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Leibniz–Reynolds analysis identifies a 4th-order capillary-mediated energy field that is responsible for
shape changes observed during melting, and for interface speed perturbations during crystal growth.
Field-theoretic principles also show that capillary-mediated energy distributions cancel over large length
scales, but modulate the interface shape on smaller mesoscopic scales. Speed perturbations reverse di-
rection at specific locations where they initiate inflection and branching on unstable interfaces, thereby
enhancing pattern complexity. Simulations of pattern formation by several independent groups of in-
vestigators using a variety of numerical techniques confirm that shape changes during both melting and
growth initiate at locations predicted from interface field theory. Finally, limit cycles occur as an interface
and its capillary energy field co-evolve, leading to synchronized branching. Synchronous perturbations
produce classical dendritic structures, whereas asynchronous perturbations observed in isotropic and
weakly anisotropic systems lead to chaotic-looking patterns that remain nevertheless deterministic.

& 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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1. Introduction

1.1. Background

Crystal–melt interfaces remain macroscopically featureless at
full equilibrium, or when they grow or melt in a stable mode.
When interfaces become morphologically unstable, however, they
often evolve into complex forms comprised of dimples, ripples,
cells, and dendrites, the temporal details of which are thought to
be influenced by several factors. These include crystalline aniso-
tropy; the presence of persistent interface-distorting defects, in-
cluding intersecting phase boundaries, sub-boundaries, or termi-
nating dislocations; disturbances initiated where contacts occur
with container walls; and from the spectra of thermal and pres-
sure fluctuations from intrinsic (thermodynamic) and extrinsic
(environmental) sources.

Experiments and theoretical studies on maintaining stability to
avoid interfacial ‘breakdown’, uncontrolled microstructures, and
severe chemical microsegregation, concern subjects of considerable
practical importance to crystal growers. Indeed, investigations into
these subjects are ongoing for over six decades, following early
‘decanting’ experiments that first allowed optical viewing of solid–
liquid patterns in metals and alloys [1,2]. The formation of decanted
substructures was explained by stability conditions at the solid–li-
quid interface, using the criterion of ‘constitutional supercooling’, an
.V. This is an open access article u
early theory of interface stability developed by B. Chalmers and his
co-workers [3,4]. Constitutional supercooling became a precursor of
modern morphological stability theories, for which up-to-date lit-
erature reviews may be found in [5,6], each covering related in situ
experiments on interface control, numerical studies of interface
evolution, and linear and non-linear dynamic analyses.

In their 2009 overview Asta et al. [7] underscored the im-
portance of understanding the fundamental mechanisms of pat-
tern evolution in solidification, crystal growth, and related solid-
state transformations. In 2011, the author re-analyzed a NASA ar-
chive containing hundreds of carefully controlled microgravity
crystal growth and melting data [8]. (Also see Ref. [9] for the on-
line URLs providing public access to NASA microgravity data.)
Experiments were successfully conducted aboard Space Shuttle
Columbia with the Isothermal Dendritic Growth Experiment
(IDGE). The IDGE provided a primary research experiment on three
United States Microgravity Payload Missions (USMP-2, 3, and 4),
which flew in low-Earth orbit during the mid-1990s [10–12]. Our
re-analysis of those experiments [13] uncovered an initially over-
looked, but remarkable, phenomenon captured on IDGE's video
melting data, the main feature of which was observation of con-
duction-limited melting in microgravity with unexpected crystal-
lite shape changes following self-similar melting. Conduction-
limited melting with the occurrence of spontaneous shape change
was studied recently using numerical simulations, with good
correspondence found between the experiments and these simu-
lations [14]. The conclusion reached was that capillarity was re-
sponsible, although an explicit mechanism was not identified.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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A few implications concerning the kinetics of melting, based on
reinterpretation of those IDGE data, were reported in reference [8].
Now, through additional studies, to be detailed herein, the unusual
melting results first observed and recorded in USMP-4 are far
better understood theoretically. This allows a thermodynamically-
based theory to explain crystallite shape change during melting
more fully and provides a new dynamical mechanism for the
evolution of pattern complexity accompanying unstable crystal
growth. The theory, as developed in this paper, also elucidates an
unrecognized kinetic pathway by which crystal–melt systems ap-
proach equilibrium or reach constrained stationary states.

In brief, the microgravity experiments referenced above un-
iquely allowed high-precision measurements of melting kinetics
for needle-shaped crystalline fragments of pivalic anhydride
(PVA). Ultra-high purity (7–9 s) PVA, (CH3)3CCOOH, was cyclically
melted, supercooled, nucleated, and partially crystallized into
dendrites. The crystals were re-melted to allow the next growth
sequence under low gravity, − g10 7

0, where g0¼9.8 m s�2.
Prior to total melting, a few isolated crystallites remained

perfectly suspended and motionless in the warmer melt, as they
were progressively consumed by quasi-static melting. These
crystallites were slender prolate ellipsoids of revolution, with
major axes initially about 1–1.5 cm, initially exhibiting large, nee-
dle-like axial ratios, with ≈C A/ 15. Microgravity suppresses hy-
drodynamic motions from sedimentation and thermal buoyancy
forces, except for an extremely small, outward, advective flow
from each crystallite due to the 1% density decrease accompanying
melting. Although the author was familiar with interface shape
changes in crystals induced by melt hydrodynamics [15–21], the
shape changes observed during melting in microgravity were free
of any substantial fluid mechanical interactions.

Analysis of the images recorded during melting in microgravity
showed that the large axial ratios of these crystallites initially in-
creased slowly as melting progressed, then remained constant
upon further melting. However, about half way toward their total
extinction as crystals, their large C A/ ratios, as needle crystals,
decreased by almost an order-of-magnitude to nearly unity. We
observed, in other words, that the onset of dramatic shape change
(needles melting into spheres) always began after the crystallite's
initial centimeter-long C-axis decreased to about 5 mm, and its A-
axis, or diameter, was correspondingly reduced to a few hundred
micrometers. We reported that the axial ratios of isolated melting
crystallites decreased from their initially high values toward unity,
indicating that their acicular shapes spontaneously changed to
spheroidal ones during active melting [22–24].

A quantitative comparison of theoretical melting rates and self-
similar shape predictions was presented that was based on ana-
lytical and numerical analyses of quasi-static heat flow during
melting in microgravity. We demonstrated mathematically that
during melting the external heat conduction from the surrounding
melt alone would actually keep constant the C A/ ratios of isolated
melting ellipsoids. Thus, the normal heat flow responsible for the
melting transformation did not account for the observed sponta-
neous shape changes.

1.2. Approach

Crystal–melt interfacial tension was instead suggested as a
possible cause for the reported profound shape changes prior to
extinction from melting. An additional suggestion was offered,
without proof, that the same mechanism responsible for shape
changes during melting might also operate during crystal growth,
and possibly self-stimulate pattern formation in a manner not
recognized prior to these microgravity experiments. Some pre-
liminary ideas based on the Le Chatelier–Braun effect [25,26] that
relates curvature and shape changes to shifts in local interfacial
equilibrium were offered subsequently [27] to explain sponta-
neous shape modification during melting, and which might also
influence interfacial patterns during crystallization.

The purpose of the present study is to show that capillary-
mediated energy fields capable of interface shape modulation
occur during both crystal melting and growth, and, in fact, are
expected on fundamental thermodynamic and kinetic grounds.
These capillary-mediated interface fields, moreover, are omnipre-
sent during melting and growth under local equilibrium. Also,
depending on feature size, these fields can perturb the motion of
the interface during transformation and modulate its shape. Self-
induced perturbations, moreover, stimulate pattern evolution, and
promote the formation of complex phase arrangements associated
with dendritic crystals and seaweed-like forms that are commonly
observed in some alloy microstructures.

The energy fields to be described here always entail at least one
of two basic forms of interfacial variation usually present on
crystal–melt interfaces: (1) geometric shape variation, i.e., any
non-uniform distribution of curvature with interface position and
orientation; and (2) anisotropy of the interfacial energy density
caused by directional dependence of underlying crystalline mo-
lecular fields. Indeed, even between fluids, all non-circular inter-
face shapes in 2-D, or non-spherical shapes in 3-D, always exhibit
the first, i.e., shape, or curvature variations, whereas crystal–melt
interfaces also support energy anisotropy. Autogenous perturba-
tions that develop during crystal growth or melting derive from
these intrinsic interfacial variations are described in detail later.
Examples to be presented demonstrate how one or both types of
interfacial variation directly control shape changes and stimulate
the formation of complex interface patterns.

Many forms of natural and industrial crystal growth and soli-
dification occur under local thermodynamic equilibrium. It is,
however, an interface's dynamical approach, along with local
equilibrium that causes autogenous interfacial perturbations. We
begin with a discussion of interfacial equilibria in its various forms,
show the origin of the important capillary-mediated fields, and
then compare our analytical field theory with results derived
through dynamic numerical simulations.
2. Global and local equilibria

2.1. Global equilibrium

A crystal–melt system achieves the state of global thermo-
dynamic equilibriumwhen its enclosing interface is everywhere at
rest, and the crystal, at fixed volume, assumes its unique, sta-
tionary, Wulff configuration at minimum free energy [28]. At-
tainment of global equilibrium in solids generally requires an ex-
ceedingly long time, even for relatively small crystals, as global
equilibrium involves all the atoms of a heterogeneous system. The
equilibrium Wulff shape for such systems occurs at constant vo-
lume if, and only if, the crystal's chemical potentials are every-
where uniform, and all macro-gradients vanish both within the
bulk phases and on their common interfaces and exterior surfaces.

By contrast, crystal growth, and phase transformation in general,
are non-equilibrium processes that require the presence of robust
thermal and concentration gradients to transport energy and mat-
ter, respectively, over macroscopic distances. Such macro-gradients
weaken over time as growth slows and equilibrium is approached,
and eventually vanish as free energy is fully extracted from the
metastable melt phase. No further macroscopic changes occur in
heterogeneous systems at full thermodynamic equilibrium.



Fig. 1. 2-D crystal–melt interface, ( ) =c x y, 0. The interfacial arc length, ( )s x y, , and
the normal angle, φ ( )s , changes smoothly from any arbitrary point on the interface
when moving in the + tangential direction, traveling anti-clockwise round the
crystal–melt interface, with the crystalline phase on the left. In turn, both the local
normal angle, φ, and the slope angle, θ φ= + π

2
, each increase by π2 after a com-

plete circuit of the interface. The interface curvature is chosen as positive over the
convex portions of the boundary, with the unit normal vector, n , always pointing
outward into the surrounding melt. Subsequent melting or growth of the crystal
depend on the temperature of the melt phase far from the interface, relative to the
system's melting temperature, Tm.
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2.2. Local equilibria and convexity

Shape changes induced through melting and crystal growth, and
pattern evolution on growing unstable interfaces—both non-equi-
librium processes—are the subjects of interest here. Shape changes
and pattern evolution can develop as an interface departs im-
perceptibly from a state of ‘local’ equilibrium. In fact, despite the
occurrence of free energy dissipation within the bulk phases during
melting or freezing, local equilibria on active interfaces requires
only that temperature, pressure, and the chemical potentials of each
phase match across their common interface. Point-wise matchings
of pressure and chemical potentials on heterogeneous phases occur
rapidly through microscopic interactions among relatively few
neighboring molecules or atoms surrounding the interface. This
near-instantaneous equilibration between phases contrasts with the
lengthy process of establishing macro-gradients that transport en-
ergy and diffuse matter over long distances, allowing advancement
of the phase transformation. Such transport involves tens of mil-
lions of atoms or molecules through the surrounding bulk phases.
Despite free energy dissipation and entropy production within the
bulk phases, a heterophase system's microscopically thin interface
often can evolve rapidly, yet remain essentially at local equilibrium.

We choose for the analysis developed here in two-dimensions
(2-D) an initially smooth, at least twice differentiable, crystal–melt
interface shape, designated ( ) =c x y, 0, ( ) ∈x y, 2, for which the
instantaneous in-plane curvature, κ ( )x , is calculable at all points. It
proves to be convenient mathematically to re-cast the Cartesian
interface shape, ( ) =c x y, 0, which may be open or closed on the x–
y plane, as a planar trace, or curve, designated φ( ( )) =c s 0. Then, its
interfacial arc length, Rφ φ π( ) { [ ] → }s : 0, 2 , where φ is the normal
angle and R is the set of all points on ( ) =c x y, 0. The normal angle
along φ( )s tracks the interface's local orientation and in-
stantaneous shape, which is related to the corresponding slope
angle, θ ≡ ( )−tan dy

dx
1 , by the complementary relationship φ θ= − π

2
.

The interface shapes to be analyzed in 2-D are kept sufficiently
simple, precluding such complications as highly convoluted in-
terfaces or where an interface turns back on itself. The required
thermodynamic and geometric functions of φ, and the profile it-
self, remain everywhere single-valued for all the shapes treated
analytically in this study. Where interfaces might eventually be-
come topologically challenging, such as occurs in numerical
models, then arc length parameterization becomes necessary.
Fig. 1 displays such an arbitrary smooth solid–liquid interface,
along with its Cartesian coordinates and the interface's local unit
normal, φ( )n , and tangent vector, φτ( ).

The instantaneous values of chemical potential, its gradient and
tangential energy flux, and, ultimately, the surface divergence of
that flux, will all be determined analytically, based on the in-
stantaneous shape and arc length of the initial interface, and the
selected symmetry and anisotropy of the surface energy density
function, γ φ( ). Consequently, we limit the current discussion to
single-component, two-phase systems, so that the solid–liquid
interface has balanced normal stresses, and maintains equilibrated
solid- and liquid-phase chemical potentials (i.e., matched tem-
peratures and pressure) from point-to-point along that interface.
These conditions are necessary to specify local equilibrium pre-
vailing on an interphase interface in a unary system, and are
equivalent to matching the local equilibrium temperature of the
crystal, c, with its liquid phase, ℓ, i.e., φ φ( ) = ( )ℓT Tc . The condition
of matched thermo-potentials can be closely approximated during
crystal growth, provided that: (1) the interface speed remains
moderate, and (2) that kinetic interference to molecular attach-
ment/detachment at the interface is negligible.

The latter requirement favors so-called ‘atomically rough’ in-
terfaces, devoid of equilibrium facets or other kinetic hindrances.
Interfacial facets represent energetically suppressed, i.e., ‘missing’,
interface orientations, where discontinuous jumps appear in the
distribution of normals along the interface. Avoiding facet forma-
tion under local equilibrium imposes limits on the strength of the
energy density anisotropy, as set by lattice symmetry. This re-
striction stipulates convexity of the energy density over all crys-
tallographic orientations φ π( ≤ ≤ )0 2 . A so-called convex polar γ-
plot for a crystal–melt interface simplifies the ensuing analysis of
capillary-mediated energy fields by eliminating jumps in the
normal and tangential vectors. This restriction insures that the
interface curvature function remains everywhere smooth, con-
tinuous, and at least twice differentiable.
3. Interface potential

The thermodynamics of interfaces has been studied in im-
pressive detail, with earlier investigators identifying all the forms
of energy release and storage that can be associated with trans-
lating, rotating, or otherwise altering the position, orientation, or
shape of interfaces [29,30]. What remains incomplete, however, is
how these energy rates link with interfacial dynamics, and extend
our understanding and grasp of kinetically complex phenomena,
including evolution, prediction, and control of diffusion- and
conduction-limited patterns. Indeed, to the author's knowledge,
detailed quantitative dynamics of how capillary-mediated ther-
modynamic fields produce microstructure patterns has not been
formulated previously.

The most general thermodynamic relationship that supports
the constraint of local interfacial equilibrium between two bulk
phases is the Gibbs–Thomson–Herring (GTH) condition [31–33].
The GTH condition derives from the Euler–Lagrange variational
equation [34,35] that minimizes the excess free energy of a
smooth interface with changing curvature over its arc length (i.e.,
what we term as ‘shape variation’) and with local energy densities
that vary with orientation (i.e., energy anisotropy). This interface
continually matches the thermo-chemical potentials of both pha-
ses to satisfy the requirement of local equilibrium. Application of
the GTH interface condition to a unary system that undergoes
melting or freezing at local equilibrium is tantamount to achieving
a point-wise match of the curvature-dependent temperature dis-
tributions between adjacent phases. With uniform external pres-
sure exerted over the interface, the application of local equilibrium
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extends classical thermostatic equilibrium to curved interfaces
evolving dynamically during phase transformation.

3.1. Gibbs–Thomson–Herring (GTH) distribution

Local equilibrium established along the arc length, s, of a two-
dimensional curved interface, φ( ( )) =c s 0, depends both on the in-
plane curvature, κ φ( ( ))s , and the anisotropic energy density spe-
cified by the energy density function, γ φ( ( ))s . The GTH tempera-
ture distribution thus always depends on the instantaneous shape
of the solid–liquid interface and, if energetically anisotropic, on its
crystallographic orientation, as specified by the interface's local
normal vector field, φ( )n and the crystal's axes.

At the advancing front of such an anisotropic crystal, we set
φ= = =x y 0, so that the normal vector, φ( )n at φ¼0, shown in

Fig. 1, is parallel to one of the crystal's easy growth directions, say
〈 〉10 , which direction arbitrarily is also set parallel to the Cartesian
+x axis. The choices of crystal symmetry axes and interface co-
ordinates specify the other easy growth orientations along with
the corresponding polar form of the energy density anisotropy. In
2-D, for example, the maximum energy density directions for
4-fold harmonic symmetry are given by the energy density func-
tion γ φ γ φ( ) = ( + ϵ )1 cos 40 4 , the maxima of which have normal

angles (φ π= π π0, , ,
2

3
2
) that align with the growth directions and

the Cartesian axes.
These coordinate and crystallographic alignments specify that

the equilibrium GTH temperature distribution on any 2-D interface
arc-length position, s, and orientation, φ, is given by1 [31]

⎛
⎝⎜

⎞
⎠⎟φ

γ Ω γ φ γ
γ

κ φ( ) = −
Δ

( ( )) +
( ( ))

( )
φ φT T

T
H

s
s .

1
int m

m

f

0 ,

0

The melting temperature, Tm, appearing on the right-hand side of
Eq. (1), is the equilibrium temperature of a stationary planar crystal–
melt interface at the identical melt pressure; ΔHf is the molar heat of
fusion;Ω is the system's molar volume; and γφ φ, denotes the second
angular derivative of the orientation-dependent interfacial energy
density, γ φ( ( ))s . The angular average of γ φ( ( ))s over all orientations
( φ π≤ <0 2 ) defines the ‘modulus’ of the interfacial energy density,
designated γ0—a material constant that sets the magnitude of the
interface energy density [J m�2]. The in-plane curvature, κ φ( ( ))s
[m�1], is defined arbitrarily to be positive where the interface is
convex to the melt, and where local normals always point away
from the crystal into its surrounding melt.

Slight rearrangement of Eq. (1) specifies the dimensionless GTH
thermo-potential, φϑ( ( ))s . The scalar field φϑ( ( ))s is the potential
established along a curved interface with arbitrary shape

φ( ( )) =c s 0, for a two-phase unary system evolving at local equi-
librium.

⎛
⎝⎜

⎞
⎠⎟φ φ λ γ φ γ

γ
κ φϑ( ( )) ≡ ( ( )) − = −

( ( )) + ^( ( ))
( )

φ φs
T s T

T a

s
s .

2
int m

m

c ,

0

Here the ratio on the right-hand side of Eq. (2) is = ⪡λ γ Ω
Δ 1

a a H
c

f

0 . This

ratio defines the system's capillary constant, and allows in-
troduction in Eq. (2) of the dimensionless interface curvature,
κ φ κ φ^ ( ( )) ≡ ( ( ))s a s . The length scale, a [m], must be inserted to
establish the crystal's feature size and scale the magnitude of its
thermo-potential, φϑ( ( ))s . The zeros of this potential occur where
1 In three dimensions a sharp interface, ( ) =S x y z t, , , 0, may be described by
compact surface ‘patches’ embedded in 3 [52]. The GTH temperature distribution
in 3-D, in turn, can be specified, as does Eq. (1) for 2-D, by inserting a patch's mean
curvature, η ξ κ( ) = { }, Tr i

1
2

, where ξ η( ), are local surface coordinates, and κi (i¼1,
2) are the two principal curvatures on an interface patch. In 3-D, interface potential
therefore depends on two angular derivatives of κ η ξ( ),i and γ η ξ( ), [36].
the interface is flat, i.e., at locations where the interface tem-
perature equals the melting point, =T Tint m, and where
κ φ φ^ ( ( )) = = ϑ( ( ))s s0 . If capillarity itself were non-existent, then
the GTH potential field vanishes. Whether a crystal melts or grows
subsequently is determined, of course, by the temperature of the
surrounding liquid phase relative to Tm.
3.2. Interface gradients

Local equilibrium, as formulated in Section 2.2, implies an ac-
tive presence of the capillary-mediated GTH potential distribution
during crystal growth or melting. This same specification, without
additional assumptions, suggests the presence of potential gra-
dients along an arbitrary curved interface. For example, in 2-D the
temperature gradient along an interface φ( ( ) ) =c s x y: , 0 is found
by multiplying the dimensionless thermo-potential, Eq. (2), by Tm,
and then evaluating its tangential, or arc-length, derivative

φ(ϑ( ) × )Td
ds m . That tangential derivative is found conveniently by
applying the chain rule of differentiation

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥φ

φ
φ

φ κ φ= = ϑ( ) × ^( )
( )

dT
ds

dT
d

d
ds

d
d

T
a

.
3

int int m

The explicit parametric notations used thus far to indicate that the
normal angle is dependent on arc length, φ ( )s , will be dropped
henceforth to simplify the notation. Interface shapes and their
higher derivatives that are selected for analysis in this article will be
chosen as single-valued with respect to the normal angle variable,φ.

Accepting the GTH potential as a real interface thermodynamic
field—not just as a boundary condition to link curvature and
temperature—one finds in 2-D a capillary-mediated tangential
gradient field established along the crystal–melt interface,

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )

τφ λ γ φ
γ

κ φ κ
γ
γ

κ φ κ
γ γ

γ
κ φ( ) = ( ) ^ ( ) ^ + ^( ) ^ +

+ ^ ( )τ φ
φ φ

φ
φ φ φ φ

4

T
a

G ,c m
2

0

,

0

, ,

0

2

where τ is the dimensionless unit tangential vector along such an
interface. See again Fig. 1.

The thermo-capillary gradient in 2-D consists of three terms:
(1) The first term within the square bracket of Eq. (4) results solely
from the shape, and contributes to the gradient field even if the
interfacial energy density, γ φ( ), is a constant and the system lacks
energy anisotropy2; (2) the second term arises from ‘mixed’ ef-
fects, that is where the shape of the interface (its curvature dis-
tribution) and its energy density both vary with position or or-
ientation; and (3) the last term contributes to the potential gra-
dient when anisotropic surface energy is imposed on interfaces
having constant curvature, such as along circular interfaces in 2-D,
or over spherical interfaces in 3-D. Thus, any crystal shape un-
dergoing melting or growth supports some level of capillary-
mediated tangential thermal gradients. It is the crystal's size factor,
specifically, a1/ 2, that establishes the actual magnitude of its vector
gradients. Moreover, the only crystalline shapes exempt from the
presence of capillary-induced thermal gradients are (equilibrium)
Wulff shapes, for which all gradients and fluxes vanish. We note in
passing that every term in Eq. (4) contributing to the tangential
gradient field is extremely sensitive to subsequent changes in the
interface shape imposed by growth, melting, or shape relaxation
toward equilibrium. The presence of such thermodynamic gra-
dient fields is ubiquitous.
2 This term has particular relevance to pattern formation in fluid–fluid phase
separating systems that lack energy anisotropy, and in crystal–melt systems dis-
playing extremely weak energy density anisotropy.
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3.3. Tangential energy fluxes

As just argued, crystals melting or growing under local equili-
brium support shape- and size-sensitive capillary-mediated ther-
mal gradients. One may argue further that such interfaces, al-
though only several molecules thick, are manifestly capable of
supporting the passage of a superficial flux of energy. The specific
form of this energy flux is determined physically by the electronic
properties of the adjacent phases. For example, the interfacial
energy flux from the GTH gradient might consist of surface pho-
nons in the case of non-electrically conductive phases, or perhaps
represent a superficial current of free electrons where metallic or
semiconducting phases are in contact. Irrespective of the exact
nature of the physical entities that comprise the flux and carry
energy and or mass along the interface, or even the microscopic
structure of the interface itself, a non-zero interfacial thermal
conductivity, Kint, will exist. Even in the strict continuum limit of
an interface of ‘zero’ thickness, the GTH potential gradient none-
theless stimulates either on, or ‘between’, the bulk phases the
passage of a superficial energy flux. This is the likely reason why
thermodynamically consistent numerical models, to be discussed
later, need absolutely no adjustment to accommodate superficial
energy or species transport caused by the capillary-mediated field.

One finds, moreover, that the physical units borne by the thermal
conductivity of an interface, Kint, are [W/K], in distinction to those units
for conventional bulk-phase thermal conductivities that are [W/m K].
Superficial transport of heat, as postulated here, along geometrically
varying or energetically anisotropic interfaces appears as the energetic
analog to surface, or interfacial species diffusion. Indeed, the diffusiv-
ities of surface species on many kinds of surfaces and interfaces are
already well-established material transport coefficients, measured
experimentally, and abundantly reported for grain boundaries, inter-
phase interfaces, and even for the exterior surfaces of materials [37–
39]. Values for Kint—the ‘thermal analog’ of surface species diffusivities
—remain, curiously, virtually unknown at present, as the general in-
fluence of minute tangential energy currents traveling along interfaces
apparently has not been accorded much study. Superficial energy
flows, as will be shown, however, prove to have dominant influences
onmany crystal growth andmelting processes, and perhaps as well on
other first-order diffusion-limited phase transformations.

The corresponding tangential energy flux, φΦ ( )τ , stimulated by
the capillary gradient field of the GTH temperature distribution
bears physical units of [W/m]. The instantaneous tangential in-
terfacial heat flux may be found by applying the superficial form of
Fourier's law of heat conduction [40], namely

φ φΦ ( ) = − ( ) ( )τ τK G . 5int

Introducing the expression for the tangential thermal gradient,
φ( )τG , Eq. (4), into Fourier's law, Eq. (5), yields, after some algebraic

rearrangement, the general expression in 2-D for capillary-medi-
ated tangential energy flux

⎡
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⎢
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⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦
⎥
⎥
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τφ

γ Ω γ φ γ

γ
κ φ κ

γ γ
γ

κ φΦ ( ) = −
Δ

+
^( )^ +

+ ^ ( )
( )

τ
φ φ

φ
φ φ φ φK

a S
.

6

int

f

0
2

,

0

, ,

0

2

where Eq. (6) introduces the molar entropy of fusion, Δ = ΔS H T/f f m

[J/mol K], and shows explicitly that the tangential energy flux
strengthens rapidly with decreasing feature size, as a�2.

We now explore the implications of capillary-mediated inter-
facial energy transport.

3.4. Transformation rates

It has been argued correctly, and quite generally, that a vector
flux must possess a component acting in the direction of its
interface motion in order to contribute net energy or matter dur-
ing phase transformation. Capillary-mediated tangential fluxes, as
a consequence of this logic, are, ostensibly, precluded from af-
fecting phase transformations rates [41]. Indeed, this widely-held
view has, in the opinion of the author, led to exclusion of tan-
gential fluxes from energy/mass balances at active interfaces
[42,43].

A pivotal point, apparently overlooked in conventional con-
tinuum energy balance arguments, but expressly explored in this
study, is that although flux divergences must themselves uni-
formly vanish at all points within bulk phases participating in
quasi-static transformations—a behavior fully consistent with La-
place's equation—the superficial divergence of the tangential in-
terface flux, nevertheless, is not similarly constrained! Moreover,
by applying rigorous energy conservation principles we shall prove
that the superficial divergence of the tangential flux provides a
locally varying (both positive and negative) scalar energy field.
Consequently, this thermodynamic field provides both sources and
sinks of energy along an active interface. Moreover, we prove that
the superficial divergence of the tangential flux (as the flux itself is
a ‘conservative’ vector field) is net-zero over closed interfaces. This
net-zero property doubtless has also added to a prevailing mis-
understanding concerning these issues. We next show that tan-
gential flux divergences must be included in mesoscopic interface
energy balances. Their inclusion, as to be demonstrated, accounts
for the appearance of intrinsic speed perturbations on the inter-
face, leading to shape modulations that amplify into patterns.

Two essential features of this thermodynamic field worthy of
repetition at this point are: (1) the surface divergence of capillary-
mediated tangential fluxes is non-zero almost everywhere, and
(2) the surface divergence of this flux averages to zero over a
closed interface. These peculiar fundamental properties of the
capillary energy field combine to provide a clear distinction be-
tween familiar, uniformly-zero flux divergences everywhere
within participating bulk phases (so-called Laplacian behavior),
and apparently unrecognized non-zero local divergences of ca-
pillary fluxes along evolving interfaces.

In short, we find that the capillary-mediated GTH potential
stimulates an energy flux lacking a component normal to the in-
terface. Through the non-zero divergence of its vector gradient,
this thermodynamic field interacts locally with the evolving in-
terface. More importantly, the divergence of the tangential flux
provides autogenous perturbations that modulate the dynamics of
the interface, which leads to pattern formation.

The balance of this paper is devoted to demonstrating that
capillary-mediated fluxes provide self-induced disturbances cap-
able not only of modifying the shapes of stable (melting) crystals,
but inducing complex patterns on unstable (growing) crystals.
Although this energy field does not influence the overall rate, or
total extent, of diffusion-limited phase transformations, its pre-
sence deterministically guides initial pattern-formation, and
dominates the character and form of an interface's temporal and
spatial behavior independent of environmental noise.

The existence, properties, and dynamical effects of capillary-
mediated interfacial fluxes are discussed and developed mathe-
matically from basic principles in the next several sections. That
the surface-averaged flux and its divergence are both zero will also
be proven. These facts underscore precisely how interfacial fields
play an active role in dynamic pattern evolution. Prior to com-
pleting mathematical expressions for such fields in 2-D, based on
Eq. (6), a general proof will be developed that demonstrates the
existence of autogenous interfacial energy fields in both 3-D and
2-D. Specifically, component energy rates present on evolving in-
terfaces in 3-D are tracked in detail by applying classic conserva-
tion principles via the Leibniz–Reynolds theorem [44,45].
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4. Interfacial energy conservation

4.1. Two-phase local equilibrium, 3-D

We define a time-dependent bi-phase domain, ( )t in 3. This
domain consists of an enclosing outer boundary, ∂ ( )t , with unit
normals, N, surrounding two contacting sub-volumes of pure (one
component) crystal, ( )V tc , and pure melt, ( )ℓV t , separated by a
sharp interface (see Fig. 2). This interface is a curved sub-area, ( )t ,
with independent unit normals, n. This composite domain is
subject to internal and external energy exchanges as the trans-
formations of melting and/or crystal growth proceed at a solid–
liquid interface ( ) =F x y z t, , , 0 embedded in 3.

Melting or crystallization are limited here to rates not ex-
ceeding those compatible with maintaining local thermodynamic
equilibrium. Steep gradients normal to the solid–liquid interface
develop within the solid and liquid phase sub-volumes, through
which the latent heat of transformation is transported to, or from,
the moving interface. These net energy rate changes are coupled to
energetic exchanges with the environment. Local equilibrium, re-
quiring point-to-point matching of temperature, normal stress,
and chemical potentials over the sub-interface, S(t), persists ev-
erywhere, as already outlined in Section 2.2.

Mathematical procedures needed to capture general conditions
required for energy conservation on interfaces evolving at local
equilibrium are similar to those already discussed by Lin and Segel
and by Spencer et al. [46,47], of which the latter investigators
formulated species conservation on solid–vapor interfaces sub-
jected to surface diffusion [48,49]. We note for completeness that
solid-state de-wetting provides yet another closely related phe-
nomenon that leads to complex morphological changes induced
by surface forces [50,51].

4.2. Transformation model

The bi-phase domain defined in Section 4.1, and depicted in
Fig. 2, consists of contiguous regions of crystal, c, and melt, ℓ, with
unit normal vectors, N, that orient the exterior boundaries of each
Fig. 2. A crystalline interface, F(x, y, z, t) = 0, growing into its melt, fromwhich a bi-
phase domain, D(t), samples a portion of each phase and the solid-liquid sub-in-
terface area, S(t), between them. Energy exchanges within and external to D(t) are
tracked via Reynolds’s theorem. The domain consists of adjacent sub-volumes of
melt, ℓ, and crystal, c. enclosed by an outer bounding surface, ∂D(t), shown here as
the dashed envelope, with its representative external unit normal, N, pointing
outward toward the surrounding phases. Sub-volumes within D(t) are separated by
the sub-area, S(t), itself oriented by an independent set of internal normal vectors,
n, which point away from the crystal into the melt. The border of S(t) in 3-D is a
closed space curve, ∂S(t), given by the intersection F(x, y, z, t) = 0 ∩ ∂D(t).
phase. The sub-volumes can mutually transform at their common
sub- interface, S(t), which is the internal boundary that divides the
domain. This interior sub-interface has independent unit normal
vectors, n, pointing from the solid to the liquid, that define its
orientation with respect to the crystal axes at each interfacial
point, η ξ( )tr , , , via local surface coordinates, η ξ( ), , on the solid–
liquid interface, and time, t.

The sub-interface within the domain, S(t), is itself a compact
surface, with smooth and continuous mean curvature, defined as

κ( ) ≡ { }r Tr ij
1
2

[52]. The diagonal elements of the sub-interface's
2�2 curvature matrix are its principal curvatures, κ11 and κ22.
Where the solid and liquid phases touch, they share identical
normal stresses and temperatures, ( )T rint , as specified by the GTH
condition. The phases remain in local equilibrium at the uniform
pressure established throughout the static melt. The interface
evolves in 3-D with a continuous velocity field, ( )v r , causing ab-
sorption or release of latent heat into the surrounding phases at
rates proportional to its local normal speed, ( )·v r n.

The volumetric enthalpy densities of the bulk phases con-
stituting D(t) are ( )H tR ,cc and ( )ℓ ℓH tR , , respectively, where Rc and

ℓR are vectors denoting points within the sub-volumes of the
crystalline and melt phase, respectively. Excess free energy is
stored along the evolving sub-interface at a superficial density
γ ( )n , which can vary anisotropically with the crystallographic or-
ientation of the interface, n.

4.3. Energy conservation

The Reynolds theorem, in accord with the first law of ther-
modynamics, states that the total energy of this bi-phase domain,
including its internal exchanges of heat and work3 between the
domain’s outer and internal boundaries, less any losses of heat and
work, remains constant over time.

That statement of energy conservation is expressed here
through (Leibniz) time derivatives of volumetric and areal energies
within the domain that balance energy exchanges with its en-
vironment. The Reynolds balance includes all rates of energy re-
lease, storage, and exchange. These energetic release and storage
rates are expressed as total time derivatives within D(t)—appear-
ing on the left-hand side of Eq. (7)—of solid- and liquid-phase
volumetric enthalpies, ( )H tR ,i i , plus the area-weighted interfacial
energy density, γ ( )n , on the sub-interface area, S(t). The energy
exchange rates to the environment also appear as integrals on the
right-hand side of the Reynold's balance, Eq. (7).

The Leibniz–Reynolds transport theorem expresses the tem-
poral energy balance
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where the double integral on the right-hand side contains the
energy exchange rates, ·J Ni , that account for components of fluxes
exiting normal to the domain's outer boundaries, ∂(D(t). These
rates are measured with respect to a coordinate system fixed to
the volume centroid of D(t). The ratios · ( )H tJ N R/ ,i i i (produced in
3 Pressure–volume exchange rates, kinetic energy, advective fluid flows caused
by density differences, or influences from external fields such as gravity are ignored
for the present purposes, but the reversible work (actually power) of interface
stretching, and any energy storage or release by the phase transformation are
included.



4 The 2-D interfaces selected subsequently for further analysis in this study are
analytic planar curves (vector-valued functions of one variable, e.g., conic sections
[52]). In 3, therefore, they form manifolds with zero Gaussian curvature, (i.e.,
ruled surfaces), where { }κ= =Det 0ij [36]. Interfaces described by plane curves
in 2, have capillary-mediated fluxes that vary with just one normal angle, φ, and
result in a single, in-plane curvature, κ φ( ). See again Section 3.3 and (1) for in-
terface shapes that evolve in 2. Interfaces in 3-D, which are modeled as curved
surface patches, exhibit two principal curvatures that combine as the mean cur-
vature, ( )r . The mean curvature itself generally depends on two normal angles
defined along an interface's orthogonal surface coordinates [36].
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Eq. (7) by multiplying and dividing by the phase enthalpies,
( )H tR ,i i , within the area integral) equal the local time-dependent

normal speeds of the outer phase boundaries of the ith phase
( = ℓi c, ) relative to the domain's volume centroid. Those normal
boundary speeds, when integrated over the external areas of each
phase, actually calculate the volumetric enthalpies of the crystal
and melt phases over time.

The line integral which follows on the right-hand side of Eq. (7)
measures any energy leaving or entering through the border, ∂S(t),
of the solid–liquid sub-interface, S(t). The integrand of this line in-
tegral, σΦ ( )·τ r , is the component of any superficial (tangential)
fluxes that pass through the sub-area's border, located at ∈ ∂ ( )tr .
That border, as labeled in Fig. 2, forms a closed space curve for in-
terfaces in 3-D, which is defined as the intersection
∂ ( ) ∩ ( ( ) = )t F x y z t, , , 0 . The sub-interface itself forms the so-
called ‘capping surface’ to its border, which is the surrounding space
curve. The space curve, ∂ ( )t , consists mathematically of con-
tinuously oriented, infinitesimal line elements, Σ( )d u, where u is a
second unit tangent vector defined along the interface's border. Unit
normal surface vectors, σ, orthogonal to u, lie on the interfacial
surface pointing outward from the domain, so that Σ σ( ) · =d u 0.

Leibniz differentiation of the volume integral in Eq. (7) yields
energy rates associated with enthalpy changes and phase trans-
formation in the transport theorem [45,46], namely
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The triple volume integral on the right-hand side of Eq. (8) tracks
the rate of enthalpy changes within both bulk phases, = ℓi c, . The
double integral in Eq. (8) accounts for the rate of internal redis-
tribution of transformation enthalpy occurring from any net phase
change—i.e., melting or crystal growth—at the interfacial sub-
area, S(t), which moves relative to the domain's centroid at its own
local normal speed, ( )·tv r n, .

Again, Leibniz differentiation of the area-weighted energy-rate
integral on the left-hand side of Eq. (7) similarly yields several
energy exchange rates identified by Gurtin [30] that are associated
with moving and deforming interfaces,
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The second integral appearing on the right-hand side of Eq. (9)
measures the ‘stretching’ rate of the expanding or shrinking sub-in-
terface, , by virtue of which reversibly stores or releases free
energy. This term introduces the interface's mean curvature, namely,

κ( ) = { } = ( )t dA dVr, Tr /ij
1
2

1
2

, as the geometric quantity connecting
the rates of area and volume change as the domain's curved sub-
interface expands normal to itself and sweeps through 3 [52].

The technical manipulations of domain contraction and the
application of the two-dimensional (surface) divergence theorem
to the energy balance are briefly explained in the next section
[53,54], the latter providing the standard transformation that
converts the line integral in Eq. (7) to an additional area integral of
the superficial energy flux over the sub-interface, .

Combining the Leibniz time derivatives on the right-hand sides of
Eqs. (8) and (9), and inserting them into the left-hand side of the
energy balance, Eq. (7), allows energy conservation to be written in
Eq. (10) as sub-volume integrals over Vi within the bulk phases, plus
two different area integrals: the first covering the outer boundaries of
the domain, , and the second over the domain's crystal–melt
sub-interface, . These three integrals collectively identify every
energy rate process found within or outside the bi-phase domain,

. Conservation of energy thus demands that
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Here the ratio ΩΔ ≡ −ℓH H H/f c denotes the ‘jump’ in volumetric
enthalpy density upon transformation from the solid to liquid phase,
where ΔHf is the molar enthalpy change (latent heat of fusion), and
Ω is the system's molar volume.

As already mentioned, the last term appearing within the in-
tegrand of the second area integral in Eq. (10), ∇ Φ− · ( )τ τ r , represents
(minus) the surface divergence of fluxes tangential to the sub-inter-
face—a higher-order energy rate than heat fluxes normal to ∂D(T)—
which results from application of the surface divergence theorem to
the line integral in Eq. (7) of any superficial flux component exiting,
or entering, the domain anywhere round its border . This energy rate
appears in the Reynolds balance because it represents the net energy
loss or gain from S(t) along the closed border of its sub-interface,
∂S(t). The surface divergence operator, ∇ [⋯]τ , is a dimensional vector
operator that acts parallel to the dimensionless unit tangent vector, τ ,
along that border. Again, as discussed earlier in Section 3.2, the
tangential flux itself unavoidably arises on crystal–melt interfaces as
a direct response to gradients impressed by the GTH potential dis-
tribution along those interfaces. The surface ‘convergence’ of that
tangential flux, ∇ Φ− · ( )τ τ r , is a scalar energy rate that we have termed
the capillary-mediated ‘bias field’—a short descriptive name chosen
as suggestive of its thermodynamic function to bias, or otherwise
perturb, the local rates of melting or crystallization by addition or
removal of capillary-driven energy.

We now show how the bias field enters the energy balance for
the interface and stimulates shape changes4 during either melting
or crystal growth under local equilibrium.

4.4. Domain contraction

Energy conservation, as developed specifically here for the bi-
phase domain considered in Section 4.3, can be further con-
strained to include only those rates related to motion of the sub-
interface itself. This constraint may be imposed rigorously through
the process of ‘contraction mapping’ the bi-phase domain along its
exterior normals, N, over the its entire outer boundary ∂ ( )t .
Contraction mapping withdraws ∂ ( )t closer and closer toward
the internal sub-interface, ( )t , separating the solid and liquid bulk
phases. Domain contraction taken to its limit conveniently allows
all energy contributions from the phase sub-volumes to vanish,
because →V 0i , which eliminates energy rates contributed from
the volume-weighted integrals, but retains all contributions from
the area-weighted integrals.

Domain contraction is accomplished mathematically when the
outer domain boundary conforms to the contraction mapping,
C ∂ ( )↦ ( )D t t: . Thus, full domain contraction also equates the



5 The identical argument based on local interface equilibrium and orientation
is employed by W.W. Mullins in his theory of surface thermal grooving kinetics
[48].
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limits of the two area integrals appearing in Eq. (10), allowing
(1) elimination of the volumetric integral, and (2) combination of
the integrands, ·J Ni ( = ℓi c, ), from the first area integral with the
integrand from the second sub-interface integral. Domain con-
traction, in addition, forces the exterior unit normals on ∂ ( )t to
re-configure their orientations and align with those covering the
sub-interface, ( )t , according to the vector mapping, N ↦N n: .

One is left after domain contraction with an infinitesimally thin
control space, embedded in 3, and conforming precisely to the
sub-interface ( )t . The contracted control space in 3-D, (1) moni-
tors all superficial flux components, both tangential and normal to

( )t ; (2) accounts for any energy storage or release associated with
interfacial stretching or contraction of the sub-interface; and
(3) tracks the production or absorption of latent heat from normal
interface motion, i.e., phase change. Most importantly, however,
application of domain contraction provides a single, area-weighted
integral that conserves all energy rates associated with changes in
an interface's area and orientation experienced during quasi-static
phase transformation.

Domain contraction provides the Leibniz–Reynolds interfacial
energy balance for an arbitrary interface evolving at local equili-
brium. The resultant balance is an area-weighted integral of every
relevant energy rate, namely
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Conservation of energy requires that the integrand in Eq. (11)
vanishes over the sub-interface, ( )t . Given that the limits of in-
tegration are arbitrary, the following energy rates, re-grouped
slightly from those appearing in Eq. (11), must collectively cancel
at all continuum area scales on interfaces in either 3-D or 2-D:
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Consistent with Eq. (12), a dynamic solid–liquid interface will
generally involve the following energy rates:

1. Time rate of interfacial energy density change with crystal-
lographic orientation, n;

2. Latent heat absorption or production from phase change, and
energy storage or release from stretching/shrinking the inter-
face—both of which rates are proportional to the normal in-
terface speed, ( )·v r n;

3. Heat flow, ·J ni , ( = ℓi c, ) into the surrounding solid and liquid
phases along local gradients parallel to n;

4. Capillary-mediated energy, added or removed, which is equal to
minus the surface divergence of the tangential flux, Φ ( )τ r , driven
by gradients in the GTH interface potential.

Excepting rate (4), the other energy rates are associated with ei-
ther normal directions, n, or normal motions, ( )·v r n, of the inter-
face. Rate (4) is uniquely related to the existence of capillary-
mediated tangential heat fluxes that are stimulated as a result of
local equilibrium conditions associated with the varying interface
potential.

4.5. Interfacial equilibrium and size-scale

Two further physical constraints may be imposed on the gen-
eral Leibniz–Reynolds conservation condition developed in Eq.
(12). These constraints help reveal more clearly the interplay be-
tween macroscopic gradients, microscopic energy sources, and
superficial and normal fluxes, all of which interact and influence
the dynamics of evolving interfaces:

1. The interface, as a consequence of local equilibrium, requires
that every sub-interface, or surface patch comprising the in-
terface stores free energy. The local area density of that energy,
γ ( )n , depends uniquely on the patch's instantaneous spatial or-
ientation relative to the underlying crystal axes. Specifically, as
interface patches evolve, their local orientation may indeed
change over time. Their free energy densities, however, are a
function solely of their instantaneous crystallographic orienta-
tion and, therefore, γ ( )n is not an explicit function of time5; so,
its partial derivative with respect to time vanishes at a constant
orientation, n. This consequence of local interfacial equilibrium
eliminates from further consideration the time derivative in Eq.
(12), listed as energy rate (1) compiled at the end of Section 4.4.

2. The interfacial ‘stretching’ rate, which was also listed as part of
energy rate (2) in the enumeration listed above, is the term,

γ( ) ( ) ( )·tr n v r n, , appearing in Eq. (12). Its value is generally
non-zero, but it too may be otherwise safely discounted, unless
the product of local curvature and energy density, γ( ) ( )tr n, ,
were to become large enough to be comparable to the volu-
metric latent heat, ΩΔH /f . A proportionate comparison between
latent heat generation and interface ‘stretching’ rates is fully
justified, inasmuch as both these rates are proportional to the
normal velocity times the energy per unit volume (either as
latent heat per unit volume transformed, or as energy per unit
area change of the interface). The mean curvature, therefore,
would have to achieve a magnitude approaching that of the
reciprocal capillary length, estimated as λ ≈ −1/ 10 mcap

9 1 for
most systems, so that interfacial stretching might sensibly
modify the rate of latent heat release. Again, this remains valid
as latent heat and interface stretching rates are both propor-
tional to the interface's normal speed. In the case of crystal–melt
systems that involve either small melting crystallites, or grow-
ing crystals exhibiting mesoscopic structures such as cells,
dendrites, and eutectics, the largest local curvatures encoun-
tered seldom ever exceed 107 m�1. Thus, one concludes, inter-
face ‘stretching’ during either melting or crystal growth may be
considered as a relatively inconsequential (proportionate) cor-
rection to latent heat absorption or production, having an
insignificant effect on the net amount of phase change. More-
over, although its inclusion does imperceptibly affect the total
amount of phase transformation, interfacial stretching energies
by themselves do not seem to influence interfacial patterns at
mesoscopic scales.

4.6. Interface energy balances

4.6.1. Leibniz–Reynolds energy balance
One concludes on the basis of these additional physical as-

sumptions that during solid–liquid transformation under local
equilibrium interface energy conservation requires a balance
among three distinct energy rates: (1) latent heat released, or
absorbed; (2) heat conducted to or from the adjacent phases;
(3) energy deposited or removed by divergent or convergent in-
terfacial fluxes.

The interface energy balance that remains valid at all con-
tinuum length scales, according to the foregoing Leibniz–Reynolds
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analysis, is given as
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The terms within large parentheses in Eq. (13) exclude capillarity, and
are capable of balancing one another over large (macroscopic) length
scales. These terms, in fact, do determine the overall rate of solid–
liquid phase change. Note that all of these energy rates couple to the
normal direction or normal motion of the interface. However, the
conduction fluxes involve macroscopic gradients, whereas the latent
heat involves transition energies arising from microscopic processes
occurring at the interface. The last term in Eq. (13), which is the bias
field, arises from capillary-mediated tangential interface fluxes that
have no obvious influence on the energy balance occurring normal to
the interface at longer length scales.

Dynamic arguments indicate, however, that over smaller time
intervals and mesoscopic length scales the tangential bias-field term
couples to and slightly modifies the latent heat rate. In fact, it is the
algebraic sum of these two microscopic source terms that actually
must balance with the slower changing transport fluxes, especially at
mesoscopic length scales where patterns development occur. Also, for
reasons to be explained later, the tangential term elicits little or no
influence on the energy balance occurring over larger macroscopic
scales! The energy rates derived from the divergence or convergence
of the tangential flux are deterministically self-induced by virtue of
the interface's instantaneous shape and orientation. As shown next
these self-generated (autogenous) energy rates are essential to pat-
tern initiation during unstable crystal growth, and to modifying the
dynamic shapes of melting crystallites.

The bulk phase conduction fluxes, Ji ( = ℓi c, ), appearing in Eq.
(13) may be evaluated by applying Fourier's law again [40], where

∇= − [ ] ( = ℓ) ( )( )k T i cJ , , . 14i i i S t

The line integral which follows on the right-hand side of Eq. (7)
tracks energy leaving or entering through the border, ∂S(t), of the
solid-liquid sub-interface, S(t). The transport coefficients, ki, con-
necting conduction fluxes and gradients are the usual thermal
conductivities of the adjacent bulk phases. If the gradient vector
within the adjacent solid or liquid phase points toward the inter-
face, its sign is conventionally taken as positive—a convention
consistent with crystal growth occurring when net heat is con-
ducted away from the interface, and melting when net heat is
conducted toward the interface.6

Expanding Eq. (14), and inserting that result into Eq. (13), yields
the Leibniz–Reynolds ‘omnimetric’ interface energy rate balance,
which is the exact energy balance applicable to continuum length
scales:
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The first three terms in Eq. (15) provide the standard Stefan energy
balance that appears in conventional descriptions of freezing and
crystal growth [41,42], where the net rates of heat conduction into
the surrounding bulk phases balance latent heat production. An
important point to be noted here is that eliminating the tangential
flux divergence rate in Eq. (15) to recover the conventional Stefan
balance is tantamount at short time scales to assuming that the
6 More precisely, crystal growth requires the conductivity-weighted gradients
surrounding the interface be positive, so the normal interface speed, ( )· >v r n 0,
whereas melting requires that the conductivity-weighted gradients be negative,
and ( )· <v r n 0. Also, for unconstrained (unstable) crystal growth, or (stable)
melting, it is the thermal field in the surrounding melt that regulates those rates,
whereas for directional crystallization of a pure material it is the thermal field in
the solid that dominates heat transfer from the moving interface [55].
interfacial energy density γ = 00 , so the capillary flux and its di-
vergence both vanish. As will be shown, when averaged over long
length scales the capillary flux divergence vanishes. These special
features provide likely reasons that capillary-mediated energies
have not been included in interfacial energy balances. Capillarity,
when it is included in phase-change problems, is often relegated
to a boundary condition connecting curvature, temperature, and
concentration, rather than recognizing the capillary-mediated flux
divergence as a physically active energy source. The critically im-
portant distinction established here between interface energy
balances at mesoscopic and macroscopic length scales—heretofore
overlooked—will now be clarified by considering interface
dynamics.

4.6.2. Standard energy balance
The conventional Stefan balance, although valid at macroscopic

scales, lacks the capillary-mediated energy term required for exact
energy conservation at shorter length scales. Stefan balances for
either energy or species simply overlook the short-range pertur-
bation field that exists at mesoscopic scales, and which accounts
for pattern initiation. Conventional Stefan balances provide in-
formation only relevant to the net amount of phase transforma-
tion, not the autogenous perturbations.

Ω
∇[ ] · + ∇[ ] · = −

Δ
( )· ( )( ) ℓ ℓ ( )k T k T

H
n n v r n. 16c c S t S t

f
0

A subscript “0” is appended to the interface velocity, ( )v r0 , that
multiplies the volumetric latent heat to give the latent heat rate in
the Stefan balance, Eq. (16). That subscript denotes that effects
arising from capillarity are removed in formulating the interface
speed, ( )·v r n0 , which is valid at large length scales. Again, we
emphasize that Eq. (16) accounts correctly for the overall rate of
phase change. Moreover, this balance gives a result that comports
fully with conventional arguments reviewed in Section 3.3, where
energy rates were included only from terms that couple through
the interface's normal vector, n. We now add back the one energy
rate that does not couple through the normal transport field,
namely the capillary bias field.

4.6.3. Omnimetric energy balance
A term identified in the Leibniz–Reynolds energy rate balance,

Eq. (15), but excluded from the Stefan balance, Eq. (16), accounts
for the 4th-order capillarity-dependent energy rate associated
with the interface's tangential flux. This term actually perturbs the
speed of an interface over relatively short time and length scales
by inducing small compensatory adjustments to the local rate of
latent heat production. Substituting the right-hand side of Eq. (16)
for the two conduction terms in the full omnimetric Leibniz–
Reynolds balance, Eq. (15), defines the scalar bias-field function,

( )rB , as the superficial divergence of the vector tangential flux, and
relates it to local interface dynamics mediated by capillarity.

The omnimetric energy rate balance, valid over all continuum
length scales, shows the following important dynamic relationship

⎡
⎣⎢

⎤
⎦⎥η ξ

Ω
∇ Φ( ) ≡ − ·[ ( )] =

Δ
( ) − ( ) ·

( )
τ τ

H
r v r v r nB , .
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f

0

Eq. (17) specifies that small velocity shifts, ( ) − ( )v r v r0 , are ex-
pected that are 4th-order perturbations, once capillary-mediated
energies are included in the omnimetric interfacial energy rate
balance. Moreover, as indicated, the bias field energy rate is itself
proportional to, and of the same order, as the speed perturbations
it causes.

Thus, inclusion of the bias field energy rate allows capillary-
mediated energy losses and gains to occur on short time scales to
produce autogenous speed perturbations, which on unstable
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interfaces will be shown to initiate interface modulations in the
form of branching and enhanced pattern complexity. These dyna-
mical aspects of the bias field will now be addressed in further
detail.
5. Capillary bias fields

5.1. The scalar field

We now return to the initial task of finding a general expres-
sion in 2-D for the bias field, φ( )B , parameterized with the normal
angle coordinate along an in-plane interface in 2. From Eq. (17)
that defines the bias field operationally, one substitutes its
equivalent divergence operations in 2, namely

⎡
⎣⎢

⎤
⎦⎥φ φ β

φ φ
φ κ φ κ φΦ( ) ≡ − ∇ ·[ ( )] = [ϑ( )] × ^( ) × ^( )

( )τ τ
d

d
d

d
B ,
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where the bias field constant, β, located on the right-hand side of
Eq. (18) is the dimensional coefficient defined as β ≡ γ Ω

Δ
K

a S
int

f

0
3

[W/m2]. This materials/system constant re-introduces the di-
mensionless curvature, κ φ κ φ^ ( ) = ( )a , and also non-dimensiona-
lizes the arc-length divergence operator, ∇ [⋯]τ , by inserting a3 into
the denominator of β. One finds that minus the arc-length diver-
gence defined in Eq. (18) is the ‘convergence’ in 2-D of the tan-
gential GTH flux. As shown on the right hand side of Eq. (18), the
flux convergence is found by differentiating the expression for the
capillary-mediated tangential flux with respect to the normal an-
gle, as already derived in Eq. (6). Application of the chain rule once
more by multiplying that angular derivative by the in-plane cur-
vature, κ φ( ) = φd

ds
, provides the desired result.

The above mathematical steps yield a general expression for
the dimensional bias field, φ( )B , on an arbitrary 2-D solid–liquid
interface supporting energy density anisotropy, viz.

⎛
⎝⎜

⎞
⎠⎟φ

γ Ω
κ φ φ( ) = −

Δ
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K
S

B .
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The auxiliary function, φΓ( ), introduced in Eq. (19), contains the
nonlinear interplay between shape (curvature variations) and
energy density anisotropy, both of which play roles in the dynamic
evolution of interfaces. The function φΓ( ) is defined as the fol-
lowing 4th-order expression relating the interface shape, energy
density, and the bias field, φ( )B ,
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A dimensionless form of the bias field, B φ φ β( ) ≡ ( )B / , convenient
for analysis and comparison with numerical models, results from
dividing both sides of Eq. (18) by β. Thus, in 2-D, this intrinsic
thermodynamic scalar field may be expressed as

B φ κ φ φ( ) = − ^ ( )Γ( ) ( ). 213

One notes that the strength of bias field perturbations increases
rapidly as interface curvature cubed, (i.e., inversely as feature size
cubed, a�3). Bias-field perturbations appear during melting or
growth as a result of either the interface shape or the energy an-
isotropy acting alone, or simultaneously.

Analytic use of Eq. (21) requires that the interface shape,
φ( ) = ( ( )) =c x y c s, 0, and its energy anisotropy, γ φ( ), each be 4th-

order differentiable, whereas numerical models capable of
resolving bias field perturbations on general evolving interfaces
should be 4th-order accurate. These requirements suggest that the
bias field is analogous to surface species diffusion, by which W.W.
Mullins analyzed the kinetics of thermal grooving on a crystal–
vapor surface almost 60 years ago using related principles [48].

5.2. Field theoretic properties

5.2.1. Interface Poisson equation and associated fields
The bias field represents the instantaneous energy rate de-

posited or removed from a dynamic interface in concert with local
equilibrium. The tangential flux responsible for the bias field is a
‘conservative’, i.e., path-independent vector field. That flux is
proportionate and anti-parallel to the gradient of the scalar po-
tential supporting that field, so φΦ [ϑ( )]τ t, .

The set of theoretical linkages from field theory that connect
the GTH scalar thermo-potential, φϑ( )t, , to its tangential vector
flux, φΦ ( )τ t, , and from tangential flux to its scalar convergence, or
bias field, B φ( ), shows that a superficial Poisson equation exists,
which connects the interface's scalar GTH thermo-potential to its
associated bias field. The superficial Poisson equation in 2-D that
links these interrelated scalar interface fields is

B ⎡⎣ ⎤⎦φ φ( ) = ∇ ϑ( ) ( )τ . 22
2

Line integrals of the vector tangential flux vanish over a closed
curve in 2-D that follows the evolving interface. This mathematical
property is also responsible for making detection of bias field
energies in 3-D impossible by bulk calorimetry, as the line integral
of its associated vector field taken round the interface supporting
its scalar potential exactly vanishes in n [56].

One finds that capillary-mediated tangential flux obeys the
‘path-independent’ property for conservative fields, namely that
the closed line integral of this vector field taken round a closed
interface vanishes, so that

∮ τφΦ( ( )· ) = ( )τ ds 0. 23c

The scalar bias field, as proven next, also shares this property of
global neutrality and, therefore, does not alter the average amount
of phase transformation as time progresses. The bias field acts
instead as an autogenous energy source that perturbs the local
interface speed and modulates the interface's shape on smaller
length scales, where its value is locally non-zero and varies in
strength and sign. The author further suggests that this scale-de-
pendent property provides the fundamental reason why neither
experiments, nor numerical models, detect a noticeable difference
between the Stefan balance that ignores capillarity, namely, Eq.
(16), and the omnimetric energy balance derived here in Section
4.6 using the Leibniz–Reynolds theorem. It also appears that pre-
cise IDGE microgravity experiments flown by NASA were the first
to support experimental conditions allowing, by direct observation
and measurement, detection of shape-altering effects on melting
crystallites from an intrinsic capillary-mediated interfacial energy
field.

5.2.2. Macroscopic effects of the bias field
In 2-D, the dimensionless bias field, B φ( ), may be expressed in

several mathematical forms by employing normal-angle and arc-
length parameterizations for the flux, for which Φ φ( ) represents
the magnitude of the vector tangential flux, φΦ ( )τ , at an arbitrary
interfacial location with normal angle φ. The dimensionless bias
field in 2-D, defined from Eqs. (18) and (21) as the convergence of
the tangential vector flux, may be equated to the nested product of
derivatives and curvatures—all functions of φ.



7 The characteristic time scale for thermal conduction through a bulk phase via
macro-gradients is roughly the ratio of the square of thermal boundary layer
thickness, to the thermal diffusivity, Λ D/ th

2 . Even for an excellent thermally con-
ducting solid phase, with ≈ −D 100 mm sth

2 1, which is growing with a thin
boundary layer of Λ ≈ 0.1 mm, the characteristic thermal adjustment time is
roughly 1 ms. That adjustment still takes 100–1000 times longer than the char-
acteristic interaction times for the two source terms, latent heat and bias-field
energy.
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That the total amount of capillary energy released over the
entire arc length of the interface averages to zero can now be
proved following these steps: (1) reverse the order of differ-
entiation and integration, which is interchangeable for uniformly
continuous functions on bounded closed domains, then (2) apply
Eq. (23), which shows that a closed line integral of the path-in-
dependent tangential flux vanishes. Thus, one finds
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Equalities (25) suggest why bias-field energy has gone unnoticed:
it lacks influence on the total (macroscopic) amount of phase
transformation as time increases. Yet, the bias field, as to be shown
next, plays a decisive role in providing pattern-forming mesoscopic
perturbations on the interface speed, which, as just explained,
average to zero on long scales.

As was postulated 35 years ago [57], and broadly accepted for
over two decades [58], the creation of many diffusion-limited
crystallization microstructures, such as the mesoscopic patterns
typifying alloy dendrites, mineral forms, frost and snowflakes, are
all attributed to ‘selectively amplified noise’. Choosing stochastic
processes as being primarily causal for diffusion-limited pattern
formation was indeed understandable, as deterministic perturba-
tions arise from 4th-order thermodynamic energies, the very pre-
sence of which is obscured because their system-wide macroscopic
average is zero. Intrinsic perturbations, as will be demonstrated, act
through autogenous means, influence interface conditions, and
predispose the evolution of complex interfacial patterns. Bias field
energy, moreover, provides fully deterministic intrinsic perturba-
tions that when combined with interfacial stability act in-
dependently from extrinsic stochastic disturbances, induced by
crystallographic defects, environmental stimuli, or noise.

5.3. Time and length scales

Capillary bias fields depend on subtle geometric and thermo-
dynamic characteristics of the solid–liquid interface, over which they
redistribute small amounts of thermal energy. These energy sources
and sinks cause speed perturbations, because capillary energy exerts
a prompt influence on local dynamics, inducing at mesoscopic scales
both evolutionary modulations that lead to enhanced complexity of
the interface. We now examine how such a subtle energy field
controls dynamic modulation on active interfaces.

First, one notes that the source terms found in the interface
Leibniz–Reynolds energy balance, Eq. (15), which derive from in-
dependent, but ultimately, coupled microscopic interface phe-
nomena include: (1) latent heat production/absorption, and
(2) local equilibrium redistribution of capillary energy via the bias
field. Next, the time scales associated with each of these interface
energy sources are extremely brief. Short response times arise
because latent heat is released at an interface as molecules depart
the liquid phase to join the crystal, or, vice versa, latent heat is
instantly absorbed where melting prevails and molecules leave the
crystal. Either process, melting or freezing, involves short-range
unimolecular events. Similarly, so do bias field energy redistribu-
tions, as they arise to satisfy local equilibrium by adjusting the
chemical potentials of the molecules proximate to the interface.
Given that local equilibrium involves relatively few molecules
adjoining a moving interface, their time scale for exchanging en-
ergy also remains extremely brief. Indeed, both experiments and
modeling confirm that mobile (kinetically unhindered) solid–li-
quid interfaces compensate departures from local equilibrium in
time intervals no longer than about 1–10 μs [59,60].

Contrasting the microscopic nature of interface energy sources,
energy transport (e.g., heat conduction) to and from the interface
depends on long-range macroscopic gradients. Gradients included
in the interface energy balance adjust relatively slowly7 within the
bulk phases adjoining the interface. The reason for this slow re-
sponse is that conduction gradients involve interactions that ex-
tend far from the interface. Transport gradients, consequently,
tend to evolve on much longer time scales during phase trans-
formation relative to those associated with interfacial energy
sources. In fact, the macro-gradient fields assisting transport
through the bulk phases usually change so slowly relative to
change rates for microscopic energy sources that the former act as
nearly stationary, or quasi-static, thermal features during those
brief periods required by adjustments for the microscopic interface
processes. The large disparity in these coupled time scales for fast
changing energy sources and slow changing transport gradients
accounts for the dynamic behavior of intrinsic perturbations
arising from relatively weak bias fields. In accord with the prin-
ciple of energy conservation, macroscopic transport gradients re-
main in balance with the sum of two independent energy rates
from interface sources. This balance must be maintained during
either melting or growth between heat transported through
macro-gradients adjacent to the interface and the momentary sum
of the (strong) latent heat source plus the (weak) capillary bias
field. This dynamic energy rate balance, moreover, must hold even
over periods where brief adjustments arise along an evolving in-
terface caused by changes in its shape and thermodynamic po-
tential. Despite the disparity in their respective characteristic time
scales between nearly ‘fixed’ macroscopic and fast-changing mi-
croscopic energy rates, a local balance nonetheless must always
prevail. The microscopic energy sources each arise from in-
dependent effects: latent heat rates that are strictly proportional
to the interface's normal speed, and capillary bias energy rates that
depend non-linearly on the interface's local shape and crystal-
lographic orientation. Energy conservation requires that their sum
balance with the conduction rates set over longer time scales by
slowly changing macro-gradients surrounding the interface.

The outgoing total heat production rate from the interface
during crystal growth into the fixed conduction fields in the
adjacent bulk phases remains steady over short time scales.
Were the bias field to became more positive from some shift in
local equilibrium, and thereby increase the total energy rate re-
leased from the interface, then conservation of energy to the
quasi-static conduction fields would be compromised. Instead,
the interface's speed de-accelerates, promptly reducing latent
heat production and thereby satisfying the local interfacial en-
ergy balance. Should the bias field be reduced in response to
local equilibrium, and lower the total energy release rate from
the interface, balance with the adjacent transport fields is im-
mediately restored by boosting the local growth speed to in-
crease the latent heat rate. This action/counter-action compen-
sates dynamically for the bias field's independently driven en-
ergy rate changes, and maintains local energy conservation over
short adjustment periods along the interface. The capillary bias



M.E. Glicksman / Journal of Crystal Growth 450 (2016) 119–139130
field induces compensatory perturbations in this coupled inter-
active manner on the interface speed that adjusts the local latent
heat rate to restore energy balance. The auto-induced local speed
perturbations appear as modulations of the interface shape that
can subsequently amplify and stimulate the development of
complex patterns on unstable interfaces.

Comparable compensation occurs during melting between la-
tent heat absorption rates and variations in the bias field re-
sponding to shifts in local equilibrium. These interface perturba-
tions lead precisely to crystallite shape modifications as were
observed during conduction-limited melting in microgravity.
5.4. Laplace points

The capillary bias field, B φ( ), can vanish in 2-D on interfaces at
isolated interfacial orientations, φ⋆, where the governing surface
Poisson relation, Eq. (22), reverts locally to the surface Laplace equa-
tion, where φ∇ [ϑ( )] =τ 02 . The sign of the bias-field energy rate re-
verses at these isolated zero points, which are the roots of the scalar
flux divergence. These roots have dramatic influences on the interface
dynamics, as they can lead to inflection, branching, and other pattern
variations. They are designated as bias field ‘Laplace points’.

Laplace points are particularly interesting features of the bias
field, insofar as equilibrium is satisfied locally at those points,
without any subsequent changes needed in the local interfacial
curvature. This situation occurs where the bias field
B φ κ φ φ( ) = − ( )Γ( ) =⋆ ⋆ ⋆ 0, and κ φ( ) ≠⋆ 0. Surrounding each such
Laplace point in 2-D there exists a small neighborhood, or angular
region, δφ± , subject to increasing—but opposing—speed perturba-
tions, δ± ( )v rn . Opposing speed perturbations on each side of a La-
place point reverse the time rates of change for the adjacent interface
curvatures. If amplified by the external transport field, countervailing
curvature changes on the interface eventually develops a rotation, or
‘curl’, surrounding the Laplace point where κ → 0.

Adjacency information along a continuous interface is spread

by second derivatives of the normal speed that depend8 on d B

ds

2

2
,

which slow and flatten the interface where B φ( ) > 0, and nearby
each Laplace point, where B φ( ) < 0, accelerate and sharpen the
interface. These autonomous curvature responses have a classical,
if somewhat unusual, thermodynamic interpretation.

Inasmuch as the bias field energy depends on the interface
curvature, the coupled responses between the chemical potential
and changes in interface curvature represent an unusual form of
the Le Chatelier–Braun effect [25,26], where internal system vari-
ables subject to a local change—in this instance a purely geometric
variable of the interface—spontaneously respond in a direction
that always tends to restore the system locally toward equilibrium.
Le Chatelier–Braun responses over a small region surrounding
bias-field Laplace points cause simultaneous curvature flattening
and sharpening that eventually inflect the interface. If such an
inflection develops on an unstable interface, it can amplify to form
a bump, or cause invagination, folding, and even splitting—all of
which contribute to increased pattern complexity. Some examples
of various inflective perturbations induced by bias field pertur-
bations at Laplace points are presented in the next section.
8 Our overall description of pattern formation suggests that the thermo-
dynamic fields responsible for pattern development depend up to the 4th deriva-
tive of the interface curvature, which involve derivatives of the interface shape up
to 6th-order! These high-order dependencies on the pattern form doubtless in-
terfere with the detection of the bias field through ordinary experimental and
numerical methods.
6. Analytical and numerical models

6.1. Background

In 2006, capillary phenomena were initially suspected as re-
sponsible for shape modifications observed during melting in mi-
crogravity. The author desired an analysis of the behavior of Gibbs–
Thomson–Herring potentials on anisotropic ellipsoidal crystal–melt
interfaces. High-aspect ellipsoids closely approximated the shapes of
melting crystallites in microgravity observed in the IDGE experiments.
That mathematical analysis was performed by McFadden [61], who
used methods based on variational calculus to confirm independently
the development of non-monotone thermo-potentials on anisotropic
crystalline ellipsoids melting in microgravity. McFadden's analytical
results for the thermo-potential in 3-D, combined with precision
microgravity melting data discussed in Section 1, supported the au-
thor's hypothesis that autogenous capillary fields might be capable of
perturbing solid–liquid interfaces and be linked to pattern formation.

Bias fields on 2-D interfaces have now been explored ex-
tensively by the author applying the mathematical results outlined
in this paper to a variety of analytic shapes. These studies exposed
and confirmed the general properties derived for the bias field,
such as the presence of Laplace points close to the tips of finger-
like protuberances; countervailing dynamic curvature changes
surrounding each Laplace points; neutrality of the bias field at
macroscopic scales; and, most importantly, the stimulation of
pattern complexity from smooth starting shapes.

As the bias field is just a higher-order spontaneous result of the
chemical potential, standard numerical models of interface dy-
namics, e.g., phase field, level sets, and front tracking, in principle,
should already include it within their physics. This is not sur-
prising, given that competent numerical models are thermo-
dynamically consistent in conserving energy and mass and track-
ing entropy production. However, one encounters certain realities
of numerical models when simulating crystal growth, including
limited numerical precision caused by truncation and round-off;
restricted precision of the computational stencils introduced by
discrete approximations for derivatives and curvatures; plus other
technical difficulties associated with grid resolution; false aniso-
tropy; and inclusion of inadvertent and even purposely added
random noise [62,63]. Such numerical issues apparently conspired
to mask, or overshadow, the fundamental cause of pattern evo-
lution by perturbations intrinsically provided by thermodynamics.

Exact predictions derived for bias-fields on various 2-D conic
sections and on some transcendental interface shapes, as well as
data obtained from melting experiments, were first checked
against independent results obtained from several numerical
models. More recently we added detailed quantitative checks be-
tween predictions from analytical bias-field theory and quantita-
tive simulation data obtained using a dynamical numeric model
[64]. Once it was understood that the interface perturbations from
capillary fields do indeed entail 4th-order capillary-mediated en-
ergy distributions, additional numerical results were provided by
independent collaborators that are specifically tailored for the
detection of autogenous modulations, including observation of
how added random noise influences such patterns.

6.2. Exploring the bias field numerically

Bias field energy distributions derived here analytically from
basic thermodynamic principles are already incorporated into the
physics of phase-field formulations, as well as with other ther-
modynamically-consistent numerical models involving sharp in-
terfaces. These capillary fields operate in the background and do
not require any additional information or adjustments when si-
mulating pattern evolution.
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6.2.1. Interface modulations and fluxes
The first examples of 4th-order accurate, noise-suppressed

phase-field simulations are credited to Mullis [65,66], an example of
which is shown in Fig. 3. Mullis's numerical simulations supplied
the first 2-D phase-field renderings that were sufficiently accurate
to reveal the emergence of 4-fold symmetric autogenous pertur-
bations. Mullis also determined the interface temperature field and
measured its tangential heat flux along an advancing dendrite tip.
The simulated dendrite tip exhibited a faintly pulsating shape, re-
sembling that of the starting parabolic ‘finger’, with a slightly
smaller steady-state tip radius and trailing modulations.

Fig. 4 provides a comparison between Mullis's published in-
terfacial flux measurements with the tangential flux, Φ ρ( )x/ para ,
calculated analytically by the author from Eq. (6) for a parabola
with the same 4-fold energy density anisotropy. The analytic
parabola, = − ( − ∞ < ≤ )y ax x4 02 , has a tip radius ρ = a/2para ,
with 4-fold energy density anisotropy chosen identical in strength
(3%) to that of the simulated dendrite [66]. This simulated dendrite
developed thermal gradients along each arm, caused by outward
heat transfer to the surrounding supercooled melt. The tangential
component of the thermal gradient caused by the transport field is
unrelated to its capillarity-mediated gradient, but adds a nearly
uniform amount to the gradient near the tip. Comparison of
Mullis's dynamic flux data with capillary heat fluxes calculated
from Eq. (6) for a parabola requires adding a constant to the ca-
pillary-mediated component for the parabola. The flux component
caused by capillarity is exactly zero at a symmetric tip, so Mullis's
flux value of -15 at the dendrite tip, ρ =x/ 0a , is the value of the
‘extraneous’ transport component to be added. In addition, the
ratio of the parabolic tip radius to the product of its capillary
length, λ, with the (unknown) interface conductivity, λ × Kc int are
matched to equate the length scales of the dendrite and the
parabola, and the vertical scale factor for the parabola's flux. The
flux measured on a phase-field simulated dendrite, Fig. 4(left), are
consistent with the capillary-mediated tangential flux magnitude
calculated analytically for an ideal parabola, Fig. 4(right). As the
form of the tangential interfacial flux is extremely sensitive to the
strength of the anisotropy and the shape, the consistency shown
provides a reasonably stringent comparison between phase field
numerics and bias-field analytics.

Fig. 5a–c contains the relevant interfacial thermodynamic fields
calculated analytically for a smooth parabola. These include:
(a) the GTH thermo-potential, ρϑ( )x/ , (b) the magnitude of the
Fig. 3. Left Panel: Phase-field simulation solved over the full 2-D computational domain,
over all wavelengths, modified with a 4th-order accurate spatial discretization scheme, u
ϵ = 0.024 , is imposed on an initially circular ‘nucleus’. This simulation reveals a robust
turbations’ constrained by crystallographic symmetry. Right Panel: Detail of the right
symmetric modulations that remain recognizable at the smallest resolved scale. This r
cillations. Gray-scale contours, best observed in the right panel, reveal complicated therm
of Professor A.M. Mullis, University of Leeds, UK [65].
dimensionless tangential flux, Φ ρ( )x/ , and (c) the bias field energy
rate, B ρ( )x/ , all of which are plotted in Fig. 5 for various strengths
of 4-fold crystalline anisotropy, ϵ4, in 2-D given by Eq. (20). These
dimensionless fields were calculated from Eqs. (2), (6), and (21),
respectively.

Fig. 5c shows specifically that where B 4 0, the bias field adds
capillary energy and slows the interface during crystal growth.
Also, where B o 0, the bias field withdraws energy and accel-
erates the interface during crystal growth. We note further in
Fig. 5a that the GTH thermo-potential for a parabola becomes
distinctly non-monotone as the tip is approached, provided that
ϵ ≥ ≈1/95 0.01054 . Again, Mullis [66] verified the prediction of
non-monotone interface thermo-potentials for a ‘crystalline’
parabola with 3% 4-fold anisotropy. He then showed that the dy-
namic shape evolved using phase-field avoids non-monotone po-
tential distributions by developing some subtle curvature changes
near its tip. The full explanation for this interesting observation of
interfaces avoiding non-monotone potential distributions (which
in turn affect the form of the bias field) requires further study
before concluding that this might be a general dynamic response
for anisotropic crystals.

Nevertheless, as revealed in Fig. 5a and c, a monotone GTH
thermo-potential and the corresponding bias field curves for an
ideal parabola predict pattern changes with ϵ ≤ 1/954 , for which
only one (pair) of Laplace points appears in the B − field (i.e., only
a single pair of sign-reversing perturbations occurs). For parabolic
interfaces with ϵ ≥ 1/954 , non-monotone GTH thermo-potentials
occur and an additional pair of Laplace points for the B-field ap-
pear extremely close to the tip. When ϵ = 1/954 , the B-field
marginally retains a second root, poised exactly at the tip, ρ =x/ 0.
Thus, in 2-D, a 4-fold energy anisotropy of about 1% separates
sign-reversal behavior for parabolas into two cases: (1) those with
a single pair of Laplace points well aft of the tip, and (2) those with
an additional pair of Laplace points extremely close to the tip.
These differences might affect subsequent speed perturbations
and influence shape modulation and overall pattern development
for systems with ‘low anisotropy’ (i.e., ϵ < 1%4 ), compared to those
with ‘high anisotropy’ ( ϵ > 1%4 ). The bias-field analysis clearly
helps quantify what values of ϵ4 actually constitute ‘high’ and ‘low’

energy density anisotropies. Additional study is needed to eluci-
date more fully the quantitative influences of anisotropy on details
of dendritic pattern evolution.
φ π[ ]: 0, 2 . Calculations employed an implicit, multigrid solver that minimizes noise
sing a 17-point finite difference stencil. Four-fold anisotropy with medium strength,
, perfectly 4-fold symmetric, branching pattern, stimulated by some type of ‘per-
-hand dendrite arm. The interface exhibits a series of smaller, perfectly mirror-
esult indicates the lack of significant noise affecting the symmetric interfacial os-
al gradients internal to the growing crystal. Original color image provided courtesy



Fig. 4. Left panel: Tangential flux magnitudes reported by Mullis [66] along the phase-field isoline defining the interfacial tip region of a simulated dendrite tip, similar to the
image shown in Fig. 3, right panel. The simulated solid–liquid interface supports 4-fold energy anisotropy with e4 = 0.03. Mullis confirmed the presence of small cyclic
pulsations near the dendrite tip (see Fig. 8 in [66]). Right panel: Tangential flux magnitude, Φ ρ( )x/ para , calculated analytically for a smooth parabolic interface at local
equilibrium, also supporting anisotropy with strength ϵ = 0.034 . The capillary-mediated flux, Eq. (6), from which the tangential flux was calculated does not include any
contributions driven by gradients from the bulk transport fields responsible for net growth. Given that the capillary-mediated flux calculated analytically is exactly zero at
the parabola's tip, ρ =x/ 0para , a constant flux of �15 units was added to Eq. (6) to match Mullis's flux value at ρ =x/ 0a , allowing comparison with the interfacial flux reported
along the simulated dendrite. Note too, that the forms of both the interface flux and its bias-field energy are extremely sensitive to the value of e4 for a parabolic interface. (Cf.
the flux here with the curves plotted in Fig. 5b at different anisotropy strengths.).
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6.2.2. Sharp interface modeling
A decade prior to Mullis's precision phase-field results, an ac-

curate integral equation solver was developed by Lowengrub et al.
[67–69] for solving the phase-field equations in the ‘sharp-inter-
face’ limit. Their dynamic model solves Laplace's equation in the
bulk phases and uses dense distributions of Greens function
sources and dipoles along a prescribed interface to track pattern
evolution in fluids and crystals. Li and Lowengrub's solver was, to
the author's knowledge, the first one capable of detailing complete
evolution of complex diffusion-limited patterns with sharp inter-
faces from simple initial conditions. Their dynamic solver provided
the first simulation data that confirmed and revealed what the
author believes is the presence of the capillary bias-field, as their
simulations show intrinsic interface speed perturbations, shape
modulations, and allows separation of their subsequent amplifi-
cation by the imposed external field. Their numerical code,
moreover, uses a mathematical transformation that accurately
subtracts any net volume or overall area changes caused by phase
transformation in 3 or 2, respectively [69]. A few of our earliest
observations [70] of diffusion-limited pattern formation are re-
viewed next, but now discussed on the basis of a deeper under-
standing of the responsible thermodynamic mechanism.

6.2.3. Circular disk crystal
Calculating the initial bias field and simulating the subsequent

shape dynamics at a interface are easier in 2-D for a starting shape
based on smooth circular disk crystals that exhibits interface en-
ergy anisotropy, but initially lacks curvature variations on the in-
terface. Eliminating the starting shape's curvature variations
eliminates all derivatives of the initial curvature with respect to
normal angle, κ φ( = ) =t, 0 const. Thus, one finds that the initial
B-field reduces to a simpler mathematical form. Specifically, only
the first term in Eq. (20) survives for a circle, providing an exact
expression for the capillary bias-field at time zero that acts on a
circular interface with 4-fold anisotropy. One obtains for this
special case

B
⎛
⎝⎜

⎞
⎠⎟φ

γ γ
γ

κ( ) = −
+ ^

( )
φ φ φ φ φ φ, 0 .

26
, , , ,

0

3

6.3. Perturbations on anisotropic circular ‘seeds’

A circular interface with initial radius R is subject to 4-fold
energy anisotropy of the following harmonic form:

γ φ
γ

φ( ) = + ϵ ( )
( )

1 cos 4 .
270

4

Here the coefficient ϵ4 in Eq. (27) again denotes the strength of the
anisotropy of energy density. The starting interface may be de-
scribed parametrically as φ= ( )x R sin , φ= ( )y R cos , with initially
uniform dimensionless curvature, κ κ^ = R . The bias field, Eq. (26), is
evaluated with anisotropy condition (27), by inserting the 2nd and
4th angular derivatives of the energy density round the circular
‘seed’. The initial perturbation spectrum is prescribed by the bias
field, B φ( ), 0 , with the net radial changes from melting or growth
adjusted through a uniform scale factor, a¼1, applied sequentially
with the initial perturbations to the starting radius, R. See Fig. 6.

One obtains the dimensionless bias field for a circular disk
crystal of unit curvature, =a1/ 1 by inserting the derivatives of the
energy anisotropy into Eq. (26), giving the result

B( ) ( )φ φ= − ϵ ( ), 0 240 cos 4 . 284

The initial bias field on a circle, Eq. (28), exhibits multiple roots,
consisting of 8 Laplace points, about which capillary energy rates
change sign, inducing opposing speed perturbations. The zeros occur

round a circular interface at 8 locations ( )φ π π= ± +⋆ j41
8

, where the

indices =j 0, 1, 2, and 3, delineate four interface regions of retarded
growth (or enhanced melting) separated by four adjacent regions of
enhanced growth (or retarded melting). Fig. 6 provides graphical
comparisons calculated from Eq. (28) of initial shape changes imposed
by capillary energy on growing (left panel) and melting (right panel)
anisotropic disk crystals. The small but opposite curvature changes
occurring adjacent to the 8 Laplace points are explained in this figure,
and account completely for its early evolution and shape modulation.

6.3.1. Dynamic shape changes
Evolution of an anisotropic circular ‘seed’ of a dilute metallic

alloy solidifying into its melt was studied numerically by Reuther
and Rettenmayr [71,72]. These investigators used the diffusion



Fig. 5. Capillary-mediated interfacial fields for the parabola, ( )ρ ρ( ) = −y x/ 1/8 /2 ,
where ρ = a/2 is the parabolic tip radius. Plot (a) GTH thermo-potential, ρϑ( )x/ ;
Plots (b) tangential flux magnitude, Φ ρ( )x/ ; Plot (c) scalar bias field, B ρ( )x/ . Dashed
curves are field plots for isotropic interfaces, where ϵ = 04 . Bias field plots are
shown in a smaller neighborhood near the tip ρ( − < ≤ )x0.6 / 0 , and display strong
sensitivity to the value chosen for the 4-fold anisotropy. The bias field provides a
source of energy where B > 0, and an energy sink where B < 0. Capillary energy
redistribution results in small speed perturbations and shape modulations adjacent
to Laplace points where each curve crosses the ρ −x/ axis from the ρ−x/ direction. A
second pair of Laplace point occurs extremely close to the tip for 4-fold anisotropies
ϵ ≥ 1/954 .
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approximation method to solve Laplace's equation combined with
meshless front tracking to eliminate artifacts induced by false grid
anisotropy. Their dynamic solver follows diffusion-limited pattern
formation through front tracking with energy conservation. Their
numerical results illustrate how net crystal growth (accompanying
what the present author believes are shape changes induced by
bias-field perturbations) evolves toward branched morphologies
in a low-noise 2-D environment. These authors calibrated their
numerical simulations against several well-known 1-D analytic
solutions and 2-D numerical solutions for classical moving
boundary problems, which include the time-dependent
solidification of an infinitely long, orthogonal, corner heat sink
[73–75]. Excellent correspondence was reported between those
published solutions with their dynamic front-tracking results.

Comparison is provided in Fig. 7 of Reuther and Rettenmayr's
dynamical contours for an anisotropic circular ‘seed’ with those
calculated from the initial bias-field perturbations for the circular
anisotropic seed. The contours displayed in the right panel were
determined by applying for each time step the unchanged initial
bias-field perturbations given by Eq. (28). Considering that the
8 initial Laplace points remained unadjusted with the changing
interface shape after each time step, the correspondences between
analytically calculated and the simulated contours found over the
first 1.2 ms of crystal growth appear reasonably close. However, as
the crystal growth time exceeded 1.2 ms, pairs of transverse bumps
developed behind the four advancing cruciform tips. The initial
bias-field, with only 8 Laplace points, of course, no longer can serve
as an accurate representation of the observed interface speed per-
turbations. In fact, 16 additional Laplace points are needed to ac-
count for the additional interface inflections that developed after
1.2 ms of unstable growth. These additional Laplace points cannot
be determined analytically, but, in the author's opinion, occurred
spontaneously in the course of this dynamic simulation.

6.3.2. Interface inflection and Laplace points
In 2011, Li and Lowengrub provided the author dynamic simu-

lations of the evolution of two smooth semi-elliptical crystal–melt
interfaces growing into their supercooled pure melts [76]. The in-
itial seeds had the analytical form, = ± −y x1B

A
2 , with aspect

ratios (major-to-minor axial ratios) of =A B/ 2 and =A B/ 3. The tips
of these semi-ellipses were located, respectively, at = ±x 2tip and

= ±x 3tip , and their mid-planes were located precisely at =x 0mid .
These interfaces were subject to 4-fold anisotropy with ϵ = 0.0054 .
Video frames taken from relatively early stages of pattern devel-
opment (the first 50 frames) of Li and Lowengrub's dynamic si-
mulation were measured to locate the times and positions of de-
tectable interface inflections that follow the evolving ‘elliptical’ tips.
Each inflection observed in the simulation corresponds theoretically
to a Laplace point, ( )⋆X t , where the time-dependent bias-field re-
verses sign and stimulates inflection on the interface. The positions
for inflections on the smooth starting ellipses at t¼0 are visually
undetectable on the first few video frames, as their initial pertur-
bations are initially too small to measure directly. One must await
some amplification to occur by the specified external transport
field. Thus, the positions of the initial Laplace points, ( )⋆X 0 , on the
smooth ellipses were determined by backward extrapolation to
frame ‘0’. This was accomplished by regressing all the dynamically
observed inflection-coordinates observed on frames 5–46 of the
evolved interface patterns from the semi-ellipse with =A B/ 2, and
from frames 2–36 of the evolved patterns from the semi-ellipse
with =A B/ 3. The dynamically observed regressions obtained by
plotting the positions of inflections are shown in Fig. 8. Using lim-
ited time ranges of the two video sequences allowed measurement
of sequential pairs of interface perturbations occurring behind the
advancing tip. Linear regression of the video data (� - and •-sym-
bols) capture precisely the statistical ordinate intercepts, M0, listed
on the figure, which locate where perturbations started at zero time
on the original smooth analytically-specified ellipses. The statistical
intercepts extracted by linear regression agree within 70.2%, when
compared with the positions calculated exactly from Eq. (21) of the
initial bias-field Laplace points (□-symbols), viz., ⋆X2:1 and ⋆X3:1, the
values for which are listed to four decimal places along the ordinate.

6.3.3. Long-term pattern evolution
Lowengrub and Li also investigated the long-term dynamic

shape changes of a 4-fold anisotropic circle. They evolved a cir-
cular crystallite for growth times well beyond the early inflections



Fig. 6. Local bias field dynamics affecting short-time shape changes on circular disk ‘crystals’. Left panel: Crystal growth into cooled melt ( <T Tm) surrounding an initially
circular disk (dashed inner circle with R¼1) supporting 4-fold energy anisotropy (ϵ = 0.014 ). Average radius after growth increment increases by 25% is 〈 〉 =R 5/4. Arrows
point in growth directions from initial Laplace points (black dots), where B φ( ), 0 changes sign. Arrows terminate on the evolved interface (larger non-circular contour)
where the local radius of curvature matches the growing crystal's average radius, as specified by the outer dotted circle. Intersections between the dotted circle and the
crystal contour denote sectors where curvatures, κ φ( > )t, 0 , oscillate from larger to smaller than the average curvature, κ〈 〉 = 4/5, of the enlarged growing crystal. Right
panel: Crystal melting in a heated melt ( >T Tm) surrounding an initially identical circular disk crystal (dashed outer circle with R¼1). Average radius after melting decreases
25% to 〈 〉 =R 3/4. Arrows point in melting directions from each Laplace point (black dots) whereB φ( ), 0 changes sign. Arrows terminate on the non-circular evolved interface
(smaller crystal contour) where the local radius matches its average radius specified by the inner dotted circle. Intersections between the dotted circle and the crystal contour
denote interface sectors where curvatures, κ φ( > )t, 0 , oscillate from larger to smaller than the average, κ〈 〉 = 4/3, of the partially melted crystal.

Fig. 7. Left panel: Dynamic meshless front tracking of a circular seed crystal growing with 4-fold anisotropy, ϵ = 0.014 . Contours simulated at progressive time intervals up to
2 ms of physical growth time using the diffusive approximation method as simulated by Reuther and Rettenmayr. Time and distance scales for the solid–liquid contours
correspond to thermophysical constants chosen for the crystal and melt phases [72]. Right panel: Sequence of growth contours calculated analytically for the identical
starting ‘seed’ using bias-field shape modulations. 8 initial Laplace points, located at fixed positions around the starting seed, yield good approximations to the dynamical
front tracking results up to about 1 ms of physical growth time. Beyond 1ms, front tracking dynamics show that secondary bumps develop on the four arms, initiating 16
additional dynamical inflections along the interface. These correspond to 16 additional Laplace points that cannot be determined analytically.
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appearing on the two semi-ellipses shown in Fig. 8, which could
still be estimated analytically by using initial bias-field perturba-
tions, or even those shown using front tracking in Fig. 7. Low-
engrub and Li, as already mentioned, used a high-precision La-
place equation solver with all energy exchanges associated with
the interface and its surroundings tracked accurately [67–69]. The
growing crystal was subject to a far-field thermal condition spe-
cified by a boundary temperature or a far-field flux.

The dynamic patterns produced with this numerical code were
also subject to a mathematical transformation that maintains a
fixed number of pixels to comprise the evolving pattern in 2-D, or
a fixed number of voxels in 3-D. Their model is ideal for exposing
modulations stimulated by what we claim is the capillary bias
field. Dynamic results for the case of an initially circular interface
subject to 4-fold anisotropy evolved over a long period, sufficient
to approach a steady dendritic tip form, are shown in Fig. 9. Here
one observes the full range of spontaneously-evolved patterns that
derive from an anisotropic circular disk crystal growing into its
surrounding melt. The series of dynamic shapes is continually
modified by sequences of interface inflections and branching, until
what appears to be a limit cycle develops, where the pattern
synchronizes into a classical dendritic form. At this advanced point
in the pattern's development, any semblance of its initially smooth
circular shape no longer remains. The observed sequence of



Fig. 8. Coordinate locations of analytic Laplace points ( ⋆X3:1 and ⋆X2:1) versus ob-
served dynamic interface inflections (� , •, data) versus time, or dynamic frame
number. Laplace points locate theoretical positions where interface inflections in-
itiate behind the advancing tips of two semi-elliptical protrusions, = ± −y x1B

A
2 ,

with eccentricities =A B/ 2: 1, (� symbols), and =A B/ 3: 1, ( • symbols). Each
starting semi-ellipse is 4-fold anisotropic, with ϵ = 0.0054 . Both data sets have
regression coefficients >R 0.9, yielding intercepts, M0, for the x-coordinates of the
initial perturbations. Regressed pattern measurements and analytical predictions
for the initial Laplace points for ⋆X3:1 and ⋆X2:1 agree within 70.2%. See □-symbols
located on the ordinate that were calculated from Eq. (21). Video simulation data
provided through the courtesy of Lowengrub and Li [76].
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pattern changes follow, in the author's opinion, the number and
location of discrete denumerable inflections that are induced dy-
namically by Laplace points in the bias field.

6.4. Isotropic systems

Although the intent here is to explain the origin of diffusion-
limited shape change in crystalline microstructures, the applica-
tion of bias field thermodynamics also extends to interfaces with
non-uniform curvature for which the energy density is either
isotropic or exhibits extremely weak anisotropy. In the limit of
perfect isotropy, i.e., interface energy density ( γ φ γ( ) = 0) that is
independent of orientation, the crystal–melt bias field, Eq. (19),
reduces to the following non-linear 4th-order form that depends
only on the interface curvature and its first and second derivatives
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The Laplace points of the bias field, φ⋆, where φ( ) =⋆B 0, along an
energetically isotropic interface occur where interface inflections
(opposing curvature changes) can eventually initiate. The or-
ientations and locations, φ⋆, of bias-field zeros correspond to the
condition that the interfacial curvature and its first and second
angular derivatives satisfy the non-linear differential equation

κ
κ

κ φ
κ φ+

( )
= ( ( ) ≠ )

( )φφ
φ

⋆
⋆0, 0 .

30

2

Simulations for such energetically isotropic interfaces in 2-D
generally evolve toward extremely complex interfacial patterns
that resemble ‘seaweed’, ‘coral’, or other natural growth forms. The
author believes that highly complicated patterns form between
isotropic phases from the creation of an ‘avalanche’ of Laplace
points, where sufficient crystalline symmetry is no longer available
to organize and delimit the interface inflections, invaginations and
splittings that subsequently take place. The untrammeled multi-
plication and release of Laplace points that are generated during
evolution of isotropic interfacial patterns does indeed appear
chaotic, ‘random’, and seemingly ‘unpredictable’; but, in fact, such
patterns remain fully deterministic. Moreover, it appears that
isotropic patterns induce dynamics that display extreme sensitiv-
ity to initial conditions, where the lack of anisotropy promotes
uninhibited, omnidirectional growth, exhibiting profuse irregular
branching and splittings of an evolving interface.

Fig. 10 (left panel) shows an example of a complex diffusion-lim-
ited radial pattern, evolved from an initially smooth, perfectly iso-
tropic, slightly distorted, trefoil shape. This patternwas also simulated
by Lowengrub and Li [69]. The increasingly dense sequence of auto-
genous Laplace points perturbs the unstable isotropic interface, pro-
ducing a chaotic-looking pattern of what appears as ever-increasing
complexity. There remains little doubt that without the organizing
effects of crystalline anisotropy to constrain diffusion-limited pattern
evolution, any closed starting shapes in 2-D, or 3-D, eventually evolve
by a myriad of omnidirectional forking and branching, producing in
turn an almost endless number of Laplace points in 2-D or Laplace
lines in 3-D. More study on the limits and characteristics of such
‘random’ fluid-fluid patterns based on bias-field dynamics is appro-
priate for future investigations.

Fig. 10 (right panel) shows an example of a highly disorganized
diffusion-limited pattern created by simulated directional crystal-
lization of a pair of misoriented grains (black and gray). The solid–
liquid interfaces for both crystals are weakly 4-fold anisotropic, with
ϵ = 0.0014 . These grains share a vertical boundary with the black
grain tilted 30° from the preferred orientation of the gray grain. One
observes in the video sequence that the grain boundary and the solid–
liquid interface, upon equilibrating, immediately form a localized
grain boundary groove, from which a pair of slender finger-like pro-
trusions (black on the left, gray on the right) advance into the melt.
These initial protrusions then commence to split and fork repeatedly,
and quickly develop into a highly ramified structure containing
poorly-defined irregular dendritic forms. The original dynamic se-
quence from which this quasi-isotropic pattern was obtained was
simulated by Ankit and Nestler [77], who used multiphase-field nu-
merics based on the grand-chemical-potential model with periodic
(no-flux) boundary conditions applied to the left and right borders of
the computational box [78,79].

Lastly, mathematical descriptions of steady-state cellular
shapes in both 2-D and 3-D were derived for incompressible pe-
netration of two fluids by Saffman and Taylor [80]. Saffman and
Taylor compared their theoretical cell shapes with experimentally
observed patterns obtained with two interpenetrating insoluble
fluids in Hele-Shaw cells. Their analytic ‘viscous fingering’ profiles
have also been adopted by several investigators attempting to
describe the dynamics of steady-state cellular crystalline patterns
that occur commonly in directional crystallization of dilute alloys
[81,82]. You, Wang, and Wang recently investigated the stability of
simulated cellular substructures in a directionally crystallized di-
lute binary alloy modeled at steady-state [82]. You et al. chose to
evolve dynamically a smooth Saffman–Taylor finger shape and
found, using phase-field simulations, that the critical ratio of the
cellular tip radius to finger width, α, where instability occurs is
α≈ 0.39. You et al. then compared their numerical results against
the analytical result provided by bias-field perturbation analysis,
which gives the exact value for α π= = …3/2 / 0.3899 These in-
vestigators reported quantitative agreement between their pattern
formation results on cellular interface stability using phase-field
simulation and exact predictions based on bias-field analysis.
Moreover, You et al. also concluded that the observed dynamic
pattern change (cell splitting instability) is stimulated by release of
capillary-mediated interfacial energy [82].



Fig. 9. Long-term growth of a circular crystal, subject to 4-fold anisotropy, ϵ = 0.0054 . Frames extracted from a numerical simulation that accurately solves integral equations
based on dense distributions of interfacial Greens functions. This simulation is comparable to phase-field numerics in the limit of a sharp interface. Frame 000 shows the
starting smooth ‘disk crystal.’ Frame 076, displays retarded and accelerated regions that correspond with the outer analytically modulated contour shown in Fig. 7, right
panel. Frame 094 shows the evolved interface after 8 lateral bumps appear in the pattern, stimulated by 16 additional dynamical Laplace points that cause inflections along
the four 〈 〉10 primary protrusions. The lower three panels suggest how continued repetition and synchronization of interface inflections and branching at hundreds of
perfectly symmetric dynamical Laplace points eventually produce a limit cycle that leads to a classical dendritic form (frame 151). Area of dark pixels remains constant in
each frame through benefit of a mathematical transformation that eliminates ‘crystalline’ pixels added by net growth. This simulation develops an increasingly complex
symmetric pattern within a fixed computational box, exposing the growth of multiple generations of autogenous perturbations. Simulation provided through the courtesy of
Lowengrub and Li [76].

Fig. 10. Left panel: Radially grown ‘seaweed’ pattern simulated from the growth of a slightly distorted, trefoil ‘bubble’ (see insert) with constant, i.e., isotropic, interface
energy. Rapid multiplication of Laplace points, unconstrained by crystalline anisotropy (ϵ¼0) results in a seemingly random, chaotic pattern, lacking symmetry or direc-
tionality. The appearance of interface inflections, invaginations, tip splittings, and branchings are, nevertheless, deterministic. This pattern is an example of what occurs
when the bias field operates in an environment where extreme sensitivity to initial conditions prevails. Simulation from a low-noise dynamic solver provided through the
courtesy of Lowengrub and Li [76]. Right panel: Multiphase-field simulation in 2-D of directional crystallization from an initially flat ‘bi-crystal seed’, containing a vertical 30°
mis-orientation boundary at its mid-point. The solid–liquid interfaces for both the black and gray phases are weakly anisotropic, as ϵ = 0.0014 . Periodic boundary conditions
apply at the right and left borders, and the numerical domain size is 1000�1000. Upon equilibration with the melt, the grain boundary initiates a small groove on the solid–
liquid interface, from which two finger-like protuberances extend upwards into the melt. Then, the fingers fork, split, and branch into a complex highly ramified micro-
structural pattern. Directional crystallization appears irregularly ‘organic’, even chaotic, but this pattern is both repeatable and deterministic. The bias-field, unconstrained by
a significant level of anisotropy, generates numerous Laplace points that inflect the interface at an ever increasing number of locations. Image extracted from a multiphase-
field simulation video, courtesy of Dr. Kumar Ankit and Prof. Britta Nestler, KIT, Karlsruhe, Germany [77].
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Fig. 11. Direct comparison between low-noise, and noise-added, multiphase-field pattern simulations. Lower video panels selected from a low-noise multiphase-field
simulation. Upper video panels simulated under identical phase-field conditions, except for inclusion of noise-augmentation. Both pattern sequences start with identical
circular ‘seed’ crystals with initial radius = ΔR x15 , where Δx is the computational grid spacing. Energy anisotropy is 4-fold for both simulations, with ϵ = 0.054 . Injection of
random noise accelerates the overall rate of growth, and introduces minor distortions into the pattern that break the perfect symmetry established by what the author
believes are capillarity-mediated perturbations. Right detail consists of two pattern overlays comparing the low-noise (solid black) isoline with the noise-augmented (gray
dotted) isoline, chosen at the same tip separation. Only minor differences appear with noise injection from the basic pattern. Simulation images courtesy of Dr. Kumar Ankit
and Prof. Britta Nestler, KIT, Karlsruhe, Germany [77].
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6.5. Effects of added noise

Ankit and Nestler [77] recently checked on the specific influ-
ences of random noise additions during pattern evolution using
multiphase-field numerics. Fig. 11 compares the evolution of a
smooth 4-fold anisotropic circular ‘crystal’ into a branched cruci-
form pattern, with and without added noise. The lower 3-panel
sequence of video frames shows pattern evolution devoid of added
random noise, whereas the upper 3-panel sequence includes ap-
preciable noise augmentation. Little difference is noticeable be-
tween the two simulations, except that for equal evolution time
the noise-augmented patterns in the second and third upper video
frames appear slightly larger (more evolved) than do their coun-
terparts simulated below without added noise. The isolines of
these simulated patterns are compared directly in the enlarged
detail inserted at the right of Fig. 11. The images (solid black iso-
line) grow as perfectly symmetric 4-fold patterns over all or-
ientation space, indicating no detectable effects from randomness.
This result indicates that the observed pattern in 2-D is derived
from perturbations that are linked directly to the imposed crys-
tallographic symmetry, as is the capillary-mediated bias field. The
noise-augmented images (gray dotted isoline) show the presence
of minor irregularities that break strict 4-fold symmetry, and even
stimulate extra branches in a few locations. Although no quanti-
tative conclusions can be drawn from this single test, these data
support the idea that the basic character of diffusion-limited pat-
terns may evolve without benefit of selective noise amplification.
7. Conclusions

1. Observations of ellipsoidal crystallites melting in microgravity
under pure diffusive heat flow allowed the first quantitative
measurement of their axial ratios as melting progressed and
their size was reduced. Those experiments suggested that ca-
pillarity may induce major shape changes during active phase
transformation. The action of capillarity on growing crystals is
found to be even more dramatic, insofar as capillary-mediation
also induces branching, invagination, and splitting that increase
pattern complexity. Analyses presented here show that capillary
fields in crystal–melt systems are of intrinsic thermodynamic
origin, and their appearance and action during crystal growth or
melting are the results of energy conservation and the dynamics
of interface curvature change.

2. Energy conservation (Leibniz–Reynolds theorem) indicates that
a unary crystal–melt interface evolving at local equilibrium has
at least two independent energy sources: (1) robust release or
absorption of latent heat from phase transformation, and
(2) divergence of capillary-mediated tangential heat flux. The
latter is a relatively weak source/sink of thermal energy—
termed the ‘bias field’—which depends sensitively on system
size, shape, and anisotropy. Vector field theory shows that the
bias field is a net-zero source/sink of energy. Locally, however,
the two independent source terms—latent heat and the bias
field—couple on brief time intervals, and perturb the interface
over mesoscopic scales (circa 100 nm to 1 mm). The algebraic
sum at each interfacial point of source terms must continually
balance the energy transported via long-range, quasi-static
gradients. On short time scales such macro-gradients conduct
essentially fixed rates of thermal energy to and from the sur-
rounding phases. The interactions between fast acting micro-
scopic sources and relatively slow changing transport gradients
dynamically provide interface speed perturbations and shape
modulation during crystal growth.

3. Interfaces stimulated by capillarity in 2-D can inflect and ‘curl’
at isolated Laplace points, where the bias field energy rate re-
verses sign. Inflections can arise because the curvatures of the
adjoining interface shift in opposite directions about zero in
response to the bias field. This results in an unusual, but clas-
sical, Le Chatelier–Braun thermodynamic response. The scalar
bias field, moreover, is proved to average toward zero at large
macroscopic length scales, masking its presence by leaving the
system's overall transformation rate unchanged. Nonetheless,
the bias field is capable of locally perturbing the interface speed
on smaller length scales where capillarity becomes significant,
giving rise to intrinsically-driven interfacial modulations in the
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form of bumps, invaginations, and splittings. The bias field itself
is a non-stochastic scalar energy field of thermodynamic origin
capable of providing self-induced (autogenous) perturbations
independent of any extrinsic signals or noise.

4. Comparison of analytically derived interface patterns with those
from several thermodynamically consistent numerical models
shows qualitatively congruent pattern predictions and yield
quantitative details regarding specific pattern aspects such as
their initiation at inflection points. Several comparisons, modeled
dynamically by independent groups of investigators, indicate that
capillary energies leading to interface perturbations are already
fully accounted by thermodynamically consistent numerical
models. These include different ‘flavors’ of phase field, level sets,
and models designed for sharp interfaces using front tracking.
The intrinsic pattern-forming mechanism of capillary-mediated
interfacial heat fluxes therefore need not be added to any accurate
numerical model, as such models already embody the physics for
autogenous pattern evolution. Clearly, future attempts to control
solidification substructures and crystal growth patterns at pat-
tern-forming scales must rely on engineering approaches devel-
oped using relevant physics. Quantitative checks now indicate
close agreement between the analytically-derived locations of
bias-field Laplace points, where capillary-mediated energy rates
reverse sign, and where corresponding interfacial inflection
points are observed during simulations. In several recent tests
conducted on smooth starting shapes by independent groups,
and reported here, satisfactory agreement is found for both cir-
cular ‘seed’ crystals and protuberant shapes such as parabolas and
semi-ellipses. Additionally, detailed measurements (e.g., Fig. 4)
representative of important process details, such as the interface
flux distribution during simulated growth of dendritic shapes
show quantitative agreement when compared with analytically-
derived tangential fluxes on comparable interface profiles sup-
porting interfacial gradients in the GTH thermo-potential.

5. Diffusion-limited patterns stimulated by the capillary bias field in
isotropic or weakly anisotropic systems show a propensity to
produce an unconstrained ‘avalanche’ of Laplace points, wherein
the interface inflects at many seemingly unrelated locations.
These ‘organic’ growth patterns appear chaotic, but, in fact, they
remain deterministic. The lack of energy anisotropy induces ex-
treme sensitivity to initial conditions, which is a dynamical con-
dition that suggests random, noisy behavior. This behavior might
help explain dynamical patterns observed in Hele-Shaw cells,
where viscous fingering is studied in fluid-fluid systems.

6. Under conditions not yet fully understood, bias-field Laplace
points, or roots, synchronize with an advancing crystalline pro-
tuberance to form a limit cycle. This causes a pulsating train of
inflections and periodic branches to develop just aft of the
moving front, giving rise to classical dendritic forms. Capillary-
mediated perturbations of the interface are fundamentally re-
sponsible for a variety of mesoscopic crystalline patterns found in
both natural and man-made settings. These include hoar frost,
and snowflakes—the iconic symbols of winter—as well as many
mineral forms. Numerous diffusion-limited patterns arise spon-
taneously with important consequences in technical materials
processing, including solidification of metals, alloy casting,
welding and soldering, additive manufacturing, solution crystal
growth, dissolution, sublimation, and electrocrystallization [83].

This article is dedicated to the memory of the author's colleague
and friend, Dr. Robert J. Schaefer, who died on November 15, 2015.
Bob Schaefer's abiding interests and life-long contributions to un-
derstanding crystalline patterns and solid-state microstructures,
especially those of quasi-crystalline materials, will long be re-
membered by his loving family, close associates, and by the com-
munity of materials scientists and scholars who have been helped
and inspired through his brilliant insights and careful experiments.
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