The Award of the Fothergillian Gold Medal to Robert Willan in 1790
(A Bicentennial Not To Be Forgotten)

To the Editor:
Robert Willan (1757–1812) appears to have been the first physician ever, working in the field of dermatology, who received an award for his work. This took place on Monday, March 8, 1790, when he was presented the (John) Fothergillian Gold Medal by the Medical Society of London (Fig. 1).

(The text in the records of that society reads as follows: “Resolved, that Official notice be sent by the Secretary to Dr. Willan, Mr. Haughton, + Dr Caleb Hillier Parry that they attend at Bolt-Court, at the Anniversary Meeting of the Society on Monday next, the 8th Inst. at One o’clock to receive the Medals adjudged to them”).

Willan had elaborated his system of efflorescences, applied to the classification of skin diseases that he presented to the Society. Shortly after, starting in 1798, the first fascicle of his epochal work appeared in print in London, under the title “Description and Treatment of Cutaneous Diseases, Order I. Papulous Eruptions” [1]. In a notice “TO THE PUBLICK” it reads on the first page: “IN conducting the following Work, it is proposed to publish seven Orders, of which it consists, separately. . . .” etc. “This Publication has been delayed much beyond the Author’s Intention, in consequence of the Difficulties experienced on a Subject entirely new, by the different Artists employed in completing it. These difficulties being now, in a great measure surmounted, the Work will proceed with more Expedition”. . . Red Lion Square, Nov. 20, 1797

Willan had leaned on Joseph Plenck’s (1735–1807) earlier treatise of 1776 [2], which he simplified and improved in a way that made it easier to remember and to serve as our discipline’s first universally acknowledged system for classification of skin disorders, and textbook at that. (Cazenave and Schedel wrote on Willan’s improvement of Plenck’s system: “. . . Une autre classification . . . est celle de Plenck, si heureusement perfectionnée par WilIan” [3] (p XXXVI). As a proof of Willan’s knowledge of Plenck’s work, the reference on page 38 of the first fascicle will serve [1] (footnote, line 4). The more explicit reference is given by Thomas Bateman (1761–1821) in the first complete edition of Willan’s work [4] (edition of the color prints, in 1817, page iii, lines 12–14; preface). Students of later decades, notably Ferdinand Hebra (1816–1880) in Vienna [5] (p. 9, paragraph 2, line 4), among others, turned to Willan’s writings first before elaborating their own. (Of course, also Charles-Anne Lorry’s work of 1777 is quoted [6] by Willan, e.g., p. 26, footnote, line 2, [1]).

Historically speaking, there are two Fothergillian Medals. The original was named after John Fothergill (1712–1780), a Yorkshire Dalesman and Quaker, as was Willan himself [7,8]. John Coakely Lettsom (1744–1815), not from the Yorkshire dales but an adopted son of Fothergill’s brother Samuel, founded the Gold Medal in John Fothergill’s memory three and a half years after the latter’s painful death (December 26, 1780) on May 25, 1784 [9,10]. The first medal was to be given in 1786, on March 8, Fothergill’s birthday. It was not ready, though, and could not be awarded until 1787. Seven of the John Fothergillian Medals were struck, the first being presented to George III by Lettsom, now in the British Museum, and the third to Robert Willan, now possessed by the Medical Society of London [10]. Awards were made in the years 1787, 1790 (Willan), 1791, 1793, 1795, 1801, and 1803 [10]. The last to receive it was Edward Jenner [11]. The second type of Fothergillian Medal, which is still awarded today, is named after Anthony Fothergill (1732–1813), a “kinsman but not a relation of John” [9] — J.J. Abraham [10] calls him “a distant cousin of John.” The Anthony Fothergillian Medal was established in 1824 [10] and is awarded at triennial intervals. Among the more recent awardees we find Sir Henry Dale (1938), Sir Peter Medawar (1965), and many other illustrious scientists [11].

The international dermatological community should commemorate this bicentennial lest it be forgotten. It well demonstrates how firmly modern dermatology’s roots are anchored in the last quarter of the 18th century.

I thank Major Trevor Tudor-Williams and the Medical Society of London.

Karl Holubar
Institute for the History of Medicine
& Department of Dermatology
University of Vienna
Vienna, Austria

Figure 1. The Fothergillian Gold Medal.
REFERENCES

2. Plenck JF: Doctrina de morbis cutaneis. Graeffe, Vienna, 1776
4. Bateman T: Delineations of cutaneous diseases: exhibiting the characteristic appearances of the principal genera and species comprising in the classification of the late Dr. Willan; and completing the series of engravings begun by that author. Longman, Hurst, Rees, Orme, and Brown, London, 1817

8-Methoxypsoralen Acts on Lymphocyte Membranes in the Dark

To the Editor:
With great interest we have read the article by Dr. Malinin et al, “Ultrastructural modifications of the plasma membrane in HUT 102 lymphoblasts by long-wave ultraviolet light, psoralen, and PUVA” (J Invest Dermatol 95:97–103, 1990). The authors described the manner membrane alteration after incubation of the cells with psoralen concentration of the photosensitizer 8-methoxypsoralen (8-MOP) in the dark and that suggest that cell membrane components are the primary target in the 8-MOP action mechanism.

The dark effect of 8-MOP on lymphocyte surface structures has been well documented by ourselves and others in several investigations using different methods with regard to their membrane-related evidence. Among other things, it has been shown that, following high dosages of 8-MOP, parts of the glycosaccharides [1] and the cytoplasm [2] were released from leukocytes and lymphocytes, respectively, into the medium under cell culture conditions. However, morphologic changes could not be observed under the influence of 8-MOP in therapeutic concentrations [3]. On the other hand, without any UV-irradiation 8-MOP was able to increase the membrane-associated cAMP levels in mononuclear leukocytes [4], possibly by inhibition of phosphodiesterase [5] after only 1 min incubation time. Furthermore 8-MOP has shown to inhibit both the PHA and Con A-induced proliferation of normal human peripheral blood lymphocytes in a time- and dose-dependent manner [6,7]. This was explained by the decrease in IL-2 receptor expression on PHA-stimulated lymphocytes [6]. As we have shown, the PHA-triggered cytokine release (macrophage slowing factor [8]) and the HLA-DR expression [7] were depressed by 8-MOP, too. In addition, 8-MOP was able to temporarily reduce the binding of sheep erythrocytes to lymphocytes, which is known as membrane interaction [7]. Finally, 8-MOP reduced the number of Pan T cells evaluated by specific monoclonal antibodies [9].

Taken together, 8-MOP exerts some dark effects on lymphocyte surface membranes. These results may suggest some immunoregulatory effects of 8-MOP on (antigen activated) cells. Because of their only slight degree and transient nature, these 8-MOP dark effects are probably of low clinical relevance under therapeutic conditions.

Wolfgang Gast
Uwe-Frithjof Haustein
Department of Dermatology
Karlstadt University
Leipzig, Germany

REFERENCES

REPLY

In their letter concerning our article [1], Drs. Gast and Haustein note, firstly, that “dark effect of 8-MOP on lymphocyte surface structures is well documented,” and secondly conclude that “because of their only slight degree and transient nature these 8-MOP dark effects are probably of low clinical relevance.”

We agree with the authors that dark 8-MOP reaction with lymphocytes and, with other cells, was indeed documented [2]; however, the availability of diverse phenomenologic data does not automatically imply understanding of underlying reaction mechanisms, and their biologic significance. Because photoresponses of 8-MOP, at least in part, are preceded and facilitated by dark reactions with specific targets, their ultimate significance cannot be extrapolated solely on the basis of their transience or detection by a single method.