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Abstract

In the present paper, we investigate the estimates for the covering number of a ball in a Mercer kernel
Hilbert space on [0, 1]. Let P;(x) be the Legendre orthogonal polynomial of order /, a; > 0 be real numbers
satisfying Z?':oglal < + o0. Then, for the Mercer kernel function

+o0
K(x.,n)=Y aPi(x)P(t), x,t€[0,1],
=0

we provide the upper estimates of the covering number for the Mercer kernel Hilbert space reproducing
from K (x, t). For some particular a; we give the lower estimates. Meanwhile, a kind of 12-norm estimate
for the inverse Mercer matrix associated with the Mercer kernel K (x, t) is given.

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let X be a compact set of the Euclidean space R”, L>(X) be the space of real square integrable
functions with respect to a Borel measure v on X.

A function K : X x X — 'R which is continuous, symmetric and positive definite, i.e., for
any finite set {xy, ..., x;,} C X, the matrix (K (x;, x ]-))Z‘j:l is positive definite is called a Mercer
kernel. The reproducing kernel Hilbert space H g associated with the kernel K is defined to be
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the closure of the linear span of the set of functions {K (z, x) : t € X} with the inner product
satisfying

<K(',)C), f())HK :f(x)v XEX, feHK-

Define a Hilbert—Schmidt integral operator by means of this kernel as

LK(f,x)=/ K&, ) f@)dv(), xelX, feL%(X).
X

Then, Lk (f, x) is a positive, compact operator and its range lies in C (X).
Let (4 j);r;xl’ denote the nonincreasing sequence of eigenvalues of Lx and (¢ j);rjf be the
corresponding eigenfunctions. Then,

+oo

K(x.t)=>Y_1j¢;x)p;(t). x.t€X,

Jj=1

where the series converges uniformly and absolutely.

Hg can be imbedded into C(X), and we denote the inclusion as /g : Hx — C(X). For this
facts, see [2].

Let R > 0 and By, be the ball of H g with radius R:

Br:={f etk I fllx <R}

Then Ix(Bgr) C C(X). Denote its closure in C(X) as Ix(Bgr) which is a compact subset in
C(X).

Let NV be the set of natural numbers, S be a compact set in a metric space and n > 0. The
covering number A/ (S, 1) of S is defined to be the minimal integer m such that there exist m disks
with radius # covering S.

The covering number is often used to bounding the error between the empirical function and the
target function (see, [2,15]). Thus, the estimates for the covering number of /x (Br) are needed
in kernel machine learning. Both the upper bounds and the lower bounds for N'(Ix (Bg), 1) have
been investigated in the literature [3,10,14,16,17].

A theorem of Zhou (see, [16]) has concluded the estimates for the covering numbers to the
estimates of the /2-norm of the inverse of the Mercer matrix Ay. It is known ||A;l ;2 equals the
inverse of the smallest eigenvalue of the matrix Ay . This problem has a closely connection with
the radial interpolation approximation (see, e.g., [13]) but are difficult to deal with. Some inves-
tigations of this field can be found from [5-7,11,13]. In the present paper, we shall provide, with
the help of the Legendre orthogonal polynomials, a kind of estimate for the smallest eigenvalue
of the matrix Ay for a kind of Mercer kernel function on [0, 1] x [0, 1] and thus give some lower
and upper estimates for the bounds of the covering number.

Let X = [0, 1], P¢(x) be the Legendre orthogonal polynomial of order k on [0, 1]. Then, Px(x)
satisfy | Pr(x)|<1,x € [0, 1], and

5n,m

2n+1’

1
/ Po(x) P () dx =
0

where 6, is the J function whose value is 1 if n = m and whose value is 0 if n # m.
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Let ¢ € L'[0, 1] and its Fourier-Legendre coefficients ay(¢) = fol ¢(u) Py (u) du satisfy

ar(¢) > 0 and Zl’:’g laj(¢) < +00. Then, the Mercer kernel K (x, y) defined on [0, 1] x [0, 1]
with ag (¢p) being its eigenvalues and Py (x) being its eigenfunctions has the representation

+00
K(x,y):= Z(Zl + Da(9) P (x) Pi(y), x,y €0, 1]. (1)
=0

In fact, K (x, y) is a kind of translation of ¢. By [1,9] we know

1 1
K== [ [x =@y =1 +40u—nyrT=0yT =]

x(w( —u)"Y?du, x,yel0,1]. )
The generating function of the Legendre polynomials yields

+o00
:quPl(x), xe[0,1], 0<qg <.

1
V(A +g)? —4dxq =0

1
Take ¢, (x) = \/ﬁ then a(¢,) = 5f7.1 =0, 1,2,.... We know by (1) and (2) that

the Mercer kernel

+00

K(x,y) =Y q'P0)P(y), x,y€l0,1] 3)
=0

is

1 1
K(x,y)= ;/0 ((1 —i—q)2 —4g2x —1)2y — 1) — 16gQu — 1)

—1/2 _
x\/x(l —x)y(l — y)) (u(l — u)) 172 du, x,yel0,1].

Let K;(x) = K(x,t) and Hg be the closure of the linear span of {K;(x) : t € [0, 1]}. It
is easy to check that for any distinct points #1, f2, ..., %, € [0, 1] the matrix {Ky, (tx)}mxm 18
symmetric and positive definite. K, (x) is therefore a Mercer kernel. Defining a binary operation
in Hg by

f g = ) dick Ky, (1),

ki

for f(x) =) ckKy (x) € Hig and g(x) = >, d; K, (x) € Hg, we have by [2] that H g will
become a reproducing kernel Hilbert space.

Let Ix : Hxk — CIO0, 1] be the embedding operator from Hg to C[0, 1], Ix (Bg) be the
embedding of the ball with radius R.

We shall estimate the lower and the upper bounds of A (Ix (Bg), #). The paper is organized
as follows. The lower bounds for N'(Ix (Bg), ) is estimated in the second section. Choos-
ing the knot set Xy = {x®V )}11{\/:—01 as the zeroes of the Legendre polynomial of order N and
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taking Ay = {K;(x)}x rexy, we shall provide an upper estimate of ||A;,] ||12(XN) with the help of
the Gauss integral formula and the Lagrange interpolation operators for the algebraic polynomials.
In the third section, we shall use the method given by Zhou in [16] to give some estimates for the
upper bounds of the covering number under the condition that the series Z;;OS’ I*a; is convergent
for some real numbers s >4. In the fourth section, we shall construct a kind of local algebraic
polynomials reproducing basis functions, with which we give an upper estimate of the covering
number N (Ix (Bg), 1) for the Mercer kernel

+00

1
Kx.y)=)_ a3 < AORO). a>2 xyel0 1]
=0

Throughout this paper, we shall denote by N the set of natural number. By RY we denote the
N-dimensional Euclidean space, and by Py we denote the set of all algebraic polynomials of
order < N. The biggest integer which <a is denoted by [a].

2. The lower bound estimates

In this section, we shall investigate the lower bound estimates of the covering numbers for some
particular Mercer kernel Hilbert spaces.

Theorem 2.1. Let a; be a decreasing sequence such that 0 < aj—1 < % for two given constants
C'>0,a>2andalll, K(x, y) be a Mercer kernel defined as (1). Then, there exists a constant
co > 0 such that for 0 < n< % there holds

2/
lnN(IK(BR), n) 5 2 <5> —In2. (4)

21+(2/a)cé/a 7

Corollary 2.1. Let K(x, y) be the Mercer kernel defined by (3). Then, there is a constant co > 0
such that for 0 < n< % there holds

2/3
1nN<IK(BR), r]) 5 2 <5> —In2. (5)

2/3
25/3¢; n
To prove Theorem 2.1, we first give a lemma.

Lemma 2.1. Let ¢ € L'[0, 1] satisfy a;(¢p) > 0 and Zfzoé’ laj(¢p) < 4o00. N=2 is a given

integer, Xy = {x,EN)}]]:’:_Ol is the knot set of the zeroes of the Legendre algebraic polynomial

Py (x) and the zeroes are arranged in the increasing order, i.e.,

0 < x(()N) (N) (N)

<x; <--<xy. <L
K (x, ) is defined as (1) and the matrix Ay := (K (x, y))x’yeXN. Then, there exists a constant
C > 0 such that

C
Nming</<n—1 a/(§)

(6)

-1
||AN ||12(XN) <
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Proof. Forany V = (v, ..., vy_1)T € RY there holds
N—1
N
viayw =Y kaXIEN)(xJ(. M,
k,j=0
N-—1 +00

Y ey @+ Dar¢) P ) Py,

k. j=0 =0

400
- Z a(P)

N—1 2

> w20+ 1P ")

k=0

2

N—
Z w2+ 1P (™)
0

k=

N—
>  min
/0\ I<N_1 (1[(¢ Z
=0
2

= m1n 1a1(¢)/ dx

N—-1 /N—1
(Z w21 + 1P,(x,§N))> V2 ¥ 1Pi(x)
k=0

2

1
=, min al(¢>)/0 dx.

N—1 N—1
> u (Z(zz + 1)Pz(x,§N))Pz<x>)
k=0 =0
Take Ky (x, ) = Y1 (21 + 1) Pi(y) Pi(x), then

N—-1 N—1 N-1
> v (Z(zlﬂ)Pz(x;N))Pz(x)) Y vk (e, )

k=0 =0 =0
N—1 v
= —]];) X /II(CN)KN(x,x,EN))
k=0 )"k
Let
P
Ly (x) = N (x) xel0,1], k=0,1,...,N—1

Pl ™ = M)
be the Lagrange basic interpolating functions based on Xy, and

N-1

Uk
Ly =) —glen(),  x [0, 1],
k=0 }“k

with the Cotes numbers on X y being defined by

1
,1,§N>=/ l,%,N(t)dt, k=0,1,...,N — 1.
0

Then, the interpolating property of Lagrange basis functions makes

LyG™) = v—") k=0,1,2,...,N — 1.
/lk

245
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Therefore,
N—-1 " N—-1
N N N N N
> s < MK,y =3 A Ly M Ky e (™).
k=0 "k k=0

Since Ly (-)Kn(x, ) € Pan—1, the Gauss integral formula (see, [12])

N-1

1
/ p(x)dx = Z i,iN)p(xlgN)), p € Pan—1
0 k=0
yields
N—1 1
)v,((N)LN(x,EN))KN(x,x,EN))=/ Ly@)Kn(x,u)du = Ly(x).
k=0 0
Hence,
1 2
VTAyV > min al((f))/ ‘LN(x)‘ dx
0<I<N—1 0
1|N=-1 " 2
- g
o min @) f > S| dx
k=0 "k
N—-1 2
o k
= oy #(@) ,;) 20

N-1

min0<l<N71 al(¢) Z ‘v ‘2
k

WV

N)
maxpo</<N—-1 /11( k=0

_ ming</< N1 ai(¢) vTy

N
maxpo</<N—1 }‘l( )

where we have used the fact that (see, [12])

1
/é lk,N(x)lj’N(x) dx = ;L]({N)ék’j.

ming</<N—1 a ()

It follows that ™
1

is smaller than any eigenvalues of the matrix Ay . Hence,
maxo</<N—1 4

N
maxo</<N-1 )vl( )

ming<;<n—1 ai(¢)’

(N

-1
AN ll2xy) <

On the other hand, by [8] we know

N—1 -1 (N) (N)
2 X (1_xk )
1 2 [z ™ } WV C5 )
k k
=0

N

’
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i.e., there is a constant number C > 0 such that

(N) (N) (N) (N)
JxMa = xMy Cy/x™M a1 = xMy
1y X% k) o k k)

c N Sk N
Then, (7) makes (6). [

Lemma 2.1 provides an upper estimator for the /2-norm of the inverse of the Mercer kernel
matrix, itself is independence.

Proof of Theorem 2.1. We first recall the general lower bound estimates given by Zhou in [17]:
Let X C R" beacompactset, KbeaMercerkernelonX, N € N,and Xy := {x1,x2,...,xN} €
X yield an invertible Gramian matrix Ay = (K (x;, x j))fv =1 Then,

N (TxBr). §) 22¥ =1
provided that |y [l < 3 (£)7.

Let X and Ay be defined as in Lemma 2.1. Since g; are decreasing on / and a; < ﬁ, we
have by Lemma 2.1 that

2
—1 €0 , | C
Ay ||12(XN)<N x N* ¢p= o

2
Hence, céN“ < (%) .For0 <5< % we can choose N € A such that

R 2
cgN* < (; < cA(N + D™

o1/
It follows N + 1 > |:ch <%) i| . Therefore,
0

N+1 1 [R\**
Y >—(—) ,

2 2c(2)/OC n
and
zl/ (E)Z/a_l
N(IK(BR), g) >N _ 1 zoN-Ts0 .
Consequently,

2/
— 7 1 R
0

(4) thus holds. [



248 S. Baohuai et al. / Journal of Complexity 24 (2008) 241-258

Proof of Corollary 2.1. Let & = ; — 1. Then for N >2 we have (1 + H"~! > C}_h* =
th. It follows

gV-! 2 8 g \> 1
< < =38 —.
2N —1 (2N — 1)(N — 1)(N —2)h% ~ N3h? l1-q) N3
Taking o = 3, C' = S(Iz—q)2 and ¢y = ,/ % in Theorem 2.1, we have (5). [J
3. Mercer kernels with smoothness

If a; > 0 and there exists s >4 such that Z 15a; < 400, then the Mercer kernel K (x, y) =
Zl:O a; P;(x) P;(y) has certain smoothness. In th1s case, we can estimate the upper bounds of

N (I k (BRr), 17) by the way given in [16]. We give the following results.
Theorem 3.1. Lets>1beaninteger,ay > 0andy " 1¥a < +00. K (x, y) = 3% aiPi(x)

Py (y) is thus a Mercer kernel on [0, 11x[0, 1],C; > ((szi)l; (Zl et 145611)1/2 is a constant number.
Then for 0 < n<2RCs~* there holds

2RC\* = 2rCy\ 5\
1nN<IK(BR) ;1) [1+2< nl) }m 16(Za,> <1+2( nl> )
=0

s R 1+(1/s)
« (2C)1/34(@RCD/ (_) . @®)

n
Some special cases of Theorem 3.1 are following Corollaries.

Corollary 3.1. Let K(x,y) = Z?‘C’g a; P (x) Pi(y) be a Mercer kernel on [0, 1] x [0, 1] and

there exists a constant C > 0 such that 0 < a; < (1+l)* ,o0 > 5. Then, for C1 > ‘%—f;s) and
0 < n<2RC there holds

12
1nN<1K(BR) ’7) (1 + 4C1R> ln[ 16¢ (1 + 4C1R>

n a—1 n
R 2
x2C 42RO/ (;> : )

4 3
Corollary 3.2. Let K (x, y) be defined as (3). Then, for C) >4 ( (ff‘; 5+ (ffjl T = "(j’f j‘){f +

ﬂi#_ 51) and 0 < n<2RCy there holds

R 1 4c1R\'?
ln./\/<IK(BR) ;7) <1+ Cnl )1n|:1_6q (1+ C;; )

2
R
x 2C142C1R/ <_> } , (10)
n
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To prove Theorem 3.1, we first give some lemmas.
Assume that {Xy : N € N} is a family of finite subsets of X such that

dy = max min d(x,y) - 0, (N — 400).
xeX yeXy
This means that the discrete knot X y becomes dense in X as N tends to the infinity. Let the function
measuring the regularity of K be defined by

ex(N):=sup |inf | K(x,x) —2 E wyK(x,y)
xeX
yEXN
1/2

+ Z wy K (y, Hw; - wy € R! ,
y,tEXN

the cardinality of the set X y be X, and A i be the positive definite matrix Ay :=[K (y, t)]y rexy-
Then, Zhou gave in [16] the following general upper estimate for the covering number

Nk (BR), ).
Lemma 3.1 (see, Zhou [16]). Let K (x, y) be a Mercer kernel, I be given as in Section 1. Then

for 0 < né% there holds
— = 3/2 _1 R
In A (T (B, 1) < EXo) In [ SIK I EX0llAY ey | (1n

where N is any integer satisfying ex (N) < %.

Lemma 3.2. Let s>1 be a given integer, aj > 0 satisfy Zfzog *a < 4o00. K(x,y) =
S arPi(x) Pi(y), x, y € [0, 1]. Choose the knot set as X = {#}7;01 and take

ex(N)= sup |inf | K(x,x) =2 Y wyK(x,y)

xel0,1] yeXy
1/2
+ Z wy K (y, Hw; : wy, w; € R! ,
y,tEXN
then, for N >s there holds
2 +00 1/2
(25)= 4
NL——— A . 12
kM < e ,_%:1 a (12)

Proof. Since Xy = {%}9’:—01, we have dy = + — 0,(N — +00). As in [16], we define

Lagrange interpolation functions

t—j/s st — j
w t) = —_— = .
s = Il g = =
J€{0,1,2,... s\ {l} Jj€{0,1,2,....s\{l}
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Then, w“(’”)—élm,l m=0,1,2,...,s.Forx € [0, I]wecanfindanm € {0, 1, ...,

such that x € [, m'”] Choose

Nx —m

wi,s<—), j=m+i, i €{0,...,s},
Wj/N = S
0 otherwise,

then,

K(xr,x) =2 Y wyKGx, y)+ Y wK(y. D

yeXn y.iteXy
s .
Nx —m m+i
=K -2 ; K
(x, x) sz‘s( S ) <x, N)
i=0
N . .
Nx —m m+i m+j Nx —m
+.Zow”< 5 )K( N N )w/( s )
i,j=

_Zalpz (x) = 2szs<—)za1Pz(X)Pz< ;l>

=0

+o0o Ky .
m—+1 Nx —
=) a PZ(X)_ZPI< )wm( )’
=0 i=0 N §
+00 Ky
m—+i Nx —
= > a Z(Pl(x) P1< N ))wzs( )
I=s+1 i=0
+00 K s—1 k k
1 m—+i
- 3 s (T ()
I=s+1 i=0 \k= lk' ay N

s 400 . .
Nx —m m—+i m+j Nx —m
3 (P57 (S (57 (5 o (572
s = N N

N —s}
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where &; is areal number between x and ’”TJ” Since {w; s (x)};_ are Lagrange basic interpolating
functions based on {$}7_,, we have

d <Nx—m><m+i )k
£ ) N
=0

o (Nx—m)(m+sx(i/s) )k
ZZUJM — X
= K N

m-+s x (Nx —m)/s
("%

k
—x) =0, VI<k<s-—1.

Then, the original equation

2
*i"’ N ()( i ) (Nx—m)‘
= ajp l — X Wi s
o .
I=s+1 i=0 6 ’ §
2
1\? % . “|m+i s Nx —m
() S ool it o ()
[=s+1 oo 1i=0
2
1\2 252\ ‘ : Nx —m
<(2) (%) Zalmn] [zl ()
I=s+1 oo 1i=0
=2 ‘ 2
122\ & i )
<l = (= —P 2°
|:s! < N> :| Z ay’ ! (S )
I=s+1 00
2 4o0
2 2s
<[ B Y
(s — DIN®
I=s+1
where we have used the facts that || Py ||co < 1, || P; lloo <I?* and (see, [16])
> lwan@I<N2Y, xefo.1. O (13)

aeXy

Proof of Theorem 3.1. Since Xy = {%};V:O, we have by [16, Theorem 1] that for any x € [0, 1]
there holds

1/2
(ZS)ZA‘ +o0 s
f(x)—ng FEwa)| SIS lex (N <R x oo ,§1l4 :

1/s
Then for N > [ZR%] one has

F) = Y f@ws(x)

aeXn

< ﬁ.
2
Cl[0,1]
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On the other hand, since

oo |\ 112
[F = 1K (x, ), FOme | SRVE (r, ) <R (Zm) ,

=0
we have
+oo 1/2
I{f @} pxy <R <Zaz> (N + 12,
=0

By [2] we know that if E is a finite dimension space with dim E = m, then,
4
InAN(B,, &) <mln (—r> .
€

The dimension of /2(Xy) is N + 1. Let

+00 172
ri=R (Z a,) (N+D'?
=0

and ¢ = W Then, there exists {cl l=1,2,..., [%’]NH} C 12(XN) such that for any

d € I*(Xy) with lldll;2(x,)<r, we can find some / satisfying

!
ld —c ”lZ(XN) <e.

By (13) we have

D dwa(x) = Y dawy ()| <[ Y (Cé_doc) wy (x)

aeXy aeXy C aeXy C
< ld = ey w2 ex y ller=11
< N2Veg g

Since ||{ f (o) }xexy ll;2 <7, we have

fO) = Y w0 < fE) = Y Fwa(x)

aeXyN C aeXy C

+ Z chwy(x) — Z Sa)wey(x)

aeXy aeXy C

non
<Iil_y
Ty =0

We then have covered Ik (Bg) by balls with radii 7 and centers » , .y clwy (x). Therefore,

N (Tx(Br). 1) < (%)NH,
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1.e.,
mN(IK(BR),n) <(N+Dln (ﬂ)
&

oo\ 112
R
<(N+Dln 8<Zaz> (N + D22~
n

=0

Since 0 < n<2RC s~ %, for N}(%f')]/s we have N >s and % > 1. Therefore, we can
find N € N\ such that
2RCy )l/s
p .

NgZ(

Consequently,

172
2RC 1/s +00 2RC 1/s
1nN(1K(BR),r,)< 1+2<—1) (8> a 1+2<—‘)
n — n
1/s
» [2 <2RC1) 22(2Rcl/n>‘/f} 5}
n n
172
2R 1/s +o00 7R 1/s
=[1+2< Cl) }m 16<Za1 1+2< Cl)
n — n

s (R 14(1/s)
x(2C)) ! /F4ERE/D (-) . O
n

Proof of Corollary 3.1. Let s = 1 in Theorem 4.1. Then, we have by

f 4 </+°° dl 1 2%—oa+5
S 1+D* Ty A+Drt 22 25w =5)
that (9) holds. [J

Proof of Corollary 3.2. Takings =1, Y ¢’ = ﬁ and

S T U—f  U—qp Ta—qr ¢

in Theorem 4.1,we have (10). [

fﬂ I 24q4 3643 8¢ + 842 4q
(1
[=0

4. The general mercer kernels

Theorem 3.1 requires that K (x, y) has certain smoothness which even does not suit to the usual
sequence a; = (H;l)g For such case we should ask for another way. The interpolating property
and the uniformly boundedness of the local polynomial reproducing basis functions (see, [4,13])
remind us to construct a local polynomial reproducing basis functions associating with the knot
set X to take the place of Lagrange basic functions used in the proof of Theorem 3.1. We show

this way by a special Mercer kernel.
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Theorem 4.1. LetK(x,y) = Zl 0 (l+l)°‘ Pi(x)P(y), o > 2.Then, for0 < n < min{ ——=
%} there holds

InN (Ix(B <—3 Rl 3 (R ’ 14
! <K( R)’">\ TR (a—l)NW(?) ' o

To prove Theorem 4.1, we first give some lemmas.

Let V be a finite-dimensional vector space with norm || - ||y and let Z C V* be a finite
set consisting of N functionals. Here, V* denotes the dual space of V consisting of all linear
and continuous functionals defined on V. If the mapping T : V — T(V) C R" defined by
T (v) = {z(v)};cz is injective, we call T a sampling operator and Z a norming set for V.

3R
=122’

Lemma 4.1 (see, Wendland [13, Theorem 3.4]). Suppose Vis a finite-dimensional normed linear
space and Z = {z1,22,...,2N} is a norming set for V, T being the corresponding sampling
operator. For every \y € V* there exists a vector u € RN depending only on \ such that, for
everyv € V(v) = Zyzl ujz;j(v) and

lull eays < Il 1711, (15)
where

[vllv

I~ = —_— .
vevvioy 1T () lrw

Lemma 4.2. Let Xy be the knot set in Lemma 2.1. Then, there holds
%”P”LO‘J[O,I] < max [p)|<IpliLeo,11. P € Py (16)
N

Proof. Let Jy(x) be the Legendre orthogonal polynomial of order N on [—1, 1]. The zeroes of
Jn(x) are {xk,(N)}lly:_Ol in the increasing order Taking x; vy = cos O, 0<k <N — 1, we have by

[12, Theorem 6.3.2] that |61 — Ok | < 2N+1 Setu = 1+x , then, Py (u) = Jy(x). We thus have

™M = e, k=0,1,...,N —1.Let p € Py andp (x) = p(13%), x € [~1, 1]. Then,
14+ x0
Ipllzeo, 11 = [p@o)|l = |p*(xo)| = Ip* lLp—1,17, o = T

Let xk,, (n) be the nearest knot to xg, xg = cos 0y, xx,,(nv) = cos Ug,. Taking T (0) = p*(cos 0),
we have by the Bernstein inequality for trigonometrical polynomial and the mean theorem that
Pl 11 = Il p*ler—1,11 = |p* (x0)| = T (o)
< IT(90) T (Oko)| + 1T (O,

< T/ || 70
2N+1” | Loof0,271 + T (Ok,)|

N

T
————||IT ||z T
2eN 1 D) 1Tz [o,zn]+maX| (Op)]

N

00 ma
4N_’_zllp | oor— . X lp(x)]

< 2|pllzeqo.) + max |p(x)|.
xeXy

It follows that mgl{x [p(x)| > é I pll Lo<0,17- (16) thus holds. O
XEXN
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Lemma 4.3. Let Xy = {xaN Jo<a<n—1 be the knot set in Lemma 2.1. Then, for every x € [0, 1]

there exist real numbers u j(x) such that Z |u] (x)| <6 and
N—-1
> ui@pa) = p@). p e P (17)
j=0

Proof. Let(V, ||-|lv)=(Pn, ||I-|| ). Defining a sampling operator by T(p):{p(xo((N))}ogagN_l
e RY and equipping with R the [°°-norm, we know (RY, || - [l;=)* = (R, | - l;1) and by
(16) |IT~ 1) <6. Noticing that |0, (p)| = |p(x)| < || pllL~,we have by Lemma 4.1 that there are
functions uy(x), 2 = 1,2, ..., N — 1, such that (17) holds and

Do @IS NITT <6,

0<as<N-1

Proof of Theorem 4.1. By Lemma 3.1 what we need to do is to estimate g (N). In fact, let
Xy = (2" }o<u<n—1 be defined as in Lemma 2.1 and w ) = uy(x), % = 0,1,..., N — 1.
Then, by Lemma 4.3 and the fact that | P;(x)| <1 we have

K(x,x)—2 Z wyK(x,y) + Z wy K (y, Hw,

yeXy y,teXy
+00 1 2
= Z —(1 e P(x) — Z P](x(N))ua(x)
1=0
+oo N-1 2
I=[51+1 =0
400 2
Z - (Z |ua(x>|>
=[N+
2
“+o00
Z A+ +l)°‘
I=[51+1
144
< N
(2= D51+ 2)*!
3% x 23+
< .
(o — 1)(N +2)*~!
-+ 3 1/(@=1)
3x2 2 3x2 2 3295+
Hence, EK(N)g\/(a—T)(NH)a - If \/(a_;wﬁ)ail < Sk, then N + 2> (;T>

2/(o—1) 2\ 1/(@=1) 2/(a=1) —
(%) . From (%) (7’) >4 we have 0 < 5 < 3,/ %:TIR. We can thus
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find N € N such that N < 12‘/%% Lemma 3.1 makes

+00 1 3/2 NR
In A (Tx(Br).n) < N'n (8 (Z (I +l)°‘> o

=0
27— R 3 % 2U7T-0/2 s p 2
<12 )5—=m|——— (=
x—1n (a—1)? n
3 R 3 (R)Z
<——  —hn|—— (=) |. O
(0 — 12211 11 [(a—1)2¢2“17 n ]

We now give a corollary to compare Theorem 2.1 with Theorem 4.1.

Corollary 4.1. Let the Mercer kernel K (x, y) be defined as in Theorem 4.1. ¢ is the constant
. A/ (=127 R 3R

in Theorem 2.1. If e >2max{co, 1}, then for W < < W there are
constants C1 > 0, C > 0, which depend only on co and o, such that

2/(o+1) 2/(a+1)
1 /R 1 -
— = — —<InN(Ug(Bg),m<Ci | — =+ Ch. (18)
Ci \n C 1

—1)2x—7
If Y2 < 2max{eo. 1}, then for g < < 5B there are €| > 0.C) > 0,
which depend only on co and o, such that

1 R\ 2/ (4D 2/(o+1)
o (;> o <InN (g (Bk), )<C] (;) +0). (19)

i -3
where the & are determined by the F of In T

Proof. The Mercer kernel K (x, y) can be rewritten as

Pi(x)Pi(y)

Grrna e By el

+00
K(x,y)= Z(Zl+ 1) x
=0

and q;_ = W < lf% [ > 1. We have by Theorem 2.1 that for ¢y = J/Cand 0 < n< %
there holds

In2 R 2/(o+1)
0
If
. 3R R 3R
min s = s
V(o — 1)22=7 2max{co, 1} V(o — 1)2%7

then, the n and R in Theorem 4.1 satisfy 0 < n< ﬁ. In this case, for

R 3R

T —_— <—1
V(o — 1)207 = V(o= 1)2%7
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ie.,
V(@—12*"7 R
Lg_ < ,/(a — 1)201—7’
3 n
we have
S 3 R [R\?
ln/\/<IK(BR)J’I) < ————=—I (—)
(0 — 2211 71 n
3 R1 3
— —In
(o0 — 1)2a—11 n (o — 1)2, /u—17
_ 3 (R>2/(a(+1) (o — 1)20(_7 —(a—=1)/(a+1)
NN 3
xIn [(oc - 1)2“*7]
3A 3
B /(O( _ ])zocfll In (OC _ 1)2 /20:—17’ (21)
3 _ A=1)2%7 3
where for PN =i >1 we have A = Y, and for 0 < PN =i < 1 we have

A = /(e — 1)2%77. (20) and (21) make (18).
If

: 3R R R
min , = ;
/(o — 1)2¢=7 2max{co, 1} 2 max{cy, 1}

then the # and R in Theorem 4.1 satisfy 0 < 1< In this case, for

R
2 max{cg,1}"

R R
<N
6 max{co, 1} 2 max{co, 1}

i.e.,
R
2 max{cg, 1} < — < 6 max{cop, 1},
n
we have
3 R 2/(o+1)
n N (Tx(Br). 1) < ———— (-) (2 max{c, 1))~ D/G+D
V(=120 \n
x1n [36 max{c%, 1}]
3B 3
B /(a _ 1)2a—11 In (O( _ ])2,/20(717’ (22)
where for 3 >1 we have B = 2 max{cg, 1}, and for 0 < Wﬁ < 1 we have

(00— 1)2 20—17

B = 6 max{cg, 1}. (20) and (22) make (19).
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