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In this short note we investigate polytopes associated with families

of interval vectors, i.e., (0, 1)-vectors with consecutive ones. Using

a linear transformation we show a connection to “extended” inci-

dence matrices of acyclic directed graphs and the convex hull of

their columns. This leads to complete linear descriptions of the cor-

responding polytopes.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

An interval vector is a (0, 1)-vector x ∈ R
n such that its ones (if any) occur consecutively, for

example, if xi = xk = 1 for some i < k, then xi = xi+1 = · · · = xk = 1. These vectors are of interest

in, e.g. scheduling applications where the ones indicate the duration of an uninterrupted activity (see

[1] for models of certain job-shop scheduling problems). There is also an interesting class of matrices

related to interval vectors. An interval matrix (see [4]) is a (0, 1)-matrix whose columns are interval

vectors. Each such matrix is totally unimodular and the corresponding linear optimization problems

may be solved as network flow problems (again, see [4]).

Let I be an arbitrary set of interval vectors (in R
n). A goal of this paper is to find a complete linear

description of the polytope PI = conv(I), i.e., the convex hull of the interval vectors in I . To this end

we transform the problem and consider incidence matrices A of acyclic directed graphs extended in

the sense that some columns correspond to unit vectors. For such amatrix Awe investigate the convex

hull of its columns and find a complete linear description of such polytopes.
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For the theory of incidence matrices of graphs we refer to [3] and for concepts and results in

polyhedral theory see [4,6]. Vectors are treated as column vectors, and they are identified with the

corresponding n-tuples. The zero vector is denoted by O.

2. The results

Firstwe transformour problem. The idea is simply that each (nonzero) interval vector has a first and

a last position of its ones. Let L = [lij] ∈ R
n×n be the lower triangular (0, 1)-matrix where lij = 1 if

i � j and lij = 0 otherwise (so L is a special interval matrix). The corresponding linear transformation

T : R
n → R

n given by T(x) = Lx is an isomorphism as L is invertible. We write T(S) for the image of

a set S under T , i.e. T(S) = {T(x) : x ∈ S}. Let ei be the ith unit vector (with a 1 in position i, otherwise

zeros) and define eij = ei − ej for each i < j. Vectors ei and eij , as well as the zero vector O, will be

called elementary vectors.

Recall from Section 1 that I is a given (but arbitrary) set of interval vectors in R
n. Note that

T(ei) = ei + ei+1 + · · · + en (i � n)

and

T(eij) = ei + ei+1 + · · · + ej−1 (i < j)

so these are interval vectors. Also T(O) = O. From this we see that there is a unique set E of elementary

vectors such that T(E) = I; namely E = T−1(I).
We show below that it suffices to find a complete linear description of PE = conv(E), the convex

hull of the elementary vectors E associated with I . Let C be the (0, −1, 1)-matrix with the vectors in

E as its columns (in some order); then clearly PE is the convex hull of the columns of C. This gives a

connection to incidence matrices of directed graphs which will be exploited in the following.

Consider the matrix L above. Note that the inverse of L is given by L−1 = [mij] where mij = 1 for

i = j, mi,i−1 = −1 for i � 2, and mij = 0 otherwise. We remark that the essence of the following

lemma is true for invertible linear transformations of polyhedra in general (as the proof shows).

Lemma 1. If PE = {x ∈ R
n : Ax � b} (where A ∈ R

m×n and b ∈ R
m) is a complete linear description

of PE , then a complete linear description of PI is given by

PI = T(PE) = {y ∈ R
n : AL−1y � b}.

Proof. The fact that PI = T(PE) follows by convexity as T(E) = I . If y ∈ T(PE), then y = Lx for some

x with Ax � b. Then b � Ax = AL−1Lx = AL−1y. Conversely, if y satisfies AL−1y � b, let x be defined

as x = L−1y. Then y = Lx and Ax = AL−1y � b, so y ∈ T(PE). �

Due to Lemma 1 we focus on finding a complete linear description of PE . To this end we exploit the

connection to incidence matrices of directed graphs (see [3,4,6] for such matrices). The analysis uses

the same linear algebraic properties on which the network simplex algorithm relies.

Let G = (V, E) denote the directed graph with vertex set V = {1, 2, . . . , n} and edge set E =
{(i, j) : eij ∈ E}. Define V1 = {j ∈ V : ej ∈ E}. Also, let k0 denote the number of connected

components of the graph G (ignoring direction of the edges) such that the component contains no

vertex in V1.

Theorem 2. If O ∈ E, then the dimension of PE is n − k0. In particular, PE is full-dimensional if and only

if each connected component of G contains at least one vertex in V1. If O �∈ E, then the dimension of PE is

n − k0 − 1.

Proof. Assume first thatO ∈ E . The vectors in E \{O}may be organized as columns of amatrix B given

by

B =
[
B1 B2

]
,



G. Dahl / Linear Algebra and its Applications 435 (2011) 2955–2960 2957

where B1 is the submatrix containing the vectors eij and B2 contains the vectors ej (j ∈ V1). Let

V1, V2, . . . , Vk be the partition of V into the connected components of the graph G (ignoring direc-

tions). Then, by reordering rows and columns according to this partition, B1 may be written as a direct

sum B1 = B11⊕· · ·⊕Bk1,where Bt1 correspond to the subgraph ofG induced by Vt . A similar direct sum

exists for B2 : B2 = B12 ⊕ · · · ⊕ Bk2 where the rows in Bt2 correspond to Vt and the columns of Bt2 are

ej (j ∈ Vt ∩ V1). Let nt = |Vt| (t � k), so
∑

t nt = n. Then rank B equals the sum of the ranks of the

matrices

Bt∗ =
[
Bt1 Bt2

]
.

By network flow theory (see e.g. [3]) rank Bt1 = nt − 1 as this subgraph is connected (the rows are

linearly dependent, because the sum of these vectors is the zero vector, and connectivity assures that

the rank is no less than nt − 1). Thus, rank Bt∗ is either nt − 1 or nt . Moreover, the rank is nt if and only

if the matrix Bt2 is nonvacuous (contains at least one column). In fact, if a vector z satisfies zTBt∗ = O,

then zi − zj = 0 for each (i, j) ∈ E where i, j ∈ Vt , so zj = α for all j ∈ Vt and some constant α. But

if Bt∗ contains a column ej we obtain α = 0 (from zTBt∗ = O) and the rows of this matrix are linearly

independent. Conversely, if there is no such column ej , then, as noted, the rank is nt − 1. It follows that

rank B = n − k0. Finally, as E contains the zero vector O, the dimension of PE equals the rank of the

matrix B, which proves the first two statements of the theorem. Finally, if O �∈ R, then the dimension

of PE is equal to the rank B − 1, and the proof is complete. �

Consider a spanning forest in G consisting of some number r of (disjoint) trees Tt = (Vt, Et) for

t � r, and for each t select a vertex v(t) ∈ Vt . For each j ∈ Vt let P
+
j (resp. P

−
j ) be the forward (resp.

backward) edges in the unique path in Tt going from v(t) to vertex j, and define

cj = |P−
j | − |P+

j | + 1 (j ∈ Vt, t � r).

We may think of cj as a “signed distance” from v(t) to vertex j in Tt . In particular, cv(t) = 1 (t � r).

Consider the corresponding inequality

n∑
j=1

cjxj � 1. (1)

If (1) is valid for PE (meaning that each point in E satisfies the inequality) we call the forest (with its

special vertices v(t)) feasible and the corresponding inequality (1) is called a forest inequality. A subset

inequality is an inequality of one of the two forms

(i)
∑

j∈S xj � 0 for some S ⊆ V such that the induced subgraph G[S] is connected and no edge

in G enters S, or

(ii)
∑

j∈S xj � 0 for some S ⊆ V such that G[S] is connected, no edge in G leaves S and V1 ∩ S = ∅.
We are only interested in subset inequalities that are valid for PE (which is easy to check).

Example. Let n = 5 and consider the set I of interval vectors shown as columns of the matrix I

below. The corresponding set E of elementary vectors is the set of columns of the matrix C

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 1 0 0 0

0 0 1 0 0 1 1 0 0

0 0 0 1 0 0 1 1 1

0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 1 0 0 0

0 −1 1 0 0 0 1 0 0

0 0 −1 1 0 −1 0 1 1

0 0 0 −1 1 0 −1 0 0

0 0 0 0 −1 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Fig. 1. The graph G and a forest inequality.

Fig. 1 shows the graph G with edge set E = {(i, j) : eij ∈ E}; it has five vertices and seven edges (each

directed from left to right). We have V1 = {3} (see the final column). The spanning forest consists of a

single tree T1 with root v(1) (the third vertex), and its edges are displayed with thick lines ((1,3), (2,3),

(3,4) and (4,5)). The coefficients of the corresponding forest inequality (1) are shown. For instance, the

elementary vector e13 satisfies this forest inequality with equality.

Theorem 3. Assume that k0 = 0 and O ∈ E. Then every facet of PE is induced by a subset inequality or a

forest inequality.

Proof. When k0 = 0, by Theorem 2, PE is full-dimensional, so each facet F of PE has a dimension of

n − 1. Then F is induced by a valid inequality

n∑
j=1

ajxj � α, (2)

where the coefficient vector is unique up to multiplication by a positive scalar. Let EF = E ∩ F .

Consider the graph GF with vertex vet V and edge set EF = {(i, j) ∈ E : eij ∈ F}. Call j ∈ V1 an F-root

if ej ∈ F . Let V1
F , V2

F , . . . , Vr
F be the partition of V corresponding to the connected components of GF

(ignoring directions), and let k0(F) be the number of these components that do not contain any F-root.

We distinguish between two cases.

Case 1. F contains the zero vector O: This means that α = 0 in (2). Note that F = PEF := conv(EF).
Therefore, we may apply Theorem 2 to the situation where E is replaced by EF and conclude that

dim F = n − k0(F), so k0(F) = 1 (as dim F = n − 1). We may therefore assume that component Vt
F

contains an F-root, say v(t), (t < r) while the final component Vr
F contains no F-root. Now, each point

in EF satisfies (2) with equality (and α = 0). Using connectivity and the fact that ev(t) ∈ EF , as in the

last part of the proof of Theorem 2, we conclude that

aj = 0 for all j ∈ Vt
F (t < r).

For the final component Vr
F we “only” obtain that aj is equal to some constant for all j ∈ Vr

F . This means

that the inequality (2) by suitable scaling becomes
∑

j∈Vr
F
xj � 0 or

∑
j∈Vr

F
xj � 0 (the direction is

determined by its validity). This shows that every facet F containingO is induced by a subset inequality.

Case 2. F does not contain O: Again due Theorem 2 (now the second part)

n − 1 = dim F = n − k0(F) − 1

so k0(F) = 0. Therefore each component Vt
F contains an F-root v(t) (t � r). Since O �∈ F , the right

hand side α in (2) must be nonzero, so by scaling we may assume that α = 1. Using that each point

in EF satisfies (2) with equality we get

ai − aj = 1 ((i, j) ∈ EF)

and, moreover, av(t) = 1. This implies that for each j ∈ Vt
F and each path P from v(t) to j in GF

aj = |P−
j | − |P+

j | + 1 (j ∈ Vt
F , t � r).

This shows that (2) is a forest inequality, as desired. �

We remark that several of the subset inequalities and forest inequalities may be redundant, but we

do not discuss this question here.
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Define an alternating-sign vector as a nonzero (0, −1, 1)-vector such that after deleting all its zeros

one gets a (−1, 1)-vector where each pair of consecutive components have different signs. Let An be

the set of alternating-sign vectors of length n.

A complete linear description of the polytope PI = conv(I) may now be found.

Theorem 4. Let I be a set of interval vectors (in R
n) containing the zero vector. Let E = T−1(I) and

assume that k0 = 0. Then every facet of PI has one of the forms

(i)
∑n

j=1(cj − cj+1)xj � 1 where c1, c2, . . . , cn are as in (2) and cn+1 = 0,

(ii) wTx � 0 for some w ∈ An.

Proof. This follows directly by combining Lemma 1 and Theorem 3: the inequalities in (i) resp. (ii) are

obtained from forest inequalities resp. subset inequalities. �

We now discuss an application of Theorem 4.

Corollary 5. A complete linear description of the convex hull of all interval vectors in R
n is

wTx � 1 (w ∈ An),

xk � 0 (k � n).
(3)

Proof. We apply Theorem 4. The corresponding set E contains O and all elementary vectors ej (j � n)

and eij (i < j). Any nonredundant subset inequality must be of the form

x1 + x2 + · · · + xk � 0 (k � n) (4)

as each other vertex set S has an entering edge (and no subset inequality of type (ii) is valid). The

transformed inequalities (Lemma 1) are trivial inequalities

xk � 0 (k � n).

Next, consider a nonredundant forest inequality. Then ci − cj � 1 (i < j) and ci � 1 (i � n) as the

inequality is valid. This implies that the forest just contains a single tree T1 and that v(1) = 1. But then

0 � cj � 1 (j � n) so the nonredundant forest inequalities are
∑
j∈S

xj � 1 (S ⊂ V). (5)

The transformed inequalities are

wTx � 1 (w ∈ An).

Thus, a complete linear description of PE is given by (4) and (5), and the transformed inequalities give

a complete linear description of PI , as desired. �

We remark that alternating-sign vectors arise in another setting. In [5] one considers the class of

(0, −1, 1)-matriceswhere each rowandcolumn is analternating sign-vector, andonefinds a complete

linear description of the corresponding convex hull of these matrices (the so-called alternating sign

matrix polytope). This result actually extends the result by Birkhoff and von Neumann on doubly

stochastic matrices (see [2] for several results concerning doubly stochastic matrices).

Finally, it would be interesting to see if the results above may be useful in the study of scheduling

formulations and algorithms. We leave this for possible future work.
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