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Abstract

In the present paper, we investigate the estimates for the covering number of a ball in a Mercer kernel
Hilbert space on [0, 1]. Let Pl(x) be the Legendre orthogonal polynomial of order l, al > 0 be real numbers
satisfying

∑+∞
l=0 lal < + ∞. Then, for the Mercer kernel function

K(x, t) =
+∞∑
l=0

alPl(x)Pl(t), x, t ∈ [0, 1],

we provide the upper estimates of the covering number for the Mercer kernel Hilbert space reproducing
from K(x, t). For some particular al we give the lower estimates. Meanwhile, a kind of l2-norm estimate
for the inverse Mercer matrix associated with the Mercer kernel K(x, t) is given.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let X be a compact set of the Euclidean space Rn, L2(X) be the space of real square integrable
functions with respect to a Borel measure � on X.

A function K : X × X → R which is continuous, symmetric and positive definite, i.e., for
any finite set {x1, . . . , xm} ⊂ X, the matrix (K(xi, xj ))

m
i,j=1 is positive definite is called a Mercer

kernel. The reproducing kernel Hilbert space HK associated with the kernel K is defined to be
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the closure of the linear span of the set of functions {K(t, x) : t ∈ X} with the inner product
satisfying

〈K(·, x), f (·)〉HK
= f (x), x ∈ X, f ∈ HK.

Define a Hilbert–Schmidt integral operator by means of this kernel as

LK(f, x) =
∫

X

K(x, t)f (t) d�(t), x ∈ X, f ∈ L2
�(X).

Then, LK(f, x) is a positive, compact operator and its range lies in C(X).
Let (�j )

+∞
j=1 denote the nonincreasing sequence of eigenvalues of LK and (�j )

+∞
j=1 be the

corresponding eigenfunctions. Then,

K(x, t) =
+∞∑
j=1

�j�j (x)�j (t), x, t ∈ X,

where the series converges uniformly and absolutely.
HK can be imbedded into C(X), and we denote the inclusion as IK : HK → C(X). For this

facts, see [2].
Let R > 0 and BR be the ball of HK with radius R:

BR := {f ∈ HK : ‖f ‖K �R}.
Then IK(BR) ⊂ C(X). Denote its closure in C(X) as IK(BR) which is a compact subset in
C(X).

Let N be the set of natural numbers, S be a compact set in a metric space and � > 0. The
covering number N (S, �) of S is defined to be the minimal integer m such that there exist m disks
with radius � covering S.

The covering number is often used to bounding the error between the empirical function and the
target function (see, [2,15]). Thus, the estimates for the covering number of IK(BR) are needed
in kernel machine learning. Both the upper bounds and the lower bounds for N (IK(BR), �) have
been investigated in the literature [3,10,14,16,17].

A theorem of Zhou (see, [16]) has concluded the estimates for the covering numbers to the
estimates of the l2-norm of the inverse of the Mercer matrix AN . It is known ‖A−1

N ‖l2 equals the
inverse of the smallest eigenvalue of the matrix AN . This problem has a closely connection with
the radial interpolation approximation (see, e.g., [13]) but are difficult to deal with. Some inves-
tigations of this field can be found from [5–7,11,13]. In the present paper, we shall provide, with
the help of the Legendre orthogonal polynomials, a kind of estimate for the smallest eigenvalue
of the matrix AN for a kind of Mercer kernel function on [0, 1]× [0, 1] and thus give some lower
and upper estimates for the bounds of the covering number.

Let X = [0, 1], Pk(x) be the Legendre orthogonal polynomial of order k on [0, 1]. Then, Pk(x)

satisfy |Pk(x)|�1, x ∈ [0, 1], and

∫ 1

0
Pn(x)Pm(x) dx = �n,m

2n + 1
,

where �n,m is the � function whose value is 1 if n = m and whose value is 0 if n 
= m.
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Let � ∈ L1[0, 1] and its Fourier–Legendre coefficients ak(�) = ∫ 1
0 �(u)Pk(u) du satisfy

ak(�) > 0 and
∑+∞

l=0 lal(�) < +∞. Then, the Mercer kernel K(x, y) defined on [0, 1] × [0, 1]
with ak(�) being its eigenvalues and Pk(x) being its eigenfunctions has the representation

K(x, y) :=
+∞∑
l=0

(2l + 1)al(�)Pl(x)Pl(y), x, y ∈ [0, 1]. (1)

In fact, K(x, y) is a kind of translation of �. By [1,9] we know

K(x, y) = 1

�

∫ 1

0
�
[
(2x − 1)(2y − 1) + 4(2u − 1)

√
x(1 − x)y(1 − y)

]
×(u(1 − u))−1/2 du, x, y ∈ [0, 1]. (2)

The generating function of the Legendre polynomials yields

1√
(1 + q)2 − 4xq

=
+∞∑
l=0

qlPl(x), x ∈ [0, 1], 0 < q < 1.

Take �q(x) = 1√
(1+q)2−4xq

, then al(�q) = ql

2l+1 , l = 0, 1, 2, . . . . We know by (1) and (2) that

the Mercer kernel

K(x, y) =
+∞∑
l=0

qlPl(x)Pl(y), x, y ∈ [0, 1] (3)

is

K(x, y) = 1

�

∫ 1

0

(
(1 + q)2 − 4q(2x − 1)(2y − 1) − 16q(2u − 1)

×√x(1 − x)y(1 − y)
)−1/2 (

u(1 − u)
)−1/2

du, x, y ∈ [0, 1].

Let Kt(x) = K(x, t) and HK be the closure of the linear span of {Kt(x) : t ∈ [0, 1]}. It
is easy to check that for any distinct points t1, t2, . . . , tm ∈ [0, 1] the matrix {Kti (tk)}m×m is
symmetric and positive definite. Kt(x) is therefore a Mercer kernel. Defining a binary operation
in HK by

(f, g)HK
=
∑
k,i

dickKti (tk),

for f (x) = ∑
k ckKtk (x) ∈ HK and g(x) = ∑

i diKti (x) ∈ HK , we have by [2] that HK will
become a reproducing kernel Hilbert space.

Let IK : HK → C[0, 1] be the embedding operator from HK to C[0, 1], IK(BR) be the
embedding of the ball with radius R.

We shall estimate the lower and the upper bounds of N (IK(BR), �). The paper is organized
as follows. The lower bounds for N (IK(BR), �) is estimated in the second section. Choos-
ing the knot set XN = {x(N)}N−1

k=0 as the zeroes of the Legendre polynomial of order N and
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taking AN = {Kt(x)}x,t∈XN
, we shall provide an upper estimate of ‖A−1

N ‖l2(XN ) with the help of
the Gauss integral formula and the Lagrange interpolation operators for the algebraic polynomials.
In the third section, we shall use the method given by Zhou in [16] to give some estimates for the
upper bounds of the covering number under the condition that the series

∑+∞
l=0 lsal is convergent

for some real numbers s�4. In the fourth section, we shall construct a kind of local algebraic
polynomials reproducing basis functions, with which we give an upper estimate of the covering
number N (IK(BR), �) for the Mercer kernel

K(x, y) =
+∞∑
l=0

1

(1 + l)�
× Pl(x)Pl(y), � > 2, x, y ∈ [0, 1].

Throughout this paper, we shall denote by N the set of natural number. By RN we denote the
N -dimensional Euclidean space, and by PN we denote the set of all algebraic polynomials of
order �N . The biggest integer which �a is denoted by [a].

2. The lower bound estimates

In this section, we shall investigate the lower bound estimates of the covering numbers for some
particular Mercer kernel Hilbert spaces.

Theorem 2.1. Let al be a decreasing sequence such that 0 < al−1 � C′
l�

for two given constants
C′ > 0, � > 2 and all l, K(x, y) be a Mercer kernel defined as (1). Then, there exists a constant
c0 > 0 such that for 0 < �� R

2c0
there holds

ln N
(
IK(BR), �

)
� ln 2

21+(2/�)c
2/�
0

(
R

�

)2/�

− ln 2. (4)

Corollary 2.1. Let K(x, y) be the Mercer kernel defined by (3). Then, there is a constant c0 > 0
such that for 0 < �� R

2c0
there holds

ln N
(
IK(BR), �

)
� ln 2

25/3c
2/3
0

(
R

�

)2/3

− ln 2. (5)

To prove Theorem 2.1, we first give a lemma.

Lemma 2.1. Let � ∈ L1[0, 1] satisfy al(�) > 0 and
∑+∞

l=0 lal(�) < +∞. N �2 is a given

integer, XN = {x(N)
k }N−1

k=0 is the knot set of the zeroes of the Legendre algebraic polynomial
PN(x) and the zeroes are arranged in the increasing order, i.e.,

0 < x
(N)
0 < x

(N)
1 < · · · < x

(N)
N−1 < 1.

K(x, y) is defined as (1) and the matrix AN := (K(x, y))x,y∈XN
. Then, there exists a constant

C > 0 such that

‖A−1
N ‖l2(XN ) �

C

N min0� l �N−1 al(�)
. (6)
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Proof. For any V = (v0, . . . , vN−1)

 ∈ RN there holds

V 
ANV =
N−1∑
k,j=0

vkKx
(N)
k

(x
(N)
j )vj

=
N−1∑
k,j=0

vk

+∞∑
l=0

(2l + 1)al(�)Pl(x
(N)
k )Pl(x

(N)
j )vj

=
+∞∑
l=0

al(�)

∣∣∣∣∣
N−1∑
k=0

vk

√
2l + 1Pl(x

(N)
k )

∣∣∣∣∣
2

� min
0� l �N−1

al(�)

N−1∑
l=0

∣∣∣∣∣
N−1∑
k=0

vk

√
2l + 1Pl(x

(N)
k )

∣∣∣∣∣
2

= min
0� l �N−1

al(�)

∫ 1

0

∣∣∣∣∣
N−1∑
l=0

(
N−1∑
k=0

vk

√
2l + 1Pl(x

(N)
k )

)√
2l + 1Pl(x)

∣∣∣∣∣
2

dx

= min
0� l �N−1

al(�)

∫ 1

0

∣∣∣∣∣
N−1∑
k=0

vk

(
N−1∑
l=0

(2l + 1)Pl(x
(N)
k )Pl(x)

)∣∣∣∣∣
2

dx.

Take KN(x, y) = ∑N−1
l=0 (2l + 1)Pl(y)Pl(x), then

N−1∑
k=0

vk

(
N−1∑
l=0

(2l + 1)Pl(x
(N)
k )Pl(x)

)
=

N−1∑
k=0

vkKN(x, x
(N)
k )

=
N−1∑
k=0

vk

�(N)
k

× �(N)
k KN(x, x

(N)
k ).

Let

lk,N (x) = PN(x)

P ′
N(x

(N)
k )(x − x

(N)
k )

, x ∈ [0, 1], k = 0, 1, . . . , N − 1

be the Lagrange basic interpolating functions based on XN , and

LN(x) =
N−1∑
k=0

vk

�(N)
k

lk,N (x), x ∈ [0, 1],

with the Cotes numbers on XN being defined by

�(N)
k =

∫ 1

0
l2
k,N (t) dt, k = 0, 1, . . . , N − 1.

Then, the interpolating property of Lagrange basis functions makes

LN(x
(N)
k ) = vk

�(N)
k

, k = 0, 1, 2, . . . , N − 1.
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Therefore,

N−1∑
k=0

vk

�(N)
k

× �(N)
k KN(x, x

(N)
k ) =

N−1∑
k=0

�(N)
k LN(x

(N)
k )KN(x, x

(N)
k ).

Since LN(·)KN(x, ·) ∈ P2N−1, the Gauss integral formula (see, [12])

∫ 1

0
p(x) dx =

N−1∑
k=0

�(N)
k p(x

(N)
k ), p ∈ P2N−1

yields

N−1∑
k=0

�(N)
k LN(x

(N)
k )KN(x, x

(N)
k ) =

∫ 1

0
LN(u)KN(x, u) du = LN(x).

Hence,

V 
ANV � min
0� l �N−1

al(�)

∫ 1

0

∣∣∣LN(x)

∣∣∣2 dx

= min
0� l �N−1

al(�)

∫ 1

0

∣∣∣∣∣
N−1∑
k=0

vk

�(N)
k

lk,N (x)

∣∣∣∣∣
2

dx

= min
0� l �N−1

al(�)

N−1∑
k=0

v2
k

�(N)
k

� min0� l �N−1 al(�)

max0� l �N−1 �(N)
l

N−1∑
k=0

∣∣∣vk

∣∣∣2

= min0� l �N−1 al(�)

max0� l �N−1 �(N)
l

V 
V,

where we have used the fact that (see, [12])∫ 1

0
lk,N (x)lj,N (x) dx = �(N)

k �k,j .

It follows that min0 � l �N−1 al(�)

max0 � l �N−1 �(N)
l

is smaller than any eigenvalues of the matrix AN . Hence,

‖A−1
N ‖l2(XN ) �

max0� l �N−1 �(N)
l

min0� l �N−1 al(�)
. (7)

On the other hand, by [8] we know

�(N)
k =

[
N−1∑
l=0

∣∣∣Pl(x
(N)
k )

∣∣∣2
]−1

∼
√

x
(N)
k (1 − x

(N)
k )

N
,



S. Baohuai et al. / Journal of Complexity 24 (2008) 241–258 247

i.e., there is a constant number C > 0 such that

1

C

√
x

(N)
k (1 − x

(N)
k )

N
��(N)

k �
C

√
x

(N)
k (1 − x

(N)
k )

N
.

Then, (7) makes (6). �

Lemma 2.1 provides an upper estimator for the l2-norm of the inverse of the Mercer kernel
matrix, itself is independence.

Proof of Theorem 2.1. We first recall the general lower bound estimates given by Zhou in [17]:
LetX ⊂ Rn be a compact set, K be a Mercer kernel on X,N ∈ N , andXN := {x1, x2, . . . , xN } ∈

X yield an invertible Gramian matrix AN := (K(xi, xj ))
N
i,j=1. Then,

N
(
IK(BR),

�

2

)
�2N − 1

provided that ‖A−1
N ‖l2 � 1

N
(R

� )2.

Let XN and AN be defined as in Lemma 2.1. Since al are decreasing on l and al � C′
(1+l)�

, we
have by Lemma 2.1 that

‖A−1
N ‖l2(XN ) �

c2
0

N
× N�, c0 =

√
C

C′ .

Hence, c2
0N

� �
(

R
�

)2
. For 0 < �� R

c0
we can choose N ∈ N such that

c2
0N

� �
(

R

�

)2

< c2
0(N + 1)�.

It follows N + 1 >

[
1
c2

0

(
R
�

)2
]1/�

. Therefore,

N � N + 1

2
>

1

2c
2/�
0

(
R

�

)2/�

,

and

N
(
IK(BR),

�

2

)
�2N − 1�2N−1 �2

1

2c
2/�
0

(
R
�

)2/�−1
.

Consequently,

ln N
(
IK(BR),

�

2

)
�
(

1

2c
2/�
0

(
R

�

)2/�

− 1

)
ln 2.

(4) thus holds. �
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Proof of Corollary 2.1. Let h = 1
q

− 1. Then for N �2 we have (1 + h)N−1 > C2
N−1h

2 =
(N−1)(N−2)

2 h2. It follows

qN−1

2N − 1
� 2

(2N − 1)(N − 1)(N − 2)h2
� 8

N3h2
= 8

(
q

1 − q

)2 1

N3
.

Taking � = 3, C′ = 8(
q

1−q
)2 and c0 =

√
C
C′ in Theorem 2.1, we have (5). �

3. Mercer kernels with smoothness

If al > 0 and there exists s�4 such that
∑+∞

l=0 lsal < +∞, then the Mercer kernel K(x, y) =∑+∞
l=0 alPl(x)Pl(y) has certain smoothness. In this case, we can estimate the upper bounds of

N
(
IK(BR), �

)
by the way given in [16]. We give the following results.

Theorem 3.1. Let s�1 be an integer, al > 0 and
∑+∞

l=0 l4sal < +∞. K(x, y) = ∑+∞
l=0 alPl(x)

Pl(y) is thus a Mercer kernel on [0, 1]×[0, 1], C1 � (2s)2s

(s−1)!
(∑+∞

l=s+1 l4sal

)1/2
is a constant number.

Then for 0 < ��2RC1s
−s there holds

ln N
(
IK(BR), �

)
�
[

1 + 2

(
2RC1

�

)1/s
]

ln

⎡
⎣16

(+∞∑
l=0

al

)(
1 + 2

(
2RC1

�

)1/s
)1/2

× (2C1)
1/s4((2RC1)/�)1/s

(
R

�

)1+(1/s)
]

. (8)

Some special cases of Theorem 3.1 are following Corollaries.

Corollary 3.1. Let K(x, y) = ∑+∞
l=0 alPl(x)Pl(y) be a Mercer kernel on [0, 1] × [0, 1] and

there exists a constant C > 0 such that 0 < al � C
(1+l)�

, � > 5. Then, for C1 � 4(2�−�+5)
2�(�−5)

and
0 < ��2RC1 there holds

ln N
(
IK(BR), �

)
�
(

1 + 4C1R

�

)
ln

[
16C

� − 1

(
1 + 4C1R

�

)1/2

×2C14(2C1R)/�
(

R

�

)2
]

. (9)

Corollary 3.2. Let K(x, y) be defined as (3). Then, for C1 �4
(

24q4

(1−q)5 + 36q3

(1−q)4 − 8q+8q2

(1−q)3 +
4q

(1−q)2 − q
)

and 0 < ��2RC1 there holds

ln N
(
IK(BR), �

)
�
(

1 + 4C1R

�

)
ln

[
16

1 − q

(
1 + 4C1R

�

)1/2

× 2C14(2C1R)/�
(

R

�

)2
]

. (10)
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To prove Theorem 3.1, we first give some lemmas.
Assume that {XN : N ∈ N } is a family of finite subsets of X such that

dN := max
x∈X

min
y∈XN

d(x, y) → 0, (N → +∞).

This means that the discrete knot XN becomes dense in X as N tends to the infinity. Let the function
measuring the regularity of K be defined by

εK(N) := sup
x∈X

⎡
⎣inf

⎛
⎝K(x, x) − 2

∑
y∈XN

wyK(x, y)

+
∑

y,t∈XN

wyK(y, t)wt : wy ∈ R1

⎞
⎠

1/2
⎤
⎥⎦ ,

the cardinality of the setXN be�XN , andAN be the positive definite matrixAN :=[K(y, t)]y,t∈XN
.

Then, Zhou gave in [16] the following general upper estimate for the covering number
N (IK(BR), �).

Lemma 3.1 (see, Zhou [16]). Let K(x, y) be a Mercer kernel, IK be given as in Section 1. Then
for 0 < �� R

2 there holds

ln N (IK(BR), �)�(�XN) ln

[
8‖K‖3/2∞ (�XN)‖A−1

N ‖l2(XN )

R

�

]
, (11)

where N is any integer satisfying εK(N)� �
2R

.

Lemma 3.2. Let s�1 be a given integer, al > 0 satisfy
∑+∞

l=0 l4sal < +∞. K(x, y) =∑+∞
l=0 alPl(x)Pl(y), x, y ∈ [0, 1]. Choose the knot set as XN = { j

N
}N−1
j=0 and take

εK(N) = sup
x∈[0,1]

⎡
⎣inf

⎛
⎝K(x, x) − 2

∑
y∈XN

wyK(x, y)

+
∑

y,t∈XN

wyK(y, t)wt : wy, wt ∈ R1

⎞
⎠

1/2
⎤
⎥⎦ ,

then, for N �s there holds

εK(N)� (2s)2s

Ns(s − 1)!

⎛
⎝ +∞∑

l=s+1

l4sal

⎞
⎠

1/2

. (12)

Proof. Since XN = { j
N

}N−1
j=0 , we have dN = 1

N
→ 0, (N → +∞). As in [16], we define

Lagrange interpolation functions

wl,s(t) =
∏

j∈{0,1,2,...,s}\{l}

t − j/s

l/s − j/s
=

∏
j∈{0,1,2,...,s}\{l}

st − j

l − j
.
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Then, wl,s(
m
s
) = �l,m, l, m = 0, 1, 2, . . . , s. For x ∈ [0, 1] we can find an m ∈ {0, 1, . . . , N − s}

such that x ∈ [m
N

, m+s
N

]. Choose

wj/N =
⎧⎨
⎩wi,s

(
Nx − m

s

)
, j = m + i, i ∈ {0, . . . , s},

0 otherwise,

then,

K(x, x) − 2
∑

y∈XN

wyK(x, y) +
∑

y,t∈XN

wyK(y, t)wt

= K(x, x) − 2
s∑

i=0

wi,s

(
Nx − m

s

)
K

(
x,

m + i

N

)

+
s∑

i,j=0

wi,s

(
Nx − m

s

)
K

(
m + i

N
,
m + j

N

)
wj,s

(
Nx − m

s

)

=
+∞∑
l=0

alP
2
l (x) − 2

s∑
i=0

wi,s

(
Nx − m

s

) +∞∑
l=0

alPl(x)Pl

(
m + i

N

)

+
s∑

i,j=0

wi,s

(
Nx − m

s

)(+∞∑
l=0

alPl

(
m + i

N

)
Pl

(
m + j

N

))
wj,s

(
Nx − m

s

)

=
+∞∑
l=0

al

(
P 2

l (x) − 2
s∑

i=0

wi,s

(
Nx − m

s

)
Pl(x)Pl

(
m + i

N

)

+
s∑

i,j=0

wi,s

(
Nx − m

s

)
Pl

(
m + i

N

)
Pl

(
m + j

N

)
wj,s

(
Nx − m

s

)⎞⎠

=
+∞∑
l=0

al

∣∣∣∣∣Pl(x) −
s∑

i=0

Pl

(
m + i

N

)
wi,s

(
Nx − m

s

)∣∣∣∣∣
2

=
+∞∑

l=s+1

al

∣∣∣∣∣
s∑

i=0

(
Pl(x) − Pl

(
m + i

N

))
wi,s

(
Nx − m

s

)∣∣∣∣∣
2

=
+∞∑

l=s+1

al

∣∣∣∣∣
s∑

i=0

(
s−1∑
k=1

1

k!
�k

�yk
Pl(x)

(
m + i

N
− x

)k

+ 1

s!
�s

�ys
Pl(	i )

(
m + i

N
− x

)s
)

wi,s

(
Nx − m

s

)∣∣∣∣∣
2

,
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where 	i is a real number between x and m+i
N

. Since {wi,s(x)}si=0 are Lagrange basic interpolating
functions based on { i

s
}si=0, we have

s∑
i=0

wi,s

(
Nx − m

s

)(
m + i

N
− x

)k

=
s∑

i=0

wi,s

(
Nx − m

s

)(
m + s × (i/s)

N
− x

)k

=
(

m + s × (Nx − m)/s

N
− x

)k

= 0, ∀1�k�s − 1.

Then, the original equation

=
+∞∑

l=s+1

al

∣∣∣∣∣
s∑

i=0

1

s!
�s

�ys
Pl(	i )

(
m + i

N
− x

)s

wi,s

(
Nx − m

s

)∣∣∣∣∣
2

�
(

1

s!
)2 +∞∑

l=s+1

al

∥∥∥∥∥ �s

�ys
Pl

∥∥∥∥∥
2

∞

∣∣∣∣∣
s∑

i=0

∣∣∣∣m + i

N
− x

∣∣∣∣
s ∣∣∣∣wi,s

(
Nx − m

s

)∣∣∣∣
∣∣∣∣∣
2

�
(

1

s!
)2 (2s2

N

)2s +∞∑
l=s+1

al

∥∥∥∥∥ �s

�ys
Pl

∥∥∥∥∥
2

∞

∣∣∣∣∣
s∑

i=0

∣∣∣∣wi,s

(
Nx − m

s

)∣∣∣∣
∣∣∣∣∣
2

�
[

1

s!
(

2s2

N

)s
]2 +∞∑

l=s+1

al

∥∥∥∥∥ �s

�ys
Pl

∥∥∥∥∥
2

∞

(
s2s
)2

�
[

(2s)2s

(s − 1)!Ns

]2 +∞∑
l=s+1

l4sal,

where we have used the facts that ‖Pl‖∞ �1, ‖ �s

�ys Pl‖∞ � l2s and (see, [16])

∑
�∈XN

|w�,N (x)|�N2N, x ∈ [0, 1]. � (13)

Proof of Theorem 3.1. Since XN = { j
N

}Nj=0, we have by [16, Theorem 1] that for any x ∈ [0, 1]
there holds∣∣∣∣∣∣f (x) −

∑
�∈XN

f (�)w�(x)

∣∣∣∣∣∣ �‖f ‖HK
εK(N)�R × (2s)2s

Ns(s − 1)!

⎛
⎝ +∞∑

l=s+1

l4sal

⎞
⎠

1/2

.

Then for N >
[

2RC1
�

]1/s

one has

∥∥∥∥∥∥f (x) −
∑

�∈XN

f (�)w�(x)

∥∥∥∥∥∥
C[0,1]

� �

2
.
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On the other hand, since

|f (x)| = |(K(x, ·), f (·))HK
|�R

√
K(x, x)�R

(+∞∑
l=0

al

)1/2

,

we have

‖{f (�)}‖l2(XN ) �R

(+∞∑
l=0

al

)1/2

(N + 1)1/2.

By [2] we know that if E is a finite dimension space with dim E = m, then,

ln N (Br, ε)�m ln

(
4r

ε

)
.

The dimension of l2(XN) is N + 1. Let

r := R

(+∞∑
l=0

al

)1/2

(N + 1)1/2

and ε := �
2(N2N)

. Then, there exists {cl : l = 1, 2, . . . , [ 4r
ε

]N+1} ⊂ l2(XN) such that for any

d ∈ l2(XN) with ‖d‖l2(XN ) �r , we can find some l satisfying

‖d − cl‖l2(XN ) �ε.

By (13) we have∥∥∥∥∥∥
∑

�∈XN

cl
�w�(x) −

∑
�∈XN

d�w�(x)

∥∥∥∥∥∥
C

�

∥∥∥∥∥∥
∑

�∈XN

(
cl
� − d�

)
w�(x)

∥∥∥∥∥∥
C

� ‖d − cl‖l2(XN )‖‖w�(x)‖l2(XN )‖C[−,1]
� N2Nε� �

2
.

Since ‖{f (�)}�∈XN
‖l2 �r , we have∥∥∥∥∥∥f (x) −

∑
�∈XN

cl
�w�(x)

∥∥∥∥∥∥
C

�

∥∥∥∥∥∥f (x) −
∑

�∈XN

f (�)w�(x)

∥∥∥∥∥∥
C

+
∥∥∥∥∥∥
∑

�∈XN

cl
�w�(x) −

∑
�∈XN

f (�)w�(x)

∥∥∥∥∥∥
C

� �

2
+ �

2
= �.

We then have covered IK(BR) by balls with radii � and centers
∑

�∈XN
cl
�w�(x). Therefore,

N
(
IK(BR), �

)
�
(

4r

ε

)N+1

,
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i.e.,

ln N
(
IK(BR), �

)
� (N + 1) ln

(
4r

ε

)

� (N + 1) ln

⎡
⎣8

(+∞∑
l=0

al

)1/2

(N + 1)1/2(N2N)
R

�

⎤
⎦ .

Since 0 < ��2RC1s
−s , for N �( 2RC1

� )1/s we have N �s and 2RC1
� �1. Therefore, we can

find N ∈ N such that

N �2

(
2RC1

�

)1/s

.

Consequently,

ln N
(
IK(BR), �

)
�
(

1 + 2

(
2RC1

�

)1/s
)

ln

⎡
⎣8

(+∞∑
l=0

al

)[
1 + 2

(
2RC1

�

)1/s
]1/2

×
[

2

(
2RC1

�

)1/s

22(2RC1/�)1/s

]
R

�

]

=
[

1 + 2

(
2RC1

�

)1/s
]

ln

⎡
⎣16

(+∞∑
l=0

al

)[
1 + 2

(
2RC1

�

)1/s
]1/2

×(2C1)
1/s4(2RC1/�)1/s

(
R

�

)1+(1/s)
]

. �

Proof of Corollary 3.1. Let s = 1 in Theorem 4.1. Then, we have by
+∞∑
l=0

l4

(1 + l)�
�
∫ +∞

0

dl

(1 + l)�−4
− 1

2� = 2� − � + 5

2�(� − 5)
.

that (9) holds. �

Proof of Corollary 3.2. Taking s = 1,
∑+∞

0 ql = 1
1−q

, and

+∞∑
l=0

l4ql = 24q4

(1 − q)5
+ 36q3

(1 − q)4
− 8q + 8q2

(1 − q)3
+ 4q

(1 − q)2
− q

in Theorem 4.1,we have (10). �

4. The general mercer kernels

Theorem 3.1 requires that K(x, y) has certain smoothness which even does not suit to the usual
sequence al = 1

(1+l)3 . For such case we should ask for another way. The interpolating property
and the uniformly boundedness of the local polynomial reproducing basis functions (see, [4,13])
remind us to construct a local polynomial reproducing basis functions associating with the knot
set XN to take the place of Lagrange basic functions used in the proof of Theorem 3.1. We show
this way by a special Mercer kernel.
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Theorem 4.1. LetK(x, y) = ∑+∞
l=0

1
(1+l)�

Pl(x)Pl(y), � > 2.Then, for 0 < �� min{ 3R√
(�−1)2�−7

,

R
2 } there holds

ln N
(
IK(BR), �

)
� 3√

(� − 1)2�−11

R

�
ln

[
3

(� − 1)2
√

2�−17

(
R

�

)2
]

. (14)

To prove Theorem 4.1, we first give some lemmas.
Let V be a finite-dimensional vector space with norm ‖ · ‖V and let Z ⊂ V ∗ be a finite

set consisting of N functionals. Here, V ∗ denotes the dual space of V consisting of all linear
and continuous functionals defined on V. If the mapping T : V → T (V ) ⊂ RN defined by
T (v) = {z(v)}z∈Z is injective, we call T a sampling operator and Z a norming set for V.

Lemma 4.1 (see, Wendland [13, Theorem 3.4]). SupposeV is a finite-dimensional normed linear
space and Z = {z1, z2, . . . , zN } is a norming set for V, T being the corresponding sampling
operator. For every 
 ∈ V ∗ there exists a vector u ∈ RN depending only on 
 such that, for
every v ∈ V ,
(v) = ∑N

j=1 uj zj (v) and

‖u‖(RN)∗ �‖
‖V ∗‖T −1‖, (15)

where

‖T −1‖ = sup
v∈V \{0}

‖v‖V

‖T (v)‖RN

.

Lemma 4.2. Let XN be the knot set in Lemma 2.1. Then, there holds
1
6‖p‖L∞[0,1] � max

x∈XN

|p(x)|�‖p‖L∞[0,1], p ∈ P[N/2]. (16)

Proof. Let JN(x) be the Legendre orthogonal polynomial of order N on [−1, 1]. The zeroes of
JN(x) are {xk,(N)}N−1

k=0 in the increasing order. Taking xk,(N) = cos �k, 0�k�N − 1, we have by
[12, Theorem 6.3.2] that |�k+1 − �k|� 2�

2N+1 . Set u = 1+x
2 , then, PN(u) = JN(x). We thus have

x
(N)
k = xk,(N), k = 0, 1, . . . , N − 1. Let p ∈ PN/2 and p∗(x) = p( 1+x

2 ), x ∈ [−1, 1]. Then,

‖p‖L∞[0,1] = |p(u0)| = |p∗(x0)| = ‖p∗‖L∞[−1,1], u0 = 1 + x0

2
.

Let xk0,(N) be the nearest knot to x0, x0 = cos �0, xk0,(N) = cos �k0 . Taking T (�) = p∗(cos �),
we have by the Bernstein inequality for trigonometrical polynomial and the mean theorem that

‖p‖L∞[0,1] = ‖p∗‖L∞[−1,1] = |p∗(x0)| = ‖T (�0)‖
� |T (�0) − T (�k0)| + |T (�k0)|
� �

2N + 1
‖T ′‖L∞[0,2�] + |T (�k0)|

� N�

2(2N + 1)
‖T ‖L∞[0,2�] + max

�k

|T (�k)|

� N�

4N + 2
‖p∗‖L∞[−1,1] + max

x∈XN

|p(x)|
� 5

6‖p‖L∞[0,1] + max
x∈XN

|p(x)|.

It follows that max
x∈XN

|p(x)|� 1
6‖p‖L∞[0,1]. (16) thus holds. �
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Lemma 4.3. Let XN = {x(N)
� }0���N−1 be the knot set in Lemma 2.1. Then, for every x ∈ [0, 1]

there exist real numbers uj (x) such that
∑N−1

j=0

∣∣uj (x)
∣∣�6 and

N−1∑
j=0

uj (x)p(x
(N)
j ) = p(x), p ∈ P[N/2]. (17)

Proof. Let (V , ‖·‖V )=(PN, ‖·‖L∞). Defining a sampling operator byT (p)={p(x
(N)
� )}0���N−1

∈ RN and equipping with RN the l∞-norm, we know (RN, ‖ · ‖l∞)∗ = (RN, ‖ · ‖l1) and by
(16) ‖T −1‖�6. Noticing that |�x(p)| = |p(x)|�‖p‖L∞ ,we have by Lemma 4.1 that there are
functions u�(x), � = 1, 2, . . . , N − 1, such that (17) holds and

∑
0���N−1

|u�(x)|�‖�x‖‖T −1‖�6.

Proof of Theorem 4.1. By Lemma 3.1 what we need to do is to estimate εK(N). In fact, let
XN = {x(N)

� }0���N−1 be defined as in Lemma 2.1 and w
x

(N)
�

= u�(x), � = 0, 1, . . . , N − 1.
Then, by Lemma 4.3 and the fact that |Pl(x)|�1 we have

K(x, x) − 2
∑

y∈XN

wyK(x, y) +
∑

y,t∈XN

wyK(y, t)wt

=
+∞∑
l=0

1

(1 + l)�

∣∣∣∣∣Pl(x) −
N−1∑
�=0

Pl(x
(N)
� )u�(x)

∣∣∣∣∣
2

�
+∞∑

l=[ N
2 ]+1

1

(1 + l)�

∣∣∣∣∣
N−1∑
�=0

(Pl(x) − Pl(x
(N)
� ))u�(x)

∣∣∣∣∣
2

�4
+∞∑

l=[ N
2 ]+1

1

(1 + l)�

(
N−1∑
�=0

|u�(x)|
)2

�144
+∞∑

l=[ N
2 ]+1

1

(1 + l)�

� 144

(� − 1)([N
2 ] + 2)�−1

� 32 × 23+�

(� − 1)(N + 2)�−1
.

Hence, εK(N)� 3×2
3+�

2√
(�−1)(N+2)�−1

. If 3×2
3+�

2√
(�−1)(N+2)�−1

<
�

2R
, then N + 2�

(
32×25+�

�−1

)1/(�−1)

(
R
�

)2/(�−1)

. From
(

32×25+�

�−1

)1/(�−1) (
R
�

)2/(�−1)

�4 we have 0 < � < 3
√

27−�

�−1 R. We can thus
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find N ∈ N such that N �12
√

27−�

�−1
R
� . Lemma 3.1 makes

ln N
(
IK(BR), �

)
� N ln

⎛
⎝8

(+∞∑
l=0

1

(1 + l)�

)3/2
NR

�

⎞
⎠

� 12

√
27−�

� − 1

R

�
ln

[
3 × 2(17−�)/2

(� − 1)2

(
R

�

)2
]

� 3√
(� − 1)2�−11

R

�
ln

[
3

(� − 1)2
√

2�−17

(
R

�

)2
]

. �

We now give a corollary to compare Theorem 2.1 with Theorem 4.1.

Corollary 4.1. Let the Mercer kernel K(x, y) be defined as in Theorem 4.1. c0 is the constant

in Theorem 2.1. If
√

(�−1)2�−7

3 �2 max{c0, 1}, then for R√
(�−1)2�−7

< �� 3R√
(�−1)2�−7

there are

constants C1 > 0, C2 > 0, which depend only on c0 and �, such that

1

C1

(
R

�

)2/(�+1)

− 1

C2
� ln N (IK(BK), �)�C1

(
R

�

)2/(�+1)

± C2. (18)

If
√

(�−1)2�−7

3 < 2 max{c0, 1}, then for R
6 max{c0,1} < �� R

2 max{c0,1} there are C′
1 > 0, C′

2 > 0,
which depend only on c0 and �, such that

1

C′
1

(
R

�

)2/(�+1)

− 1

C′
2
� ln N (IK(BK), �)�C′

1

(
R

�

)2/(�+1)

± C′
2, (19)

where the ± are determined by the ∓ of ln 3
(�−1)2

√
2�−17

.

Proof. The Mercer kernel K(x, y) can be rewritten as

K(x, y) =
+∞∑
l=0

(2l + 1) × Pl(x)Pl(y)

(2l + 1)(1 + l)�
, x, y ∈ [0, 1],

and al−1 = 1
(2l−1)l�

� 1
l�+1 , l > 1. We have by Theorem 2.1 that for c0 = √

C and 0 < �� R
2c0

there holds

ln N
(
IK(BR), �

)
� ln 2

21+ 2
�+1 c

2/(�+1)

0

(
R

�

)2/(�+1)

− ln 2. (20)

If

min

{
3R√

(� − 1)2�−7
,

R

2 max{c0, 1}

}
= 3R√

(� − 1)2�−7
,

then, the � and R in Theorem 4.1 satisfy 0 < �� 3R√
(�−1)2�−7

. In this case, for

R√
(� − 1)2�−7

< �� 3R√
(� − 1)2�−7

,
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i.e., √
(� − 1)2�−7

3
� R

�
<
√

(� − 1)2�−7,

we have

ln N
(
IK(BR), �

)
� 3√

(� − 1)2�−11

R

�
ln

(
R

�

)2

− 3√
(� − 1)2�−11

R

�
ln

3

(� − 1)2
√

2�−17

� 3√
(� − 1)2�−11

(
R

�

)2/(�+1)
(√

(� − 1)2�−7

3

)−(�−1)/(�+1)

×ln
[
(� − 1)2�−7

]
− 3A√

(� − 1)2�−11
ln

3

(� − 1)2
√

2�−17
, (21)

where for 3
(�−1)2

√
2�−17

�1 we have A =
√

(�−1)2�−7

3 , and for 0 < 3
(�−1)2

√
2�−17

< 1 we have

A = √
(� − 1)2�−7. (20) and (21) make (18).

If

min

{
3R√

(� − 1)2�−7
,

R

2 max{c0, 1}

}
= R

2 max{c0, 1} ,

then the � and R in Theorem 4.1 satisfy 0 < �� R
2 max{c0,1} . In this case, for

R

6 max{c0, 1} < �� R

2 max{c0, 1} ,

i.e.,

2 max{c0, 1}� R

�
< 6 max{c0, 1},

we have

ln N
(
IK(BR), �

)
� 3√

(� − 1)2�−11

(
R

�

)2/(�+1)

(2 max{c0, 1})−(�−1)/(�+1)

×ln
[
36 max{c2

0, 1}
]

− 3B√
(� − 1)2�−11

ln
3

(� − 1)2
√

2�−17
, (22)

where for 3
(�−1)2

√
2�−17

�1 we have B = 2 max{c0, 1}, and for 0 < 3
(�−1)2

√
2�−17

< 1 we have

B = 6 max{c0, 1}. (20) and (22) make (19).
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