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Abstract 

Acoustic metamaterials (AMM) are heterogeneous materials with dynamic subwavelength structures that can generate useful 
effective responses of interest to ultrasonic imaging applications such as negative refraction and zero index. Traditional effective 
medium models fail to capture details of frequency dependent AMM response and can give non-causal properties. This work 
derives non-local expressions for effective properties for an infinite periodic lattice of heterogeneities in an isotropic fluid using 
conservation of mass and momentum and the equation of state. The resulting model correctly predicts a causal effective material 
response by considering coupling between the ensemble-averaged volume strain and momentum fields. 
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1. Introduction 

Acoustic metamaterials (AMM) are heterogeneous materials that often consist of dynamic subwavelength 
structures in a background medium. AMM are of interest in ultrasonic imaging applications because of their 
potential to generate negative refraction and zero-index. However, traditional effective medium models fail to 
properly capture the frequency dependent response of these materials. Generally, simple unit cell volume averaging 
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techniques are employed to estimate the effective density and compressibility (or bulk modulus). This procedure 
leads to mass density and compressibility estimates that neglect non-local contributions to the overall response. 
Because AMM often employ sub-wavelength resonances to generate extreme parameters, non-local effects can be 
non-negligible and should be considered. Further, when either of these parameters become large, the wavelength 
becomes small and the complex field amplitudes in the medium can no longer approximated by a simple volume 
average of the microscopic field. Recent dynamic homogenization schemes in heterogeneous electromagnetic (EM) 
and elastic materials indicate that EM bianisotropy and elastic momentum-strain and stress-velocity field coupling is 
required to correctly describe the effective behavior of metamaterials [1-3]. Notably, the determination of material 
coupling terms in EM resolves apparent violations of causality and passivity that is present in earlier models [4]. 
This work employs a source-driven homogenization scheme to derive expressions for effective properties of an 
infinite periodic lattice of fluid heterogeneities in fluid medium from first principles. The result is a physically 
meaningful effective material response that explicitly shows the existence of coupling between the ensemble-
averaged volumetric strain and momentum fields. 

2. Microscopic and averaged fields 

Consider a lossless homogeneous fluid characterized by mass density, 0 , and adiabatic compressibility, 0 , 
containing externally controlled, distributed sources with complex time-harmonic body forces, extf , and volume 
sources, extq . In all cases, ik r i te e  plane wave dependence is assumed. The resulting complex amplitudes for the 
acoustic pressure and particle velocity fields are determined from the momentum and mass conservation equations: 

ext 0 ext ext ext 0 ext ext, .ikp i u f ik u i p q  (1) 

Space and time dependencies have been suppressed. Now introduce a periodic array of scatters into the fluid 
containing the sources. The conservation equations allow for the exact evaluation of the microscopic fields at any 
point in the medium which can be expressed in terms of monopole and dipole polarizations, B  and P a, respectively, 

0 ext 0 ext, .ik r ik rp r i u r i r f e u r i p r i r q eP a B   (2) 

The polarizations are functions of the contrast in material density and compressibility and provide physical 
insight into how the inclusions alter the overall response of the heterogeneous medium, facilitating the derivation of 
effective parameters. Equation (3) gives the conservation relations for the ensemble-averaged fields as a function of 
the background material properties, 0  and 0 , the appropriately averaged polarizations, and the same externally-
controlled sources considered in (2), though the averaged field amplitudes are independent of the actual source 
distribution in general. Note that these averaged field amplitudes are not merely spatial averages of the microscopic 
fields over some unit cell, as these cannot account for non-local effects which become significant when extreme 
parameters are present. As shown in [1], true averaged field amplitudes can be analytically determined by using the 
Taylor expansion of the spatial dependence ik re , accounting for multiple scattering effects, and combining 
associated terms. 

av 0 av av ext av 0 av av extikp i u i f ik u i p i qP a B   (3) 

The dynamic equations in (3) describe the acoustic variables in an effective fluid that varies from the background 
fluid. In this approach, the averaged polarization terms avP a and avB  are used to account for material property 
variations. The interpretation of the polarization terms determines the constitutive relation. Then, the averaged 
momentum density, av 0 av avuñ P a , and volume strain, av 0 av avp B , are defined as auxiliary acoustic fields in 
the homogenized media. Equation (4) presents two possible approximations for auxiliary fields. The first assumed 
that the auxiliary field is proportional to a single primary field. This is known as the equivalent parameter 
approximation. The second assumes that there is a contribution from both primary fields to both auxiliary fields. 
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This is known as the effective parameter approximation. The constitutive parameters allow for an anisotropic mass 
density tensor and general macroscopic coupling vectors: eff  and eff . In the following section, these macroscopic 
coupling terms will be derived from properties of the lattice; 

av eq av eff av eff av av eq av eff av eff av, .u u p p u pñ   (4) 

3. Unit cell and lattice interaction 

The polarizations, avP a  and avB , are assumed to be directly related to the scattered monopole and dipole fields 
generated at the center of the lmnth unit cell. Those monopole and dipole contributions to the polarizations are 
denoted as blmn  and plmn , respectively, where blmn  has units of volume, and plmn  has units of momentum. In terms 
of the local fields, the overall polarizations in the unit cell centered at the origin can be expressed through effective 
polarizabilities, x , which have units of volume and characterize the response of the inclusions to the local field. 
This is shown explicitly in Eq. (5). Anisotropy in mass density is introduced through the second order tensor u , 
and coupling between moments due to asymmetries in the unit cell are accounted for via c . All polarizabilities 
must follow reciprocity as it is induced by the microscopic local fields [1]. 

cell av 0 000 0 loc c loc 0 cell av 0 000 0 loc c loc 0/ p / / / b /u pV u i p Z V p i u ZP a B   (5) 

The induced moments can be treated as momentum and volume source terms at each inclusion location and can 
be written using the Floquet condition as 000p p lmnik r

lmn e  and 000b b lmnik r
lmn e , where ( , , )lmnr ld md nd  are the 

locations of the inclusions, and d  is the representative length of the unit cell, i.e. 3
cellV d . The local field is thus the 

sum of the external field and the scattering from the rest of the array: i.e. loc array extp p p . The field contributions 
from the remainder of the array not at the origin can be calculated using the free space Green's functions and the 
Floquet condition, by treating the inclusions as point sources with monopole and dipole contributions. Noting that 

000 000p̂pp , the local pressure and particle velocity at the origin can therefore be expressed using monopole-
monopole, dipole-dipole, and coupled lattice interaction coefficients, 2

0 (0 | ) lmnik rp lmnC k g r e , 
0ˆ ˆp ( | ) | plmnik ru lmn rC g r r e , and 0c 0 ˆ( | ) | plmnik rlmn rC ik g r r e , respectively, where summations are 

performed over all ( (0,0,0), , )l m n . As a result, multiple scattering effects yield, 

000 000 000 000
loc c ext loc 0 c ext

0 0 0 0 0

p b b p1ˆ ˆp p, .u pu C C u p C Z C p
Z

  (6) 

4. 1D periodic array 

For a 1D lossless array with period d , inclusion thickness , and unit cell volume cellV Sd , reduced lattice 
interaction coefficients arise from subtracting (1) from (3) to eliminate source terms and substituting (6) for the 
external fields. The result can be solved exactly, as shown in Eq. (7). The normalized wavenumber for the array, kd , 
can be solved for using Bloch-wave theory or by combining (5) and (6) and setting the external sources to zero. 

 2
0 0 0 0 0

cell cell cell c2 2 2 2
0 0 0 0

sin ( ) ( )( )sin ˆˆ, p
2 cos cos ( ) ( ) 2 cos cos ( ) ( )p u

k k d k d k kd k dkdV C V C i V C k
kd k d kd k d kd k d kd k d

d d   (7) 

 Sufficiently thin inclusions can be modeled as sheet monopole and dipole scatterers. In addition, if the scatterer 
is symmetric about its geometric midpoint, then c 0 . In this case, the reflection coefficient from a single isotropic 
slab can be given by 0 ( ) / 2p uR ik S . Equating this with the reflection coefficient for a homogeneous slab of 
thickness 0  [5], one finds Eq. (8) for the quasi-static polarizabilities. The imaginary parts of the inverse 
polarizabilities are significant. They represent the re-radiation of energy by the inclusion and in a lossless array, 
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must cancel the imaginary parts of the interaction coefficients. These re-radiation terms differentiate the quasi-static 
polarizabilities from static estimates of unit cell polarizability. 

0 0 0 01 1
cell cell

1 12 2
p uV Vd k d d k di i   (8) 

Combining Eqs. (1), (3), (5), and (6), one can solve expressions for avP a  and avB  in terms of lattice interaction 
coefficients and inverse polarizabilities. Terms from those relations are matched with the constitutive relations in 
Eq. (4) to find the effective parameters. The resulting coupling is non-zero for finite cC  even in the quasi-static limit, 
as presented in Eq. (9). Note that the non-local coupling parameters are reciprocal by being odd in k . 

o c
0 eff 0 eff 0 eff 21

cell

cell cell cell cel
1

cl cell

ˆ ˆp p = 
p p uu

V Cc c c
V V C V V C V C

  (9) 

The effective and equivalent properties for a metamaterial with dynamic compressibility are presented in Fig. 1. 
From the equivalent complex density, the medium appears to be non-causal, negative slope in (a), and non-passive, 
negative imaginary part in (b). However, these non-physical artifacts do not appear in the effective properties, which 
account for lattice coupling [4].   

 

Fig. 1. 1D periodic medium containing 2% by volume of dynamic effective stiffness material slabs: (a, b) complex density, (c) comparison of 
eigenmodal wavenumber of array and Bloch-wavenumber, (d, e) effective and equivalent complex compressibility, and (f) coupling parameter.  
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