈R〉, where V is the vector subspace of CΔ spanned by R . This
algebra is often referred to as the path algebra of the quiver Δ with relations R .

1.5. We define the infinite quiver ΔΨ as

(ΔΨ )0 = P+,

(ΔΨ )1 = {
(λ,μ) ∈ P+ × P+: μ − λ = β ∈ Ψ, λ − ε(β) = μ − ϕ(β) ∈ P+}.

Thus, (ΔΨ )1 is a subset of the cover relation in (P+,�Ψ ). It is immediate that if there is a path
from μ to λ in ΔΨ , then λ �Ψ μ and the length of any such path is dΨ (λ,μ). In particular, the
quiver ΔΨ has no loops or oriented cycles. Since for all λ ∈ P+ the set �Ψ λ is finite, it follows
that every vertex in ΔΨ is connected to a sink. Given F ⊂ P+ , denote ΔΨ (F ) the full subquiver
of ΔΨ defined by F . If F is interval closed in the partial order �Ψ , ΔΨ (F ) is convex. The following
proposition is proved in 2.3.

Proposition. Let F ⊂ P+ be interval closed in the partial order �Ψ . There exists a natural isomorphism of Z+-
graded associative algebras Tg

Ψ (F ) → CΔΨ (F ). This isomorphism is unique up to an automorphism of CΔΨ (F )

extending the natural action of (C×)(ΔΨ (F ))1 on CΔΨ (F )[1].

1.6. As proved in [9, Lemma 4.2], for each F ⊂ P+ which is interval closed in the partial order �Ψ ,
Sg

Ψ (F ) is isomorphic to the quotient of Tg

Ψ (F ) by a quadratic ideal and

ker
(
Tg

Ψ (F ) → Sg

Ψ (F )
)= Tg

Ψ (F ) ∩ ker
(
Tg

Ψ → Sg

Ψ

)
.

Fix an isomorphism Φ : Tg

Ψ → CΔΨ . Then Proposition 1.5 allows us to identify the idempotents
(respectively, some fixed generators of degree 1) of Sg

Ψ with vertices (respectively, arrows) in the
quiver ΔΨ . To describe the quadratic relations, we need to consider, for all λ,μ ∈ P+ with λ �Ψ μ
and dΨ (λ,μ) = 2, that is, for all λ,λ+η ∈ P+ , η ∈ Ψ +Ψ , the subquivers ΔΨ ([λ,λ+η]Ψ ) of ΔΨ and
the subalgebras Sg

Ψ ([λ,λ + η]Ψ ) of Sg

Ψ .
Denote by RΨ (λ,λ + η) the image of the canonical map ker(Tg

Ψ ([λ,λ + η]Ψ ) � Sg

Ψ ([λ,λ + η]Ψ ))

in CΔΨ ([λ,λ + η]Ψ ) under Φ . We set RΨ (λ,λ + η) = 0 if λ + η /∈ P+ .

1.7. Let η ∈ Ψ + Ψ and set

mη = ∣∣{(β,β ′) ∈ Ψ × Ψ : β + β ′ = η
}∣∣.

Note that mη = 1 implies that η ∈ 2Ψ . For all λ ∈ P+ , let tλ,η = dim 1λTg

Ψ 1λ+η if λ + η ∈ P+ and
set tλ,η = 0 otherwise. Since by Proposition 1.5, tλ,η equals the number of paths from λ + η to λ

in ΔΨ , it is immediate that tλ,η � mη for all λ ∈ P+ .

Definition. An extremal set Ψ ⊂ R+ is said to be regular if for all η ∈ Ψ + Ψ , tλ,η > 0 ⇒ tλ,η = mη .
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The quiver ΔΨ ([λ,λ + η]Ψ ) identifies with the quiver

Γ (t) =
t+1

1 2 · · · t−1 t

0

(1.2)

with t paths pi = (0 ← r ← t + 1), 1 � r � t of length 2, where t = tλ,η .
Let V be a k-dimensional subspace of C{p1, . . . ,pt}. We say that V is generic if it is generic with

respect to any coordinate flag corresponding to the basis p1, . . . ,pt , that is for all 1 � i1 < · · · < ir � t ,
1 � r � t we have

dim
(

V ∩ C{pi1 , . . . ,pir }
)=

{
0, 1 � r < t − k,

r + k − t, t − k � r � t.

In particular, if t = 1, V is generic if and only if dim V = 1. For instance, if t = 2 and dim V = 1 then
C(Γ (t), V ) is of finite type. However, it has different isomorphism classes of indecomposable modules,
depending on V being or not being generic. If t = 3, dim V = 1 and V is generic then C(Γ (t), V ) is
unique up to an isomorphism, is canonical (cf. [18, §3.7]), of tubular type D4 and tame. If t = 4,
V is generic and dim V = 2 then we can assume, without loss of generality, that V is spanned by
p1 + p2 + p3, p1 + zp2 + p4 for some z ∈ C× . In particular, we have a family of algebras parametrised
by elements of P1. The algebra C(Γ (t), V ) is again canonical, of tubular type D̃4, and is tame (cf. [18]).
In these cases the module categories of C(Γ (t), V ) are described completely [18]. If V is not generic,
C(Γ (t), V ) it is still tame (cf. [13]). If t > 4, it is easy to see, using [11, Proposition 1.3], that C(Γ (t), V )

is wild for all choices of V of dimension �t/2�.
From now on, we identify ξ ∈ h∗ with the canonical algebra homomorphism S(h) → C extending ξ .

Let

Nη = {
λ ∈ P+: tλ,η > 0, RΨ (λ,λ + η) is not generic

}
.

We can now formulate our main result.

Theorem 2. Let Ψ be an extremal set of positive roots, |Ψ | > 1.

(i) The algebra Sg

Ψ is isomorphic to the quotient of the path algebra of the quiver ΔΨ by the ideal generated
by the spaces RΨ (λ,λ + η), η ∈ Ψ + Ψ , λ,λ + η ∈ P+ .
Fix η ∈ Ψ + Ψ .

(ii) If mη = 1 then RΨ (λ,λ + η) = 0 for all λ ∈ P+ .
Suppose that g is of type A or C .

(iii) If tλ,η > 1, then dimRΨ (λ,λ + η) = �tλ,η/2� > 0.
(iv) Suppose that mη > 1. Then Nη is contained in a Zariski closed subset of h∗ . Moreover Nη ∩ {λ ∈

P+: tλ,η = 2,3} = ∅ and if Ψ is regular, then either Nη = ∅ or there exists a linear polynomial Hη ∈ S(h)

such that

Nη = P+ ∩ {ξ ∈ h∗: ξ(Hη) = 0
}
.

Analysis of other examples allows us to conjecture that the same result should hold for g of all
types. It might happen, though, that in some cases the Zariski closed set containing Nη cannot be
described as a set of zeroes of a linear polynomial.

The above theorem is established in Propositions 5.6 and 5.7 for g of type A and in Proposi-
tions 6.9, 6.10, 6.12 and 6.13 for g of type C . In fact, we do not just establish the genericity of
the spaces RΨ (λ,λ + η) but also compute the relations explicitly. Needless to say, as we write the
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relations as linear combinations of paths, the specific coefficients we obtain depend on a fixed iso-
morphism Φ , or equivalently, on the choice of generators of degree one in Sg

Ψ , which are unique up
to non-zero scalars, while the genericity of the spaces RΨ (λ,λ+η) is independent of that choice. We
choose Φ so that the relations for η ∈ Ψ + Ψ and λ ∈ P+ satisfying tλ,η = mη = 2, are the commuta-
tivity relations.

Let us briefly explain how to compute relations in Eg

Ψ from those in Sg

Ψ . There is a natural
map 〈·,·〉 : CΔΨ ⊗ CΔ

op
Ψ → C, such that 〈(CΔΨ )[k], (CΔ

op
Ψ )[r]〉 = 0, k �= r,

〈1λ,1μ〉 = δλ,μ, 〈λ1 ← ·· · ← λk,μk ← ·· · ← μ1〉 = δλ1,μ1 · · · δλk,μk .

It is not hard to see from [9, Proposition 5.3] that Eg

Ψ is isomorphic to the quotient of CΔ
op
Ψ by the

ideal generated by the spaces RΨ (λ,λ + η)! = {x ∈ (CΔ
op
Ψ )[2]: 〈RΨ (λ,λ + η), x〉 = 0}.

1.8. We conclude this section with a description of an infinite family of quivers arising from this
construction (see also 5.3).

Given x = (x1, . . . , xr) ∈ Zr+ , let |x| =∑r
j=1 x j . Set e(r)

i = (δi, j)1� j�r ∈ Zr+ . Given m = (m1, . . . ,mr) ∈
(Z+ ∪ {+∞})r , we define the quiver Ξ(m) as follows. The vertices of Ξ(m) are the lattice points in
the r-dimensional rectangular parallelepiped [0,m1] × · · · × [0,mr]. Given x = (x1, . . . , xr) ∈ Ξ(m)0,
the arrows ending at x are

x ← x + 2e(r)
j , x j < m j − 1, 1 � j � r

and

x ← x + e(r)
j + e(r)

k , xi < mi, x j < m j, 1 � i < j � r.

Let Ξa(m), a = 0,1 be the full subquiver of Ξ(m) defined by the set

{
x ∈ Ξ(m)0: |x| = a (mod 2)

}
.

It is immediate that Ξa(m) is a convex subquiver of Ξ(m).
For instance, for r = 2 and m1 = m2 = 1, Ξ0(m) is the quiver of type A2 with the linear orientation

and Ξ1(m) has two isolated vertices (in fact, this is the only case when Ξ1(m) is not connected).
For m1 = m2 = 2, Ξ0(m) is the quiver (1.2) with t = 3, while Ξ1(m) is

(1,2) (1,0)

(0,1) (2,1)

An example with m1 = 6, m2 = 5 is shown below

Ξ0(m) =

(5,1) (5,3) (5,5)

(4,0) (4,2) (4,4) (4,6)

(3,1) (3,3) (3,5)

(2,0) (2,2) (2,4) (2,6)

(1,1) (1,3) (1,5)

(0,0) (0,2) (0,4) (0,6)

Ξ1(m) =

(5,0) (5,2) (5,4) (5,6)

(4,1) (4,3) (4,5)

(3,0) (3,2) (3,4) (3,6)

(2,1) (2,3) (2,5)

(1,0) (1,2) (1,4) (1,6)

(0,1) (0,3) (0,5)
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Note that in this case Ξ1(m) ∼= Ξ0(m)op (cf. Proposition 6.3). For r = 3 and m1 = m2 = m3 = 1, Ξ0(m)

(respectively, Ξ1(m)) is the quiver of type D4 where the triple node is the unique sink (source).
Finally, Ξ0((2,1,1)) is the quiver (1.2) with t = 4 where (0,0,0) is the sink and (2,1,1) is the source,
while Ξ0((1,1,1,1)) is the quiver (1.2) with t = 6, where (0,0,0,0) is the sink and (1,1,1,1) is the
source. We prove (cf. Proposition 6.3) that the isomorphism classes of quivers Ξa(m) with r > 1 are
parametrised by partitions.

Proposition. Suppose that g is of type C and Ψ is regular. Let λ ∈ P+ and suppose that |λ− ∪λ+| > 0. Then the
connected component ΔΨ [λ] of ΔΨ is isomorphic to Ξa(m) for some m ∈ (Z+ ∪{+∞})r , r > 0 and a ∈ {0,1}.

In particular, our isomorphism Tg

Ψ → CΔΨ induces an isomorphism of a subalgebra of Tg

Ψ cor-
responding to an interval closed set onto Ξa(m). Therefore, we can define a family of relations on
Ξa(m), depending on positive integer parameters, which yields an infinite family of finite dimensional
Koszul algebras.

2. Relations in Sg

Ψ

2.1. Let V be a g-module. Given μ ∈ h∗ , let

Vμ = {
v ∈ V : hv = μ(h)v, h ∈ h

}
.

If V is finite dimensional, then V =⊕
μ∈P Vμ . Moreover, V is isomorphic to a direct sum of simple

finite dimensional modules V (λ), λ ∈ P+ . In particular, the adjoint representation g is isomorphic
to V (θ) where θ is the highest root of g.

Fix Chevalley generators ei ∈ gαi , f i ∈ g−αi and hi ∈ h, i ∈ I of g. The module V (λ) is generated by
a highest weight vector vλ ∈ V (λ)λ satisfying

AnnU (g) vλ = U (g)
(
n+ + kerλ

)+
∑
i∈I

U (g) f λ(hi)+1
i .

For each λ ∈ P+ , we fix vλ once for all and then we fix ξ−λ ∈ V (λ)∗−λ such that ξ−λ(vλ) = 1. Then we
have

AnnU (g) ξ−λ = U (g)
(
n− + ker(−λ)

)+
∑
i∈I

U (g)eλ(hi)+1
i .

In particular,

AnnU (n−) vλ =
∑
i∈I

U
(
n−) f λ(hi)+1

i , AnnU (n+) ξ−λ =
∑
i∈I

U
(
n+)eλ(hi)+1

i .

Given λ ∈ P+ and a finite dimensional g-module M , let

Mλ = {m ∈ M: AnnU (n+) m ⊃ AnnU (n+) ξ−λ}.
If N is a subspace of M , let Nμ = N ∩ Mμ . We will need the following results (cf. [17]; we use
some of them in the form in which they are presented in [14], where the corresponding statements
are established in the case of integrable modules over quantised enveloping algebras of Kac–Moody
algebras).

Proposition. Let μ,ν ∈ P+ and let M be a finite dimensional g-module.

(i) Homg(V (λ), M) ∼= Mn+ ∩ Mλ .
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(ii) V (μ) ⊗ V (ν)∗ = U (g)(vμ ⊗ ξ−ν).
(iii) There exist canonical isomorphisms of vector spaces

Homg

(
V (μ) ⊗ V (ν)∗, M

)∼= Homg

(
V (μ), M ⊗ V (ν)

)∼= (
V (μ)∗ ⊗ M ⊗ V (ν)

)g
∼= (

V (ν)∗ ⊗ M∗ ⊗ V (μ)
)g ∼= Homg

(
V (ν), M∗ ⊗ V (μ)

)
.

(iv) Mν
μ−ν = {m ∈ Mμ−ν : AnnU (n−) m ⊃ AnnU (n−) vμ}.

(v) The linear map Mν
μ−ν → Homg(V (μ) ⊗ V (ν)∗, M) given by m �→ χm, where

χm
(
a(vμ ⊗ ξ−ν)

)= am, a ∈ U (g)

is an isomorphism of vector spaces. In particular, all vector spaces in (iii) are isomorphic to Mν
μ−ν .

2.2. Let K = ⊕
x∈ J Cex be a semisimple commutative algebra with primitive pairwise orthogo-

nal idempotents ex and let V be a K -bimodule. Assume that dim ex V e y < ∞ for all x, y ∈ J and
that V =⊕

x,y∈ J ex V e y (which is always the case if J is finite). Let T 0
K (V ) = K , T r

K (V ) be the r-fold
tensor product of V over K and set T K (V ) =⊕

r∈Z+ T r
K (V ). This is a Z+-graded associative algebra.

In particular, if A is a Z+-graded associative algebra and A[0] is commutative semisimple, we have a
canonical homomorphism of associative algebras T A[0](A[1]) → A (cf. [2]).

Let Δ be the quiver with Δ0 = J and with dim ex V e y arrows x ← y for all x, y ∈ J . We have
an isomorphism of algebras K → ⊕

x∈ J C1x ⊂ CΔ. In particular, we can regard the subspace of CΔ

spanned by all arrows as a K -bimodule and for any choice of basis in ex V e y , x, y ∈ J this subspace
is naturally isomorphic to V as an K -bimodule. This isomorphism extends canonically to an isomor-
phism of graded associative algebras T K (V ) → CΔ. Then, if A is a quotient of T K (V ) by an ideal
which has the trivial intersection with T r

K (V ), r = 0,1, then A is isomorphic to the path algebra
C(Δ, R) where R is the image of ker(T K (V ) → A) in CΔ.

An associative algebra A is said to be connected if A = A1 ⊕ A2 where the A j are subalgebras
implies that A1 = 0 or A2 = 0. Clearly, C(Δ, R) is connected if and only if Δ is connected.

2.3. Let Ψ ⊂ R+ be a fixed extremal set.

Proposition. Let F ⊂ P+ be interval closed in the partial order �Ψ . Then the algebra Tg

Ψ (F ) is isomorphic, as
a Z+-graded algebra, to the path algebra of the quiver ΔΨ (F ). In particular, for all λ,μ ∈ F ,

∣∣ΔΨ (F )(λ,μ)
∣∣= {

dim(V (λ)∗ ⊗ T dΨ (λ,μ)(g) ⊗ V (μ))g, λ �Ψ μ,

0, otherwise,

and if F ′ ⊂ F is interval closed, then ΔΨ (F ′) is a convex subquiver of ΔΨ (F ). Furthermore, Sg

Ψ (F ) is isomor-
phic to the quotient of CΔΨ (F ) by an ideal generated by paths of length 2.

Proof. By [9, Proposition 4.4], Tg

Ψ (F ) is isomorphic to TTg

Ψ (F )[0](Tg

Ψ (F )[1]) as a Z+-graded associative

algebra. Since Tg

Ψ (F )[0] =⊕
λ∈F C1λ , it is enough to prove that for all λ,μ ∈ F , the number of arrows

λ ← μ equals dim 1λTg

Ψ (F )[1]1μ . The latter is zero unless μ = λ + β , β ∈ Ψ . Since by Proposition 2.1,

1λTg

Ψ (F )[1]1λ+β = (
V (λ)∗ ⊗ g ⊗ V (λ + β)

)g ∼= gλ
β

and dimgβ = 1, it is enough to prove that λ ← λ + β ∈ (ΔΨ )1 if and only if gλ
β �= 0. Observe first that

λ − ε(β) ∈ P+ implies that λ + β = λ − ε(β) + ϕ(β) ∈ P+ . Since γ ,γ + αi ∈ R implies that eigγ �= 0,
it follows that et

igβ �= 0 for all 0 � t � εi(β). Therefore, gλ
β �= 0 if and only if λ(hi) � εi(β) for all i ∈ I .

The remaining assertions are straightforward. �
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2.4. For all β ∈ Ψ and for all λ ← λ+β ∈ (ΔΨ )1, fix 0 �= aλ,β ∈ 1λTg

Ψ 1λ+β = 1λSg

Ψ 1λ+β . This choice
is unique up to a non-zero scalar. It follows from [9, Proposition 4.4] that the elements 1λ , λ ∈ P+
and aλ,β , λ ← λ +β ∈ (ΔΨ )1 generate Tg

Ψ and Sg

Ψ . In particular, for all λ �Ψ μ with dΨ (λ,μ) = 2 the
set

{
aλ,βaλ+β,β ′ : β,β ′ ∈ Ψ, μ = λ + β + β ′, λ ← λ + β,λ + β ← μ ∈ (ΔΨ )1

}
is a basis of 1λTg

Ψ 1μ . By Proposition 2.1 and Corollary 1.1,

1λTg

Ψ 1μ
∼= (

T 2(g)
)λ
μ−λ

= (
T 2(n+

Ψ

))λ
μ−λ

.

Let Πλ(β,β ′) be the image of aλ,βaλ+β,β ′ under this isomorphism. Using [9, Lemma 4.2] we obtain
the following

Proposition. Let η ∈ Ψ + Ψ , λ,λ + η ∈ P+ and assume that ΔΨ (λ,λ + η) �= ∅. The elements Πλ(β,β ′)
where β,β ′ ∈ Ψ , β +β ′ = η and λ ← λ+β ← λ+η ∈ ΔΨ (λ,λ+η) form a basis of T 2(n+

Ψ )λη . In particular,
we have a relation

∑
β∈Ψ : λ←λ+β←λ+η∈ΔΨ (λ,λ+η)

xβaλ,βaλ+η,η−β = 0

in Sg

Ψ if and only if

∑
β∈Ψ : λ←λ+β←λ+η∈ΔΨ (λ,λ+η)

xβΠλ(β,η − β) ∈
∧2

n
+
Ψ .

2.5. Thus, to describe the relations, it remains to find a way for describing the elements Πλ(β,β ′).
It turns out that the most convenient language is provided by g-module maps.

Let V be a finite dimensional g-module. Given f ∈ Homg(V (μ), V ⊗ V (λ)), note that f is uniquely
determined by f (vμ). Using Proposition 2.1 we obtain an isomorphism of vector spaces

Homg

(
V (μ), V ⊗ V (λ)

)→ V λ
μ−λ

given by

f �→ v f := (1 ⊗ ξ−λ) f (vμ).

In particular, we have

f (vμ) = v f ⊗ vλ

(
mod U

(
n+)

+v f ⊗ U
(
n−)

+vλ

)
. (2.1)

Let β ∈ Ψ , λ ∈ P+ and assume that λ ← λ + β ∈ (ΔΨ )1 and so gβ = gλ
β . Fix root vectors eγ ∈

gγ \ {0}, γ ∈ R+ . Then by (2.1) we have a unique 0 �= pλ,β ∈ Homg(V (λ + β),g ⊗ V (λ)) satisfying

pλ,β(vλ+β) = eβ ⊗ vλ +
∑
β<γ

eγ ⊗ uβ,γ (λ)vλ, (2.2)

where uβ,γ (λ) ∈ U (n−)β−γ . Clearly, pλ,β(vλ+β) spans (g ⊗ V (λ))n
+

λ+β . Note that the elements uβ,γ (λ)

are uniquely determined modulo AnnU (n−) vλ .
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2.6. Let F (h) be the field of fractions of S(h). Given β ∈ Ψ , let

Fβ(h) = {
f g−1 ∈ F (h): λ ∈ P+, λ ← λ + β ∈ (ΔΨ )1 ⇒ λ(g) �= 0

}
.

Clearly, Fβ(h) is a subring of F (h). Given λ ← λ + β ∈ (ΔΨ )1, note that λ : S(h) → C extends canoni-
cally to a homomorphism Fβ(h) → C which we also denote by λ.

Furthermore, regard U (b) as a right S(h)-module via the right multiplication and a left U (n−)

module via the left multiplication. Then U (b)⊗S(h) Fβ(h) is a right S(h)-module and is isomorphic to
U (n−) ⊗ Fβ(h) as a left U (n−)-module by the PBW theorem. Thus, λ induces a surjective homomor-
phism of left U (n−)-modules πλ,β : U (b) ⊗S(h) Fβ(h) → U (n−).

Let λ ∈ h∗ . The quotient of U (b) by the left ideal generated by the kernel of λ : S(h) → C is
isomorphic to U (n−) as a left U (n−)-module and so we have a surjective homomorphism of left
U (n−)-modules πλ : U (b) → U (n−). Clearly, the restriction of πλ to U (n−) is the identity map. Fur-
thermore, if V is a finite dimensional g-module, v ∈ Vμ and x ∈ U (b), then x − πμ(x) ∈ AnnU (g) v .

Lemma. Suppose that x ∈ U (b), y ∈ U (b)−η , η ∈ Z+R+ . Then πλ(xy) = πλ−η(x)πλ(y). Furthermore, if λ ←
λ + β ∈ (ΔΨ )1 then πλ,β(x ⊗ f ) = πλ(x) ⊗ πλ,β( f ) for all f ∈ Fβ(h).

Proof. Note that πλ(xy) = πλ(x)πλ(y) for all x ∈ U (n−), y ∈ S(h). Since U (b) ∼= U (n−) ⊗ S(h) by the
PBW theorem, it is enough to show that πλ(hy) = πλ−η(h)πλ(y) for all h ∈ h, y ∈ U (b)−η . We have
πλ(hy) = πλ(yh)−η(h)πλ(y) = πλ(y)(λ−η)(h) = πλ−η(h)πλ(y). The second assertion is obvious. �

Given β ∈ Ψ , we have a group homomorphism Fβ(h)× → (C×)(ΔΨ )1 defined by h �→ (zλ,γ (h): γ ∈
Ψ,λ ← λ + γ ∈ (ΔΨ )1), where

zλ,γ (h) =
{

λ(h), γ = β,

1, γ �= β.

This yields a natural group homomorphism
∏

β∈Ψ Fβ(h)× → (C×)(ΔΨ )1 . We denote its image by GΨ .

2.7.

Definition. Let β ∈ Ψ . We call a tuple

(
uβ,γ ∈ U (b)β−γ ⊗S(h) Fβ(h): β � γ ,γ ∈ R+)

an adapted family for β if uβ,β = 1 and for all λ ← λ + β ∈ (ΔΨ )1, the vector

∑
γ ∈R+: β�γ

eγ ⊗ πλ,β(uβ,γ )vλ (2.3)

spans (g ⊗ V (λ))n
+

λ+β .

Proposition. Let β ∈ Ψ and suppose that (uβ,γ ∈ U (b) ⊗S(h) Fβ(h): β � γ ,γ ∈ R+) is an adapted family
for β . Then for all β ′ ∈ Ψ and for all λ ∈ P+ such that λ ← λ + β,λ + β ← λ + β + β ′ ∈ (ΔΨ )1 we have, up
to a non-zero scalar,

Πλ(β
′, β) = eβ ⊗ eβ ′ +

∑
β<γ : γ ,β+β ′−γ ∈Ψ

eγ ⊗ uβ,γ (λ + β ′)eβ ′ , (2.4)
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where

uβ,γ (ν) = πν,β(uβ,γ ) (mod AnnU (n−) vν), ν ← ν + β ∈ (ΔΨ )1.

In particular, if β ∈ Ψ is maximal, Π(β ′, β) = eβ ⊗ eβ ′ .

Proof. Let ν1 �Ψ ν2. Since g ∼= g∗ , by Proposition 2.1(iii) we have the following canonical isomor-
phisms of vector spaces

1ν1 Tg

Ψ 1ν2 = (
V (ν1)

∗ ⊗ T dΨ (ν1,ν2)(g) ⊗ V (ν2)
)g

∼= (
V (ν2)

∗ ⊗ T dΨ (ν1,ν2)(g) ⊗ V (ν1)
)g

∼= Homg

(
V (ν2), T dΨ (ν1,ν2)(g) ⊗ V (ν1)

)
.

Moreover, this isomorphism is compatible with products and compositions, that is, if x ∈ 1ν1 Tg

Ψ 1ν2 ,
y ∈ 1ν2 Tg

Ψ 1ν3 , ν1 �Ψ ν2 �Ψ ν3 and

x �→ f ∈ Homg

(
V (ν2), T dΨ (ν1,ν2)(g) ⊗ V (ν1)

)
, y �→ g ∈ Homg

(
V (ν3), T dΨ (ν2,ν3)(g) ⊗ V (ν2)

)
,

then

xy �→ (1 ⊗ f ) ◦ g ∈ Homg

(
V (ν3), T dΨ (ν1,ν)(g) ⊗ V (ν1)

)
.

In particular, β ∈ Ψ and λ ← λ + β ∈ (ΔΨ )1, we may assume, without loss of generality, that pλ,β ∈
Homg(V (λ + β),g ⊗ V (λ)) is the image of aλ,β under the above isomorphism. Then Πλ(β

′, β) is the
image of

(1 ⊗ pλ,β ′) ◦ pλ+β ′,β

under the isomorphism

Homg

(
V (λ + β + β ′), T 2(g) ⊗ V (λ)

)→ T 2(n+
Ψ

)λ
β+β ′ .

It is now immediate from (2.1), (2.3) and Proposition 2.1(i) that

Πλ(β
′, β) = eβ ⊗ eβ ′ +

∑
γ ∈R+: β<γ

eγ ⊗ uβ,γ (λ + β ′)eβ ′ .

Since uβ,γ (λ + β ′)eβ ′ ∈ gβ+β ′−γ , it follows from Corollary 1.1 that uβ,γ (λ + β ′)eβ �= 0 implies that
γ ,β + β ′ − γ ∈ Ψ . �

The following elementary corollary establishes part (ii) of Theorem 2.

Corollary. Let β ∈ Ψ , λ ∈ P+ . Then (λ ← λ + β ← λ + 2β) /∈ RΨ (λ,λ + 2β).
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3. First examples

The aim of this section is to provide the reader with relatively simple examples of quivers and rela-
tions arising from algebras Sg

Ψ , before we undertake a complete study of all possible relations in these
algebras for g of types A and C . We begin with the infinite dimensional example announced in [9]
which is independent of type of g. The same computation allows us to obtain a complete description
of relations in Sg

Ψ for g of type A2. Then we describe the relations in the algebras corresponding to g

of type G2. The remaining rank 2 case is postponed until 6.11.
Throughout the rest of the paper, given λ ∈ P+ and i /∈ I , we set λ(hi) = +∞.

3.1. We begin by excluding the case |Ψ | = 1. In this case the algebra Sg

Ψ is hereditary and we have
two possibilities. If Ψ = {θ} then every connected component of ΔΨ is isomorphic to the quiver A

op∞ ,
where

A∞ = 0 → 1 → 2 → ·· ·

If Ψ = {β} with β �= θ then β /∈ P+ (it is easy to check that if the highest short root is contained
in Ψ then |Ψ | > 1) and so the connected components of ΔΨ are either simple one-dimensional or of
type An with the subspace orientation.

3.2. Suppose that g is not of type A or C (in fact, the computation of the relations works for the
type A as well, but the quiver is more complicated, as we will see below; the corresponding construc-
tion for the type C will be discussed later). Then there exists a unique i0 ∈ I such that θ − αi0 ∈ R+
and it is not hard to see that Ψ = {θ, θ − αi0 } is extremal.

Recall (cf. [18]) that a pair (Δ,τ ) where Δ = (Δ0,Δ1) is a quiver without multiple arrows
and τ :Δ′

0 → Δ0, Δ′
0 ⊆ Δ0 is an injective map, is called a translation quiver (and τ is called the trans-

lation map) if (τ (z))+ = z− for all z ∈ Δ′
0. A full embedding of translation quivers (Δ,τ ) → (Δ′, τ ′) is

a full embedding of quivers Δ → Δ′ which maps the domain of τ into the domain of τ ′ and is com-
patible with the maps τ , τ ′ . If (Δ,τ ) is a translation quiver and has no multiple arrows, a relation of
the form

∑
y∈x− (x ← y)(y ← τ (x)), x ∈ Δ0, is called a mesh relation.

Given a quiver Δ, a translation quiver ZΔ is defined by

(ZΔ)0 = Z × Δ0, (ZΔ)1 = {
(n, x) ← (n, y), (n + 1, y) ← (n, x): x ← y ∈ Δ1

}
,

τ
(
(n, x)

)= (n − 1, x).

If Δ is a Dynkin quiver, ZΔ depends only on Δ̄ (cf. [18, §2.1]).

Proposition. Every connected subalgebra of Sg

Ψ is isomorphic to the path algebra of the translation quiver

Γ =

...
...

(0,2) (1,2) (2,2) · · ·

(0,1) (1,1) (2,1) (3,1) · · ·

(0,0) (1,0) (2,0) (3,0) (4,0) · · ·

(3.1)

with the translation map τ (m,n) = (m,n + 1), m,n ∈ Z+ and with the mesh relations.
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Proof. Suppose that λ ∈ P+ is a sink in ΔΨ . Since ϕ(θ) = �i0 , we must have λ(hi0) = 0. Suppose
that μ ∈ P+ is a sink in ΔΨ [λ], μ �= λ. Since ΔΨ [λ]0 ⊂ (λ + ZΨ ) ∩ P+ , μ = λ + mθ + kβ for some
m,k ∈ Z. Interchanging the role of λ and μ, if necessary, we may assume that m � 0. Since θ(hi0) = 1,
β(hi0 ) = −1, we have m = k > 0. On the other hand, for all j �= i0 we have β(h j) = ϕ j(β) and so
μ(h j) − λ(h j) = kϕ j(β). Since λ(h j) � 0 and ϕi0(β) = 0, this implies that μ − ϕ(β) ∈ P+ which is a
contradiction since μ is a sink. Thus, every connected component of ΔΨ contains a unique sink λ

hence

ΔΨ [λ]0 ⊂ (λ �Ψ ) = {λ + rθ + sβ: 0 � s � r}.

Note that λ + rθ + sβ , 0 � s � r is connected to λ by a path

λ ← λ + θ ← ·· · ← λ + rθ ← λ + rθ + β ← ·· · ← λ + rθ + sβ.

Thus, ΔΨ [λ]0 = (λ �Ψ ). Define a map ΔΨ [λ]0 → Γ0 = Z+ × Z+ by λ + rθ + sβ �→ (r − s, s). This
map is clearly a bijection. Furthermore, we have an arrow λ + rθ + sβ ← λ + (r + 1)θ + sβ and an
arrow λ + rθ + sβ ← λ + rθ + (s + 1)β provided that s < r. Since in the quiver Γ we have an arrow
(m,n) ← (m + 1,n) for all m,n ∈ Z+ and an arrow (m,n) ← (m − 1,n + 1) for all m > 0, it follows
that ΔΨ [λ] ∼= Γ . Finally, if we define τ : ΔΨ [λ]0 → ΔΨ [λ]0 by τ (μ) = μ + θ + β , we conclude that
our isomorphism is in fact an isomorphism of translation quivers.

It remains to compute the relations in our algebra. Since β < θ , by Proposition 2.7 we have
Πλ(β, θ) = eθ ⊗ eβ . Assuming that [ei0 , eβ ] = eθ we can easily check that uβ,β = 1 and uβ,θ =
− f i0 ⊗h−1

i0
∈ U (b)−αi0

⊗S(h) Fβ(h) form an adapted family for β . Since f i0 /∈ AnnU (n−) vν if ν(hi0 ) > 0,

we conclude that Πλ(θ,β) = eβ ⊗ eθ − (λ(hi0) + 1)−1eθ ⊗ eβ .
Suppose that λ(hi0) > 0. Then tλ,θ+β = 2 and, clearly, λ(hi0)Πλ(β, θ) − (λ(hi0) + 1)Πλ(θ,β) ∈∧2
n

+
Ψ . Fix the isomorphism Φ : Tg

Ψ → CΔΨ by assigning

aλ,θ �→ (λ ← λ + θ), λ ∈ P+

and

aλ,β �→ (−1)λ(hi0 )
(
λ(hi0)

)−1
(λ ← λ + β), λ(hi0) > 0.

Then it is easy to see that RΨ (λ,λ + θ + β) is spanned by the mesh relation with respect to our
translation map. If λ(hi0) = 0 then Πλ(θ,β) ∈ ∧2

n
+
Ψ , so the unique path is a zero relation and is

again the mesh relation with respect to our translation map. �
Note that we have a full embedding of translation quivers Γ ↪→ ZA∞ given on the vertices by

(r, s) �→ (−r − s, r). The quiver Γ op identifies with the Auslander–Reiten quiver for A∞ and so a
connected subalgebra of Sg

Ψ can be regarded as an infinite dimensional analogue of the Auslander
algebra of CA∞ .

3.3. In the remainder of the section we will consider g of types A2 and G2. Identify P with Z × Z
and write (λ(h1), λ(h2)) for λ ∈ P .

Let g be of type A2. Then R+ contains two extremal sets with |Ψ | > 1, namely Ψi = {αi, θ}, i ∈ I .
Clearly, it is enough to analyse one of them, say Ψ = Ψ1.

Suppose that (m,n), (m′,n′) ∈ P+ are in the same connected component. Then (m′,n′) ∈
((m,n) + ZΨ ) ∩ P+ , that is, (m′,n′) = (m + r + 2s,n + r − s) for some r, s ∈ Z. This implies that
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m′ − n′ = m − n (mod 3). Since ϕ(α1) = (2,0), ϕ(θ) = θ = (1,1), the sinks in ΔΨ are (0,m), m ∈ Z+
and (1,0). Let 0 � r < 3. Then we have

(0, r) ← (1, r + 1) ← ·· · ← (2k,2k + r) → (
2(k − 1),2k + 1 + r

)→ ·· · → (0,3k + r),

hence all sinks (0,3k + r) lie in ΔΨ [(0, r)]. Finally, we have (1,0) ← (2,1) → (0,2) hence (1,0)

belongs to ΔΨ [(0,2)]. Thus, ΔΨ has three connected components given by

ΔΨ

[
(0, r)

]
0 = {

(m,n) ∈ Z+ × Z+: m − n = r (mod 3)
}

the arrows being (m,n) ← (m+1,n+1) and (m,n) ← (m+2,n−1), n > 0. The translation structure is
given by τ (m,n) = (m + 3,n). The computation of relations performed in 3.2 implies that all relations
are the mesh relations.

It is easy to see that the quivers ΔΨ [(0, r)], r ∈ {0,1,2}, and hence the corresponding connected
subalgebras of Sg

Ψ , are not isomorphic. For that, note that ΔΨ [(0, r)] has a unique sink λr such
that |λ−| = 1 (indeed, clearly λ0 = (0,0), λ1 = (0,1) and λ2 = (1,0) have this property). It follows
that any full map of quivers ΔΨ [(0, r)] → ΔΨ [(0, s)] must send λr to λs and λ−

r to λ−
s . On the other

hand, λr belongs to the following full connected subquivers of ΔΨ [(0, r)], respectively

(0,3) (1,4)

(0,0) (1,1) (2,2) (3,3)

(3,0) (4,1) (5,2)

(6,0) (7,1)

(0,4) (1,5)

(0,1) (1,2) (2,3) (3,4)

(3,1) (4,2) (5,3)

(5,0) (6,1) (7,2)

(0,2) (1,3) (2,4)

(1,0) (2,1) (3,2) (4,3)

(4,0) (5,1) (6,2)

(7,0) (8,1)

These quivers are obviously non-isomorphic.

3.4. Let g be of type G2. Let α1 (respectively, α2) be the long (respectively, the short) simple root.
Then R+ = {α1,α2,α1 + α2,α1 + 2α2,α1 + 3α2, θ = 2α1 + 3α2}. It is not hard to show that there are
only two extremal sets of positive roots containing more than one element, namely Ψ1 = {θ − α1, θ}
and Ψ2 = {α1, θ}, which correspond to the two one-dimensional faces of the convex hull of R having
trivial intersection with −R+ . The set Ψ1 has already been considered in Proposition 3.2. We should
only note that since ϕ(θ) = (1,0) and ϕ(θ − α1) = (0,3), (0, r), 0 � r < 3 are the only sinks in ΔΨ

and hence by Proposition 2.3 ΔΨ has three isomorphic connected components.
The situation is rather different if Ψ = Ψ2. Since ϕ(α1) = (2,0) and ϕ(θ) = (1,0), it follows that

(m,n) is a sink in ΔΨ if and only if m = 0. Furthermore, since ε(α1) = (0,3), we have an arrow
(m,n) ← (m + 2,n − 3) if and only if n � 3. Suppose that we have two sinks (0, x), (0, y) in the same
connected component of ΔΨ . Then we must have (m + 2n, x − 3n) = (0, y) for some m,n ∈ Z, hence
x = y (mod 3). Furthermore, let 0 � r � 2. Then we have in ΔΨ

(0, r) ← (1, r) ← ·· · ← (2n, r) → (
2(n − 1), r + 3

)→ ·· · → (
2,3(n − 1) + r

)→ (0,3n + r).

Thus, every sink (0,3n + r), n ∈ Z+ lies in ΔΨ [(0, r)]. Therefore, ΔΨ has three isomorphic connected
components and the quiver ΔΨ [(0, r)] is
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...

(0,r+6) (1,r+6) (2,r+6) · · ·

(0,r+3) (1,r+3) (2,r+3) (3,r+3) (4,r+3) · · ·

(0,r) (1,r) (2,r) (3,r) (4,r) (5,r) (6,r) · · ·

that is, ΔΨ [(0, r)]0 = {(m,3n + r): m,n ∈ Z+} and the arrows are (m,3n + r) ← (m + 1,3n +
r), m,n ∈ Z+ , (m,3n + r) ← (m + 2,3(n − 1) + r), n > 0. This is clearly a translation quiver
with τ ((m,3k + r)) = (m + 3,3(k − 1) + r), m ∈ Z+ , k > 0. In particular, Ψ is our first example of
a regular extremal set. Clearly, there is a full embedding of ΔΨ [(0, r)] into any of the infinite con-
nected quivers considered in 3.3.

3.5. It remains to describe the relations. We write x(p) = xp/p! ∈ U (g), x ∈ g, p ∈ Z+ . Fix root
vectors in g so that eα1+pα2 = (ad e2)

(p)e1, 1 � p � 3 and [e1, eα1+3α2 ] = eθ . We have only one non-
trivial case to consider, namely η = θ + α1 = (3,−3). If ΔΨ ((m,n), (m + 3,n − 3)) is non-empty it
always contains two paths. Proposition 2.7 immediately implies that

Πλ(α1, θ) = eθ ⊗ eα1 .

To find Πλ(θ,α1), note that {γ ∈ R+: α1 � γ } = {α1,α1 + α2,α1 + 2α2,α1 + 3α2, θ}. Since
dim U (n−)−(α1+3α2) = 4, the monomials

f (a)
2 f1 f (3−a)

2 , 0 � a � 3

which are of course all possible monomials in the f i of weight −α1 − 3α2, form a basis
of U (n−)−(α1+3α2) . It is not hard to see that the element

U = f1 f (3)
2

(
h2 + 1

)
h2

(
h2 − 1

)− f2 f1 f (2)
2

(
h2 + 1

)
h2

(
h2 − 2

)
+ f (2)

2 f1 f2

(
h2 + 1

)(
h2 − 1

)(
h2 − 2

)− f (3)
2 f1h2

(
h2 − 1

)(
h2 − 2

) ∈ U (b)

satisfies

e1U = 6 f (3)
2

(
h1 + h2 + 1

)+ U (g)n+, e2U ∈ U (g)n+.

Define uα1,γ ∈ U (b)α1−γ ⊗S(h) Fα1 (h), α1 � γ as

uα1,α1+pα2 = (−1)p f p
2 ⊗

p−1∏
t=0

(h2 − t)−1, 0 � p � 3,

uα1,θ = U ⊗ (
(h1 + h2 + 1)h2(h2 − 1)(h2 − 2)

)−1
.

Then it is easy to see that (uα1,γ : α1 � γ ) is an adapted family for α1, hence by Proposition 2.7,

Πλ(θ,α1) = eα1 ⊗ eθ + (
(λ1 + λ2 + 2)λ2(λ2 − 1)(λ2 − 2)

)−1
eθ ⊗ πλ+θ (U )eθ .
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Clearly, πλ+θ (U ) = −λ2(λ2 − 1)(λ2 − 2) f (3)
2 f1 + AnnU (g) eθ . Since (λ + θ)(h1) > 0, we conclude using

finite dimensional sl2 theory that f (3)
2 f1 /∈ AnnU (n−) vλ+θ . Thus, we get

Πλ(θ,α1) = eα1 ⊗ eθ − (λ1 + λ2 + 2)−1eθ ⊗ eα1 .

It follows that none of the two paths is a relation and that the relations can be chosen to be the mesh
relations.

4. A recursive family of elements in U (b)

In this section we construct a family of elements of U (b) which will play the crucial role in
constructing adapted families for g of type A and C .

4.1. Suppose that g is of type A� . After [16], a monomial

f
a1,1
1

(
f

a2,2
2 f

a2,1
1

) · · · ( f
a�,�

� · · · f
a�,1
1

) ∈ U
(
n−)

where a j,i+1 � a j,i for all 1 � j � �, 1 � i � j − 1, is called standard. Furthermore, let λ ∈ P+ . A stan-
dard monomial that satisfies

λ(hi) � a j,i − a j,i−1 +
�∑

r= j+1

(2ar,i − ar,i−1 − ar,i+1), 1 � j � �, 1 � i � j (4.1)

is called λ-standard [16, Definition 22]. In the above we adopt the convention that a j,s = 0 if s < 0
or s > j. We have the following

Theorem 3. (See [16, Theorems 17 and 25].) Standard monomials form a basis of U (n−). Moreover, for all
λ ∈ P+ , the set

{F vλ: F is a λ-standard monomial}

is a basis of V (λ).

Assume now that g is a simple Lie algebra of rank �, J = {i, i + 1, . . . , j}, 1 � i � j � �. Suppose
that the Lie subalgebra g J of g generated by the er, fr , r ∈ J is of type A j−i+1. Let μ ∈ P+ and let
η =∑

r∈ J krαr , kr ∈ Z+ . Set

J (η) =
{

a = (as,r)i�s� j, i�r�s: as,r+1 � as,r, i + 1 � s � j, i � r � s − 1,

j∑
s=r

as,r = kr, i � r � j

}

and

J (η,μ) =
{

a ∈ J (η): μ(hk) � as,k − as,k−1 +
j∑

r=s+1

(2ar,k − ar,k−1 − ar,k+1), i � s,k � j

}
,

where we assume that as,k = 0 if k < i or k > s. Using Theorem 3, we immediately obtain
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Proposition. The monomials

f
ai,i
i

(
f

ai+1,i+1
i+1 f

ai+1,i
i

) · · · ( f
a j, j

j · · · f
a j,i

i

)
, a = (as,k)i�k�s� j ∈ J (η)

form a basis of U (n−)−η and the vectors

f
ai,i
i

(
f

ai+1,i+1
i+1 f

ai+1,i
i

) · · · ( f
a j, j

j · · · f
a j,i

i

)
vμ, a = (as,k)i�k�s� j ∈ J (η,μ)

form a basis of V (μ)μ−η . In particular, if μ(hi) > 0 (respectively, μ(h j) > 0) then f j · · · f i vμ �= 0 (respec-
tively, f i · · · f j vμ �= 0).

Remark. The last assertion can of course be established by a simple induction on j − i from the
elementary theory of finite dimensional sl2-modules.

4.2. Let J ⊂ I and assume that g J is of type A| J | . Let Σ(i, j), i � j ∈ J be the set of all bijective
maps σ : {i, i + 1, . . . , j} → {1, . . . , j − i + 1} satisfying

σ(r + 1) < σ(r) �⇒ σ(r + 1) = σ(r) − 1, i � r < j.

Given σ ∈ Σ(i, j), let fσ = fσ−1(1) · · · fσ−1( j−i−1) . Let αi, j =∑ j
r=i αr ∈ R+ .

Lemma. The set {fσ : σ ∈ Σ(i, j)} is a basis of U (n−)−αi, j .

Proof. Clearly, if σ ∈ Σ(i, j) then fσ is a standard monomial, and if σ �= σ ′ then the monomials
fσ , fσ ′ are distinct. Now, we prove by induction on j − i that every standard monomial of weight
−αi, j is of the form fσ . If j = i there is nothing to prove. If j > i, let F be a standard monomial of
weight −αi, j . Removing f j from F we obtain a standard monomial of weight −αi, j−1 which is equal
to fτ , τ ∈ Σ(i, j − 1) by the induction hypothesis. Now, since F is standard and every fr , i � r � j
occurs in F exactly once, it follows that either f j occurs in the ( j − i + 1)th position or f j−1 occurs
immediately after f j . In the first case, set σ(r) = τ (r), r < j, σ( j) = j − i + 1. In the second case, set
for all r < j

σ(r) =
{

τ (r), τ (r) < τ( j − 1),

τ (r) + 1, τ (r) � τ ( j − 1)

and let σ( j) = τ ( j − 1). Then it is easy to see that F = fσ and σ ∈ Σ(i, j). �
4.3. Given η ∈ h∗ , the assignment h �→ h − η(h), h ∈ h, x �→ x, x ∈ U (n−) extends to an algebra

automorphism ψη : U (b) → U (b). Clearly, ψηψη′ = ψη+η′ for all η,η′ ∈ h∗ and

xy = ψη(y)x, ∀x ∈ U (g)η, y ∈ S(h).

Observe also that πλ ◦ ψη = πλ−η , λ,η ∈ h∗ .
Given r � s ∈ J and λ ∈ h∗ , set

Hr,s := hr + · · · + hs + s − r ∈ S(h).

We use the convention that Hr,s = 0 if r > s. Note that λ(Hr,s) ∈ Z+ for all λ ∈ P+ and λ(Hr,s) = 0,
r � s if and only if r = s and λ(hs) = 0. Define
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X ±
i, j,k :=

∑
σ∈Σ(i, j)

fσ c±
σ (k), X −

i, j := X −
i, j, j, X +

i, j := X +
i, j,i,

where the c±
σ ∈ S(h) are given by the following formulae

c−
σ (k) =

j∏
s=i+1

(−1)δσ (s),σ (s−1)−1(Hs,k + 1 − δσ (s),σ (s−1)−1), j � k ∈ J ,

c+
σ (l) =

j−1∏
r=i

(−1)1+δσ (r+1),σ (r)−1(Hl,r + δσ (r+1),σ (r)−1), l � i ∈ J .

We let X ±
j+1, j,k = 1, 1 � j � � − 1, X ±

i, j,k = 0, i > j + 1.

Lemma. Let i � j ∈ J , η ∈ P and r ∈ I . Then

erψη

(
X −

i, j

)= ψη

(
δr,i X −

i+1, j Hi, j + X −
r+1, j X −

i,r−1, jη(hr)
)+ ψη+αr

(
X −

i, j

)
er, (4.2a)

erψη

(
X +

i, j

)= ψη

(
δr, j X +

i, j−1 Hi, j + X +
i,r−1 X +

r+1, j,iη(hr)
)+ ψη+αr

(
X +

i, j

)
er . (4.2b)

In particular,

er X −
i, j = δr,i X −

i+1, j Hi, j + ψαr

(
X −

i, j

)
er, (4.2c)

es X +
i, j = δs, j X +

i, j−1 Hi, j + ψαs

(
X +

i, j

)
es. (4.2d)

Proof. We only establish (4.2a), the proof of (4.2b) being similar. The argument is by induction
on j − i. Note that the induction begins since X −

i,i = f i and so

erψη

(
X −

i,i

)= X −
i,ier + δr,ihi = ψη+αr

(
X −

i,i

)
er + δr,iψη

(
X −

i+1,i

(
Hi,i + η(hi)

))
.

We claim that the X −
p,q,k , p < q � k ∈ J satisfy

X −
p,q,k = f p X −

p+1,q,k(H p+1,k + 1) − X −
p+1,q,k f p H p+1,k. (4.3)

Indeed, since f p commutes with the ft , p + 1 < t , t ∈ J , a standard monomial F of weight −αp,q

equals either f pfτ or fτ f p , τ ∈ Σ(p + 1,q). Let σ ,σ ′ ∈ Σ(p,q) be the elements corresponding, re-
spectively, to f pfτ and fτ f p . Then

c−
σ (k) = (H p+1,k + 1)c−

τ (k), c−
σ ′(k) = −H p+1,kc−

τ (k).

Note that f i commutes with X −
p, j,k , p > i + 1. If r �= i, we immediately obtain from (4.3), the

induction hypothesis and the properties of ψ that

erψη

(
X −

i, j

)= ψη

(
f i X −

r+1, j X −
i+1,r−1, j(Hi+1, j + 1) − X −

r+1, j X −
i+1,r−1, j f i Hi+1, j

)
η(hr)

+ δr,i+1ψη

(
f i X −

i+2, j Hi+1, j(Hi+1, j + 1) − X −
i+2, j Hi+1, j f i Hi+1, j

)+ ψη+αr

(
X −

i, j

)
er

= ψη

(
X −

r+1, j X −
i,r−1, j

)
η(hr) + ψη+αr

(
X −

i, j

)
er .
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Suppose now that r = i. Then we obtain from (4.3) and the induction hypothesis

eiψη

(
X −

i, j

)= hiψη

(
X −

i+1, j(Hi+1, j + 1)
)− ψη

(
X −

i+1, j Hi+1, j
)+ ψη+αi

(
X −

i, j

)
ei

= ψη

(
X −

i+1, j

((
hi + η(hi) + 1

)
(Hi+1, j + 1) − (

hi + η(hi)
)

Hi+1, j
))+ ψη+αi

(
X −

i, j

)
ei

= ψη

(
X −

i+1, j

(
Hi, j + η(hi)

))+ ψη+αi

(
X −

i, j

)
ei . �

5. Type A�, � > 1

5.1. We have R+ = {αi, j: 1 � i � j � �}. In particular, θ = α1,� . In terms of fundamental weights,
αi, j = �i + � j − �i−1 − � j+1, where we set �0 = ��+1 = 0. Since ε(αi, j) = �i−1 + � j+1, we
immediately obtain

Lemma. Let αi, j ∈ Ψ , λ ∈ P+ . Then λ ← λ + αi, j ∈ (ΔΨ )1 if and only if λ(hi−1), λ(h j+1) > 0.

5.2. We now proceed to describe the set of paths of length 2 in ΔΨ . Suppose that αi,m,α j,k ∈ Ψ ,
i � j. If m + 1 < j we have αi,m + α j,k = αi,k − αm+1, j−1 which is a contradiction by Corollary 1.1,
while j = m + 1 implies that αi,m + α j,k = αi,k ∈ R+ which is again a contradiction. Thus, we must
have j � m. If j = i or m = k, there is only one way of writing αi,m +α j,k as a sum of roots. Otherwise
we may assume without loss of generality that i < j � k < m and so we have

αi,m + α j,k = αi,k + α j,m.

It is easy to check that the sets

{αi, j,αi,k}, i � j < k,

{αi,k,α j,k}, i < j � k,

{αi,m,α j,k,αi,k,α j,m}, i < j � k < m

are extremal and so all cases listed above actually occur.
Now we can list all paths of length 2 in ΔΨ . First, let η = αi, j + αi,k , i � j < k. Suppose that

λ + η ∈ P+ . Then λ(hi−1) > 1 and either λ(h j+1), λ(hk+1) > 0 or λ(hk+1) > 0, j = k + 1 and λ(hk) =
λ(h j+1) = 0. Using Lemma 5.1 we see that ΔΨ (λ,λ+η) is non-empty only if λ(hi−1) > 1, λ(hk+1) > 0
and we have

ΔΨ (λ,λ + η) =
{ {λ ← λ + αi, j ← λ + η,λ ← λ + αi,k ← λ + η}, λ(h j+1) > 0,

{λ ← λ + αi,k ← λ + η}, k = j + 1, λ(h j+1) = 0.

(5.1)

Similarly, if η = αi,k +α j,k , i < j � k, then ΔΨ (λ,λ+η) is non-empty only if λ(hk+1) > 1, λ(hi−1) > 0
and

ΔΨ (λ,λ + η) =
{ {λ ← λ + αi,k ← λ + η,λ ← λ + α j,k ← λ + η}, λ(h j−1) > 0,

{λ ← λ + αi,k ← λ + η}, i = j − 1, λ(hi) = 0.

(5.2)

Finally, let η = αi,m + α j,k = αi,k + α j,m , i < j � k < m. If λ + η ∈ P+ , we must have λ(hi−1),

λ(hm+1) > 0. Using Lemma 5.1 again we see that ΔΨ (λ,λ + η), if non-empty, has one of the fol-
lowing forms:
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{
λ ← λ + αr,s ← λ + η : (r, s) ∈ {(i,m), (i,k), ( j,m), ( j,k)

}}
, λ(h j−1), λ(hk+1) > 0, (5.3)

{λ ← λ + αi,m ← λ + η,λ ← λ + αi,k ← λ}, i = j − 1, λ(h j−1) = 0, λ(hk+1) > 0, (5.4)

{λ ← λ + αi,m ← λ + η,λ ← λ + α j,m ← λ}, k = m − 1, λ(h j−1) > 0, λ(hk+1) = 0, (5.5)

{λ ← λ + αi,m ← λ + η}, i = j − 1, k = m − 1, λ(h j−1) = λ(hk+1) = 0. (5.6)

In particular, we have the following

Lemma. An extremal set Ψ ⊂ R+ is regular if and only if αi, j,αi,k ∈ Ψ , j < k, (respectively, αi,k,α j,k ∈ Ψ ,
i < j), implies that k > j + 1 (respectively, j > i + 1).

5.3. Fix r, s > 0. Given m = (m1, . . . ,mr) ∈ (Z+ ∪{+∞})r , n = (n1, . . . ,ns) ∈ (Z+ ∪{+∞})s and a ∈ Z,
−|n| � a � |m|, we define a quiver Γa(m,n) as follows. We set

Γa(m,n)0 = {
(x, y) = (

(x1, . . . , xr), (y1, . . . , ys)
) ∈ Zr+ × Zs+: xi � mi, 1 � i � r,

y j � n j, 1 � j � s, |x| = |y| + a
}
.

In other words, Γ (m,n) is just the set of lattice points in the (r + s)-dimensional rectangular par-
allelepiped [0,m1] × · · · × [0,mr] × [0,n1] × · · · × [0,ns] which lie on the hyperplane z1 + · · · + zr −
zr+1 − · · · − zr+s = a. The arrows are

(x, y) ← (
x + e(r)

i , y + e(s)
j

)
, xi < mi, y j < m j, 1 � i � r, 1 � j � s.

Note that the map (x, y) �→ (m − x,n − y) yields an isomorphism of quivers Γa(m,n) ∼=
Γ|m|−|n|−a(m,n)op .

For example, Γ0((n,n), (n)) ∼= Γn((n,n), (n))op is isomorphic to the following quiver

(n,0) (n−1,1) ··· (1,n−1) (0,n)

··· ··· ··· ··· ···
(1,0) (0,1)

(0,0)

(5.7)

This is a translation quiver, with τ ((x, y)) = (x + 1, y + 1), 0 � x + y � n − 2. It is easy to see that
there is a full embedding of translation quivers of the above quiver into ZΓ2n+1 where Γ2n+1 is any
quiver of type A2n+1. On the vertices, that embedding is given by (x, y) �→ (−y,n + y − x), where we
assume that the vertices of Γ2n+1 are numbered from 0 to 2n. There is also a full embedding of the
above quiver into the Auslander–Reiten quiver of the hereditary algebra of type A2n+1 where the nth
node is the unique source.

Clearly Γ2((13), (1)) is the quiver of type D4 in which the triple node is the unique source. Two
more small examples (respectively, Γ3((14), (12)) and Γ3((14), (13))) are shown below

(0111)(02) (1011)(02)

(14)(10)

(14)(01)

(1101)(02) (1110)(02)

(0111)(03) (14)(100) (1011)(03)

(14)(010)

(1101)(03) (14)(001) (1110)(03)

Lemma. The quiver Γa(m,n) is connected.
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Proof. Clearly, every vertex in Γa(m,n) is connected to a sink and a vertex (x, y) ∈ Γa(m,n) is a sink
if and only if either x = 0 ∈ Zr+ or y = 0 ∈ Zs+ . In particular, if a = 0 then Γ0(m,n) has a unique
sink and hence is connected. If a > 0 (respectively, a < 0) the sinks in Γa(m,n) are the vertices (x,0)

(respectively, (0, y)) with |x| = a (respectively, |y| = −a). Suppose that a > 0, the other case being
similar. If a = |m| then we have a unique sink which is also a source. Otherwise, let S = {x ∈ Zr+:
xi � mi, |x| = a} and let ≺ be the lexicographic order on S . Let (x,0), x ∈ S be a sink and suppose that
x is not the minimal element of S . Let 1 � j � r be maximal such that x j < m j . If there is 1 � i < j

minimal such that xi > 0, we have (x,0) ← (x + e(r)
j , e(s)

1 ) → (x − e(r)
i + e(r)

j ,0) and x − e(r)
i + e(r)

j ≺ x.
Suppose that xi = 0 for all i < j. Since x is not minimal, there exists x′ ∈ S such that x′ ≺ x, that is
x′

i = 0, 1 � i < j and x′
j < x j . Since |x′| = a = |x|, we must have x′

k > xk for some j < k � r, which
is a contradiction by the choice of j. Thus, the connected component of (x,0) contains a sink (x′,0)

with x′ ≺ x. The assertion is now immediate. �
5.4. Fix 1 � i1 < · · · < ir < j1 < · · · < js � � ∈ I and consider Ψ = {αip , jq : 1 � p � r, 1 � q � s}. It

is easy to see that Ψ is extremal. Assume further that ip+1 �= ip + 1, jq+1 �= jq + 1 for all 1 � p < r,
1 � q < s, and so by Lemma 5.2, Ψ is regular.

Proposition. Let λ ∈ P+ . Then the quiver ΔΨ [λ] is isomorphic to Γa(m,n) where m = (λ(hip−1) +
λ(hip ))1�p�r , n = (λ(h jq ) + λ(h jq+1))1�q�s and a =∑r

p=1 λ(hip ) −∑s
q=1 λ(h jq ).

Proof. Let J = {ip, ip − 1: 1 � p � r} ∪ { jq, jq + 1: 1 � q � s}. Suppose that μ ∈ ΔΨ [λ]0. Since
ΔΨ [λ]0 ⊂ (λ + ZΨ ) ∩ P+ , we have μ(h j) = λ(h j), j /∈ J , and

μ(hip ) = λ(hip ) +
s∑

q=1

xp,q, μ(hip−1) = λ(hip−1) −
s∑

q=1

xp,q, 1 � p � r,

μ(h jq ) = λ(h jq ) +
r∑

p=1

xp,q, μ(h jq+1) = λ(h jq+1) −
r∑

p=1

xp,q, 1 � q � s,

where xp,q ∈ Z, 1 � p � r, 1 � q � s. It follows that ΔΨ [λ]0 is contained in the set S(λ) of μ ∈ P+
satisfying the following conditions

μ(hip−1) + μ(hip ) = λ(hip−1) + λ(hip ), μ(h jq ) + μ(h jq+1) = λ(h jq ) + λ(h jq+1),

r∑
p=1

μ(hip ) −
s∑

p=1

μ(h jq ) =
r∑

p=1

λ(hip ) −
s∑

p=1

λ(h jq ).

Clearly, if μ ∈ S(λ) then μ− ⊂ S(λ) and so S(λ) defines a convex subquiver of ΔΨ containing ΔΨ [λ]
as a full connected subquiver. Define a map S(λ) → Γa(m,n)0 by

μ �→ ((
μ(hi1), . . . ,μ(hir )

)
,
(
μ(h j1), . . . ,μ(h js )

))
.

This map is clearly a bijection and it is easy to see that it induces an isomorphism of quivers. Since
by Lemma 5.3 the quiver Γa(m,n) is connected, the assertion follows. �

5.5. For 1 � i < j � �, we fix root vectors ei, j ∈ gαi, j such that

[er, ep,q] = δr,p−1er,q − δr,q+1ep,r, [ fr, ep,q] = δr,per+1,q − δr,qep,r−1. (5.8)

For example, the standard basis of the matrix realisation of sl�+1 has these properties.
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Fix αi, j ∈ Ψ . Clearly {γ ∈ R+: αi, j � γ } = {αp,q: 1 � p � i, j � q � �}. If λ,λ + αi, j ∈ P+ , we have
λ(hi−1), λ(h j+1) > 0 and so

λ(Ht,i−1) � λ(hi−1) > 0, λ(H j+1,t) � λ(h j+1) > 0, 1 � t � i − 1, j + 1 � t � �.

Therefore

Hr,i−1, H j+1,s ∈ Fαi, j (h)×, 1 � r � i − 1, j + 1 � s � �.

For all 1 � p � i, j � q � �, define uαi, j ,αp,q ∈ U (b)αi, j−αp,q ⊗S(h) Fαi, j (h) by

uαi, j ,αp,q = (−1)i−p X −
p,i−1 X +

j+1,q ⊗
i−1∏
t=p

H−1
t,i−1

q∏
t= j+1

H−1
j+1,t . (5.9)

Lemma. Let αi, j ∈ Ψ , 1 � i < j � �. Then (uαi, j ,αp,q : 1 � p � i, j � q � �) is an adapted family for αi, j .

Proof. We have πλ,αi, j (uαi, j ,αp,q ) = X −
p,i−1(λ)X +

j+1,q(λ)B p,q(i, j, λ), where

B p,q(i, j, λ) := (−1)i−p
i−1∏
t=p

(
λ(Ht,i−1)

)−1
q∏

t= j+1

λ(H j+1,t)
−1. (5.10)

Write B p,q = B p,q(i, j, λ) to shorten the notation. It is immediate that the B p,q satisfy

B p+1,q = −λ(H p,i−1)B p,q, B p,q−1 = λ(H j+1,q)B p,q. (5.11)

Let

v =
∑

αi, j�γ

eγ ⊗ πλ,αi, j (uαi, j ,γ )vλ.

Since v ∈ (g ⊗ V (λ))λ+β and uαi, j ,αi, j = 1, it remains to prove that er v = 0 for all 1 � r � �. It follows
immediately from Lemma 4.3 and (5.8) that er v = 0, i � r � j. Note that X −

p,i−1(λ) and X +
j+1,q(λ)

commute for all 1 � p � i, j + 1 � q � �. Let 1 � r � i − 1. By Lemma 4.3,

er X −
p,i−1(λ)X +

j+1,q(λ)vλ = δr,pλ(Hr,i−1)X −
r+1,i−1(λ)X +

j+1,q(λ)vλ,

hence, using (5.8) and (5.11), we obtain

er v =
�∑

q= j+1

(
Br+1,q + Br,qλ(Hr,i−1)

)
er,q ⊗ X −

r+1,i−1(λ)X +
j+1,q(λ)vλ = 0.

Finally, suppose that j + 1 � r � �. By Lemma 4.3,

er X −
p,i−1(λ)X +

j+1,q(λ)vλ = δr,qλ(H j+1,r)X −
p,i−1(λ)X +

j+1,r−1(λ)vλ
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and so by (5.8) and (5.11)

er v =
i∑

p=1

(−B p,r−1 + B p,rλ(H j+1,r)
)
ep,r ⊗ X −

p,i−1(λ)X +
j+1,r−1(λ)vλ = 0. �

5.6. To describe the relations without ambiguity, we need to fix an isomorphism Tg

Ψ → CΔΨ which
amounts to fixing an element z ∈ (C×)(ΔΨ )1 . Given αi, j ∈ Ψ , let

Zαi, j ,Ψ =
∏

1�t<i:αt, j∈Ψ

Ht,i−1

∏
j<t��: αi,t∈Ψ

H j+1,t . (5.12)

Since λ + αi, j ∈ P+ implies that λ(hi−1), λ(h j+1) > 0, Zαi, j ,Ψ ∈ Fαi, j (h)× . Let z be the image of

(Z −1
β,Ψ )β∈Ψ ∈∏β∈Ψ Fβ(h)× in GΨ . In other words, we fix the isomorphism Φ by requiring

aλ,αi, j �→ λ(Zαi, j ,Ψ )−1(λ ← λ + αi, j), λ,λ + αi, j ∈ P+.

Now we are ready to compute all relations in the algebra Sg

Ψ . For readers convenience, we describe
different cases in separate propositions.

Proposition. Let Ψ be an extremal set, |Ψ | > 1.

(i) Let αi, j,αi,k ∈ Ψ , 1 � i � j < k � �. Then for all λ ∈ P+ such that tλ,αi, j+αi,k = 2, RΨ (λ,λ+αi, j +αi,k)

is spanned by the commutativity relation. If tλ,αi, j+αi,k = 1, dimRΨ (λ,λ + αi, j + αi,k) = 1.
(ii) Let αi,k,α j,k ∈ Ψ , 1 � i < j � k � �. Then for all λ ∈ P+ such that tλ,αi,k+α j,k = 2, RΨ (λ,λ+αi,k +α j,k)

is spanned by the commutativity relation. If tλ,αi,k+α j,k = 1, dimRΨ (λ,λ + αi,k + α j,k) = 1.

In particular, if η ∈ Ψ + Ψ satisfies mη = 2, then Nη = ∅.

Proof. We present a detailed argument here since the computations of this kind will be used repeat-
edly in the rest of this paper and in the future we will omit most of the details.

Retain the notations of the proof of Lemma 5.5. To prove (i), note that αi, j < αi,k . It follows
from Proposition 2.7 and Lemma 5.5 that

Πλ(αi, j,αi,k) = ei,k ⊗ ei, j,

Πλ(αi,k,αi, j) = ei, j ⊗ ei,k + ei,k ⊗ uαi, j ,αi,k (μ)ei,k, μ = λ + αi,k,

and

uαi, j ,αi,k (μ) = πμ,αi, j (uαi, j ,αi,k ) = Bi,k(i, j,μ)X +
j+1,k(μ).

Note that μ(hk) = λ(hk) + 1 > 0. Let σ ∈ Σ( j + 1,k) and suppose that fσ /∈ AnnU (g) ei,k . Then (5.8)
we must have σ(k) = k − j and so fσ ei,k = −fσ ′ ei,k−1, where σ ′ ∈ Σ( j + 1,k − 1) is the restric-
tion of σ . Following this way we conclude that σ(r) = r − j, j + 1 � r � k, that is fσ = f j+1 · · · fk .
Since μ(hk) > 0, using Proposition 4.1 and Lemma 4.3 we conclude that

X +
j+1,k(μ) = (−1)k− j−1

k−1∏
t= j+1

μ(H j+1,t) f j+1 · · · fk + AnnU (g) vμ ∩ AnnU (g) ei,k (5.13)
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and f j+1 · · · fk /∈ AnnU (n−) vμ . Therefore,

uαi, j ,αi,k (μ)ei,k = −(μ(H j+1,k)
)−1

ei, j

hence

Πλ(αi,k,αi, j) = ei, j ⊗ ei,k − (
λ(H j+1,k) + 1

)−1
ei,k ⊗ ei, j. (5.14)

It is easy to see that the intersection of CΠλ(αi, j,αi,k) + CΠλ(αi,k,αi, j) with
∧2

n
+
Ψ is spanned by

λ(H j+1,k)Πλ(αi, j,αi,k) − (
λ(H j+1,k) + 1

)
Πλ(αi,k,αi, j).

Thus, RΨ (λ,λ + η), η = αi, j + αi,k is spanned by

λ(H j+1,k)
(
λ(Zαi, j ,Ψ )(λ + αi, j)(Zαi,k,Ψ )

)−1
(λ ← λ + αi, j ← λ + η)

− (
λ(H j+1,k) + 1

)(
λ(Zαi,k,Ψ )(λ + αi,k)(Zαi, j ,Ψ )

)−1
(λ ← λ + αi,k ← λ + η).

Since αt, j + αi,k = αt,k + αi, j , 1 � t < i, Corollary 1.1 implies that for all 1 � t < i, αt, j ∈ Ψ if and only
if αt,k ∈ Ψ . Then

λ
(

Zαi,k,Ψ Z −1
αi, j ,Ψ

)
(λ + αi,k)(Zαi, j ,Ψ )(λ + αi, j)

(
Z −1

αi,k,Ψ

)

=
(λ(H j+1,k) + 1)

∏
1�t<i: αt,k∈Ψ λ(Ht,i−1)

∏
1�t<i: αt, j∈Ψ (λ(Ht,i−1) − 1)

λ(H j+1,k)
∏

1�t<i: αt, j∈Ψ λ(Ht,i−1)
∏

1�t<i:αt,k∈Ψ (λ(Ht,i−1) − 1)

= λ(H j+1,k) + 1

λ(H j+1,k)
,

and so RΨ (λ,λ + η) is spanned by the commutativity relation. If tλ,η = 1, by (5.1) we have

λ(H j+1,k) = λ(h j+1) = 0 and it follows from (5.14) that Πλ(αi,k,αi, j) ∈ ∧2
n

+
Ψ . Thus, the unique

path (λ ← λ + αi, j+1 ← λ + η) in ΔΨ (λ,λ + η) is a relation.
To prove (ii), note that α j,k < αi,k and so

Πλ(α j,k,αi,k) = ei,k ⊗ e j,k,

Πλ(αi,k,α j,k) = e j,k ⊗ ei,k + ei,k ⊗ uα j,k,αi,k (ν)ei,k, ν = λ + αi,k,

where

uα j,k,αi,k (ν) = πν,α j,k (uα j,k,αi,k ) = Bi,k( j,k, ν)X −
i, j−1(ν).

An argument similar to the above shows that

X −
i, j−1(ν) = (−1) j−i−1

j−1∏
ν(Ht, j−1) f j−1 · · · f i + AnnU (g) vν ∩ AnnU (g) ei,k, (5.15)
t=i+1
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hence

Πλ(αi,k,α j,k) = e j,k ⊗ ei,k − (
λ(Hi, j−1) + 1

)−1
ei,k ⊗ e j,k. (5.16)

To finish the computation, we observe that αi,k + α j,t = α j,k + αi,t , k < t � �, hence by Corollary 1.1
αi,t ∈ Ψ if and only if α j,t ∈ Ψ for all k < t � �. This implies that

λ
(

Zαi,k,Ψ Z −1
α j,k,Ψ

)
(λ + αi,k)(Zα j,k,Ψ )(λ + α j,k)

(
Z −1

αi,k,Ψ

)= (
λ(Hi, j−1) + 1

)(
λ(Hi, j−1)

)−1
.

Finally, if tλ,αi,k+α j,k = 1, (5.2) implies that λ(Hi, j−1) = 0 hence Πλ(αi,k,α j,k) ∈ ∧2
n

+
Ψ and so the

corresponding path is a relation. �
Example. Fix i < j < k ∈ I with k �= i + 1 and either i �= 1 or k �= �. Let λ = m(�i−1 + � j+1 + �k+1).
Then by Proposition 5.3 and by the above, Sg

Ψ (λ �Ψ ) has global dimension 2 and is isomorphic to the
path algebra of the translation quiver (5.7) with the mesh relations. In particular, it is isomorphic to a
subalgebra of the Auslander algebra of the path algebra of the quiver of type A2m+1, where the node
preserved by the diagram automorphism is the unique sink.

5.7. The following proposition completes the proof of Theorem 2 for g of type A.

Proposition. Let Ψ ⊂ R+ , |Ψ | � 4 be extremal. Suppose that

{αi,k,α j,k,αi,m,α j,m} ⊂ Ψ, i < j � k < m

and let η = αi,k + α j,m = αi,m + α j,k. Let xλ = λ(Hi, j−1), yλ = λ(Hk+1,m).

(i) Suppose that tλ,η = 4, xλ �= yλ . Then RΨ (λ,λ + η) is spanned by

(xλ + 1)(yλ + 2)(λ ← λ + αi,k ← λ + η) − (xλ + 2)(yλ + 1)(λ ← λ + α j,m ← λ + η)

− (xλ − yλ)(λ ← λ + αi,m ← λ + η)

and

xλ(yλ + 1)(λ ← λ + αi,k ← λ + η) − (xλ + 1)yλ(λ ← λ + α j,m ← λ + η)

− (xλ − yλ)(λ ← λ + α j,k ← λ + η).

(ii) Suppose that tλ,η = 4 and xλ = yλ . Then RΨ (λ,λ + η) is spanned by

(λ ← λ + αi,k ← λ + η) − (λ ← λ + α j,m ← λ + η)

and

2(λ ← λ + αi,k ← λ + η) − xλ(λ ← λ + αi,m ← λ + η) − (xλ + 2)(λ ← λ + α j,k ← λ + η).
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(iii) Suppose that tλ,η = 2. Then xλ �= yλ and either i = j − 1, xλ = 0 and the relation is

yλ(λ ← λ + αi,m ← λ + η) + (yλ + 2)(λ ← λ + αi,k ← λ + η),

or m = k + 1, yλ = 0 and the relation is

xλ(λ ← λ + αi,m ← λ + η) + (xλ + 2)(λ ← λ + α j,m ← λ + η).

(iv) Suppose that tλ,η = 1. Then i = j − 1, m = k + 1, xλ = yλ = 0 and RΨ (λ,λ + η) = 0.

Thus, Nη is contained in the set P+ ∩ {ξ ∈ h∗: ξ(Hi, j−1 − Hk+1,m) = 0} and coincides with this set if Ψ is
regular.

Proof. We have α j,k < αi,k,α j,m < αi,m while αi,k , α j,m are not comparable in the standard partial
order.

To prove (i) we compute using Lemma 5.5, Proposition 2.7 and (5.13), (5.15)

Πλ(α j,k,αi,m) = ei,m ⊗ e j,k, (5.17a)

Πλ(αi,m,α j,k) = e j,k ⊗ ei,m − (xλ + 1)−1ei,k ⊗ e j,m − (yλ + 1)−1e j,m ⊗ ei,k

+ (xλ + 1)(yλ + 1)−1ei,m ⊗ e j,k, (5.17b)

Πλ(α j,m,αi,k) = ei,k ⊗ e j,m − (yλ + 1)−1ei,m ⊗ e j,k, (5.17c)

Πλ(αi,k,α j,m) = e j,m ⊗ ei,k − (xλ + 1)−1ei,m ⊗ e j,k. (5.17d)

In particular, we see that none of the paths in ΔΨ (λ,λ + η) is a relation. Furthermore, we have

αt,k ∈ Ψ ⇐⇒ αt,m ∈ Ψ, 1 � t < j,

αi,t ∈ Ψ ⇐⇒ α j,t ∈ Ψ, k < t � �.

Indeed this follows from Corollary 1.1 by observing that α j,m + αt,k = αt,m + α j,k , αi,t + α j,k = αi,k +
α j,t . Then if we set z = λ(Zα j,k,Ψ )(λ + α j,k)(Zαi,m,Ψ ),

λ(Zαi,m,Ψ )(λ + αi,m)(Zα j,k,Ψ ) = (xλ + 1)(yλ + 1)x−1
λ y−1

λ z,

λ(Zα j,m,Ψ )(λ + α j,m)(Zαi,k,Ψ ) = (yλ + 1)y−1
λ z,

λ(Zαi,k,Ψ )(λ + αi,k)(Zα j,m,Ψ ) = (xλ + 1)x−1
λ z.

The relations in (i) and in (ii) are now straightforward.
To prove (iii) observe that in these cases we have, respectively,

λ
(

Zαi,m,Ψ Z −1
αi+1,m,Ψ

)
(λ + αi,m)(Zαi+1,k,Ψ )(λ + αi+1,m)

(
Z −1

αi,k,Ψ

)= (yλ + 1)y−1
λ ,

λ
(

Zαi,k+1,Ψ Z −1
α j,k+1,Ψ

)
(λ + αi,k+1)(Zα j,k,Ψ )(λ + α j,k+1)

(
Z −1

αi,k,Ψ

)= (xλ + 1)x−1
λ .

The relations now follow easily from the above and (5.17b), (5.17d) with xλ = 0 (respectively, (5.17b)
and (5.17c) with yλ = 0). Finally, in the last case Πλ(αi,k+1,αi+1,k) /∈∧2

n
+
Ψ , hence the unique path

λ ← λ + αi,k+1 ← λ + η is not a relation. �
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5.8. Retain the notations and the assumptions of 5.4. Then by Proposition 5.4, a connected sub-
algebra of Tg

Ψ is isomorphic to the path algebra of the quiver Γa(m,n) for some m ∈ (Z+ ∪ {+∞})r ,
n ∈ (Z+ ∪ {+∞})s and −|n| � a � |m|. However, this isomorphism looses some information which
is necessary for describing relations in Sg

Ψ , since the latter depend on μ(Hip ,ip′−1), μ(H jq+1, jq′ ).

Given λ ∈ P+ , set

z(λ)−p = λ(Hip+1,ip+1−2) + 2, z+
q (λ) = λ(H jq+2, jq+1−1) + 2.

These parameters are obviously constant on connected components of ΔΨ and can take arbitrary
integer values � 2. Let (x, y) = ((x1, . . . , xr), (y1, . . . , ys)) be the image of μ ∈ ΔΨ [λ]0 under the
isomorphism of quivers constructed in Proposition 5.4. Then we have

μ(Hip ,ip+1−1) = xp + mp+1 − xp+1 + z(λ)−p , μ(H jq+1, jq+1) = nq − yq + yq+1 + z(λ)+q

and

Mp,p′(x) := μ(Hip ,ip′−1) = xp − xp′ +
p′−1∑
k=p

(
mk+1 + z(λ)−k

)+ p′ − p − 1, 1 � p < p′ � r,

Nq,q′(y) := μ(H jq+1, jq′ ) = yq′ − yq +
q′−1∑
k=q

(
nk + z(λ)+k

)+ q′ − q − 1, 1 � q < q′ � s.

Thus, the isomorphism of the connected subalgebra of Tg

Ψ corresponding to ΔΨ [λ], λ ∈ P+ onto
CΓa(m,n) provided by Proposition 5.4 induces the following relations on Γa(m,n). First, for all 1 �
p � r, 1 � q < q′ � s and for all (x, y) such that (x + 2e(r)

p , y + e(s)
q + e(s)

q′ ) ∈ Γa(m,n)0, we have a
commutativity relation

(
(x, y) ← (

x + e(r)
p , y + e(s)

q
)← (

x + 2e(r)
p , y + e(s)

q + e(s)
q′
))

− (
(x, y) ← (

x + e(r)
p , y + e(s)

q′
)← (

x + 2e(r)
p , y + e(s)

q + e(s)
q′
))

.

Similarly, for all 1 � p < p′ � r and for all 1 � q � s such that (x + e(r)
p + e(r)

p′ , y + 2e(s)
q ) ∈ Γa(m,n)0,

we have the commutativity relation

(
(x, y) ← (

x + e(r)
p , y + e(s)

q
)← (

x + e(r)
p + e(r)

p′ , y + 2e(s)
q
))

− (
(x, y) ← (

x + e(r)
p′ , y + e(s)

q
)← (

x + e(r)
p + e(r)

p′ , y + 2e(s)
q
))

.

Finally, for all 1 � p < p′ � r, 1 � q < q′ � s, let x′ = x + e(r)
p + e(r)

p′ , y′ = y + e(s)
q + e(s)

q′ . Assume
that (x′, y′) ∈ Γa(m,n)0. If M p,p′(x) �= Nq,q′(y), we have

(
Mp,p′(x) + 1

)(
Nq,q′(y) + 2

)(
(x, y) ← (

x + e(r)
p , y + e(s)

q
)← (x′, y′)

)
− (

Mp,p′(x) + 2
)(

Nq,q′(y) + 1
)(

(x, y) ← (
x + e(r)

p′ , y + e(s)
q′
)← (x′, y′)

)
− (

Mp,p′(x) − Nq,q′(y)
)(

(x, y) ← (
x + e(r)

p , y + e(s)
q′
)← (x′, y′)

)
and
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Mp,p′(x)
(
Nq,q′(y) + 1

)(
(x, y) ← (

x + e(r)
p , y + e(s)

q
)← (x′, y′)

)
− (

Mp,p′(x) + 1
)
Nq,q′(y)

(
(x, y) ← (

x + e(r)
p′ , y + e(s)

q′
)← (x′, y′)

)
− (

Mp,p′(x) − Nq,q′(y)
)(

(x, y) ← (
x + e(r)

p′ , y + e(s)
q
)← (x′, y′)

)
.

Finally, if M p,p′(x) = Nq,q′ (y), we have

(
(x, y) ← (

x + e(r)
p , y + e(s)

q
)← (x′, y′)

)− (
(x, y) ← (

x + e(r)
p′ , y + e(s)

q′
)← (x′, y′)

)
and

2
(
(x, y) ← (

x + e(r)
p , y + e(s)

q
)← (x′, y′)

)− Mp,p′(x)
(
(x, y) ← (

x + e(r)
p , y + e(s)

q′
)← (x′, y′)

)
+ (

Mp,p′(x) + 2
)(

(x, y) ← (
x + e(r)

p′ , y + e(s)
q
)← (x′, y′)

)
.

Note that the coefficients in these relations, and in particular their genericity, depend on a family of
(r + s) positive integer parameters z−

p (λ), z+
q (λ), 1 � p � r, 1 � q � s which are independent of m,

n. The resulting algebra is Koszul and has global dimension at most rs. It is finite dimensional if and
only if i1 > 1 and js < �.

6. Type C� , � ��� 2

6.1. Let βi, j = β j,i = αi,�−1 + α j,�−1 + α� , 1 � i � j < � and β�,� = α� . In particular, β1,1 = θ . The
roots αi, j and βi, j , i < j are short while the roots βi,i , i ∈ I are long and

R+ = {αi, j: 1 � i � j < �} ∪ {βi, j: i � j ∈ I}.
In terms of fundamental weights, βi, j = �i + � j − �i−1 − � j−1, where we set as before �0 = 0.

Let Ψ be an extremal set of positive roots. Our first observation is that αi, j /∈ Ψ for all 1 � i � j < �

since 2αi, j = βi,i −β j+1, j+1 and hence if αi, j ∈ Ψ we get a contradiction by Corollary 1.1. Furthermore,
since 2βi, j = βi,i +β j, j we conclude by Corollary 1.1 that βi, j ∈ Ψ if and only if βi,i, β j, j ∈ Ψ . From this
observation, it is immediate that all extremal sets in R+ are of the form Ψ (i1, . . . , ik) := {βir ,is : 1 �
r � s � k}, 1 � i1 < · · · < ik � �, 1 � k � � (see also [7]).

Since ε(βi, j) = �i−1 + � j−1, we immediately obtain the following

Lemma. Let βi, j ∈ Ψ , i < j ∈ I . Then for all λ ∈ P+ , λ ← λ+βi, j ∈ (ΔΨ )1 if and only if λ(hi−1), λ(h j−1) > 0.
Furthermore, λ ← λ + βi,i ∈ (ΔΨ )1 if and only if λ(hi−1) > 1.

6.2. We now proceed to describe all paths of length 2 in ΔΨ . Let η ∈ Ψ + Ψ . It follows from 6.1
that apart from the trivial case η = 2βi,i , βi,i ∈ Ψ , we have four cases to consider.

(C1) Assume that i < j ∈ I . Let η = βi,i + βi, j . Then ΔΨ (λ,λ + η) = ∅ unless λ(hi−1) > 2 and

ΔΨ (λ,λ + η) =
{ {(λ ← λ + βi,i ← λ + η), (λ ← λ + βi, j ← λ + η)}, λ(h j−1) > 0,

{(λ ← λ + βi,i ← λ + η)}, i = j − 1, λ(h j−1) = 0.

Similarly, if η = βi, j + β j, j , ΔΨ (λ,λ + η) = ∅ unless λ(h j−1) > 1 and λ(hi−1) > 0. Then

ΔΨ (λ,λ + η) =
{ {(λ ← λ + βi, j ← λ + η), (λ ← λ + β j, j ← λ + η)}, λ(h j−1) > 2,

{(λ ← λ + βi, j ← λ + η)}, i = j − 1, λ(h j−1) = 2.
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(C2) Let η = βi,i +β j, j = 2βi, j , i ∈ j ∈ I . Then ΔΨ (λ,λ+η) = ∅ unless λ(hi−1) > 1. If λ(h j−1) > 1 then
ΔΨ (λ,λ+η) contains all three possible paths. Otherwise, ΔΨ (λ,λ+η) is empty unless i = j −1.
If i = j − 1 we have

ΔΨ (λ,λ + η) =
{ {(λ ← λ + βi,i ← λ + η), (λ ← λ + βi, j ← λ + η)}, λ(h j−1) = 1,

{(λ ← λ + βi,i ← λ + η)}, λ(h j−1) = 0.

(C3) Assume that i < j < k. First, let η = βi,i + β j,k = βi, j + βi,k . Then ΔΨ (λ,λ + η) = ∅ unless
λ(hi−1) > 1 and λ(h j−1) + λ(hk−1) > 0. If λ(h j−1), λ(hk−1) > 0 then we have all four possible
paths. Otherwise,

ΔΨ (λ,λ + η) =
⎧⎨
⎩

{(λ ← λ + βi,i ← λ + η), (λ ← λ + βi,k ← λ + η)},
i = j − 1, λ(h j−1) = 0,

{(λ ← λ + βi, j ← λ + η)}, j = k − 1, λ(hk−1) = 0.

Next, let η = β j, j + βi,k = βi, j + β j,k . Then ΔΨ (λ,λ + η) = ∅ unless λ(hi−1) > 0 and λ(h j−1) +
λ(hk−1) > 1. If λ(h j−1) > 1 and λ(hk−1) > 0 then we have all possible paths. Otherwise,

ΔΨ (λ,λ + η) =
⎧⎨
⎩

{(λ ← λ + βi,k ← λ + η)}, i = j − 1, λ(h j−1) = 1,

{(λ ← λ + β j, j ← λ + η), (λ ← λ + βi, j ← λ + η)},
j = k − 1, λ(hk−1) = 0.

Finally, if η = βk,k + βi, j = βi,k + β j,k , then ΔΨ (λ,λ + η) = ∅ unless λ(hi−1) > 0 and λ(h j−1) +
λ(hk−1) > 1. If λ(hk−1) > 1 and λ(h j−1) > 0 then we have all possible paths. Otherwise,

ΔΨ (λ,λ + η) =
⎧⎨
⎩

{(λ ← λ + βi,k ← λ + η)}, i = j − 1, λ(h j−1) = 0,

{(λ ← λ + βi, j ← λ + η), (λ ← λ + β j,k ← λ + η)},
j = k − 1, λ(hk−1) = 1.

(C4) Finally, let i < j < k < l ∈ I , η = βi, j + βk,l = βi,k + β j,l = βi,l + β j,k . Then ΔΨ (λ,λ +η) = ∅ unless

λ(hi−1), λ(h j−1) + λ(hk−1), λ(hk−1) + λ(hl−1) > 0.

If λ(hr−1) > 0, r ∈ {i, j,k, l} we have all possible paths. Furthermore, if λ(hk−1) = 0 we must
have j = k − 1 and

ΔΨ (λ,λ + η) = {
(λ ← λ + βi, j ← η), (λ ← λ + β j,l ← λ + η)

}
.

Finally, if λ(hk−1) > 0 we have

ΔΨ (λ,λ + η) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{(λ ← λ + βi,k ← λ + η), (λ ← λ + βi,l ← λ + η)},
i = j − 1, λ(h j−1) = 0, λ(hl−1) > 0,

{(λ ← λ + βi,k ← λ + η), (λ ← λ + β j,k ← λ + η)},
k = l − 1, λ(h j−1) > 0, λ(hl−1) = 0,

{(λ ← λ + βi,k ← λ + η)}, k = l − 1, i = j − 1, λ(h j−1) = λ(hl−1) = 0.

The cases (C1)–(C2) (respectively, (C3), (C4)) occur if Ψ ⊃ Ψ (i, j) (respectively, Ψ ⊃ Ψ (i, j,k), Ψ ⊃
Ψ (i, j,k, l)). In particular, we obtain the following

Lemma. The set Ψ (i1, . . . , ik) is regular if and only if ir+1 �= ir + 1 for all 1 � r < k.
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6.3. Retain the notations of 1.8. A straightforward induction on r shows that

#Ξ0(m)0 =
⌈

1

2
(m1 + 1) · · · (mr + 1)

⌉
, #Ξ1(m)0 =

⌊
1

2
(m1 + 1) · · · (mr + 1)

⌋
. (6.1)

It is immediate that Ξa(m) ∼= Ξa(m′) if m′ is a permutation of m or is obtained from m by adding or
removing zeroes. Clearly, Ξa((m)) ∼= Ξa′ ((m′)), a,a′ ∈ {0,1} if and only if �(m − a)/2� = �(m′ − a′)/2�.
Note also that Ξ0((1,1)) ∼= Ξ0((2)) ∼= Ξ0((3)) ∼= Ξ1((3)) ∼= Ξ1((4)).

Proposition. Let m = (m1, . . . ,mr) ∈ Zr+ , m1 � · · · � mr > 0, r > 1. The quivers Ξ0(m) and Ξ1(m), m �=
(1,1) are connected and pairwise non-isomorphic. Furthermore, Ξ0(m) ∼= Ξ1(m)op if and only if |m| is odd.

Proof. Observe that every vertex in Ξa(m) is connected to a sink. Clearly, 0 = (0, . . . ,0) is the unique
sink in Ξ0(m), hence Ξ0(m) is connected. On the other hand, the e j := e(r)

j are the only sinks
in Ξ1(m). If r = 2 and m �= (1,1), then m1 > 1 and so we have e1 ← 2e1 + e2 → e2. If r > 2 then for
all 1 � i < j < k � r, we have

ei ei+e j+ek e j

ek

Thus, all sinks in Ξ1(m), m �= (1,1) lie in the same connected component hence Ξ1(m) is connected
and Ξ1(m) � Ξ0(m′) for all m′ = (m′

1, . . . ,m′
k), m′

1 � · · · � m′
k > 0, k > 1.

Given m = (m1, . . . ,mr), m1 � · · · � mr , let np(m) = #{ j: m j = p}, p > 0 and �(m) =∑
p>0 np(m).

Suppose that Ξ0(m) is isomorphic to Ξ0(m′), m′ = (m′
1, . . . ,m′

k), m′
1 � · · · � m′

k . Suppose first that k =
�(m′) > �(m) = r. Then #0− = r(r +1)/2−n1(m). Since 0 (respectively, 0′) is the unique sink in Ξ0(m)

(respectively, in Ξ0(m′)), we must have n1(m′) = k(k + 1)/2 − r(r + 1)/2 + n1(m). Since n1(m′) � k,
this implies that n1(m) � r(r + 1)/2 − k(k − 1) � 0 with the equality if and only if k = r + 1 which in
turn implies that n1(m′) = k. Then (6.1) implies that #Ξ(m)0 � 3r/2, while #Ξ(m′)0 = 2r . Since r > 1,
it follows that #Ξ(m)0 > #Ξ(m′)0 which is a contradiction. Thus, k = r and n1(m) = n1(m′).

Furthermore, note that x ∈ Ξ(m)0 is a source if and only if |x| � |m|−1. It follows that if |m| ∈ 2Z+
then m is the unique source in Ξ0(m). Otherwise, the m − e j , 1 � j � r are al the sources. Therefore,
|m| = |m′| (mod 2). Since the length of any path in Ξ0(m) from a source to the unique sink is
�|m|/2�, it follows that |m| = |m′|. Clearly, if n1(m) � r − 1 or m j � 2 for all 1 � j � r, this implies
that m = m′ , so we may assume that n1(m) < r − 1 and m j > 2 for some 1 � j � r.

Note that if x ∈ Ξ(m)0 satisfies #x+ = 1 then either x = 2xe j for some 1 � j � r, 0 � x � m j/2, or
x = e j + ek , 1 � j < k � r. Given 1 � j � r with m j > 2 consider a path

0 ← 2e j ← ·· · ← 2ke j, k = �m j/2�
in Ξ0(m). Then its image in Ξ0(m′) under our isomorphism of quivers must be

0 ← 2e j′ ← · · · ← 2ke j′ ,

for some 1 � j′ � r with �m j′/2� = �m j/2�. Furthermore, it is easy to check that

x ∈ Ξ0(m)0, #x+ � 3 �⇒ x = xiei + x je j, 1 � i < j � r. (6.2)

Suppose first that r = 2 and n1(m) = 0. Since m1 +m2 = m′
1 +m′

2, we may assume, without loss of
generality, that m1 > m′

1. By the above, we must have �m1/2� = �m′
1/2� hence m1 = 2a + 1, m′

1 = 2a,
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a � 1 and so m2 = 2b, m′
2 = 2b + 1, b � 1. Since #Ξ0((m1,m2))0 = #Ξ0((m′

1,m′
2))0, we conclude

that a = b, which is a contradiction since m′
1 � m′

2.

Suppose now that r > 2. For 1 � i < j � s fixed let Ξ
i, j
0 (m) be the full subquiver of Ξ0(m) de-

fined by {xiei + x je j: xi � mi, x j � m j, xi + x j ∈ 2Z+}. Clearly for all x ∈ Ξ
i, j
0 (m)0 the set of direct

successors of x in Ξ0(m) is contained in Ξ
i, j
0 (m)0, hence Ξ

i, j
0 (m) is a convex connected subquiver

of Ξ0(m). It is clearly isomorphic to Ξ0((mi,m j)). It follows from (6.2) that the isomorphism of quiv-

ers Ξ0(m) → Ξ0(m′) induces an isomorphism of quivers Ξ
i, j
0 (m) → Ξ

i′, j′
0 (m′) for some 1 � i′ < j′ � r

which by the r = 2 case implies that mi = m′
i′ , m j = m′

j′ . Therefore, m = m′ .
Suppose that Ξ1(m) ∼= Ξ1(m′). Since Ξ1(m) contains �(m) sinks, it follows that �(m) = �(m′) = r.

Furthermore, we have

∣∣e−
i

∣∣=
⎧⎪⎨
⎪⎩
(r

2

)− n1(m), mi = 1,(r
2

)+ r − 1 − n1(m), mi = 2,(r
2

)+ r − n1(m), mi > 2.

It follows that np(m) = np(m′), p = 1,2. Since Ξ1(m) contains a unique source if |m| is odd and r
sources otherwise, it follows that |m| = |m′| (mod 2). Since the length of a path from a source to a
sink is (|m| − 1)/2 if |m| is odd and |m|/2 − 1 if |m| is even, it follows that |m| = |m′|. Furthermore,
note that x ∈ Ξ1(m), #x+ � 3 implies that x ∈ Ξ

i, j
1 (m) for some 1 � i < j � r or x = ei + e j + ek , 1 �

i < j < k � r. On the other hand, a vertex of the second type is connected to three sinks in Ξ1(m) by
arrows, while a vertex of the first type can be connected to at most two sinks. Thus, we conclude as

before that the image of Ξ
i, j
1 (m) under the isomorphism Ξ1(m) → Ξ1(m′) is contained in Ξ

i′, j′
1 (m′)

for some 1 � i′ < j′ � r. The rest of the argument is similar to that in the “even” case and is omitted.
To prove the last assertion, note that if |m| is odd, then at least one of the mr is odd, hence

#Ξ0(m)0 = #Ξ1(m)0 and the map Ξ0(m)0 → Ξ1(m)0, x �→ m − x, is a bijection. This map induces
the desired isomorphism of quivers. Conversely, if |m| is even, then Ξ1(m) contains �(m) > 1 sources.
Since Ξ0(m) has a unique sink, Ξ0(m) and Ξ1(m)op cannot be isomorphic. �

6.4. We can now describe all connected components of ΔΨ for Ψ regular.

Proposition. Let Ψ = Ψ (i1, . . . , ik), 1 � i1 < · · · < ik � � and suppose that Ψ is regular. Let λ ∈ P+ and
assume that |λ+ ∪ λ−| > 0. Then ΔΨ [λ] is isomorphic to the quiver Ξa(m) where m = (m1, . . . ,mk) ∈
(Z+ ∪ {+∞})k, mr = λ(hir−1) + λ(hir ), 1 � r � k and a = λ(hi1 ) + · · · + λ(hik ) (mod 2).

Proof. Let J = {ir: 1 � r � n} ∪ {ir − 1: 1 � r � n}. Suppose that μ ∈ ΔΨ [λ]0. Since ΔΨ [λ]0 ⊂
(λ + ZΨ ) ∩ P+ , we have

μ(hir ) = λ(hir ) +
r−1∑
s=1

xs,r + 2xr,r +
k∑

s=r+1

xr,s,

μ(hir−1) = λ(hir−1) −
r−1∑
s=1

xs,r − 2xr,r −
k∑

s=r+1

xr,s,

where xp,q ∈ Z, 1 � p � q � k. It follows that

μ(hir−1) + μ(hir ) = λ(hir−1) + λ(hir ), 1 � r � k, μ(h j) = λ(h j), j /∈ J , (6.3a)

k∑
μ(hir ) =

k∑
λ(hir ) (mod 2). (6.3b)
r=1 r=1



J. Greenstein / Journal of Algebra 322 (2009) 4430–4478 4463
Let S(λ) be the set of μ ∈ P+ satisfying these conditions. Then ΔΨ [λ]0 ⊂ S(λ) and for all μ ∈ S(λ),
μ− ⊂ S(λ). Thus, S(λ) defines a convex subquiver Γ of ΔΨ with Γ0 = S(λ) and ΔΨ [λ] is a full
connected subquiver of Γ .

Let mr = λ(hir−1) + λ(hir ), a = λ(hi1 ) + · · · + λ(hik ) (mod 2). Then we have a bijective map

Γ0 → Ξa(m)0,

μ �→ (
μ(hi1), . . . ,μ(hik )

)
.

It is easy to see that this induces an isomorphism of quivers Γ → Ξa(m). To complete the argument,
observe that the assumption that |λ+ ∪λ−| > 0 implies that we cannot have a = 1 and mr = δr,p + δr,q

for some 1 � p < q � k. Then Ξa(m) is connected by Proposition 6.4. Therefore, Γ is connected hence
ΔΨ [λ] = Γ . �

6.5. Fix root vectors eβi, j ∈ gβi, j \ {0}, 1 � i � j � � so that

[ei, eβ j,k ] = δi, j−1eβi,k + δi,k−1(1 + δi, j)eβ j,i , j < k,

[ei, eβ j, j ] = δi, j−1eβi, j , (6.4)

and

[ f i, eβ j,k ] = δi, j(1 + δ j+1,k)eβ j+1,k + δi,keβ j,k+1 , j < k,

[ f i, eβ j, j ] = δi, jeβ j, j+1 . (6.5)

For example, we can use the standard presentation of g as the matrix Lie algebra sp2� . The subalge-
bra g J of g with J = I \ {�} is of course a simple Lie algebra of type A�−1. Note that [e�, eβi, j ] = 0 =
[ f�, eβi, j ], 1 � i � j � �. Due to this observation, we can perform our computations in U (g J ).

6.6. Retain the notations of 4.3. Fix 1 � i � j < �. Given any pair 1 � r � s such that r � i + 1,
s � j + 1 set

Ur,s,i, j = es−1 · · · er X −
r,i X −

r, j.

In particular, Ur,r,i, j = X −
r,i X −

r, j ∈ U (b). Clearly, Ur,s,i, j ∈ U (g)−αr,i−αs, j . We set Ur,s,i, j = 0 if r > i + 1.

Lemma. The elements Ur,s,i, j satisfy

es Ur,s,i, j = Ur,s+1,i, j, (6.6a)

er Ur,s,i, j = (1 + δr+1,s)Ur+1,s,i, j(Hr,i − δi, j)Hr, j + U (g)n+, r < s, (6.6b)

ek Ur,s,i, j ∈ U (g)n+, k �= r, s. (6.6c)

Proof. The first identity is obvious. To prove (6.6b) and (6.6c), we need to show first that

ek Ur,r,i, j ∈ U (g)ek, k �= r, (6.7a)

e2
r Ur,r,i, j = 2Ur+1,r+1,i, j(Hr,i − δi, j)Hr, j + U (g)er, (6.7b)

er−1er Ur,r,i, j ∈ U (g)n+. (6.7c)



4464 J. Greenstein / Journal of Algebra 322 (2009) 4430–4478
Using Lemma 4.3 we immediately deduce (6.7a) and the following identity

Ur,r+1,i, j = er Ur,r,i, j = X −
r+1,i X −

r, j(Hr,i − 1 − δi, j) + ψαr

(
X −

r,i

)
X −

r+1, j Hr, j + U (g)er . (6.8)

Then (6.7b) and (6.7c) are easy to obtain using (4.2a). To prove (6.6b) for s > r, note that the case s =
r + 1 is immediate from (6.7b). Assume that s > r + 1. Clearly er commutes with the et , r + 1 < t �
s − 1. Since (ad ea)

2eb = 0 for all 1 � a �= b < � with |a − b| = 1, we have in U (g),

e2
aeb − 2eaebea + ebe2

a = 0. (6.9)

Therefore,

er Ur,s,i, j = es−1 · · · er+2erer+1er Ur,r,i, j = es−1 · · · er+1 Ur+1,r+1,i, j(Hr,i − δi, j)Hr, j + U (g)n+,

where we used (6.7a) and (6.7b). To prove (6.6c) for s > r, note that for k < r − 1 or k > s this is
an immediate consequence of (6.7a). Thus, if s = r + 1 there is nothing to do. Assume that s > r + 1.
If k = r − 1, the assertion follows from (6.7c). If k = s − 1, it follows from (6.9) that

es−1 Ur,s,i, j = e2
s−1es−2 · · · er Ur,r,i, j = −es−2 · · · ere2

s−1 Ur,r,i, j + 2es−1 · · · eres−1 Ur,r,i, j

which is contained in U (g)n+ by (6.7a). If r < k < s − 1 we can write, using (6.9)

ek Ur,s,i, j = es−1 · · · ekek+1ekek−1 · · · er Ur,r,i, j

= 1

2
es−1 · · · ek+1e2

k ek−1 · · · er Ur,r,i, j + 1

2
es−1 · · · e2

k ek+1ek−1 · · · er Ur,r,i, j.

The second term is in U (g)n+ by (6.7a) since ek+1 commutes with the et , t � k − 1. Applying (6.9)
again, we obtain

ek Ur,s,i, j =
(

es−1 · · · erek − 1

2
es−1 · · · ek+1ek−1 · · · ere2

k

)
Ur,r,i, j + U (g)n+ ∈ U (g)n+,

where we used (6.7a). �
6.7. For our purposes, we need to find the projection Ūr,s,i, j of Ur,s,i, j onto U (b).

Lemma. Let 1 � i � j < � and suppose that r < s, s � j, r � i. Then

Ūr,s,i, j = X −
s,i X −

r, j

s−1∏
t=r

(Ht,i − δr,t − δi, j) + ψαr,s−1

(
X −

r,i

)
X −

s, j

s−1∏
t=r

Ht, j

− X −
s,i

s−1∑
t=r+1

ψαr,t−1

(
X −

r,t−1,i

)
X −

t, j

t−1∏
p=r

H p, j

s−1∏
p=t+1

(H p,i − δi, j). (6.10)

In particular,

Ūi+1,s,i, j = X −
s, j

s−1∏
Ht, j, i + 1 � s � j + 1 (6.11)
t=i+1
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and Ur,s,i, j(μ) := πμ(Ūr,s,i, j) is given by the following formulae

Ur,r,i, j(μ) = X −
r,i(μ − � j)X −

r, j(μ),

Ur,s,i, j(μ) = X −
s,i(μ − � j)X −

r, j(μ)

s−1∏
t=r

(
μ(Ht,i) − δr,t − δi, j

)+ X −
r,i(μ − � j)X −

s, j(μ)

s−1∏
t=r

μ(Ht, j)

− X −
s,i(μ − � j)

s−1∑
t=r+1

X −
r,t−1,i(μ − � j)X −

t, j(μ)

t−1∏
p=r

μ(H p, j)

s−1∏
p=t+1

(
μ(H p,i) − δi, j

)
,

r < s.

Proof. The elements Ūr,s,i, j are uniquely determined by the conditions that Ūr,s,i, j = Ur,s,i, j + U (g)n+
and Ūr,s,i, j ∈ U (b). The argument is by induction on s − r, the induction base being (6.8). To prove the
inductive step, note that by Lemma 4.3 and the induction hypothesis we have

Ur,s+1,i, j = es Ur,s,i, j

= X −
s+1,i X −

r, j

s∏
k=r

(Hk,i − δr,k − δi, j) + esψαr,s−1

(
X −

r,i

)
X −

s, j

s−1∏
k=r

Hk, j

− es X −
s,i

s−1∑
t=r+1

ψαr,t−1

(
X −

r,t−1,i

)
X −

t, j

t−1∏
p=r

H p, j

s−1∏
p=t+1

(H p,i − δi, j) + U (g)n+. (6.12)

Applying Lemma 4.3 to the second term, we obtain

esψαr,s−1

(
X −

r,i

)
X −

s, j

s−1∏
t=r

Ht, j = ψαr,s−1

(
X −

s+1,i X −
r,s−1,i

)
(αr,s−1)(hs) + ψαr,s

(
X −

r,i

)
es X −

s, j

s−1∏
t=r

Ht, j

= −X −
s+1,iψαr,s−1

(
X −

r,s−1,i

)
X −

s, j

s−1∏
t=r

Ht, j + ψαr,s

(
X −

r,i

)
X −

s+1, j

s∏
t=r

Ht, j

+ U (g)n+,

where we noted that ψαr,s−1 (X −
s+1,i) = X −

s+1,i . Finally, the last term in (6.12) can be written as follows

−X −
s+1,i Hs,i

s−1∑
t=r+1

ψαr,t−1

(
X −

r,t−1,i

)
X −

t, j

t−1∏
p=r

H p, j

s−1∏
p=t+1

(H p,i − δi, j)

− ψαs

(
X −

s,i

) s−1∑
t=r+1

esψαr,t−1

(
X −

r,t−1,i

)
X −

t, j

t−1∏
p=r

H p, j

s−1∏
p=t+1

(H p,i − δi, j).

Since X −
r,t−1,i =∑

τ∈Σ(r,t−1) fτ c−
τ (i), it follows that esψη(X −

r,t−1,i) = ψη+αs (X −
r,t−1,i)es and so we get

ψαs

(
X −

s,i

)
esψαr,t−1

(
X −

r,t−1,i

)
X −

t, j = ψαr,t−1+αs

(
X −

r,t−1,i

)
ψαs

(
X −

t, j

)
es ∈ U (g)n+.
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Thus the last term in (6.12) equals

−X −
s+1,i

s−1∑
t=r+1

ψαr,t−1

(
X −

r,t−1,i

)
X −

t, j

t−1∏
p=r

H p, j

s∏
p=t+1

(H p,i − δi, j) + U (g)n+.

The inductive step is now straightforward. �
Corollary. For all 1 � i � j < �, 1 � r � i + 1, r � s � j + 1, e�Ūr,s,i, j ∈ U (g)n+ .

6.8. We can now construct adapted families for all β ∈ Ψ . Suppose that βi, j ∈ Ψ , i � j ∈ I . If λ ←
λ + βi, j ∈ (ΔΨ )1, we have λ(Ht,i−1) � λ(hi−1) > 0, 1 � t � i − 1 and λ(Hr, j−1) � λ(h j−1) > 0, 1 � r �
j − 1. Furthermore, if i = j, λ(hi−1) > 1, hence λ(Ht,i−1 − 1) > 0. Therefore,

Ht,i−1 − δi, j, Hr, j−1 ∈ Fβi, j (h)×, 1 � t � i − 1, 1 � r � j − 1.

Clearly, {γ ∈ R+: βi, j � γ } = {βr,s: 1 � r � i, r � s � j}. Define the elements uβi, j ,βr,s ∈
U (b)βi, j−βr,s ⊗S(h) Fβi, j (h) by

uβi, j ,βr,s = (−1)i+ j+r+s 1 + δr,s

1 + δi, j
Ūr,s,i−1, j−1 ⊗

i−1∏
t=r

(Ht,i−1 − δi, j)
−1

j−1∏
t=r

H−1
t, j−1. (6.13)

Lemma. Let βi, j ∈ Ψ . Then {uβi, j ,βr,s : 1 � r � i, r � s � j} is an adapted family for βi, j .

Proof. We have

πλ,βi, j (uβi, j ,βr,s ) = Cr,s(i, j, λ)Ur,s,i−1, j−1(λ),

where

Cr,s(i, j, λ) = (−1)i+ j+r+s 1 + δr,s

1 + δi, j

i−1∏
t=r

(
λ(Ht,i−1) − δi, j

)−1
j−1∏
t=r

(
λ(Ht, j−1)

)−1
. (6.14)

To shorten the notation, we denote Cr,s(i, j, λ) (respectively, Ur,s,i−1, j−1(λ)) by Cr,s (respectively, Ur,s).
Observe that for all r � s < j and for all k < i � s we have

Cr,s = − 1 + δr,s

1 + δr,s+1
Cr,s+1, Ck+1,s = −1 + δk+1,s

1 + δk,s

(
λ(Hk,i−1) − δi, j

)
λ(Hk, j−1). (6.15)

Set

u =
∑

γ ∈R+: βi, j�γ

eγ ⊗ πλ,βi, j (uβi, j ,γ ) ∈ (g ⊗ V (λ + βi, j)
)
λ+βi, j

.

Since by (6.11), uβi, j ,βi, j = 1, it remains to show that eku = 0 for all 1 � k � �. For k � j this is
immediate from (6.6c) and (6.4). Suppose that i � k < j. Using (6.4) and (6.6a) we obtain

eku =
i∑(

Cr,k+1(1 + δr,k) + Cr,k
)
eβr,k ⊗ Ur,k+1 vλ,
r=1
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which equals zero by (6.15). Furthermore, if k < i, it follows from (6.4), (6.6a) and (6.6b) that

eku =
j∑

s=k+1

(
Ck+1,s + Ck,s(1 + δk+1,s)

(
λ(Hk,i−1) − δi, j

)
λ(Hk, j−1)

)
eβk,s ⊗ Uk+1,s vλ

+
k∑

r=1

(
Cr,k+1(1 + δr,k) + Cr,k

)
eβr,k ⊗ Ur,k+1 vλ.

Using (6.15) it is easy to see that eku = 0. �
6.9. Now we have all necessary ingredients to describe the relations. We set

Zβi, j ,Ψ =
∏

t<i: βt,i∈Ψ

(Ht,i−1 − δi, j)
∏

t< j: βt, j∈Ψ

Ht, j−1 ∈ Fβi, j (h)×

and fix the isomorphism Tg

Ψ → CΔΨ corresponding to the image of (Zβ,Ψ )β∈Ψ ∈∏β∈Ψ Fβ(h)× in GΨ

(cf. 5.6).

Proposition. Let η = βi, j +βi,i , i �= j. If tλ,η = 2 then RΨ (λ,λ+η) is spanned by the commutativity relation.
If tλ,η = 1 then dimRΨ (λ,λ + η) = 1. In particular, Nη = ∅.

Proof. Let i < j. We have two different cases to consider.
1◦ . Let η = βi,i + βi, j ∈ Ψ + Ψ , i < j. Suppose that tλ,η = 2, hence λ(hi−1) � 3 and λ(h j−1) � 1

by 6.2(C1). Then βi, j < βi,i and it follows from Proposition 2.7 and Lemma 6.8 that

Πλ(βi, j, βi,i) = ei,i ⊗ ei, j, Πλ(βi,i, βi, j) = eβi, j ⊗ eβi,i + eβi,i ⊗ uβi, j ,βi,i (μ), eβi,i , μ = λ + βi,i .

Using (6.5) and an argument similar to that in the proof of Proposition 5.6, we conclude that

Ui,i,i−1, j−1 = (−1) j−i−1
j−1∏

t=i+1

μ(Ht, j−1) f j−1 · · · f i + AnnU (g) vμ ∩ AnnU (g) eβi,i , (6.16)

hence

Πλ(βi,i, βi, j) = eβi, j ⊗ eβi,i − 2
(
λ(Hi, j−1) + 2

)−1
eβi,i ⊗ eβi, j . (6.17)

To complete the computation of relations in this case, it remains to observe that

λ
(

Zβi,i ,Ψ Z −1
βi, j ,Ψ

)
(λ + βi,i)(Zβi, j ,Ψ )(λ + βi, j)

(
Z −1

βi,i ,Ψ

)= (
λ(Hi, j−1) + 2

)
λ(Hi, j−1)

−1,

and it is now easy to see that RΨ (λ,λ + η) is spanned by the commutativity relation. Furthermore,
if tλ,η = 1 then it follows from 6.2(C1) that λ(Hi, j−1) = 0 and the path in question (λ ← λ + βi,i ←
λ + η) is a relation by (6.17).

2◦ . Let η = βi, j + β j, j , i < j and suppose that tλ,η = 2. Then β j, j < βi, j and by Proposition 2.7
and Lemma 6.8,

Πλ(β j, j, βi, j) = eβi, j ⊗ eβ j, j ,

Πλ(βi, j, β j, j) = eβ j, j ⊗ eβi, j + eβi, j ⊗ uβ j, j ,βi, j (ν)eβi, j ,
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where ν = λ + βi, j . Note that X −
k, j−1(ν)eβi, j = 0, i < k � j − 1. It follows from Lemma 6.7 that

Ui, j, j−1, j−1 = X −
i, j−1(ν)

j−1∏
k=i

(
ν(Hk, j) − δi,k − 1

)+ X −
i, j−1(ν − � j−1)

j−1∏
k=i

ν(Hk, j)

+ AnnU (g) vν ∩ AnnU (g) eβi, j .

Furthermore, it is easy to see from (6.5) that for any ξ ∈ P ,

X −
i, j−1(ξ) = (−1) j−i−1

j−1∏
k=i+1

ξ(Hk, j−1) f j−1 · · · f i (mod AnnU (g) eβi, j ).

Since ν(hi) = λ(hi) + 1 > 0, f j−1 · · · f i /∈ AnnU (g) vν by Corollary 4.1. Therefore,

Πλ(βi, j, β j, j) = eβ j, j ⊗ eβi, j − 2λ(Hi, j−1)
−1eβi, j ⊗ eβ j, j .

Since

λ
(

Zβi, j ,Ψ Z −1
β j, j ,Ψ

)
(λ + βi, j)(Zβ j, j ,Ψ )(λ + β j, j)

(
Z −1

βi, j ,Ψ

)= λ(Hi, j−1)
(
λ(Hi, j−1) − 2

)−1

it is now easy to see that we again obtain the commutativity relation.
Finally, if tλ,η = 1 then by 6.2(C1), λ(Hi, j−1) = 2 and so Πλ(βi, j, β j, j) ∈ ∧2

n
+
Ψ . Therefore, the

corresponding path is a relation. �
6.10. The next case η = 2βi, j , i < j is more interesting since this is the only case in this paper

where mη > 1 for η ∈ 2Ψ .

Proposition. Suppose that Ψ ⊃ Ψ (i, j), i < j ∈ I and let η = 2βi, j = βi,i + β j, j ∈ Ψ + Ψ . Assume that λ ∈
P+ is such that ΔΨ (λ,λ + η) �= ∅.

(i) If tλ,η = 3, the unique relation is

λ(Hi, j−1)
2(λ ← λ + βi,i ← λ + η) − (

λ(Hi, j−1) + 2
)2

(λ ← λ + β j, j ← λ + η)

+ (
λ(Hi, j−1) + 1

)
(λ ← λ + βi, j ← λ + η). (6.18)

(ii) If tλ,η = 2, the unique relation is

(λ ← λ + βi,i ← λ + η) + 2(λ ← λ + βi, j ← λ + η).

(iii) If tλ,η = 1 then λ(Hi, j−1) = 0 and RΨ (λ,λ + η) = 0.

Thus, RΨ (λ,λ + η) has dimension �tλ,η/2� and is generic if and only if tλ,η > 1.

Proof. Suppose first that tλ,η = 3. We have β j, j < βi, j < βi,i , hence

Πλ(β j, j, βi,i) = eβi,i ⊗ eβ j, j ,

Πλ(βi,i, β j, j) = eβ j, j ⊗ eβi,i + eβi,i ⊗ uβ j, j ,βi,i (μ)eβi,i + eβi, j ⊗ uβ j, j ,βi, j (μ)eβi,i ,

Πλ(βi, j, βi, j) = eβi, j ⊗ eβi, j + eβi,i ⊗ uβi, j ,βi,i (ν)eβi, j ,
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where μ = λ + βi,i , ν = λ + βi, j . Using Lemma 6.7 and (6.16) we can write

uβ j, j ,βi,i (μ) = ((
μ(Hk, j−1) − 1

)
μ(Hk, j−1)

)−1
( f j−1 · · · f i)

2 + AnnU (g) eβi,i ∩ AnnU (g) vμ.

We claim that ( f j−1 · · · f i)
2 /∈ AnnU (n−) vμ . Indeed, since μ(hi) = λ(hi) + 2 � 2, it follows from Corol-

lary 4.1 that F = f j−2 · · · f i f j−1 · · · f i /∈ AnnU (n−) vμ . Now, if ζ is the weight of F vμ , we have
ζ(h j−1) = λ(h j−1) � 2. Furthermore, e2

j−1 F vμ = 0. It now follows from the elementary sl2 theory
that f j−1 F vμ �= 0. Thus,

uβ j, j ,βi,i (μ)eβi,i = 2
((

λ(Hi, j−1) + 1
)(

λ(Hi, j−1) + 2
))−1

eβ j, j .

A computation similar to that of Πλ(βi, j, β j, j) in 6.9 yields

uβ j, j ,βi, j (μ)eβi,i = −(λ(Hi, j−1) + 2
)−1

eβi, j .

Thus,

Πλ(βi,i, β j, j) = eβ j, j ⊗ eβi,i − (
λ(Hi, j−1) + 2

)−1
eβi, j ⊗ eβi, j

+ 2
((

λ(Hi, j−1) + 1
)(

λ(Hi, j−1) + 2
))−1

eβi,i ⊗ eβ j, j . (6.19)

The computation of Πλ(βi, j, βi, j) is similar to that of Πλ(βi,i, βi, j) in 6.9 and yields

Πλ(βi, j, βi, j) = eβi, j ⊗ eβi, j − 4
(
λ(Hi, j−1)

)−1
eβi,i ⊗ eβ j, j .

Note that none of these paths is a relation. To complete the computation of relations in this case, it
remains to note that

λ(Zβi,i ,Ψ )(λ + βi,i)(Zβ j, j ,Ψ ) = (
λ(Hi, j−1) + 2

)(
λ(Hi, j−1) + 1

)
z,

λ(Zβi, j ,Ψ )(λ + βi, j)(Zβi, j ,Ψ ) = (
λ(Hi, j−1)

)2
z,

λ(Zβ j, j ,Ψ )(λ + β j, j)(Zβi,i ,Ψ ) = λ(Hi, j−1)
(
λ(Hi, j−1) − 1

)
z,

where z ∈ C× . The relation (6.18) is now straightforward. Since all coefficients in it are positive inte-
gers, RΨ (λ,λ + η) is generic.

If tλ,η = 2 then by 6.2(C2), i = j − 1 and λ(Hi, j−1) = 1 and we immediately obtain the relation
using the above formulae. Finally, if tλ,η = 1 then λ(Hi, j−1) = 0 and it is easy to see from (6.19) that
the corresponding path is not a relation. �

6.11. We now present an infinite dimensional example which in particular includes the remaining
rank 2 case. Let Ψ = Ψ (1,2), � � 2. Since β1,1 = 2�1 = θ , β1,2 = �2 and β2,2 = −2�1 + 2�2 it is
clear that λ,μ ∈ P+ are in the same connected component of ΔΨ only if λ(hi) = μ(hi), 2 < i � �.
Therefore, it is enough to describe the connected components of ΔΨ for � = 2. Identify P with Z × Z
and write (λ(h1), λ(h2)) for λ ∈ P . Since ϕ(θ) = (2,0), ϕ(β1,2) = (1,1) and ϕ(β2,2) = (0,2), we con-
clude that the only sinks in ΔΨ are (0,0), (0,1) and (1,0). Furthermore, if (m,n) and (m′,n′) are in
the same connected component it is immediate that m = m′ (mod 2). Since we have (0,0) ← (2,0) ←
(2,1) → (0,1), we conclude that there are two connected components, ΔΨ [(r,0)], r = 0,1 (if � > 2,
each of these components has infinite multiplicity). We have ΔΨ [(r,0)]0 = {(m,n): m,n ∈ Z+, m = r
(mod 2)} and the arrows are (m,n) ← (m + 2,n), m,n ∈ Z+ , (m,n) ← (m,n + 1), m > 0, n ∈ Z+ and
(m,n) ← (m − 2,n + 2), m � 2, n ∈ Z+ . Thus, the quivers ΔΨ [(0, r)], r = 0,1 are, respectively,
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...

(6,0) ...

(4,0) (4,1) ...

(2,0) (2,1) (2,2) ...

(0,0) (0,1) (0,2) (0,3) ...

...

(7,0) ...

(5,0) (5,1) ...

(3,0) (3,1) (3,2) ...

(1,0) (1,1) (1,2) (1,3) ...

Both are translation quivers with τ ((m,n)) = (m,n − 2), m > 0, n � 2. The relations are: the commu-
tativity relations in

(m+2,n) (m+2,n+1)

(m,n) (m,n+1)

(m+2,n) (m+2,n+1)

(m,n+2) (m,n+3)

for all m > 0, n ∈ Z+ , the zero relations (2,n) ← (2,n + 1) ← (0,n + 3), n � 0 and

m2((m,n) ← (m + 2,n) ← (m,n + 2)
)− (m + 2)2((m,n) ← (m − 2,n + 2) ← (m,n + 2)

)
+ (m + 1)

(
(m,n) ← (m,n + 1) ← (m,n + 2)

)
, m > 1,

and, finally, ((1,n) ← (3,n) ← (1,n + 2)) + 2((1,n) ← (1,n + 1) ← (1,n + 2)). Thus, if � = 2
and |Ψ | > 1, the algebra Sg

Ψ is the direct sum of two non-isomorphic connected Koszul subalgebras
of left global dimension 3.

6.12. Next, we consider η ∈ Ψ + Ψ with mη = 4. We have three possibilities here, and the compu-
tations turn out to be rather different.

Proposition. Let i < j < k ∈ I and let xλ = λ(Hi, j−1), yλ = λ(H j,k−1). Assume that Ψ ⊃ Ψ (i, j,k) and let
η = βi1,i1 + βi2,i3 = βi1,i2 + βi1,i3 , {i1, i2, i3} = {i, j,k}.

(i) Suppose that i1 = i. If tλ,η = 4 then RΨ (λ,λ + η) is spanned by

2(1 + yλ)(λ ← λ + βi,i ← λ + η) − (3 + xλ)(xλ + yλ + 3)(λ ← λ + βi, j ← λ + η)

+ (2 + xλ)(xλ + yλ + 4)(λ ← λ + βi,k ← λ + η) (6.20a)

and

xλ(xλ + yλ + 2)(λ ← λ + βi,i ← λ + η) + (2xλ + yλ + 4)(λ ← λ + βi, j ← λ + η)

− (2 + xλ)(xλ + yλ + 4)(λ ← λ + β j,k ← λ + η). (6.20b)

If tλ,η = 2 then RΨ (λ,λ + η) is spanned by

(xλ + yλ + 1)(λ ← λ + βi,i ← λ + η) + (xλ + yλ + 4)(λ ← λ + βi,k ← λ + η). (6.21)

Finally, if tλ,η = 1 then the unique path is a relation.
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(ii) Suppose that i1 = j. If tλ,η = 4, RΨ (λ,λ + η) is spanned by

(xλ − 1)(2 + yλ)(λ ← λ + βi,k ← λ + η) − (1 + xλ)yλ(λ ← λ + β j, j ← λ + η)

− (xλ − yλ − 1)(λ ← λ + β j,k ← λ + η) (6.22a)

and

(1 + xλ)yλ(λ ← λ + βi, j ← λ + η) + 2(2 + xλ + yλ)(λ ← λ + βi,k ← λ + η)

− (2 + xλ)(1 + yλ)(λ ← λ + β j,k ← λ + η) (6.22b)

and RΨ (λ,λ + η) is generic unless xλ = yλ + 1. If tλ,η = 2 then RΨ (λ,λ + η) is spanned by

(xλ − 1)(λ ← λ + βi, j ← λ + η) + (xλ + 2)(λ ← λ + β j, j ← λ + η). (6.23)

If tλ,η = 1 then λ(Hi, j−1) = 1 and RΨ (λ,λ + η) = 0.
(iii) Suppose that i1 = k. If tλ,η = 1, RΨ (λ,λ + η) is spanned by

(1 + yλ)(3 + xλ + yλ)(λ ← λ + β j,k ← λ + η) − (2 + yλ)(2 + xλ + yλ)(λ ← λ + βi,k ← λ + η)

+ 2(1 + xλ)(λ ← λ + βi, j ← λ + η) (6.24a)

and

2(1 + xλ)(λ ← λ + βk,k ← λ + η) + (yλ − 1)(xλ + yλ + 1)(λ ← λ + β j,k ← λ + η)

− yλ(xλ + yλ)(λ ← λ + βi,k ← λ + η). (6.24b)

If tλ,η = 2, then the unique relation is

(xλ + 4)(λ ← λ + βi, j ← λ + η) + (xλ + 1)(λ ← λ + β j,k ← λ + η). (6.25)

If tλ,η = 1 then dimRΨ (λ,λ + η) = 1.

In particular, in cases (i) and (iii), Nη = ∅ while in the case (ii), {λ ∈ Nη: tλ,η > 1} = P+ ∩ {ξ ∈ h∗:
ξ(Hi, j−1 − H j,k−1 − 1) = 0}.

Proof. Suppose first that η = βi, j + βi,k . We have β j,k < βi,k < βi, j < βi,i . Suppose first that tλ,η = 4.
The first two paths are straightforward

Πλ(β j,k, βi,i) = eβi,i ⊗ eβ j,k , (6.26)

Πλ(βi,k, βi, j) = eβi, j ⊗ eβi,k − 2(xλ + 1)−1eβi,i ⊗ eβ j,k . (6.27)

The next path is more involved. We have

Πλ(βi, j, βi,k) = eβi,k ⊗ eβi, j + eβi,i ⊗ uβi,k,βi,i (μ)eβi, j + eβi, j ⊗ uβi,k,βi, j (μ)eβi, j ,

where μ = λ + βi, j . We claim that
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Ui,i,i−1,k−1(μ)

= X −
i,k−1(μ)

= (−1)k−i−1

(
k−1∏

t=i+1

μ(Ht,k−1) fk−1 · · · f i −
k−1∏

t=i+1

(
μ(Ht,k−1) + δt, j

)
f j−1 · · · f i fk−1 · · · f j

)

+ AnnU (g) eβi, j ∩ AnnU (g) vμ. (6.28)

Indeed, suppose that fσ /∈ AnnU (g) eβi, j , σ ∈ Σ(i,k − 1). Then by (6.5) we must have σ(i) = k − i
or σ( j) = k− i. If σ(i) = k− i then fσ = fk−1 · · · f i by the definition of Σ(i,k−1). Otherwise, we must
have σ(r) = k−r, r � j � k−1 and so fσ = fσ ′ fk−1 · · · f j , where σ ′ ∈ Σ(i, j −1). Then fσ eβi, j = fσ ′ eβi,k

hence fσ ′ = f j−1 · · · f i . Since μ(hr) = λ(hr) + 1 > 0, r = i, j, it follows from Corollary 4.1 that the
vectors fk−1 · · · f i vμ , f j−1 · · · f i fk−1 · · · f j vμ are non-zero and linearly independent. Therefore,

uβi,k,i,i(μ)eβi, j = −2
k−1∏
t=i

μ(Ht,k−1)
−1

(
2

k−1∏
t=i+1

μ(Ht,k−1) −
k−1∏

t=i+1

(
μ(Ht,k−1) + δt, j

))
eβ j,k

= −2
(
μ(H j,k−1) − 1

)(
μ(Hi,k−1)μ(H j,k−1)

)−1
eβ j,k .

An already familiar computation yields uβi,k,βi, j (μ)eβi, j = −μ(H j,k−1)
−1eβi,k and we obtain

Πλ(βi, j, βi,k) = eβi,k ⊗ eβi, j − (yλ + 1)−1eβi, j ⊗ eβi,k − 2yλ

(yλ + 1)(xλ + yλ + 2)
eβi,i ⊗ eβ j,k . (6.29)

Finally,

Πλ(βi,i, β j,k) = eβ j,k ⊗ eβi,i − (xλ + 2)−1eβi,k ⊗ eβi, j + 2
(
(xλ + 2)(xλ + yλ + 3)

)−1
eβi,i ⊗ eβ j,k

− xλ + 1

(xλ + 2)(xλ + yλ + 3)
eβi, j ⊗ eβi,k . (6.30)

It is now straightforward to show that RΨ (λ,λ + η) is spanned by the elements (6.20a) and (6.20b)
and that RΨ (λ,λ + η) is generic.

Suppose now that 0 < tλ,η < 4. By 6.2(C3) we have two possibilities. If λ(hi) = 0 and i = j − 1
(hence xλ = 0) we obtain from (6.27) and (6.30) that RΨ (λ,λ + η) is spanned by the element (6.21).
Finally, if λ(h j) = 0 and j = k − 1 (hence yλ = 0), it follows from (6.29) that Πλ(βi, j, βi,k) ∈∧2

n
+
Ψ

hence the unique path (λ ← λ + βi, j ← λ + η) is a relation.
We now prove (ii). Let η = βi, j + β j,k = βi,k + β j, j . The first three paths are rather easy and we

obtain

Πλ(β j,k, βi, j) = eβi, j ⊗ eβ j,k ,

Πλ(βi,k, β j, j) = eβ j, j ⊗ eβi,k − (xλ + 1)−1eβi, j ⊗ eβ j,k ,

Πλ(β j, j, βi,k) = eβi,k ⊗ eβ j, j − (yλ + 2)−1eβi, j ⊗ eβ j,k .

The last path has some new features. We have

Πλ(βi, j, β j,k) = eβ j,k ⊗ eβi, j + eβ j, j ⊗ uβ j,k,β j, j (ν)eβi, j + eβi,k ⊗ uβ j,k,βi,k (ν)eβi, j

+ eβi, j ⊗ uβ j,k,βi, j (ν)eβi, j ,
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where ν = λ + βi, j . Two terms are already familiar

uβ j,k,β j, j (ν)eβi, j = −2
(
ν(H j,k−1)

)−1
eβi,k ,

uβ j,k,βi,k (ν)eβi, j = −2
(
ν(Hi, j−1)

)−1
eβ j, j .

Furthermore, we have, modulo AnnU (g) eβi, j ,

Ui, j, j−1,k−1(ν) = X −
i,k−1(ν)

j−1∏
t=i

(
ν(Ht, j−1) − δt,i

)+ X −
i, j−1(ν)X −

j,k−1(ν)

j−1∏
t=i

ν(Ht,k−1).

Using (6.28), we obtain

Ui, j, j−1,k−1(ν) = (−1)k−i
j−1∏
t=i

(
ν(Ht, j−1) − δt,i

)

×
(

−
k−1∏

t=i+1

ν(Ht,k−1) fk−1 · · · f i +
k−1∏

t=i+1

(
ν(Ht,k−1) + δt, j

)
f j−1 · · · f i fk−1 · · · f j

)

+ (−1)k−i
j−1∏

t=i+1

ν(Ht, j−1)

k−1∏
t= j+1

ν(Ht,k−1)

j−1∏
t=i

ν(Ht,k−1) f j−1 · · · f i fk−1 · · · f j

+ AnnU (g) eβi, j .

Thus,

uβ j,k,βi, j (ν)eβi, j

= (
ν(Hi, j−1)ν(Hi,k−1)ν(H j,k−1)

)−1(
ν(Hi,k−1) − (

ν(Hi, j−1) − 1
)(

ν(H j,k−1) − 1
))

eβ j,k ,

hence

Πλ(βi, j, β j,k) = eβ j,k ⊗ eβi, j − 2(yλ + 1)−1eβ j, j ⊗ eβi,k − 2x−1
λ eβi,k ⊗ eβ j, j

+ (xλ + yλ + 2 − (xλ − 1)yλ)

xλ(yλ + 1)(xλ + yλ + 2)
eβi, j ⊗ eβ j,k ,

and we obtain the relations (6.22a) and (6.22b). It is now straightforward to check that RΨ (λ,λ + η)

is generic if and only if xλ �= yλ + 1.
Suppose now that 0 < tλ,η < 4. Using 6.2(C3) and the above, we conclude that if tλ,η = 2, the

unique relation is (6.23), while in the case tλ,η = 1, xλ = 1 and the unique path is not a relation.
In part (iii) we encounter some new features. We have βk,k < β j,k < βi,k < βi, j and

Πλ(βk,k, βi, j) = eβi, j ⊗ eβk,k ,

Πλ(β j,k, βi,k) = eβi,k ⊗ eβ j,k − 2y−1
λ eβi, j ⊗ eβk,k ,

Πλ(βi,k, β j,k) = eβ j,k ⊗ eβi,k − (xλ + 1)−1eβi,k ⊗ eβ j,k − 2xλ
eβi, j ⊗ eβk,k .
(xλ + 1)(xλ + yλ + 1)
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The remaining path is rather interesting. Indeed, this turns out to be one of the only two cases when
the last term in (6.10) does not lie in the annihilator of the corresponding root vector. As before,

Πλ(βi, j, βk,k) = eβk,k ⊗ eβi, j + eβ j,k ⊗ uβk,k,β j,k (μ)eβi, j + eβi,k ⊗ uβk,k,βi,k (ν)eβi, j

+ eβi, j ⊗ uβk,k,βi, j (μ)eβi, j ,

where μ = λ + βi, j . Note that μ(Hr,k−1) = λ(Hr,k−1) + 1 > λ(hk−1) > 2, r = i, j. We immediately get

uβk,k,β j,k (μ)eβi, j = −μ(H j,k−1)
−1eβi,k .

Furthermore, by Lemma 6.7 we have

Ui,k,k−1,k−1(μ) = X −
i,k−1(μ)

k−1∏
t=i

(
μ(Ht,k−1) − δt,i − 1

)+ X −
i,k−1(μ − �k−1)

k−1∏
t=i

μ(Ht,k−1)

− X −
i, j,k−1(μ − �k−1)X −

j,k−1(μ)

j−1∏
t=i

μ(Ht,k−1)

k−1∏
t= j+1

(
μ(Ht,k−1) − 1

)
+ AnnU (g) eβi, j .

Using (6.28) we obtain

uβk,k,βi,k (μ)eβi, j = −1

2

(
μ(Hi,k−1) − 1

)−1
(

(μ(Hi,k−1) − 2)(μ(H j,k−1) − 1)

μ(H j,k−1)μ(Hi,k−1)

+ μ(H j,k−1) − 2

μ(H j,k−1) − 1
+ 1

μ(H j,k−1)(μ(H j,k−1) − 1)

)
eβ j,k

= − μ(H j,k−1) − 1

μ(Hi,k−1)μ(H j,k−1)
eβ j,k .

To compute the remaining term observe that by Lemma 6.7,

(−1)i+ j Ui, j,k−1,k−1(μ)

= X −
j,k−1(μ − �k−1)X −

i,k−1

j−1∏
t=i

μ(Ht,k−1 − 1 − δt,i)

+ X −
i,k−1(μ − �k−1)X −

j,k−1(μ)

j−1∏
t=i

μ(Ht,k−1) + AnnU (g) eβi, j

=
∏

i�t�k−1, t �= j

μ(Ht,k−1 − 1 − δt,i) fk−1 · · · f j

×
(

k−1∏
t=i+1

μ(Ht,k−1) fk−1 · · · f i −
k−1∏

t=i+1

(
μ(Ht,k−1) + δt, j

)
f j−1 · · · f i fk−1 · · · f j

)

+
k−1∏

t=i+1

(
μ(Ht,k−1) − 1

) ∏
i�t�k−1,t �= j

μ(Ht,k−1) fk−1 · · · f i fk−1 · · · f j + AnnU (g) eβi, j .
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Since μ(hi) = λ(hi) + 1 > 0, μ(h j) = λ(h j) + 1 > 0, the monomials

fk−2 · · · f i fk−1 · · · f j, fk−2 · · · f j fk−1 · · · f i

are μ-standard and hence the vectors

u1 = fk−2 · · · f i fk−1 · · · f j vμ, u2 = fk−2 · · · f j fk−1 · · · f i vμ

are linearly independent by Corollary 4.1. Clearly, e2
k−1u1 = e2

k−1u2 = 0, while hk−1ur = (μ(hk−1)+2)ur ,
r = 1,2. Since μ(hk−1) + 2 = λ(hk−1) + 2 � 4, it follows from the standard sl2-theory that fk−1u1,
fk−1u2 are non-zero and linearly independent. Therefore,

uβk,k,βi, j (μ)eβi, j = (
μ(Hi,k−1) − 1

)−1(
μ(H j,k−1)

)−1
(

μ(Hi,k−1) − 2

μ(Hi,k−1)
+ 1

)
eβk,k

= 2
(
μ(H j,k−1)μ(Hi,k−1)

)−1
eβk,k .

Thus,

Πλ(βi, j, βk,k) = eβk,k ⊗ eβi, j − (yλ + 1)−1eβ j,k ⊗ eβi,k

− (
(xλ + yλ + 2)(yλ + 1)

)−1
(yλeβi,k ⊗ eβ j,k − 2eβi, j ⊗ eβk,k ).

We immediately obtain the relations (6.24a) and (6.24b) (note that in this case yλ > 1) and
RΨ (λ,λ+η) is easily seen to be generic. Finally, suppose that 0 < tλ,η < 4. Using 6.2(C3) we conclude
that if tλ,η = 2, the unique relation is (6.25), while if tλ,η = 1, the unique path is a relation. �

6.13. Finally, we consider the case when mη = 6, that is η = βi, j + βk,l = βi,k + β j,l = βi,l + β j,k ∈
Ψ + Ψ , i < j < k < l ∈ I . Let xλ = λ(Hi, j−1), yλ = λ(H j,k−1), zλ = λ(Hk,l−1). Then λ(Hi,k−1) =
xλ + yλ + 1, λ(H j,l−1) = yλ + zλ + 1 and λ(Hi,l−1) = xλ + yλ + zλ + 2. Note that if tλ,η = 6, we
have xλ, yλ, zλ > 0.

All technical difficulties in computing the Πλ(β,β ′) which occur here have already been discussed
and we omit the details. Suppose first that tλ,η = 6. We have

Πλ(βk,l, βi, j) = eβi, j ⊗ eβk,l ,

Πλ(β j,l, βi,k) = eβi,k ⊗ eβ j,l − (yλ + 1)−1eβi, j ⊗ eβk,l ,

Πλ(β j,k, βi,l) = eβi,l ⊗ eβ j,k − (zλ + 1)−1eβi,k ⊗ eβ j,l − zλ

(zλ + 1)(yλ + zλ + 2)
eβi, j ⊗ eβk,l ,

Πλ(βi,l, β j,k) = eβ j,k ⊗ eβi,l − (xλ + 1)−1eβi,k ⊗ eβ j,l − xλ

(xλ + 1)(xλ + yλ + 2)
eβi, j ⊗ eβk,l ,

Πλ(βi,k, β j,l) = eβ j,l ⊗ eβi,k − (zλ + 1)−1eβ j,k ⊗ eβi,l − (xλ + 1)−1eβi,l ⊗ eβ j,k

+ (
(xλ + 1)(zλ + 1)

)−1
eβi,k ⊗ eβ j,l

− xλzλ
eβi, j ⊗ eβk,l ,
(xλ + 1)(zλ + 1)(xλ + yλ + zλ + 3)
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Πλ(βi, j, βk,l) = eβk,l ⊗ eβi, j − (yλ + 1)−1eβ j,l ⊗ eβi,k − yλ

(yλ + 1)(yλ + zλ + 2)
eβ j,k ⊗ eβi,l

− yλ

(yλ + 1)(xλ + yλ + 2)
eβi,l ⊗ eβ j,k

− xλ + yλ + zλ + 3 + (xλ + yλ + 1)(yλ + 1)(yλ + zλ + 1)

(yλ + 1)(xλ + yλ + 2)(yλ + zλ + 2)(xλ + yλ + zλ + 3)
eβi,k ⊗ eβ j,l

+ (xλ + yλ + 1)(yλ + zλ + 1) + (yλ + 1)(xλ + yλ + zλ + 3)

(yλ + 1)(xλ + yλ + 2)(yλ + zλ + 2)(xλ + yλ + zλ + 3)
eβi, j ⊗ eβk,l .

Denote the paths in ΔΨ (λ,λ +η) by pr , 1 � r � 6, where the numbering corresponds to the order
in which they appear above. Clearly, none of these paths is a relation. A direct computation shows
that RΨ (λ,λ + η) is spanned by

r1 = (xλ + 1)(yλ + 2)(xλ − zλ)(zλ + 1)p1 + yλ(xλ + yλ + 1)(xλ − zλ)(yλ + zλ + 2)p2

+ zλ(xλ + 1)(yλ + 1)(xλ + yλ + 2)(yλ + zλ + 1)p3

− xλ(yλ + 1)(zλ + 1)(xλ + yλ + 1)(yλ + zλ + 2)p4,

r2 = (xλ + 1)(zλ + 1)(xλ + yλ + 2)(xλ + zλ + 2)(yλ + zλ + 3)p1

+ yλ(xλ + 1)(zλ + 2)(xλ + yλ + 1)(yλ + zλ + 2)(xλ + yλ + zλ + 3)p2

− (yλ + 1)(xλ + yλ + 2)(xλ + zλ + 2)(yλ + zλ + 1)(xλ + yλ + zλ + 3)p3

− xλ(yλ + 1)(zλ + 1)(xλ + yλ + 2)(yλ + zλ + 2)(xλ + yλ + zλ + 2)p5,

and

r3 = (yλ + 2)(zλ + 1)(xλ + yλ + 2)(yλ + zλ + 3)(xλ + yλ + zλ + 3)p1

− (zλ + 2)(xλ + yλ + 1)(yλ + zλ + 2)(xλ + 2yλ + zλ + 4)p2

− zλ(yλ + 1)(xλ + yλ + zλ + 3)(xλ + 2yλ + zλ + 4)p3

− (yλ + 1)(zλ + 1)(xλ + yλ + 1)(yλ + zλ + 2)(xλ + yλ + zλ + 2)p6.

One can now check that RΨ (λ,λ + η) is generic unless xλ = zλ . In the latter case the first relation
reduces to p3 − p4.

Finally, we list the relations in cases when 0 < tλ,η < 6. By 6.2(C4), we have three cases
with tλ,η = 2. If yλ = 0, or equivalently j = k − 1 and λ(h j) = 0, while xλ, zλ > 0, the relation is

(zλ + 2)(xλ + zλ + 4)p2 + (zλ + 1)(xλ + zλ + 2)p6.

If xλ = 0, yλ, zλ > 0 the relation is

(yλ + 1)(zλ + 2)(yλ + zλ + 3)p4 + (yλ + 2)zλ(yλ + zλ + 2)p5.

If zλ = 0, xλ, yλ > 0 the relation is

(xλ + 2)(yλ + 1)(xλ + yλ + 3)p3 + xλ(yλ + 2)(xλ + yλ + 2)p5.
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Thus, in all these cases the space RΨ (λ,λ + η) is generic. Finally, if xλ = zλ = 0, yλ > 0 the unique
path p5 in ΔΨ (λ,λ + η) is not a relation.

Thus, we obtain the following

Proposition. Let i < j < k < l ∈ I . Suppose that η = βi, j + βk,l = βi,k + β j,l = βi,l + β j,k ∈ Ψ + Ψ . Then
dim RΨ (λ,λ + η) = �|ΔΨ (λ,λ + η)/2|� and

Nη ⊂ P+ ∩ {ξ ∈ h∗: ξ(Hi, j−1 − Hk,l−1) = 0
}

and coincides with the latter set if Ψ is regular.

6.14. Let Ψ = Ψ (i1, . . . , ik) be regular. It follows from Propositions 6.9, 6.10, 6.12 and 6.13 that the
coefficients in all relations in RΨ (μ,μ + η) depend on μ(Hir ,is−1), 1 � r < s � n.

Let λ ∈ P+ . By Proposition 6.4, ΔΨ [λ] is isomorphic to the quiver Ξa(m), where a =∑k
r=1 λ(hir )

(mod 2), m = (m1, . . . ,mk), mr = λ(hir−1) + λ(hir ). Let

ζr(λ) = λ(Hir+1,ir+1−2) + 2, 1 � r < k.

Let (x1, . . . , xk) be the image of μ ∈ ΔΨ [λ]0 in Ξa(m)0. Then

μ(Hir ,is−1) = xr − xs +
s∑

p=r+1

mp + ζp−1(λ) + r − s − 1.

Thus, the isomorphism of algebras Tg

Ψ → ΔΨ gives rise to a family of relations on quivers Ξa(m).
The relations, and in particular their genericity, depend on a family of positive integer parameters
ζp(λ). The resulting algebras are Koszul and of global dimension at most p(p + 1)/2, where p =
#{ j: m j > 0}. It is finite dimensional if and only if i1 > 1. The explicit relations can be easily written
down using Propositions 6.9, 6.10, 6.12 and 6.13.

List of notations

I 1.1 αi , �i 1.1 εi , ϕi , ε, ϕ 1.1 R , P , R+, P+ 1.1

n
±
Ψ , n±, b 1.1 V (λ) 1.2 V, V� 1.2 A, T, S, E 1.2

1λ: λ ∈ P+ 1.2 �Ψ , � 1.3 dΨ (λ,μ) 1.3 Ag

Ψ (F ), Ag

Ψ 1.3

�Ψ λ, λ �Ψ , [λ,μ]Ψ 1.3 Δ0, Δ1, Δ̄ 1.4 x±, x ∈ Δ0 1.4 CΔ 1.4

ΔΨ (F ), ΔΨ 1.5 RΨ (λ,λ + η) 1.6 mη , tλ,η 1.7 Nη 1.7

|x|, x ∈ Zr+ 1.8 e(r)
i 1.8 Ξ(m), Ξa(m) 1.8 ei , f i , hi 2.1

vλ, ξ−λ, Mλ 2.1 Πλ(β,β ′) 2.4 Fβ(h) 2.6 πλ, πλ,β 2.6

uβ,γ , uβ,γ (λ) 2.7 αi, j 4.2 Σ(i, j) 4.2 fσ 4.2

ψη 4.3 Hi, j 4.3 X ±
i, j,k , X ±

i, j 4.3 Γa(m,n) 5.3

ei, j 5.5 uαi, j ,αp,q 5.5 Zαi, j ,Ψ 5.6 βi, j 6.1

eβi, j 6.5 Ur,s,i, j 6.6 Ūr,s,i, j 6.7 uβi, j ,βr,s 6.8
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