The covering number for some Mercer kernel Hilbert spaces ${ }^{\text {T }}$

Sheng Baohuai*, Wang Jianli, Li Ping
Department of Mathematics, Shaoxing College of Arts and Sciences, Shaoxing, Zhejiang 312000, PR China
Received 13 October 2006; accepted 4 April 2007
Available online 4 May 2007

Abstract

In the present paper, we investigate the estimates for the covering number of a ball in a Mercer kernel Hilbert space on $[0,1]$. Let $P_{l}(x)$ be the Legendre orthogonal polynomial of order $l, a_{l}>0$ be real numbers satisfying $\sum_{l=0}^{+\infty} l a_{l}<+\infty$. Then, for the Mercer kernel function $$
K(x, t)=\sum_{l=0}^{+\infty} a_{l} P_{l}(x) P_{l}(t), \quad x, t \in[0,1],
$$ we provide the upper estimates of the covering number for the Mercer kernel Hilbert space reproducing from $K(x, t)$. For some particular a_{l} we give the lower estimates. Meanwhile, a kind of l^{2}-norm estimate for the inverse Mercer matrix associated with the Mercer kernel $K(x, t)$ is given. © 2007 Elsevier Inc. All rights reserved.

Keywords: Mercer kernel Hilbert spaces; Covering number; Legendre polynomials

1. Introduction

Let X be a compact set of the Euclidean space $\mathcal{R}^{n}, L^{2}(X)$ be the space of real square integrable functions with respect to a Borel measure v on X.

A function $K: X \times X \rightarrow \mathcal{R}$ which is continuous, symmetric and positive definite, i.e., for any finite set $\left\{x_{1}, \ldots, x_{m}\right\} \subset X$, the matrix $\left(K\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{m}$ is positive definite is called a Mercer kernel. The reproducing kernel Hilbert space \mathcal{H}_{K} associated with the kernel K is defined to be

[^0]the closure of the linear span of the set of functions $\{K(t, x): t \in X\}$ with the inner product satisfying
$$
\langle K(\cdot, x), f(\cdot)\rangle_{\mathcal{H}_{K}}=f(x), \quad x \in X, \quad f \in \mathcal{H}_{K}
$$

Define a Hilbert-Schmidt integral operator by means of this kernel as

$$
L_{K}(f, x)=\int_{X} K(x, t) f(t) d v(t), \quad x \in X, \quad f \in L_{v}^{2}(X)
$$

Then, $L_{K}(f, x)$ is a positive, compact operator and its range lies in $C(X)$.
Let $\left(\lambda_{j}\right)_{j=1}^{+\infty}$ denote the nonincreasing sequence of eigenvalues of L_{K} and $\left(\phi_{j}\right)_{j=1}^{+\infty}$ be the corresponding eigenfunctions. Then,

$$
K(x, t)=\sum_{j=1}^{+\infty} \lambda_{j} \phi_{j}(x) \phi_{j}(t), \quad x, t \in X
$$

where the series converges uniformly and absolutely.
\mathcal{H}_{K} can be imbedded into $C(X)$, and we denote the inclusion as $I_{K}: \mathcal{H}_{K} \rightarrow C(X)$. For this facts, see [2].

Let $R>0$ and B_{R} be the ball of \mathcal{H}_{K} with radius R :

$$
B_{R}:=\left\{f \in \mathcal{H}_{K}:\|f\|_{K} \leqslant R\right\}
$$

Then $I_{K}\left(B_{R}\right) \subset C(X)$. Denote its closure in $C(X)$ as $\overline{I_{K}\left(B_{R}\right)}$ which is a compact subset in $C(X)$.

Let \mathcal{N} be the set of natural numbers, S be a compact set in a metric space and $\eta>0$. The covering number $\mathcal{N}(S, \eta)$ of S is defined to be the minimal integer m such that there exist m disks with radius η covering S.

The covering number is often used to bounding the error between the empirical function and the target function (see, $[2,15]$). Thus, the estimates for the covering number of $\overline{I_{K}\left(B_{R}\right)}$ are needed in kernel machine learning. Both the upper bounds and the lower bounds for $\mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right)$ have been investigated in the literature [$3,10,14,16,17$].

A theorem of Zhou (see, [16]) has concluded the estimates for the covering numbers to the estimates of the l^{2}-norm of the inverse of the Mercer matrix A_{N}. It is known $\left\|A_{N}^{-1}\right\|_{l^{2}}$ equals the inverse of the smallest eigenvalue of the matrix A_{N}. This problem has a closely connection with the radial interpolation approximation (see, e.g., [13]) but are difficult to deal with. Some investigations of this field can be found from [5-7,11,13]. In the present paper, we shall provide, with the help of the Legendre orthogonal polynomials, a kind of estimate for the smallest eigenvalue of the matrix A_{N} for a kind of Mercer kernel function on $[0,1] \times[0,1]$ and thus give some lower and upper estimates for the bounds of the covering number.

Let $X=[0,1], P_{k}(x)$ be the Legendre orthogonal polynomial of order k on $[0,1]$. Then, $P_{k}(x)$ satisfy $\left|P_{k}(x)\right| \leqslant 1, x \in[0,1]$, and

$$
\int_{0}^{1} P_{n}(x) P_{m}(x) d x=\frac{\delta_{n, m}}{2 n+1},
$$

where $\delta_{n, m}$ is the δ function whose value is 1 if $n=m$ and whose value is 0 if $n \neq m$.

Let $\phi \in L^{1}[0,1]$ and its Fourier-Legendre coefficients $a_{k}(\phi)=\int_{0}^{1} \phi(u) P_{k}(u) d u$ satisfy $a_{k}(\phi)>0$ and $\sum_{l=0}^{+\infty} l a_{l}(\phi)<+\infty$. Then, the Mercer kernel $K(x, y)$ defined on $[0,1] \times[0,1]$ with $a_{k}(\phi)$ being its eigenvalues and $P_{k}(x)$ being its eigenfunctions has the representation

$$
\begin{equation*}
K(x, y):=\sum_{l=0}^{+\infty}(2 l+1) a_{l}(\phi) P_{l}(x) P_{l}(y), \quad x, y \in[0,1] . \tag{1}
\end{equation*}
$$

In fact, $K(x, y)$ is a kind of translation of ϕ. By [1,9] we know

$$
\begin{align*}
K(x, y)= & \frac{1}{\pi} \int_{0}^{1} \phi[(2 x-1)(2 y-1)+4(2 u-1) \sqrt{x(1-x) y(1-y)}] \\
& \times(u(1-u))^{-1 / 2} d u, \quad x, y \in[0,1] . \tag{2}
\end{align*}
$$

The generating function of the Legendre polynomials yields

$$
\frac{1}{\sqrt{(1+q)^{2}-4 x q}}=\sum_{l=0}^{+\infty} q^{l} P_{l}(x), \quad x \in[0,1], \quad 0<q<1 .
$$

Take $\phi_{q}(x)=\frac{1}{\sqrt{(1+q)^{2}-4 x q}}$, then $a_{l}\left(\phi_{q}\right)=\frac{q^{l}}{2 l+1}, l=0,1,2, \ldots$. We know by (1) and (2) that the Mercer kernel

$$
\begin{equation*}
K(x, y)=\sum_{l=0}^{+\infty} q^{l} P_{l}(x) P_{l}(y), \quad x, y \in[0,1] \tag{3}
\end{equation*}
$$

is

$$
\begin{aligned}
K(x, y)= & \frac{1}{\pi} \int_{0}^{1}\left((1+q)^{2}-4 q(2 x-1)(2 y-1)-16 q(2 u-1)\right. \\
& \times \sqrt{x(1-x) y(1-y)})^{-1 / 2}(u(1-u))^{-1 / 2} d u, \quad x, y \in[0,1]
\end{aligned}
$$

Let $K_{t}(x)=K(x, t)$ and \mathcal{H}_{K} be the closure of the linear span of $\left\{K_{t}(x): t \in[0,1]\right\}$. It is easy to check that for any distinct points $t_{1}, t_{2}, \ldots, t_{m} \in[0,1]$ the matrix $\left\{K_{t_{i}}\left(t_{k}\right)\right\}_{m \times m}$ is symmetric and positive definite. $K_{t}(x)$ is therefore a Mercer kernel. Defining a binary operation in \mathcal{H}_{K} by

$$
(f, g)_{\mathcal{H}_{K}}=\sum_{k, i} d_{i} c_{k} K_{t_{i}}\left(t_{k}\right)
$$

for $f(x)=\sum_{k} c_{k} K_{t_{k}}(x) \in \mathcal{H}_{K}$ and $g(x)=\sum_{i} d_{i} K_{t_{i}}(x) \in \mathcal{H}_{K}$, we have by [2] that \mathcal{H}_{K} will become a reproducing kernel Hilbert space.

Let $I_{K}: \mathcal{H}_{K} \rightarrow C[0,1]$ be the embedding operator from \mathcal{H}_{K} to $C[0,1], I_{K}\left(B_{R}\right)$ be the embedding of the ball with radius R.

We shall estimate the lower and the upper bounds of $\mathcal{N}\left(I_{K}\left(B_{R}\right), \eta\right)$. The paper is organized as follows. The lower bounds for $\mathcal{N}\left(I_{K}\left(B_{R}\right), \eta\right)$ is estimated in the second section. Choosing the knot set $X_{N}=\left\{x^{(N)}\right\}_{k=0}^{N-1}$ as the zeroes of the Legendre polynomial of order N and
taking $A_{N}=\left\{K_{t}(x)\right\}_{x, t \in X_{N}}$, we shall provide an upper estimate of $\left\|A_{N}^{-1}\right\|_{l^{2}\left(X_{N}\right)}$ with the help of the Gauss integral formula and the Lagrange interpolation operators for the algebraic polynomials. In the third section, we shall use the method given by Zhou in [16] to give some estimates for the upper bounds of the covering number under the condition that the series $\sum_{l=0}^{+\infty} l^{s} a_{l}$ is convergent for some real numbers $s \geqslant 4$. In the fourth section, we shall construct a kind of local algebraic polynomials reproducing basis functions, with which we give an upper estimate of the covering number $\mathcal{N}\left(I_{K}\left(B_{R}\right), \eta\right)$ for the Mercer kernel

$$
K(x, y)=\sum_{l=0}^{+\infty} \frac{1}{(1+l)^{\alpha}} \times P_{l}(x) P_{l}(y), \quad \alpha>2, \quad x, y \in[0,1] .
$$

Throughout this paper, we shall denote by \mathcal{N} the set of natural number. By \mathcal{R}^{N} we denote the N-dimensional Euclidean space, and by \mathcal{P}_{N} we denote the set of all algebraic polynomials of order $\leqslant N$. The biggest integer which $\leqslant a$ is denoted by $[a]$.

2. The lower bound estimates

In this section, we shall investigate the lower bound estimates of the covering numbers for some particular Mercer kernel Hilbert spaces.

Theorem 2.1. Let a_{l} be a decreasing sequence such that $0<a_{l-1} \leqslant \frac{C^{\prime}}{l^{\alpha}}$ for two given constants $C^{\prime}>0, \alpha>2$ and all $l, K(x, y)$ be a Mercer kernel defined as (1). Then, there exists a constant $c_{0}>0$ such that for $0<\eta \leqslant \frac{R}{2 c_{0}}$ there holds

$$
\begin{equation*}
\ln \mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right) \geqslant \frac{\ln 2}{2^{1+(2 / \alpha)} c_{0}^{2 / \alpha}}\left(\frac{R}{\eta}\right)^{2 / \alpha}-\ln 2 \tag{4}
\end{equation*}
$$

Corollary 2.1. Let $K(x, y)$ be the Mercer kernel defined by (3). Then, there is a constant $c_{0}>0$ such that for $0<\eta \leqslant \frac{R}{2 c_{0}}$ there holds

$$
\begin{equation*}
\ln \mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right) \geqslant \frac{\ln 2}{2^{5 / 3} c_{0}^{2 / 3}}\left(\frac{R}{\eta}\right)^{2 / 3}-\ln 2 \tag{5}
\end{equation*}
$$

To prove Theorem 2.1, we first give a lemma.
Lemma 2.1. Let $\phi \in L^{1}[0,1]$ satisfy $a_{l}(\phi)>0$ and $\sum_{l=0}^{+\infty} l a_{l}(\phi)<+\infty . N \geqslant 2$ is a given integer, $X_{N}=\left\{x_{k}^{(N)}\right\}_{k=0}^{N-1}$ is the knot set of the zeroes of the Legendre algebraic polynomial $P_{N}(x)$ and the zeroes are arranged in the increasing order, i.e.,

$$
0<x_{0}^{(N)}<x_{1}^{(N)}<\cdots<x_{N-1}^{(N)}<1
$$

$K(x, y)$ is defined as (1) and the matrix $A_{N}:=(K(x, y))_{x, y \in X_{N}}$. Then, there exists a constant $C>0$ such that

$$
\begin{equation*}
\left\|A_{N}^{-1}\right\|_{l^{2}\left(X_{N}\right)} \leqslant \frac{C}{N \min _{0 \leqslant l \leqslant N-1} a_{l}(\phi)} \tag{6}
\end{equation*}
$$

Proof. For any $V=\left(v_{0}, \ldots, v_{N-1}\right)^{\top} \in \mathcal{R}^{N}$ there holds

$$
\begin{aligned}
V^{\top} A_{N} V & =\sum_{k, j=0}^{N-1} v_{k} K_{x_{k}^{(N)}}\left(x_{j}^{(N)}\right) v_{j} \\
& =\sum_{k, j=0}^{N-1} v_{k} \sum_{l=0}^{+\infty}(2 l+1) a_{l}(\phi) P_{l}\left(x_{k}^{(N)}\right) P_{l}\left(x_{j}^{(N)}\right) v_{j} \\
& =\sum_{l=0}^{+\infty} a_{l}(\phi)\left|\sum_{k=0}^{N-1} v_{k} \sqrt{2 l+1} P_{l}\left(x_{k}^{(N)}\right)\right|^{2} \\
& \geqslant \min _{0 \leqslant l \leqslant N-1} a_{l}(\phi) \sum_{l=0}^{N-1}\left|\sum_{k=0}^{N-1} v_{k} \sqrt{2 l+1} P_{l}\left(x_{k}^{(N)}\right)\right|^{2} \\
& =\min _{0 \leqslant l \leqslant N-1} a_{l}(\phi) \int_{0}^{1}\left|\sum_{l=0}^{N-1}\left(\sum_{k=0}^{N-1} v_{k} \sqrt{2 l+1} P_{l}\left(x_{k}^{(N)}\right)\right) \sqrt{2 l+1} P_{l}(x)\right|^{2} d x \\
& =\min _{0 \leqslant l \leqslant N-1} a_{l}(\phi) \int_{0}^{1}\left|\sum_{k=0}^{N-1} v_{k}\left(\sum_{l=0}^{N-1}(2 l+1) P_{l}\left(x_{k}^{(N)}\right) P_{l}(x)\right)\right|^{2} d x .
\end{aligned}
$$

Take $K_{N}(x, y)=\sum_{l=0}^{N-1}(2 l+1) P_{l}(y) P_{l}(x)$, then

$$
\begin{aligned}
\sum_{k=0}^{N-1} v_{k}\left(\sum_{l=0}^{N-1}(2 l+1) P_{l}\left(x_{k}^{(N)}\right) P_{l}(x)\right) & =\sum_{k=0}^{N-1} v_{k} K_{N}\left(x, x_{k}^{(N)}\right) \\
& =\sum_{k=0}^{N-1} \frac{v_{k}}{\lambda_{k}^{(N)}} \times \lambda_{k}^{(N)} K_{N}\left(x, x_{k}^{(N)}\right) .
\end{aligned}
$$

Let

$$
l_{k, N}(x)=\frac{P_{N}(x)}{P_{N}^{\prime}\left(x_{k}^{(N)}\right)\left(x-x_{k}^{(N)}\right)}, \quad x \in[0,1], \quad k=0,1, \ldots, N-1
$$

be the Lagrange basic interpolating functions based on X_{N}, and

$$
L_{N}(x)=\sum_{k=0}^{N-1} \frac{v_{k}}{\lambda_{k}^{(N)}} l_{k, N}(x), \quad x \in[0,1],
$$

with the Cotes numbers on X_{N} being defined by

$$
\lambda_{k}^{(N)}=\int_{0}^{1} l_{k, N}^{2}(t) d t, \quad k=0,1, \ldots, N-1
$$

Then, the interpolating property of Lagrange basis functions makes

$$
L_{N}\left(x_{k}^{(N)}\right)=\frac{v_{k}}{\lambda_{k}^{(N)}}, \quad k=0,1,2, \ldots, N-1
$$

Therefore,

$$
\sum_{k=0}^{N-1} \frac{v_{k}}{\lambda_{k}^{(N)}} \times \lambda_{k}^{(N)} K_{N}\left(x, x_{k}^{(N)}\right)=\sum_{k=0}^{N-1} \lambda_{k}^{(N)} L_{N}\left(x_{k}^{(N)}\right) K_{N}\left(x, x_{k}^{(N)}\right) .
$$

Since $L_{N}(\cdot) K_{N}(x, \cdot) \in \mathcal{P}_{2 N-1}$, the Gauss integral formula (see, [12])

$$
\int_{0}^{1} p(x) d x=\sum_{k=0}^{N-1} \lambda_{k}^{(N)} p\left(x_{k}^{(N)}\right), \quad p \in \mathcal{P}_{2 N-1}
$$

yields

$$
\sum_{k=0}^{N-1} \lambda_{k}^{(N)} L_{N}\left(x_{k}^{(N)}\right) K_{N}\left(x, x_{k}^{(N)}\right)=\int_{0}^{1} L_{N}(u) K_{N}(x, u) d u=L_{N}(x)
$$

Hence,

$$
\begin{aligned}
V^{\top} A_{N} V & \geqslant \min _{0 \leqslant l \leqslant N-1} a_{l}(\phi) \int_{0}^{1}\left|L_{N}(x)\right|^{2} d x \\
& =\min _{0 \leqslant l \leqslant N-1} a_{l}(\phi) \int_{0}^{1}\left|\sum_{k=0}^{N-1} \frac{v_{k}}{\lambda_{k}^{(N)}} l_{k, N}(x)\right|^{2} d x \\
& =\min _{0 \leqslant l \leqslant N-1} a_{l}(\phi) \sum_{k=0}^{N-1} \frac{v_{k}^{2}}{\lambda_{k}^{(N)}} \\
& \geqslant \frac{\min _{0 \leqslant l \leqslant N-1} a_{l}(\phi)}{\max _{0 \leqslant l \leqslant N-1} \lambda_{l}^{(N)}} \sum_{k=0}^{N-1}\left|v_{k}\right|^{2} \\
& =\frac{\min _{0 \leqslant l \leqslant N-1} a_{l}(\phi)}{\max _{0 \leqslant l \leqslant N-1} \lambda_{l}^{(N)}} V^{\top} V
\end{aligned}
$$

where we have used the fact that (see, [12])

$$
\int_{0}^{1} l_{k, N}(x) l_{j, N}(x) d x=\lambda_{k}^{(N)} \delta_{k, j}
$$

It follows that $\frac{\min _{0 \leqslant l \leqslant N-1} a_{l}(\phi)}{\max _{0 \leqslant l \leqslant N-1} \lambda_{l}^{(N)}}$ is smaller than any eigenvalues of the matrix A_{N}. Hence,

$$
\begin{equation*}
\left\|A_{N}^{-1}\right\|_{l^{2}\left(X_{N}\right)} \leqslant \frac{\max _{0 \leqslant l \leqslant N-1} \lambda_{l}^{(N)}}{\min _{0 \leqslant l \leqslant N-1} a_{l}(\phi)} \tag{7}
\end{equation*}
$$

On the other hand, by [8] we know

$$
\lambda_{k}^{(N)}=\left[\sum_{l=0}^{N-1}\left|P_{l}\left(x_{k}^{(N)}\right)\right|^{2}\right]^{-1} \sim \frac{\sqrt{x_{k}^{(N)}\left(1-x_{k}^{(N)}\right)}}{N}
$$

i.e., there is a constant number $C>0$ such that

$$
\frac{1}{C} \frac{\sqrt{x_{k}^{(N)}\left(1-x_{k}^{(N)}\right)}}{N} \leqslant \lambda_{k}^{(N)} \leqslant \frac{C \sqrt{x_{k}^{(N)}\left(1-x_{k}^{(N)}\right)}}{N} .
$$

Then, (7) makes (6).
Lemma 2.1 provides an upper estimator for the l^{2}-norm of the inverse of the Mercer kernel matrix, itself is independence.

Proof of Theorem 2.1. We first recall the general lower bound estimates given by Zhou in [17]:
Let $X \subset \mathcal{R}^{n}$ be a compact set, K be a Mercer kernel on $X, N \in \mathcal{N}$, and $X_{N}:=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \in$ X yield an invertible Gramian matrix $A_{N}:=\left(K\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{N}$. Then,

$$
\mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \frac{\eta}{2}\right) \geqslant 2^{N}-1
$$

provided that $\left\|A_{N}^{-1}\right\|_{l^{2}} \leqslant \frac{1}{N}\left(\frac{R}{\eta}\right)^{2}$.
Let X_{N} and A_{N} be defined as in Lemma 2.1. Since a_{l} are decreasing on l and $a_{l} \leqslant \frac{C^{\prime}}{(1+l)^{\alpha}}$, we have by Lemma 2.1 that

$$
\left\|A_{N}^{-1}\right\|_{l^{2}\left(X_{N}\right)} \leqslant \frac{c_{0}^{2}}{N} \times N^{\alpha}, \quad c_{0}=\sqrt{\frac{C}{C^{\prime}}} .
$$

Hence, $c_{0}^{2} N^{\alpha} \leqslant\left(\frac{R}{\eta}\right)^{2}$. For $0<\eta \leqslant \frac{R}{c_{0}}$ we can choose $N \in \mathcal{N}$ such that

$$
c_{0}^{2} N^{\alpha} \leqslant\left(\frac{R}{\eta}\right)^{2}<c_{0}^{2}(N+1)^{\alpha} .
$$

It follows $N+1>\left[\frac{1}{c_{0}^{2}}\left(\frac{R}{\eta}\right)^{2}\right]^{1 / \alpha}$. Therefore,

$$
N \geqslant \frac{N+1}{2}>\frac{1}{2 c_{0}^{2 / \alpha}}\left(\frac{R}{\eta}\right)^{2 / \alpha}
$$

and

$$
\mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \frac{\eta}{2}\right) \geqslant 2^{N}-1 \geqslant 2^{N-1} \geqslant 2^{\frac{1}{2 c_{0}^{2 / \alpha}}\left(\frac{R}{\eta}\right)^{2 / \alpha}-1} .
$$

Consequently,

$$
\ln \mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \frac{\eta}{2}\right) \geqslant\left(\frac{1}{2 c_{0}^{2 / \alpha}}\left(\frac{R}{\eta}\right)^{2 / \alpha}-1\right) \ln 2
$$

(4) thus holds.

Proof of Corollary 2.1. Let $h=\frac{1}{q}-1$. Then for $N \geqslant 2$ we have $(1+h)^{N-1}>C_{N-1}^{2} h^{2}=$ $\frac{(N-1)(N-2)}{2} h^{2}$. It follows

$$
\frac{q^{N-1}}{2 N-1} \leqslant \frac{2}{(2 N-1)(N-1)(N-2) h^{2}} \leqslant \frac{8}{N^{3} h^{2}}=8\left(\frac{q}{1-q}\right)^{2} \frac{1}{N^{3}}
$$

Taking $\alpha=3, C^{\prime}=8\left(\frac{q}{1-q}\right)^{2}$ and $c_{0}=\sqrt{\frac{C}{C^{\prime}}}$ in Theorem 2.1, we have (5).

3. Mercer kernels with smoothness

If $a_{l}>0$ and there exists $s \geqslant 4$ such that $\sum_{l=0}^{+\infty} l^{s} a_{l}<+\infty$, then the Mercer kernel $K(x, y)=$ $\sum_{l=0}^{+\infty} a_{l} P_{l}(x) P_{l}(y)$ has certain smoothness. In this case, we can estimate the upper bounds of $\mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right)$ by the way given in [16]. We give the following results.

Theorem 3.1. Let $s \geqslant 1$ be an integer, $a_{l}>0$ and $\sum_{l=0}^{+\infty} l^{4 s} a_{l}<+\infty . K(x, y)=\sum_{l=0}^{+\infty} a_{l} P_{l}(x)$ $P_{l}(y)$ is thus a Mercerkernel on $[0,1] \times[0,1], C_{1} \geqslant \frac{(2 s)^{2 s}}{(s-1)!}\left(\sum_{l=s+1}^{+\infty} l^{4 s} a_{l}\right)^{1 / 2}$ is a constant number. Then for $0<\eta \leqslant 2 R C_{1} s^{-s}$ there holds

$$
\begin{align*}
\ln \mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right) \leqslant & {\left[1+2\left(\frac{2 R C_{1}}{\eta}\right)^{1 / s}\right] \ln \left[16\left(\sum_{l=0}^{+\infty} a_{l}\right)\left(1+2\left(\frac{2 R C_{1}}{\eta}\right)^{1 / s}\right)^{1 / 2}\right.} \\
& \left.\times\left(2 C_{1}\right)^{1 / s} 4^{\left(\left(2 R C_{1}\right) / \eta\right)^{1 / s}}\left(\frac{R}{\eta}\right)^{1+(1 / s)}\right] \tag{8}
\end{align*}
$$

Some special cases of Theorem 3.1 are following Corollaries.
Corollary 3.1. Let $K(x, y)=\sum_{l=0}^{+\infty} a_{l} P_{l}(x) P_{l}(y)$ be a Mercer kernel on $[0,1] \times[0,1]$ and there exists a constant $C>0$ such that $0<a_{l} \leqslant \frac{C}{(1+l)^{\alpha}}, \alpha>5$. Then, for $C_{1} \geqslant \frac{4\left(2^{\alpha}-\alpha+5\right)}{2^{\alpha}(\alpha-5)}$ and $0<\eta \leqslant 2 R C_{1}$ there holds

$$
\begin{align*}
\ln \mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right) \leqslant & \left(1+\frac{4 C_{1} R}{\eta}\right) \ln \left[\frac{16 C}{\alpha-1}\left(1+\frac{4 C_{1} R}{\eta}\right)^{1 / 2}\right. \\
& \left.\times 2 C_{1} 4^{\left(2 C_{1} R\right) / \eta}\left(\frac{R}{\eta}\right)^{2}\right] \tag{9}
\end{align*}
$$

Corollary 3.2. Let $K(x, y)$ be defined as (3). Then, for $C_{1} \geqslant 4\left(\frac{24 q^{4}}{(1-q)^{5}}+\frac{36 q^{3}}{(1-q)^{4}}-\frac{8 q+8 q^{2}}{(1-q)^{3}}+\right.$ $\left.\frac{4 q}{(1-q)^{2}}-q\right)$ and $0<\eta \leqslant 2 R C_{1}$ there holds

$$
\begin{align*}
\ln \mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right) \leqslant & \left(1+\frac{4 C_{1} R}{\eta}\right) \ln \left[\frac{16}{1-q}\left(1+\frac{4 C_{1} R}{\eta}\right)^{1 / 2}\right. \\
& \left.\times 2 C_{1} 4^{\left(2 C_{1} R\right) / \eta}\left(\frac{R}{\eta}\right)^{2}\right] \tag{10}
\end{align*}
$$

To prove Theorem 3.1, we first give some lemmas.
Assume that $\left\{X_{N}: N \in \mathcal{N}\right\}$ is a family of finite subsets of X such that

$$
d_{N}:=\max _{x \in X} \min _{y \in X_{N}} d(x, y) \rightarrow 0, \quad(N \rightarrow+\infty)
$$

This means that the discrete knot X_{N} becomes dense in X as N tends to the infinity. Let the function measuring the regularity of K be defined by

$$
\begin{aligned}
\varepsilon_{K}(N):=\sup _{x \in X} & {\left[\operatorname { i n f } \left(K(x, x)-2 \sum_{y \in X_{N}} w_{y} K(x, y)\right.\right.} \\
& \left.\left.+\sum_{y, t \in X_{N}} w_{y} K(y, t) w_{t}: w_{y} \in \mathcal{R}^{1}\right)^{1 / 2}\right]
\end{aligned}
$$

the cardinality of the set X_{N} be ΞX_{N}, and A_{N} be the positive definite matrix $A_{N}:=[K(y, t)]_{y, t \in X_{N}}$. Then, Zhou gave in [16] the following general upper estimate for the covering number $\mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right)$.

Lemma 3.1 (see, Zhou [16]). Let $K(x, y)$ be a Mercer kernel, I_{K} be given as in Section 1. Then for $0<\eta \leqslant \frac{R}{2}$ there holds

$$
\begin{equation*}
\ln \mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right) \leqslant\left(\Xi X_{N}\right) \ln \left[8\|K\|_{\infty}^{3 / 2}\left(\Xi X_{N}\right)\left\|A_{N}^{-1}\right\|_{l^{2}\left(X_{N}\right)} \frac{R}{\eta}\right] \tag{11}
\end{equation*}
$$

where N is any integer satisfying $\varepsilon_{K}(N) \leqslant \frac{\eta}{2 R}$.
Lemma 3.2. Let $s \geqslant 1$ be a given integer, $a_{l}>0$ satisfy $\sum_{l=0}^{+\infty} l^{4 s} a_{l}<+\infty$. $K(x, y)=$ $\sum_{l=0}^{+\infty} a_{l} P_{l}(x) P_{l}(y), x, y \in[0,1]$. Choose the knot set as $X_{N}=\left\{\frac{j}{N}\right\}_{j=0}^{N-1}$ and take

$$
\begin{aligned}
\varepsilon_{K}(N)= & \sup _{x \in[0,1]}\left[\operatorname { i n f } \left(K(x, x)-2 \sum_{y \in X_{N}} w_{y} K(x, y)\right.\right. \\
& \left.\left.+\sum_{y, t \in X_{N}} w_{y} K(y, t) w_{t}: w_{y}, w_{t} \in \mathcal{R}^{1}\right)^{1 / 2}\right]
\end{aligned}
$$

then, for $N \geqslant s$ there holds

$$
\begin{equation*}
\varepsilon_{K}(N) \leqslant \frac{(2 s)^{2 s}}{N^{s}(s-1)!}\left(\sum_{l=s+1}^{+\infty} l^{4 s} a_{l}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

Proof. Since $X_{N}=\left\{\frac{j}{N}\right\}_{j=0}^{N-1}$, we have $d_{N}=\frac{1}{N} \rightarrow 0,(N \rightarrow+\infty)$. As in [16], we define Lagrange interpolation functions

$$
w_{l, s}(t)=\prod_{j \in\{0,1,2, \ldots, s\} \backslash\{l\}} \frac{t-j / s}{l / s-j / s}=\prod_{j \in\{0,1,2, \ldots, s\} \backslash\{l\}} \frac{s t-j}{l-j}
$$

Then, $w_{l, s}\left(\frac{m}{s}\right)=\delta_{l, m}, l, m=0,1,2, \ldots, s$. For $x \in[0,1]$ we can find an $m \in\{0,1, \ldots, N-s\}$ such that $x \in\left[\frac{m}{N}, \frac{m+s}{N}\right]$. Choose

$$
w_{j / N}= \begin{cases}w_{i, s}\left(\frac{N x-m}{s}\right), & j=m+i, \quad i \in\{0, \ldots, s\} \\ 0 & \text { otherwise }\end{cases}
$$

then,

$$
\begin{aligned}
& K(x, x)-2 \sum_{y \in X_{N}} w_{y} K(x, y)+\sum_{y, t \in X_{N}} w_{y} K(y, t) w_{t} \\
& =K(x, x)-2 \sum_{i=0}^{s} w_{i, s}\left(\frac{N x-m}{s}\right) K\left(x, \frac{m+i}{N}\right) \\
& +\sum_{i, j=0}^{s} w_{i, s}\left(\frac{N x-m}{s}\right) K\left(\frac{m+i}{N}, \frac{m+j}{N}\right) w_{j, s}\left(\frac{N x-m}{s}\right) \\
& =\sum_{l=0}^{+\infty} a_{l} P_{l}^{2}(x)-2 \sum_{i=0}^{s} w_{i, s}\left(\frac{N x-m}{s}\right) \sum_{l=0}^{+\infty} a_{l} P_{l}(x) P_{l}\left(\frac{m+i}{N}\right) \\
& +\sum_{i, j=0}^{s} w_{i, s}\left(\frac{N x-m}{s}\right)\left(\sum_{l=0}^{+\infty} a_{l} P_{l}\left(\frac{m+i}{N}\right) P_{l}\left(\frac{m+j}{N}\right)\right) w_{j, s}\left(\frac{N x-m}{s}\right) \\
& =\sum_{l=0}^{+\infty} a_{l}\left(P_{l}^{2}(x)-2 \sum_{i=0}^{s} w_{i, s}\left(\frac{N x-m}{s}\right) P_{l}(x) P_{l}\left(\frac{m+i}{N}\right)\right. \\
& \left.+\sum_{i, j=0}^{s} w_{i, s}\left(\frac{N x-m}{s}\right) P_{l}\left(\frac{m+i}{N}\right) P_{l}\left(\frac{m+j}{N}\right) w_{j, s}\left(\frac{N x-m}{s}\right)\right) \\
& =\sum_{l=0}^{+\infty} a_{l}\left|P_{l}(x)-\sum_{i=0}^{s} P_{l}\left(\frac{m+i}{N}\right) w_{i, s}\left(\frac{N x-m}{s}\right)\right|^{2} \\
& =\sum_{l=s+1}^{+\infty} a_{l}\left|\sum_{i=0}^{s}\left(P_{l}(x)-P_{l}\left(\frac{m+i}{N}\right)\right) w_{i, s}\left(\frac{N x-m}{s}\right)\right|^{2} \\
& =\sum_{l=s+1}^{+\infty} a_{l} \left\lvert\, \sum_{i=0}^{s}\left(\sum_{k=1}^{s-1} \frac{1}{k!} \frac{\partial^{k}}{\partial y^{k}} P_{l}(x)\left(\frac{m+i}{N}-x\right)^{k}\right.\right. \\
& \left.+\frac{1}{s!} \frac{\partial^{s}}{\partial y^{s}} P_{l}\left(\xi_{i}\right)\left(\frac{m+i}{N}-x\right)^{s}\right)\left.w_{i, s}\left(\frac{N x-m}{s}\right)\right|^{2},
\end{aligned}
$$

where ξ_{i} is a real number between x and $\frac{m+i}{N}$. Since $\left\{w_{i, s}(x)\right\}_{i=0}^{s}$ are Lagrange basic interpolating functions based on $\left\{\frac{i}{s}\right\}_{i=0}^{S}$, we have

$$
\begin{aligned}
& \sum_{i=0}^{s} w_{i, s}\left(\frac{N x-m}{s}\right)\left(\frac{m+i}{N}-x\right)^{k} \\
& \quad=\sum_{i=0}^{s} w_{i, s}\left(\frac{N x-m}{s}\right)\left(\frac{m+s \times(i / s)}{N}-x\right)^{k} \\
& \quad=\left(\frac{m+s \times(N x-m) / s}{N}-x\right)^{k}=0, \quad \forall 1 \leqslant k \leqslant s-1 .
\end{aligned}
$$

Then, the original equation

$$
\begin{aligned}
& =\sum_{l=s+1}^{+\infty} a_{l}\left|\sum_{i=0}^{s} \frac{1}{s!} \frac{\partial^{s}}{\partial y^{s}} P_{l}\left(\xi_{i}\right)\left(\frac{m+i}{N}-x\right)^{s} w_{i, s}\left(\frac{N x-m}{s}\right)\right|^{2} \\
& \leqslant\left(\frac{1}{s!}\right)^{2} \sum_{l=s+1}^{+\infty} a_{l}\left\|\frac{\partial^{s}}{\partial y^{s}} P_{l}\right\|_{\infty}^{2}\left|\sum_{i=0}^{s}\right| \frac{m+i}{N}-\left.\left.x\right|^{s}\left|w_{i, s}\left(\frac{N x-m}{s}\right)\right|\right|^{2} \\
& \leqslant\left.\left(\frac{1}{s!}\right)^{2}\left(\frac{2 s^{2}}{N}\right)^{2 s} \sum_{l=s+1}^{+\infty} a_{l}\left\|\frac{\partial^{s}}{\partial y^{s}} P_{l}\right\|_{\infty}^{2}\left|\sum_{i=0}^{s}\right| w_{i, s}\left(\frac{N x-m}{s}\right)\right|^{2} \\
& \leqslant\left[\frac{1}{s!}\left(\frac{2 s^{2}}{N}\right)^{s}\right]^{2} \sum_{l=s+1}^{+\infty} a_{l}\left\|\frac{\partial^{s}}{\partial y^{s}} P_{l}\right\|_{\infty}^{2}\left(s 2^{s}\right)^{2} \\
& \leqslant\left[\frac{(2 s)^{2 s}}{(s-1)!N^{s}}\right]^{2} \sum_{l=s+1}^{+\infty} l^{4 s} a_{l},
\end{aligned}
$$

where we have used the facts that $\left\|P_{l}\right\|_{\infty} \leqslant 1,\left\|\frac{\partial^{s}}{\partial y^{s}} P_{l}\right\|_{\infty} \leqslant l^{2 s}$ and (see, [16])

$$
\begin{equation*}
\sum_{\alpha \in X_{N}}\left|w_{\alpha, N}(x)\right| \leqslant N 2^{N}, \quad x \in[0,1] \tag{13}
\end{equation*}
$$

Proof of Theorem 3.1. Since $X_{N}=\left\{\frac{j}{N}\right\}_{j=0}^{N}$, we have by [16, Theorem 1] that for any $x \in[0,1]$ there holds

$$
\left|f(x)-\sum_{\alpha \in X_{N}} f(\alpha) w_{\alpha}(x)\right| \leqslant\|f\|_{\mathcal{H}_{K}} \varepsilon_{K}(N) \leqslant R \times \frac{(2 s)^{2 s}}{N^{s}(s-1)!}\left(\sum_{l=s+1}^{+\infty} l^{4 s} a_{l}\right)^{1 / 2}
$$

Then for $N>\left[\frac{2 R C_{1}}{\eta}\right]^{1 / s}$ one has

$$
\left\|f(x)-\sum_{\alpha \in X_{N}} f(\alpha) w_{\alpha}(x)\right\|_{C[0,1]} \leqslant \frac{\eta}{2}
$$

On the other hand, since

$$
|f(x)|=\left|(K(x, \cdot), f(\cdot))_{\mathcal{H}_{K}}\right| \leqslant R \sqrt{K(x, x)} \leqslant R\left(\sum_{l=0}^{+\infty} a_{l}\right)^{1 / 2}
$$

we have

$$
\|\{f(\alpha)\}\|_{l^{2}\left(X_{N}\right)} \leqslant R\left(\sum_{l=0}^{+\infty} a_{l}\right)^{1 / 2}(N+1)^{1 / 2}
$$

By [2] we know that if E is a finite dimension space with $\operatorname{dim} E=m$, then,

$$
\ln \mathcal{N}\left(B_{r}, \varepsilon\right) \leqslant m \ln \left(\frac{4 r}{\varepsilon}\right) .
$$

The dimension of $l^{2}\left(X_{N}\right)$ is $N+1$. Let

$$
r:=R\left(\sum_{l=0}^{+\infty} a_{l}\right)^{1 / 2}(N+1)^{1 / 2}
$$

and $\varepsilon:=\frac{\eta}{2\left(N 2^{N}\right)}$. Then, there exists $\left\{c^{l}: l=1,2, \ldots,\left[\frac{4 r}{\varepsilon}\right]^{N+1}\right\} \subset l^{2}\left(X_{N}\right)$ such that for any $d \in l^{2}\left(X_{N}\right)$ with $\|d\|_{l^{2}\left(X_{N}\right)} \leqslant r$, we can find some l satisfying

$$
\left\|d-c^{l}\right\|_{l^{2}\left(X_{N}\right)} \leqslant \varepsilon
$$

By (13) we have

$$
\begin{aligned}
\left\|\sum_{\alpha \in X_{N}} c_{\alpha}^{l} w_{\alpha}(x)-\sum_{\alpha \in X_{N}} d_{\alpha} w_{\alpha}(x)\right\|_{C} & \leqslant\left\|\sum_{\alpha \in X_{N}}\left(c_{\alpha}^{l}-d_{\alpha}\right) w_{\alpha}(x)\right\|_{C} \\
& \leqslant\left\|d-c^{l}\right\|_{l^{2}\left(X_{N}\right)}\| \| w_{\alpha}(x)\left\|_{l^{2}\left(X_{N}\right)}\right\|_{C[-, 1]} \\
& \leqslant N 2^{N} \varepsilon \leqslant \frac{\eta}{2}
\end{aligned}
$$

Since $\left\|\{f(\alpha)\}_{\alpha \in X_{N}}\right\|_{l^{2}} \leqslant r$, we have

$$
\begin{aligned}
\left\|f(x)-\sum_{\alpha \in X_{N}} c_{\alpha}^{l} w_{\alpha}(x)\right\|_{C} \leqslant & \left\|f(x)-\sum_{\alpha \in X_{N}} f(\alpha) w_{\alpha}(x)\right\|_{C} \\
& +\left\|\sum_{\alpha \in X_{N}} c_{\alpha}^{l} w_{\alpha}(x)-\sum_{\alpha \in X_{N}} f(\alpha) w_{\alpha}(x)\right\|_{C} \\
\leqslant & \frac{\eta}{2}+\frac{\eta}{2}=\eta .
\end{aligned}
$$

We then have covered $I_{K}\left(B_{R}\right)$ by balls with radii η and centers $\sum_{\alpha \in X_{N}} c_{\alpha}^{l} w_{\alpha}(x)$. Therefore,

$$
\mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right) \leqslant\left(\frac{4 r}{\varepsilon}\right)^{N+1}
$$

i.e.,

$$
\begin{aligned}
\ln \mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right) & \leqslant(N+1) \ln \left(\frac{4 r}{\varepsilon}\right) \\
& \leqslant(N+1) \ln \left[8\left(\sum_{l=0}^{+\infty} a_{l}\right)^{1 / 2}(N+1)^{1 / 2}\left(N 2^{N}\right) \frac{R}{\eta}\right]
\end{aligned}
$$

Since $0<\eta \leqslant 2 R C_{1} s^{-s}$, for $N \geqslant\left(\frac{2 R C_{1}}{\eta}\right)^{1 / s}$ we have $N \geqslant s$ and $\frac{2 R C_{1}}{\eta} \geqslant 1$. Therefore, we can find $N \in \mathcal{N}$ such that

$$
N \leqslant 2\left(\frac{2 R C_{1}}{\eta}\right)^{1 / s}
$$

Consequently,

$$
\begin{aligned}
\ln \mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right) \leqslant & \left(1+2\left(\frac{2 R C_{1}}{\eta}\right)^{1 / s}\right) \ln \left[8\left(\sum_{l=0}^{+\infty} a_{l}\right)\left[1+2\left(\frac{2 R C_{1}}{\eta}\right)^{1 / s}\right]^{1 / 2}\right. \\
& \left.\times\left[2\left(\frac{2 R C_{1}}{\eta}\right)^{1 / s} 2^{2\left(2 R C_{1} / \eta\right)^{1 / s}}\right] \frac{R}{\eta}\right] \\
= & {\left[1+2\left(\frac{2 R C_{1}}{\eta}\right)^{1 / s}\right] \ln \left[16\left(\sum_{l=0}^{+\infty} a_{l}\right)\left[1+2\left(\frac{2 R C_{1}}{\eta}\right)^{1 / s}\right]^{1 / 2}\right.} \\
& \left.\times\left(2 C_{1}\right)^{1 / s} 4^{\left(2 R C_{1} / \eta\right)^{1 / s}}\left(\frac{R}{\eta}\right)^{1+(1 / s)}\right] .
\end{aligned}
$$

Proof of Corollary 3.1. Let $s=1$ in Theorem 4.1. Then, we have by

$$
\sum_{l=0}^{+\infty} \frac{l^{4}}{(1+l)^{\alpha}} \leqslant \int_{0}^{+\infty} \frac{d l}{(1+l)^{\alpha-4}}-\frac{1}{2^{\alpha}}=\frac{2^{\alpha}-\alpha+5}{2^{\alpha}(\alpha-5)}
$$

that (9) holds.
Proof of Corollary 3.2. Taking $s=1, \sum_{0}^{+\infty} q^{l}=\frac{1}{1-q}$, and

$$
\sum_{l=0}^{+\infty} l^{4} q^{l}=\frac{24 q^{4}}{(1-q)^{5}}+\frac{36 q^{3}}{(1-q)^{4}}-\frac{8 q+8 q^{2}}{(1-q)^{3}}+\frac{4 q}{(1-q)^{2}}-q
$$

in Theorem 4.1,we have (10).

4. The general mercer kernels

Theorem 3.1 requires that $K(x, y)$ has certain smoothness which even does not suit to the usual sequence $a_{l}=\frac{1}{(1+l)^{3}}$. For such case we should ask for another way. The interpolating property and the uniformly boundedness of the local polynomial reproducing basis functions (see, $[4,13]$) remind us to construct a local polynomial reproducing basis functions associating with the knot set X_{N} to take the place of Lagrange basic functions used in the proof of Theorem 3.1. We show this way by a special Mercer kernel.

Theorem 4.1. Let $K(x, y)=\sum_{l=0}^{+\infty} \frac{1}{(1+l)^{\alpha}} P_{l}(x) P_{l}(y), \alpha>2$.Then, for $0<\eta \leqslant \min \left\{\frac{3 R}{\sqrt{(\alpha-1) 2^{\alpha-7}}}\right.$, $\left.\frac{R}{2}\right\}$ there holds

$$
\begin{equation*}
\ln \mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right) \leqslant \frac{3}{\sqrt{(\alpha-1) 2^{\alpha-11}}} \frac{R}{\eta} \ln \left[\frac{3}{(\alpha-1)^{2} \sqrt{2^{\alpha-17}}}\left(\frac{R}{\eta}\right)^{2}\right] \tag{14}
\end{equation*}
$$

To prove Theorem 4.1, we first give some lemmas.
Let V be a finite-dimensional vector space with norm $\|\cdot\|_{V}$ and let $Z \subset V^{*}$ be a finite set consisting of N functionals. Here, V^{*} denotes the dual space of V consisting of all linear and continuous functionals defined on V. If the mapping $T: V \rightarrow T(V) \subset \mathcal{R}^{N}$ defined by $T(v)=\{z(v)\}_{z \in Z}$ is injective, we call T a sampling operator and Z a norming set for V.

Lemma 4.1 (see, Wendland [13, Theorem 3.4]). Suppose Vis a finite-dimensional normed linear space and $Z=\left\{z_{1}, z_{2}, \ldots, z_{N}\right\}$ is a norming set for V, T being the corresponding sampling operator. For every $\psi \in V^{*}$ there exists a vector $u \in \mathcal{R}^{N}$ depending only on ψ such that, for every $v \in V, \psi(v)=\sum_{j=1}^{N} u_{j} z_{j}(v)$ and

$$
\begin{equation*}
\|u\|_{\left(\mathcal{R}^{N}\right)^{*}} \leqslant\|\psi\|_{V^{*}}\left\|T^{-1}\right\|, \tag{15}
\end{equation*}
$$

where

$$
\left\|T^{-1}\right\|=\sup _{v \in V \backslash\{0\}} \frac{\|v\|_{V}}{\|T(v)\|_{\mathcal{R}^{N}}}
$$

Lemma 4.2. Let X_{N} be the knot set in Lemma 2.1. Then, there holds

$$
\begin{equation*}
\frac{1}{6}\|p\|_{L^{\infty}[0,1]} \leqslant \max _{x \in X_{N}}|p(x)| \leqslant\|p\|_{L^{\infty}[0,1]}, \quad p \in \mathcal{P}_{[N / 2]} \tag{16}
\end{equation*}
$$

Proof. Let $J_{N}(x)$ be the Legendre orthogonal polynomial of order N on $[-1,1]$. The zeroes of $J_{N}(x)$ are $\left\{x_{k,(N)}\right\}_{k=0}^{N-1}$ in the increasing order. Taking $x_{k,(N)}=\cos \theta_{k}, 0 \leqslant k \leqslant N-1$, we have by [12, Theorem 6.3.2] that $\left|\theta_{k+1}-\theta_{k}\right| \leqslant \frac{2 \pi}{2 N+1}$. Set $u=\frac{1+x}{2}$, then, $P_{N}(u)=J_{N}(x)$. We thus have $x_{k}^{(N)}=x_{k,(N)}, k=0,1, \ldots, N-1$. Let $p \in \mathcal{P}_{N / 2}$ and $p^{*}(x)=p\left(\frac{1+x}{2}\right), x \in[-1,1]$. Then,

$$
\|p\|_{L^{\infty}[0,1]}=\left|p\left(u_{0}\right)\right|=\left|p^{*}\left(x_{0}\right)\right|=\left\|p^{*}\right\|_{L^{\infty}[-1,1]}, \quad u_{0}=\frac{1+x_{0}}{2}
$$

Let $x_{k_{0},(N)}$ be the nearest knot to $x_{0}, x_{0}=\cos \theta_{0}, x_{k_{0},(N)}=\cos \theta_{k_{0}}$. Taking $T(\theta)=p^{*}(\cos \theta)$, we have by the Bernstein inequality for trigonometrical polynomial and the mean theorem that

$$
\begin{aligned}
\|p\|_{L^{\infty}[0,1]}=\left\|p^{*}\right\|_{L^{\infty}[-1,1]}=\left|p^{*}\left(x_{0}\right)\right| & =\left\|T\left(\theta_{0}\right)\right\| \\
& \leqslant\left|T\left(\theta_{0}\right)-T\left(\theta_{k_{0}}\right)\right|+\left|T\left(\theta_{k_{0}}\right)\right| \\
& \leqslant \frac{\pi}{2 N+1}\left\|T^{\prime}\right\|_{L^{\infty}[0,2 \pi]}+\left|T\left(\theta_{k_{0}}\right)\right| \\
& \leqslant \frac{N \pi}{2(2 N+1)}\|T\|_{L^{\infty}[0,2 \pi]}+\max _{\theta_{k}}\left|T\left(\theta_{k}\right)\right| \\
& \leqslant \frac{N \pi}{4 N+2}\left\|p^{*}\right\|_{L^{\infty}[-1,1]}+\max _{x \in X_{N}}|p(x)| \\
& \leqslant \frac{5}{6}\|p\|_{L^{\infty}[0,1]}+\max _{x \in X_{N}}|p(x)| .
\end{aligned}
$$

It follows that $\max _{x \in X_{N}}|p(x)| \geqslant \frac{1}{6}\|p\|_{L^{\infty}[0,1]}$. (16) thus holds.

Lemma 4.3. Let $X_{N}=\left\{x_{\alpha}^{(N)}\right\}_{0 \leqslant \alpha \leqslant N-1}$ be the knot set in Lemma 2.1. Then,for every $x \in[0,1]$ there exist real numbers $u_{j}(x)$ such that $\sum_{j=0}^{N-1}\left|u_{j}(x)\right| \leqslant 6$ and

$$
\begin{equation*}
\sum_{j=0}^{N-1} u_{j}(x) p\left(x_{j}^{(N)}\right)=p(x), \quad p \in \mathcal{P}_{[N / 2]} \tag{17}
\end{equation*}
$$

Proof. Let $\left(V,\|\cdot\|_{V}\right)=\left(\mathcal{P}_{N},\|\cdot\|_{L^{\infty}}\right)$. Defining a sampling operator by $T(p)=\left\{p\left(x_{\alpha}^{(N)}\right)\right\}_{0 \leqslant \alpha \leqslant N-1}$ $\in \mathcal{R}^{N}$ and equipping with \mathcal{R}^{N} the $l^{\infty}{ }_{-}$norm, we know $\left(\mathcal{R}^{N},\|\cdot\|_{l^{\infty}}\right)^{*}=\left(\mathcal{R}^{N},\|\cdot\|_{l^{1}}\right)$ and by (16) $\left\|T^{-1}\right\| \leqslant 6$. Noticing that $\left|\delta_{x}(p)\right|=|p(x)| \leqslant\|p\|_{L^{\infty}, \text { we have by Lemma } 4.1 \text { that there are }}$ functions $u_{\alpha}(x), \alpha=1,2, \ldots, N-1$, such that (17) holds and

$$
\sum_{0 \leqslant \alpha \leqslant N-1}\left|u_{\alpha}(x)\right| \leqslant\left\|\delta_{x}\right\|\left\|T^{-1}\right\| \leqslant 6
$$

Proof of Theorem 4.1. By Lemma 3.1 what we need to do is to estimate $\varepsilon_{K}(N)$. In fact, let $X_{N}=\left\{x_{\alpha}^{(N)}\right\}_{0 \leqslant \alpha \leqslant N-1}$ be defined as in Lemma 2.1 and $w_{x_{\alpha}^{(N)}}=u_{\alpha}(x), \alpha=0,1, \ldots, N-1$. Then, by Lemma 4.3 and the fact that $\left|P_{l}(x)\right| \leqslant 1$ we have

$$
\begin{aligned}
& K(x, x)-2 \sum_{y \in X_{N}} w_{y} K(x, y)+\sum_{y, t \in X_{N}} w_{y} K(y, t) w_{t} \\
& \quad=\sum_{l=0}^{+\infty} \frac{1}{(1+l)^{\alpha}}\left|P_{l}(x)-\sum_{\alpha=0}^{N-1} P_{l}\left(x_{\alpha}^{(N)}\right) u_{\alpha}(x)\right|^{2} \\
& \quad \leqslant \sum_{l=\left[\frac{N}{2}\right]+1}^{+\infty} \frac{1}{(1+l)^{\alpha}}\left|\sum_{\alpha=0}^{N-1}\left(P_{l}(x)-P_{l}\left(x_{\alpha}^{(N)}\right)\right) u_{\alpha}(x)\right|^{2} \\
& \quad \leqslant 4 \sum_{l=\left[\frac{N}{2}\right]+1}^{+\infty} \frac{1}{(1+l)^{\alpha}}\left(\sum_{\alpha=0}^{N-1}\left|u_{\alpha}(x)\right|\right)^{2} \\
& \quad \leqslant 144 \sum_{l=\left[\frac{N}{2}\right]+1}^{+\infty} \frac{1}{(1+l)^{\alpha}} \\
& \quad \leqslant \frac{144}{(\alpha-1)\left(\left[\frac{N}{2}\right]+2\right)^{\alpha-1}} \\
& \quad \leqslant \frac{3^{2} \times 2^{3+\alpha}}{(\alpha-1)(N+2)^{\alpha-1}} .
\end{aligned}
$$

Hence, $\varepsilon_{K}(N) \leqslant \frac{3 \times 2^{\frac{3+\alpha}{2}}}{\sqrt{(\alpha-1)(N+2)^{\alpha-1}}}$. If $\frac{3 \times 2^{\frac{3+\alpha}{2}}}{\sqrt{(\alpha-1)(N+2)^{\alpha-1}}}<\frac{\eta}{2 R}$, then $N+2 \geqslant\left(\frac{3^{2} \times 2^{5+\alpha}}{\alpha-1}\right)^{1 /(\alpha-1)}$ $\left(\frac{R}{\eta}\right)^{2 /(\alpha-1)}$. From $\left(\frac{3^{2} \times 2^{5+\alpha}}{\alpha-1}\right)^{1 /(\alpha-1)}\left(\frac{R}{\eta}\right)^{2 /(\alpha-1)} \geqslant 4$ we have $0<\eta<3 \sqrt{\frac{2^{7-\alpha}}{\alpha-1}} R$. We can thus
find $N \in \mathcal{N}$ such that $N \leqslant 12 \sqrt{\frac{2^{7-\alpha}}{\alpha-1}} \frac{R}{\eta}$. Lemma 3.1 makes

$$
\begin{aligned}
\ln \mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right) & \leqslant N \ln \left(8\left(\sum_{l=0}^{+\infty} \frac{1}{(1+l)^{\alpha}}\right)^{3 / 2} \frac{N R}{\eta}\right) \\
& \leqslant 12 \sqrt{\frac{2^{7-\alpha}}{\alpha-1}} \frac{R}{\eta} \ln \left[\frac{3 \times 2^{(17-\alpha) / 2}}{(\alpha-1)^{2}}\left(\frac{R}{\eta}\right)^{2}\right] \\
& \leqslant \frac{3}{\sqrt{(\alpha-1) 2^{\alpha-11}}} \frac{R}{\eta} \ln \left[\frac{3}{(\alpha-1)^{2} \sqrt{2^{\alpha-17}}}\left(\frac{R}{\eta}\right)^{2}\right] .
\end{aligned}
$$

We now give a corollary to compare Theorem 2.1 with Theorem 4.1.
Corollary 4.1. Let the Mercer kernel $K(x, y)$ be defined as in Theorem 4.1. c_{0} is the constant in Theorem 2.1. If $\frac{\sqrt{(\alpha-1) 2^{\alpha-7}}}{3} \geqslant 2 \max \left\{c_{0}, 1\right\}$, then for $\frac{R}{\sqrt{(\alpha-1) 2^{\alpha-7}}}<\eta \leqslant \frac{3 R}{\sqrt{(\alpha-1) 2^{\alpha-7}}}$ there are constants $C_{1}>0, C_{2}>0$, which depend only on c_{0} and α, such that

$$
\begin{equation*}
\frac{1}{C_{1}}\left(\frac{R}{\eta}\right)^{2 /(\alpha+1)}-\frac{1}{C_{2}} \leqslant \ln \mathcal{N}\left(\overline{I_{K}\left(B_{K}\right)}, \eta\right) \leqslant C_{1}\left(\frac{R}{\eta}\right)^{2 /(\alpha+1)} \pm C_{2} \tag{18}
\end{equation*}
$$

If $\frac{\sqrt{(\alpha-1) 2^{\alpha-7}}}{3}<2 \max \left\{c_{0}, 1\right\}$, then for $\frac{R}{6 \max \left\{c_{0}, 1\right\}}<\eta \leqslant \frac{R}{2 \max \left\{c_{0}, 1\right\}}$ there are $C_{1}^{\prime}>0, C_{2}^{\prime}>0$, which depend only on c_{0} and α, such that

$$
\begin{equation*}
\frac{1}{C_{1}^{\prime}}\left(\frac{R}{\eta}\right)^{2 /(\alpha+1)}-\frac{1}{C_{2}^{\prime}} \leqslant \ln \mathcal{N}\left(\overline{I_{K}\left(B_{K}\right)}, \eta\right) \leqslant C_{1}^{\prime}\left(\frac{R}{\eta}\right)^{2 /(\alpha+1)} \pm C_{2}^{\prime} \tag{19}
\end{equation*}
$$

where the \pm are determined by the \mp of $\ln \frac{3}{(\alpha-1)^{2} \sqrt{2^{\alpha-17}}}$.
Proof. The Mercer kernel $K(x, y)$ can be rewritten as

$$
K(x, y)=\sum_{l=0}^{+\infty}(2 l+1) \times \frac{P_{l}(x) P_{l}(y)}{(2 l+1)(1+l)^{\alpha}}, \quad x, y \in[0,1]
$$

and $a_{l-1}=\frac{1}{(2 l-1) l^{\alpha}} \leqslant \frac{1}{l^{\alpha+1}}, l>1$. We have by Theorem 2.1 that for $c_{0}=\sqrt{C}$ and $0<\eta \leqslant \frac{R}{2 c_{0}}$ there holds

$$
\begin{equation*}
\ln \mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right) \geqslant \frac{\ln 2}{2^{1+\frac{2}{\alpha+1}} c_{0}^{2 /(\alpha+1)}}\left(\frac{R}{\eta}\right)^{2 /(\alpha+1)}-\ln 2 \tag{20}
\end{equation*}
$$

If

$$
\min \left\{\frac{3 R}{\sqrt{(\alpha-1) 2^{\alpha-7}}}, \frac{R}{2 \max \left\{c_{0}, 1\right\}}\right\}=\frac{3 R}{\sqrt{(\alpha-1) 2^{\alpha-7}}},
$$

then, the η and R in Theorem 4.1 satisfy $0<\eta \leqslant \frac{3 R}{\sqrt{(\alpha-1) 2^{\alpha-7}}}$. In this case, for

$$
\frac{R}{\sqrt{(\alpha-1) 2^{\alpha-7}}}<\eta \leqslant \frac{3 R}{\sqrt{(\alpha-1) 2^{\alpha-7}}}
$$

i.e.,

$$
\frac{\sqrt{(\alpha-1) 2^{\alpha-7}}}{3} \leqslant \frac{R}{\eta}<\sqrt{(\alpha-1) 2^{\alpha-7}}
$$

we have

$$
\begin{align*}
\ln \mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right) \leqslant & \frac{3}{\sqrt{(\alpha-1) 2^{\alpha-11}}} \frac{R}{\eta} \ln \left(\frac{R}{\eta}\right)^{2} \\
& -\frac{3}{\sqrt{(\alpha-1) 2^{\alpha-11}}} \frac{R}{\eta} \ln \frac{3}{(\alpha-1)^{2} \sqrt{2^{\alpha-17}}} \\
\leqslant & \frac{3}{\sqrt{(\alpha-1) 2^{\alpha-11}}}\left(\frac{R}{\eta}\right)^{2 /(\alpha+1)}\left(\frac{\sqrt{(\alpha-1) 2^{\alpha-7}}}{3}\right)^{-(\alpha-1) /(\alpha+1)} \\
& \times \ln \left[(\alpha-1) 2^{\alpha-7}\right] \\
& -\frac{3 A}{\sqrt{(\alpha-1) 2^{\alpha-11}}} \ln \frac{3}{(\alpha-1)^{2} \sqrt{2^{\alpha-17}}} \tag{21}
\end{align*}
$$

where for $\frac{3}{(\alpha-1)^{2} \sqrt{2^{\alpha-17}}} \geqslant 1$ we have $A=\frac{\sqrt{(\alpha-1) 2^{\alpha-7}}}{3}$, and for $0<\frac{3}{(\alpha-1)^{2} \sqrt{2^{\alpha-17}}}<1$ we have $A=\sqrt{(\alpha-1) 2^{\alpha-7}}$. (20) and (21) make (18).

If

$$
\min \left\{\frac{3 R}{\sqrt{(\alpha-1) 2^{\alpha-7}}}, \frac{R}{2 \max \left\{c_{0}, 1\right\}}\right\}=\frac{R}{2 \max \left\{c_{0}, 1\right\}},
$$

then the η and R in Theorem 4.1 satisfy $0<\eta \leqslant \frac{R}{2 \max \left\{c_{0}, 1\right\}}$. In this case, for

$$
\frac{R}{6 \max \left\{c_{0}, 1\right\}}<\eta \leqslant \frac{R}{2 \max \left\{c_{0}, 1\right\}},
$$

i.e.,

$$
2 \max \left\{c_{0}, 1\right\} \leqslant \frac{R}{\eta}<6 \max \left\{c_{0}, 1\right\}
$$

we have

$$
\begin{align*}
\ln \mathcal{N}\left(\overline{I_{K}\left(B_{R}\right)}, \eta\right) \leqslant & \frac{3}{\sqrt{(\alpha-1) 2^{\alpha-11}}}\left(\frac{R}{\eta}\right)^{2 /(\alpha+1)}\left(2 \max \left\{c_{0}, 1\right\}\right)^{-(\alpha-1) /(\alpha+1)} \\
& \times \ln \left[36 \max \left\{c_{0}^{2}, 1\right\}\right] \\
& -\frac{3 B}{\sqrt{(\alpha-1) 2^{\alpha-11}}} \ln \frac{3}{(\alpha-1)^{2} \sqrt{2^{\alpha-17}}}, \tag{22}
\end{align*}
$$

where for $\frac{3}{(\alpha-1)^{2} \sqrt{2^{\alpha-17}}} \geqslant 1$ we have $B=2 \max \left\{c_{0}, 1\right\}$, and for $0<\frac{3}{(\alpha-1)^{2} \sqrt{2^{\alpha-17}}}<1$ we have $B=6 \max \left\{c_{0}, 1\right\}$. (20) and (22) make (19).

Acknowledgments

The authors thank the referees for their valuable comments on this paper which made them rewrite this paper in a better form.

References

[1] R. Askey, S. Wainger, A convolution structure for Jacobi series, Am. J. Math. 91 (1969) 463-485.
[2] F. Cucker, S. Smale, On the mathematical foundations of learning, Bull. Am. Math. Soc. 39 (1) (2001) 1-49.
[3] Y. Guo, P.L. Bartlett, J. Shawe-Taylor, R.C. Williamson, Covering numbers for support vector machines, IEEE Trans. Inf. Theory 48 (2002) 239-250.
[4] K. Jetter, J. Stǒckler, J.D. Ward, Error estimates for scattered data interpolation on spheres, Math. Comput. 68 (226) (1999) 733-747.
[5] F.J. Narcowich, N. Sivakumar, J.D. Ward, On condition numbers associated with radial function interpolation, J. Math. Anal. Appl. 186 (1994) 457-485.
[6] F.J. Narcowich, J.D. Ward, Norms of inverses and condition numbers for matrices associated with scattered data, J. Approx. Theory 64 (1991) 69-94.
[7] F.J. Narcowich, J.D. Ward, Norms estimates for the inverses of a general class of scattered data radial function interpolation matrices, J. Approx. Theory 69 (1992) 84-109.
[8] P. Nevai, P. Vertesi, Mean convergence of Hermite-Fejér interpolation, J. Math. Anal. Appl. 105 (1) (1985) 26-58.
[9] V.S. Pawelke, Ein satz vom Jacksonschen type für algebraische polynome, Acta Sci. Math (Szeged) 33 (1972) 323-336.
[10] M. Pontil, A note on different covering numbers in learning theory, J. Complexity 19 (2003) 665-671.
[11] R. Schaback, Lower bounds for norms of inverses interpolation matrices for radial basis functions, J. Approx. Theory 79 (1994) 287-306.
[12] G. Szegŏ, Orthogonal Polynomials, American Mathematical Society, New York, 1967.
[13] H. Wendland, Scattered Data Approximation, Cambridge University Press, Cambridge, 2005.
[14] R.C. Williamson, A.J. Smola, B. Schŏlkopf, Generalization performance of regularization networks and support vector machine via entropy numbers of compact operators, IEEE Trans. Inf. Theory 47 (6) (2001) 2516-2532.
[15] Q. Wu, Y.M. Ying, D.X. Zhou, Learning theory: from regression to classification, in: Topics in Multivariate Approximation and Interpolation, Elsevier B.V., Amsterdam, 2004.
[16] D.X. Zhou, The covering number in learning theory, J. Complexity 18 (2002) 739-767.
[17] D.X. Zhou, Capacity of reproducing kernel spaces in learning theory, IEEE Trans. Inf. Theory 49 (7) (2003) 1743-1752.

[^0]: This work is supported by the national NSF of China.

 * Corresponding author.

 E-mail address: shengbaohuai@hotmail.com (S. Baohuai).

