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Abstract 

Hartvigsen, D. and E. Zemel, The complexity of lifted inequalities for the knapsack problem, Discrete 

Applied Mathematics 39 (1992) 11. 123. 

It is well known that one can obtain facets and valid inequalities for the knapsack polytope by lifting 

simple inequalities associated with minimal covers. We study the complexity of lifting. We show that 

recognizing integral lifted facets or valid inequalities can be done in O(n”) time, even if the minimal 

cover from which they are lifted is not given. We show that the complexities of recognizing nonintegral 

lifted facets and valid inequalities are similar, respectively, to those of recognizing general (not necessar- 

ily lifted) facets and valid inequalities. Finally, we show that recognizing valid inequalitles is in co- 

NPC while recognizing facets is in Dp. The question of whether recognizing facets is complete for LY’ is 

open. 
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1. Introduction 

The facial structure of combinatorial optimization problems has been studied 
extensively in the last few decades. Indeed, there has been a great deal of progress 
during this period in our level of familiarity with, and ability to use, the facets of 
problems such as the matching problem [6,9], the travelling salesman problem (e.g. 
[5,22]), as well as the set packing and covering problems, the knapsack problem, 
etc. For surveys of various aspects of this research see [9,11,21]. 

Recently, the scope of these studies has been extended to include computational 
complexity issues. A major contribution in this direction is the work of [10,13,17], 
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which indicates that the problem of separating a given point from the convex hull 
of solutions is in the same complexity class as the underlying optimization problem. 
More recently, the complexity of recognizing facets is studied in [ 18,191 for the 
travelling salesman polytope. It is shown that the task of recognizing a facet for this 
polytope is complete for Dp- a complexity class higher than NP and defined 
specifically to deal with facets of polytopes. 

The facets of the knapsack polytope have been studied extensively for the last 15 
years and their structural properties are well understood. Facets and valid 
inequalities for this polytope are useful, since for any O-l integer programming 
problem, each constraint individually, and each individual aggregation of several 
constraints, can be regarded as a knapsack inequality. Thus, facets and valid 
inequalities for the knapsack polytope can be used as strong cutting plane 
inequalities for the general integer programming problem. This approach was 
utilized effectively, for example, in [4]. Naturally, in this context, the computational 
difficulty of computing or recognizing a facet or a valid inequality of a given type 
is a critical issue. 

A first step towards examining the computational complexity of facets and valid 
inequalities for the knapsack problem was taken in [25]. It was shown that for a 
given minimal cover S, one can easily compute or recognize a certain restricted 
family of facets derived from S by a procedure called sequential lifting 
[ 1,2,12,15,16,20,24]. These facets are characterized by having a certain integrality 
property, and are generally recognized as useful for cutting plane algorithms. 
However, the results of 1251 are restricted in two major ways. First, [25] requires 
that the minimal cover S be specified in advance. In addition, the analysis is limited 
to integral inequalities. Both these assumptions are quite restrictive since, in the 
context of a cutting plane algorithm, one would like to have as much flexibility as 
possible in the choice of a cutting plane inequality. 

In this paper we examine the effects of these two restrictions on the computational 
complexity cf recognizing facets and valid inequalities. Roughly speaking, our 
findings are that the first restriction can be easily handled while the second has 
severe computational implications. In addition, our analysis yields some surprising 
(although computationally irrelevant) relations between the complexity of 
recognizing facets, valid inequalities and (not necessarily valid) inequalities of 
certain types. 

2. Preliminaries 

Consider the inequality 

c 
je A' 

QjXjS a0 (1) 

where N= (1, . . . ,n>, O<ajSQ for jE:N, C- JE N aj > ao, and the Xj are restricted to 
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0 or 1. The knapsack polytope P is the convex hull of O-l points satisfying (1). We 
assume that the coefficients aj, jc N, are integers, but the complexity results de- 
rived below do not depend on the size of these coefficients except via the standard 
assumption that arithmetic operations such as additions and comparisons could be 
carried out on these coefficients in constant time. Thus, all our polynomial 
algorithms are in fact strongly polynomial. 

An inequality 

(2) 

is called valid for P if it is satisfied by every XE P. The only interesting case is where 
bjZ 0, j E IV, b0 > 0, and we restrict ourselves in this paper to such inequalities. A 
valid inequality is a facet of P if it is satisfied at equality by n affinely independent 
points XE P. 

A set S E N is called a cover for P if Cjes j a > aO, and is called a minimal cover 
if, in addition, no proper subset of S is a cover. We denote by s the cardinality of 
a minimal cover S. Let MC be the set of ‘111 tYma1 covers for P. 

Let S be a minimal cover. An inequality ii) (not necessarily valid) is called li,‘zd 
from S if it can be scaled to the form 

C Xj+ C 
jt3S jczN\S 

CjXjSS-1. (3) 

We let L(S) be the set of lifted inequalities from S. 
An inequality (2) lifted from S is called integral with respect to S if all its coeffi- 

cients are integers, when scaled to the form (3). Denote the set of integral ine- 
qualities with respect to S by LI(S) and let LI = usEMC LI(S). We let the set of 
valid inequalities and the set of facets for P be denoted V and F, respectively. For 

Table 1 

Name Class 

FLI(S) 
VLI (S) 

FL1 
VLI 

FL(S) 

VL(S) 

FL 
VL 

F 
V 

integral facets, lifted from S 
integral valid inequalities, lifted from S 

integral facets lifted from some minimal cover S 
integral valid inequalities lifted from some minimal cover S 

facets, lifted from S 
valid inequalities, lifted from S 

facets lifted from some minimal cover S 
valid ineqvlalities, lifted from some minimal cover S 

facets 
valid inequalities 
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s E MC, let VI_,(S) and FL(S), be vn L(S) and Fn L(S), respectively, and let VII(S) 
and FLI(s) be vn LI(S) and Fn LI(S), respectively. Finally, let VL, FL, VLI 

and FL1 be USEMC VL(S), USEMC FL(S), USEMc VLI(S) and UseMc FLI(S), 
respectively. 

We summarize our definitions of the different classes of inequalities in Table 1. 
Let SE MC. Obviously, VL(S) > FL(S) > FLI(S). It is known [ 141 that these sets 

are nonempty, i.e., that there exist integral facets of P which are of the form (3). 
A sequential procedure for computing such facets, in which the lifting coefficients, 
cj : j E N \S, are computed one by one, is given by Padberg [ 15,161. It is known 
that every integral facet lifted from S can, in fact, be obtainld from S by applying 
Padberg’s procedure to some sequence of N\S [2]. This means that by enumerating 
all sequences of N\S and applying Padberg’s procedure to each sequence, one 
generates exactly the class FLI(S). It is also known [2,24], that there exist lifted 
facets from S which are not integral, i.e., in general FL(S) 2 FLI(S). Such 
nonintegral facets cannot be obtained from S by the sequential lifting algorithm of 
[ 15,161. A generalized lifting procedure, which can account for the entire set FL(S), 
is given in [2,24]. This procedure can be coupled with any algorithm for 
enumerating MC to yield the entire set of lifted inequalities FL. In general, FL e F, 

i.e., there may exist facets of P which are not lifted from any SE MC. A lifting and 
complementing procedure for generating the entire set F is given in [3]. 

The computational complexity of Padberg’s procedure and of recognizing the sets 
FLUS) and VU(S) was studied in [25]. Specifically, given a minimal cover S and 
a given sequence of N\ S, a simple dynamic programming algorithm is given for 
computing the corresponding integral lifted facet. The running time of this . 
algorithm is O(n.s)rO(n*). More surprisingly, the two recognition problems: 

l Fl: Is (2) in FLI(S)? 
0 I/ 1: Is (2) in VLI(S)? 

can also be resolved in O(ns) time. The reader may note that Lhese two recognition 
problems seem to require examining every sequence of N\S in order to check 
whether the inequality in question is the one corresponding to lifting in that par- 
ticular sequence. However, a key observation in [25] is that if (2) is integral with 
respect to S, one can identify from its representation (3) a unique candidate se- 
quence of N\S which needs to be examined. Applying Padberg’s procedure to that 
sequence, one gets a facet of P. A simple comparison between the original inequality 
(2) (in its form (3)) and the facet obtained in this fashion enables one to recognize 
whether (2) is a facet or is valid. The entire computation can still be carried out in 
O(ns) time since the identification of the sequence requires linear time. 

In this paper we study the computational complexity of recognizing other classes 
of inequalities for P. Ir particular, we study the complexity of the following 
recognition problems: 

e F2: Is (2) in FLI? 
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l V2: Is (2) in VLI? 
l F3: Is (2) in FL? 
0 V3: Is (2) in VL? 
0 F4: Is (2) in F? 
0 V4: I3 (2) in V? 

The reader may note that the first pair arises by not specifying in advance the 
minimal cover S, the second pair by removing the integrality requirement, and the 
third pair by removing the requirement that the inequality be a lifting. We find that 
F2 and V2 can be resolved in O(n2) time (see Section 3) and that F3, V3, F4 and 
V4 are closely related (see Section 4). In particular, we show that V3 and V4 are 
co-NP-complete and F3 and F4 are in D ‘. In the concluding section we study the 
effect of removing the requirement of validity. 

3. Recognizing integral lifted facets and valid inequalities 

In this section we study the complexity of recognizing lifted integral valid ine- 
qualities and facets when the minimal cover S is not specified in advance, i.e., 
recognizing the classes FL1 and VLI. It turns out that these tasks are closely related 
to the tasks of recognizing FLI(S) or VLI(S) for a given minimal cover S. The 
following lemma handles the cases of facets and valid inequalities in a unified way. 
It basically asserts that, computationally, it does not matter whether or not S is 
specified in advance. 

Lemma 3.1. Let Q be F or V. Let f(n) be the complexity of recognizing Q n L(S) 
and let f ‘(n) be the complexity of recognizing Q n L. Similarly, let g(n) be the com- 
plexity of recognizing Q fl LI(S) and let g’(n) be the complexity of recognizing 
Qfl LI. Then, 

(3.1.1) f(n)-O(n)sf’(n)5f(n)+O(nlogn), 
(3.1.2) g(n) - O(n)rg’(n) <g(n) + 0(n2). 

Proof. We first prove (3.1.1). Let A be an algorithm which, given an inequality (2) 
and a minimal cover S, can decide in time not exceeding f (n) whether or not (2) is 
in Qn L(S). We wish to use this algorithm to recognize Qn L, i.e., to assert whether 
or not a minimal cover SE MC exists such that (2) is in Q n L(S). The general idea 
is to apply to (2) a preprocessing algorithm B, which identifies a unique minimal 
cover S if it exists and which has the following properties: 

(i) If B fails, then (2) is not in Qf7 L, i.e., there exists no minimal cover S such 
that (2) is in Qn L(S). 

(ii) If B succeeds, then it produces a minimal cover S such that (?) is in Q n L iff 
it is in Qn L(S). 

The running time of the algorithm B is O(n log n). Thus, in case (ii) algorithm A 
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can be applied to complete the recognition of Q n L. The total running time of the 
combined algorithm is then f(n) + O(n log n). 

Algorithm B works as follows: Let dt , - l . , d, be the distinct values in the multiset 

b l,...,b,. t%r each index i=l,...,r, let Ni={jEN: bj=di) and Si=bo/di+l. Call 
the index i a success if it satisfies the following conditions: 

(a) Si is an integer; 
(b) the set 1: of si smallest elements in the set (aj: j E Ni} is a minimal cover. 
If no success is found, then algorithm B fails. Otherwise, any minimal cover 5 

associated with a successful index i can be used as S of (ii), We claim that algorithm 
B indeed satisfies properties (i) and (ii). We first show (i), i.e., if B fails, then (2) 
is not in Qn L. In fact, we prove that (2) is not in Vn L. Assume that (2) is valid 
and that there exists a minimal cover S such that (2) is in L(S). Then, when 
aigorithm B is applied, all the elements of S must be in the same subset Ni and 
si =s. Consider the restriction Pi of P to the index set Ni and the corresponding 
restriction of (2). Since (2) is valid for P, its restriction to Ni must be valid for Pi. 
Thus, any set of s elements in R’i is a cover. Since S is a minimal cover, and the 
elements of Ti are the smallest in Ni, it follows that Ti is a minimal cover and thus 
i is a success, contrary to the assumption that algorithm B fails. To see (ii), assume 
that at least two indices, ssy if k, constitute a success so that (2) is in L(q) n L( Tk). 
Both these sets are then candidates for the role of S. We have to show that it is enough 
to examine any one of these sets, say q. But this is obvious since if (2) is not in 
L( 7;) n V, then, being in L(q), it cannot be in V and therefore it is not in 
L( 7”) n V. Thus, f (n’) 5 f(n) + O(rt log n). 

To show the similar inequality fJ f r 8 we modify the definition of success in the 
specification of algorithm B to include the additional requirement: 

(c) The coefficients bj/di, j E N \ Ni, are integers. 
The only difference between cases (3.1 .l) and (3.1.2) is that the verification of 

condition (c) may require 0(n2) steps. Thus, g’(n) (g(n) + O(n2). 
Let us show the reverse inequality for (3.1.1). Assume we are given an algorithm 

for recognizing Qn L of complexity_f’(n). Given a minimal cover S, one can check 
in O(n) time if (2) is in L(S). If the answer is no, then (2) is not in Q n L(S). If the 
answer is yes, then (2) is in Q fl L(S) iff (2) is in Q n L. This can be checked in time 
f’(n). Hence, f (n) - O(n) sf ‘(n). To show the reverse inequality for (3.1.2), we pro- 
ceed as above except that we must check if (2), when in form (3) relative to s, is in- 
tegral. q 

It is shown in [25] that given S, one can easily recognize in O(n2) time whether 
an inequality (3) is valid or is a facet, provided one is restricted to integral ine- 
qualities. Theorem 3.2 which follows easily out of Lemma 3.1 implies that this re- 
mains the case even if S is not specified. 

Theorem 3.2. The following recognition problems can be solved in 0(n2) time: 
l c/2: Is (2) in YLI? 
l F-2: Is (2) in FLI? 
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However, if we wish to consider nonintegral lifted inequalities, the situation is 
markedly different. This is established in the next section. 

4. Recognizing general facets and valid inequalities 

We now remeve the integrality restriction and consider the complexity of com- 
puting a general’ lifted facet or valid inequality. As mentioned earlier, nonintegral 
lifting can be obtained from a minimal cover S via the generalized lifting procedure 
[2,24], but not via the sequential procedure of [l&16] which yields only integral ine- 
qualities. 

We have already established in Lemma 3.1 that for lifted inequalities the difficul- 
ty does not depend on whether the minimal cover S is specified, i.e., that VL and 
VL(S) are essentially of the same complexity and similarly for FL and FL(S). We 
now show that the corplexity of these classes is essentially the same as that of V 
and F, respectively. Thus, in general, the task of recognizing a general valid ine- 
quality or facet is no1 easier if the inequality in question is lifted, even if the minimal 
cover from which it is lifted is given in advance. Again, we handle facets and valid 
inequalities simultaneously in the following lemma. 

Lemma 4.1. Let f (n) be the complexity of recognizing VL(S) (FL(S)), and let f ‘(n) 
be the complexity of recognizing V (F). Then 

f(n)-O(n)If’(n)If(n+2). 

Proof. Let P be a knapsack polytope associated with (l), and let (2) be a given ine- 
quality for P, scaled so that b,, = 1. Consider the auxiliary knapsack inequality 

with its associated polytope P’. Obviously, the set S’= {n + 1,n + 2) is a minimal 
cover for P’, with s’= 2. Consider the inequality 

Cb jxj+xn+l +x,+25 1. 
jtzN 

(2’) 

Then (2’) is lifted from S’. However, it can be easily verified that (2) is valid for 
(is a facet of) P iff (2’) is the same for P’. Hence, f’(n) af (n + 2). The reverse ine- 
quality can be proved as in Lemma 3.1. q 

It is easy to establish that recognizing Liiiid inequalities is co-NP-complete. We 
do this by a transformation from the following Subset Sum problem, as in [g]. 

Pl: Given: Positive integers d,, l . . , d,n, e. 

Question: Does there exist a subset U c (1, . . . , m} such that 
CiE_ di=e? 
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Theorem 4.2. The foIlowing recognition problems are co-NP-complete: 
l V3’: is (2) in W(S)? 
l V3: Is (2) irr VL? 
0 V4: Is (2) in V? 

Proof. All three problems are obviously in co-NP. In view of Lemmas 3.1 and 4.1 
it is sufficient to show that V5 is NP-hard. The Subset Sum problem P1 seeks the 
existence of a solution Xi, j E N satisfying Cj~hr djxj = e for arbitrary positive in- 
teger data d’, j E N, e. We transform P 1 into the following problem concerning the 
validity of a given inequality. Specifically, is 

valid for 

c ajXjS Cl0 
jch 

(2) 

(1) 

where bj=aj=dj, jEN, a0 =e and 6O = e- l? It is easy to verify that the inequality 
(2) is valid for the knapsack problem defined by (1) iff PI has no solution. Cl 

We finally consider the complexity of facets. We have shown that the problems 
of recognizing integral lifted facets, namely, the sets FL1 and FLI(S) are in P. We 
have also shown that the complexities of recognizing FL(S), FL and Fare similar, 
i.e., a general facet is not much more difficult to recognize than a lifted one. 

The appropriate complexity class for handling facets, D”, is defined in [19]. 
Specifically, Dp contains the intersection of pairs of languages, one from NP and 
the other from co-NP. (This is not the same as the intersection of NP and co-NP; 
in fact, DP contains the union of NP and co-NP.) It is easy to show that FL(S), 
FL and F are in DP. Papadimitriou and Wolfe [ 181 have shown that recognizing a 
facet for the travelling salesman problem is complete for DC We conjecture that 
this is the case for the knapsack polytope as well. If the conjecture is true, then, in 
light of Lemmas 3.1 and 4.1, recognizing nonintegral lifted inequalities is also D* 
complete, ever? if S is given. 

5. Recognizing lifted inequalities 

The main thrust of this paper has been to examine the complexity of recognizing 
certain classes of inequalities as various requirements are relaxed. Starting with the 
classes FLI(S) and VLI(S), we have relaxed the assumptions that S be specified 
(VLI and FLI), that the inequality be integral (VL and FL) and that the inequality 
be lifted (V and F). In each case the inequalities studied have been valid. 

In this section we examine inequalities of a different type, namely, we relax the 
requirement of validity. Naturally, invalid inequalities are not very useful for prac- 
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tical applications. We consider this class because of the interesting contrast between 
the results in this section and the previous sections. Specifically, relaxing the require- 
ment of validity has the unexpected effect of converting an easy recognition problem 
(FL1 or VL:, into an intractable one, even if we restrict our attention to integral (or 
even to O-1) inequalities. 

We open with a technical lemma. 

Lemma 5.1. The following recognition problem P2 is W-complete. 

P2: Given: A knapsack inequality (1) and an integer s. 

Question: Does N contain a minimal cover S of cardinality s? 

Proof. Clearly P2 is in NP. To show completeness we perform a reduction from 
the Subset Sum problem Pl (see Section 4). For an arbitrary instance of Pl we con- 
struct the following instance of P2. 

di+ 1, i= 1, . . ..m. 
aj= 

1, i=m+l,...,2m, 

ao=e+m, 

S=hr + 1. 

We show that an instance of Pl has an affirmative answer iff the corresponding in- 
stance of P2 has an affirmative answer. 

For every nonempty set Uc(l,...,m), let S=S(U)=UU(m+l,...,m+ 
(m + 1 - 1 VI)}. Conversely, for every set S of m + 1 elements SC ( 1, . . . ,2m}, let 
u= U(S)=Sn (1, . . . . m). In both cases, we have 

(i) CjES ai=(m+l)+ CiEu di, 
(ii) minj.s iIlj= 1, 

(iii) IS( =m+l. 
Consider the inequalities 

(iv) e+m< Cj~s aiSe+m+l. 
From (i) we get that (iv) 1s equivalent to 

e-k C dire, 
it2 U 

i.e., U satisfies PI. From (ii) we obtain that (iv) is equivalent to 

and 

2: ai - min ais&, 
iES iES 

i.e., S satisfies P2. q 
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The following theorem follows easily from this lemma. We let L denote the set 
of inequalities lifted from some minimal cover and we let LI denote the integral ine- 
qualities in L. 

Theorem 5.2. The following recognition problems are NP-complete: 
l L2: Is (2) in LI? 
l L4: Is (2) in L? 

Proof. Consider the inequality 

(4) 

Then (4) is in L precisely if the answer to the recognition problem of Lemma 5.1 
is affirmative. Note that in this case (4) is integral. Cl 
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