adult (ages 20–79) diabetes patients in Africa, -1.5 times the prevalence in 2003. The continuous 1×10−6 widespread incidence of diabetes in 2013 was ~7.06 billion, compared to ~2.72 billion in 2010, accounting for ~1% of global expen-

Suresh K., Wang Y., Basu O. 1,2
1STATinMED Research, Dallas, TX, USA, 2STATinMED Research, Ann Arbor, MI, USA

OBJECTIVES: The aim of this study was to examine the geographic, age, gender, and race-related determinants of diabetes prevalence in the U.S. Medicaid popula-

METHODS: This retrospective study analyzed a patient sample from the Medicaid fee-for-service (FFS) population in 2008 and 2009. Patients diagnosed with diabetes during inpatient or outpatient treatment were included. The dataset comprised de-identified EHR from providers across the continuum of care. Our study population consisted of 24,331 adults with diabetes identified using International Classification of Disease, 9thRevision, Medicaid fee-for-service (FFS) population in 2008 and 2009. Patients diagnosed with diabetes between 2008 and 2009. Diagnosis was recorded using ICD-9 codes (A18.0-9, A10.0-9, A11.0-9, A12.0-9, A13.0-9). Blood glucose measurement showed that the optimal interval of DM screening for healthy adults should be more than 0.10 (coefficient of variation, 6.1%) and long-term between-person variation were

Conclusions: Our baseline model accurately predicted progression to T2D from normoglycemia to T2D consisted of established risk factors (blood glucose meas-

Conclusions: Our baseline model accurately predicted progression to T2D from normoglycemia to T2D consisted of established risk factors (blood glucose measures-

Methods: Markov model, which simulates the natural history of the disease, budget impact analysis (BIA) was made under the Colombian context for a five-year period using direct health costs associated with the natural history of the disease, including macrovascular and microvascular events and episode of hypoglycemia in a mobile cohort of patients, looking at prevalence, incidence and death. In the alternative scenarios, it will estimate reductions in insulin doses for the corre-

In the alternative scenarios, it will estimate reductions in insulin doses for the corre-

Methods: We aimed to estimate the long-term between-person variation (“signal”) and short-term within-person variation (“noise”) of the HbA1c measures and evaluated the optical interval of re-checking HbA1c levels for DM screening. METHODS: We conducted a retrospective cohort study including enrolled all people who consecu-

Methods: We conducted a retrospective cohort study including enrolled all people who consecu-

Methods: We examined the geographic, age, gender, and race-related determinants of diabetes prevalence in the U.S. Medicaid popula-

Methods: This retrospective study analyzed a patient sample from the Medicaid fee-for-service (FFS) population in 2008 and 2009. Patients diagnosed with diabetes during inpatient or outpatient treatment were included. The dataset comprised de-identified EHR from providers across the continuum of care. Our study population consisted of 24,331 adults with diabetes identified using International Classification of Disease, 9thRevision, Medicaid fee-for-service (FFS) population in 2008 and 2009. Patients diagnosed with diabetes between 2008 and 2009. Diagnosis was recorded using ICD-9 codes (A18.0-9, A10.0-9, A11.0-9, A12.0-9, A13.0-9). Blood glucose measurement showed that the optimal interval of DM screening for healthy adults should be more than 0.10 (coefficient of variation, 6.1%) and long-term between-person variation were

Conclusions: Our baseline model accurately predicted progression to T2D from normoglycemia to T2D consisted of established risk factors (blood glucose measures-

Conclusions: Our baseline model accurately predicted progression to T2D from normoglycemia to T2D consisted of established risk factors (blood glucose measures-

Methods: Markov model, which simulates the natural history of the disease, budget impact analysis (BIA) was made under the Colombian context for a five-year period using direct health costs associated with the natural history of the disease, including macrovascular and microvascular events and episode of hypoglycemia in a mobile cohort of patients, looking at prevalence, incidence and death. In the alternative scenarios, it will estimate reductions in insulin doses for the corre-

In the alternative scenarios, it will estimate reductions in insulin doses for the corre-

Methods: We aimed to estimate the long-term between-person variation (“signal”) and short-term within-person variation (“noise”) of the HbA1c measures and evaluated the optical interval of re-checking HbA1c levels for DM screening. METHODS: We conducted a retrospective cohort study including enrolled all people who consecu-

Methods: We conducted a retrospective cohort study including enrolled all people who consecu-

Methods: This retrospective study analyzed a patient sample from the Medicaid fee-for-service (FFS) population in 2008 and 2009. Patients diagnosed with diabetes during inpatient or outpatient treatment were included. The dataset comprised de-identified EHR from providers across the continuum of care. Our study population consisted of 24,331 adults with diabetes identified using International Classification of Disease, 9thRevision, Medicaid fee-for-service (FFS) population in 2008 and 2009. Patients diagnosed with diabetes between 2008 and 2009. Diagnosis was recorded using ICD-9 codes (A18.0-9, A10.0-9, A11.0-9, A12.0-9, A13.0-9). Blood glucose measurement showed that the optimal interval of DM screening for healthy adults should be more than 0.10 (coefficient of variation, 6.1%) and long-term between-person variation were

Conclusions: Our baseline model accurately predicted progression to T2D from normoglycemia to T2D consisted of established risk factors (blood glucose measures-

Conclusions: Our baseline model accurately predicted progression to T2D from normoglycemia to T2D consisted of established risk factors (blood glucose measures-

Methods: Markov model, which simulates the natural history of the disease, budget impact analysis (BIA) was made under the Colombian context for a five-year period using direct health costs associated with the natural history of the disease, including macrovascular and microvascular events and episode of hypoglycemia in a mobile cohort of patients, looking at prevalence, incidence and death. In the alternative scenarios, it will estimate reductions in insulin doses for the corre-

In the alternative scenarios, it will estimate reductions in insulin doses for the corre-

Methods: We aimed to estimate the long-term between-person variation (“signal”) and short-term within-person variation (“noise”) of the HbA1c measures and evaluated the optical interval of re-checking HbA1c levels for DM screening. METHODS: We conducted a retrospective cohort study including enrolled all people who consecu-

Methods: We conducted a retrospective cohort study including enrolled all people who consecu-

Methods: This retrospective study analyzed a patient sample from the Medicaid fee-for-service (FFS) population in 2008 and 2009. Patients diagnosed with diabetes during inpatient or outpatient treatment were included. The dataset comprised de-identified EHR from providers across the continuum of care. Our study population consisted of 24,331 adults with diabetes identified using International Classification of Disease, 9thRevision, Medicaid fee-for-service (FFS) population in 2008 and 2009. Patients diagnosed with diabetes between 2008 and 2009. Diagnosis was recorded using ICD-9 codes (A18.0-9, A10.0-9, A11.0-9, A12.0-9, A13.0-9). Blood glucose measurement showed that the optimal interval of DM screening for healthy adults should be more than 0.10 (coefficient of variation, 6.1%) and long-term between-person variation were
SAXAGLIPTIN/METFORMIN EXTENDED-RELEASE (XR) FOR THE TYPE 2 DIABETES (T2DM) TREATMENT IN VENEZUELA: A BUDGET IMPACT ANALYSIS

Chavez P.1,2, Ramirez H.1, Garcia D.1, Urbina M.1, Ortega A.1, Pasquel R.2, Avelar M.2, de la Concha J.1,2, Vallejo M.1, Gómez C.1,2
University of the Americas, Tijuana, Mexico, 1Universidad Autónoma de Yucatán, Mérida, Mexico, 2Fundación Instituto de Investigación La Plata, La Plata, Buenos Aires, Argentina.

ABSTRACT: In the last years, adherence to treatments for type 2 diabetes mellitus (T2DM) decreased. It is estimated that 26% of the patients do not continue treatment with diabetes medication, mostly due to high cost. To confront this challenge, there is a growing interest in novel treatment strategies. Saxagliptin/metformin extended-release (XR) is a new treatment option for type 2 diabetes mellitus (T2DM) patients, aiming to improve adherence. The aim of this study was to estimate the budget impact of saxagliptin/metformin XR treatment in T2DM patients in Venezuela.

OBJECTIVES: To estimate the budget impact of the use of saxagliptin/metformin XR fixed-dose combination compared to the current treatment of people with T2DM, in Venezuela.

METHODS: We used an MS Excel-based budget impact model assuming coverage of one million people in the health care system of Venezuela with a 3-year time horizon. DM prevalence was obtained from published literature. Pharmaceutical expenses of oral antidiabetic agents (OADs) were analyzed excluding or including the cost of OADs when saxagliptin/metformin XR was authorized upon listing plan 8300, in Venezuela Bolívares (VEF$) 2013 (exchange rate: 1 US-dollar = 6.30 VEF$). The market share of the different drugs was based upon QUALIDIA Database, market studies and data provided by Bristol-Myers Squibb. A progressive increase of market share was assumed for saxagliptin/metformin XR among all the OADs: 1.14% for the 1st, 2.65% and 3.0% for the 2nd and 3rd year, respectively. The budget impact was reported in terms of annual budget impact, per member per-month (PMPM) and per patient per month (PPPM). A Monte Carlo simulation (10,000 iterations) was done as part of the sensitivity analysis.

RESULTS: The net budget impact estimated for the introduction of saxagliptin/metformin XR combined was VEF$503,807 for the first year, VEF$1,831,333 for the second year and VEF$4,335,314 for the third year; the cumulative net budget impact was VEF$3,040,703. PMPM was VEF$0.04, 1.37 and 2.63 for the 1st, 2nd and 3rd year, respectively. The cumulative impact in the total annual budget oral antidiabetic agents represented an increase of 2.36%.

CONCLUSIONS: Incorporation of saxagliptin/metformin XR combination into the health care system of Venezuela, as a treatment option for people with T2DM, would have a minimal budgetary impact.