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SUMMARY

In eukaryotic cells, macroautophagy is a catabolic
pathway implicated in the degradation of long-lived
proteins and damaged organelles. Although it has
been demonstrated that macroautophagy can selec-
tively degrade specific targets, its contribution to the
basal turnover of cellular proteins has not been quan-
tified on proteome-wide scales. In this study, we
created autophagy-deficient primary human fibro-
blasts and quantified the resulting changes in basal
degradative flux by dynamic proteomics. Our results
provide a global comparison of protein half-lives
between wild-type and autophagy-deficient cells.
The data indicate that in quiescent fibroblasts, mac-
roautophagy contributes to the basal turnover of a
substantial fraction of the proteome at varying levels.
As contrasting examples, we demonstrate that the
proteasome and CCT/TRiC chaperonin are robust
substrates of basal autophagy, whereas the ribo-
some is largely protected under basal conditions.
This selectivity may establish a proteostatic feed-
back mechanism that stabilizes the proteasome
and CCT/TRiC when autophagy is inhibited.

INTRODUCTION

Within a cell, proteins are in a state of dynamic equilibrium and

are continuously synthesized and degraded (Goldberg and St

John 1976). Protein half-lives are highly variable and can range

from a few minutes (e.g., the tumor suppressor p53) to several

years (e.g., myelin basic protein) (Claydon and Beynon, 2012;

Levine, 1997; Price et al., 2010; Sabri et al., 1974). The half-lives

of proteins are often intimately linked to their functions, and

disruptions in protein degradation have been associated with a

number of pathological conditions (Nedelsky et al., 2008). The

constitutive degradation rate of a protein is established by mul-

tiple substrate-specific and nonselective cellular pathways

(Goldberg and St John, 1976). Within the cytoplasm of eukary-

otic cells, the two primary pathways for protein degradation

are the ubiquitin proteasome system (UPS) and the macroau-
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tophagy pathway (for simplicity, hereafter referred to as ‘‘auto-

phagy’’) (Mizushima and Komatsu, 2011). It is generally believed

that the UPS is responsible for the degradation of transient short-

lived proteins, while autophagy contributes to the degradation

of stable long-lived proteins (Ciechanover, 2005). However,

beyond these general trends, the relative contributions of indi-

vidual pathways to protein degradative flux have not been quan-

tified on proteome-wide scales. In this study, we quantified

the relative contribution of autophagy to proteome turnover

by comparing protein half-lives between wild-type and auto-

phagy-deficient cells.

The process of autophagy involves the sequestration of cyto-

plasmic proteins and organelles by double-membraned auto-

phagosomes and their subsequent fusion and degradation by

lysosomes (Klionsky and Emr, 2000). Autophagy is constitutively

active at low levels under nutrient-rich (basal) conditions and

is upregulated during periods of starvation (Mizushima, 2007b).

Starvation-induced autophagy is a critical nutritional response

designed to replenish cellular amino acid supplies (Singh and

Cuervo, 2011). Basal autophagy, on the other hand, is thought

to be responsible for constitutive turnover of a subset of pro-

teins and clearance of damaged proteins and organelles (Fimia

et al., 2013). The functional importance of autophagy has been

demonstrated in a number of eukaryotic model organisms. For

example, systemic inhibition of autophagy in mice results in

neonatal lethality (Kuma et al., 2004). Targeted tissue-specific

inhibition of autophagy has been shown to disrupt protein ho-

meostasis as evidenced by accumulation of ubiquitinated pro-

tein aggregates over time (Hara et al., 2006). These proteostatic

disruptions have a number of deleterious tissue-specific pheno-

types. For example, suppression of autophagy in neurons leads

to extensive neurodegeneration, and liver-specific inhibition of

autophagy leads to the development of hepatic adenomas (Ta-

kamura et al., 2011). Defects in the autophagy pathway have

also been linked to a number of neurodegenerative disorders

(Nixon, 2013).

Historically, autophagy has been thought to be a bulk degra-

dation pathway that non-selectively sequesters portions of the

cytoplasm for lysosomal clearance (Mizushima, 2007a). How-

ever, recent data have highlighted the ability of autophagy to

selectively eliminate specific substrates, including mature ribo-

somes, peroxisomes, endoplasmic reticulum, and mitochondria

(Fimia et al., 2013). Selective modes of autophagy are thought to
s
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play an important quality control function by targeting damaged

proteins and dysfunctional organelles for degradation. The

detailed molecular mechanisms of cargo selection and regula-

tion of selective autophagy remain under active investigation.

In general, these pathways appear to rely on specific cargo-

recognizing receptors (e.g., SQSTM1/p62, NBR1, and NIX) that

act as linkers between target cytoplasmic components and pro-

teins embedded in autophagosome membranes (e.g., LC3)

(Rogov et al., 2014). This repertoire of receptors provides poten-

tial mechanisms of cargo selection for diverse substrates. How-

ever, it remains unclear what subset of the proteome can be

targeted by basal autophagy and to what extent basal auto-

phagy discriminates between different protein substrates.

Traditionally, the kinetics of degradative flux has been studied

by monitoring the incorporation and removal of radioactive

tracer amino acids into bulk proteins in ‘‘pulse-chase’’ experi-

ments (Bjørkøy et al., 2009; Buchanan, 1961; Garfinkel and Laj-

tha, 1963). Recent advances inmass spectrometry have enabled

global analyses of protein degradation by time-resolved stable

isotope labeling (Claydon and Beynon, 2012). In this study, we

have used clustered regularly interspaced short palindromic re-

peats (CRISPR) (Cong et al., 2013; Horvath and Barrangou,

2010) to create autophagy-deficient (ATG5�/� and ATG7�/�)
primary human fibroblasts, and then utilized time-resolved iso-

topic labeling and mass spectrometry to provide a quantitative

global comparison of basal protein degradation rates between

these and wild-type cells.

RESULTS

Creation and Characterization of Autophagy-Deficient
Primary Human Fibroblasts
In order to establish autophagy-deficient primary cell models, we

used CRISPR (Cong et al., 2013; Horvath and Barrangou, 2010)

to knock out ATG5 and ATG7 in human diploid fibroblasts ex-

pressing the catalytic component of human telomerase (HCA2-

hTert) (Bodnar et al., 1998; Voskarides and Deltas, 2009).

HCA2-hTert fibroblasts can be continuously propagated without

becoming senescent yet display the hallmarks of primary cells

including serum-independent growth control and a stable diploid

karyotype (Bodnar et al., 1998; Vaziri and Benchimol, 1998).

They exhibit robust contact inhibition and can be maintained in

a quiescent state for extended periods of time while retaining

the ability to re-enter the cell cycle. In their quiescent state, fibro-

blasts aremetabolically active and autophagy occurs at elevated

basal levels (Lemons et al., 2010; Valentin and Yang, 2008). The

ability to experimentally maintain HCA2-hTert cells in a quies-

cent state enables long-term isotopic labeling experiments in

viable non-dividing cells. In such a state, the extent of fractional

isotopic labeling for a protein is solely dictated by protein degra-

dation and is not influenced by diluting effects of cellular prolifer-

ation (Claydon andBeynon, 2012; Eden et al., 2011). Thus, unlike

dividing cell lines, analysis of fractional labeling in quiescent cells

can provide accurate measurements of degradation kinetics of

long-lived proteins with half-lives significantly longer than the

doubling time of the cell.

In order to create ATG5�/� and ATG7�/� HCA2-hTert fibro-

blasts using CRISPR, five single-guide RNAs (sgRNAs) targeting
Cell
three different exons in each gene were designed. We used a

lentiviral CRISPR expression system where the mammalian

codon-optimized Cas9 nuclease was co-expressed with each

sgRNA (Shalem et al., 2014). The cloned lenti-CRISPR vectors

were used for viral production and human HCA2-hTert fibro-

blasts were infected with the resulting lentiviruses. Using the

SURVEYOR assay (Voskarides and Deltas, 2009; Ran et al.,

2013), we showed that sgRNAs targeting exon 7 of ATG5, and

exon 4 of ATG7 succeeded in introducing mutations in the

intended genes (Figure 1A). Mutant isogenic clones were iso-

lated by limiting dilution and each clone was shown to contain

frameshift insertion-deletion (indel) mutations in the respective

targeted gene (Figure S1). The complete knockout of ATG5

and ATG7 at the protein level was verified by western blots

(Figure 1B).

ATG5 and ATG7 are part of a dual protein conjugation system

that is required for the formation of autophagosomes (Komatsu

et al., 2005; Mizushima et al., 2001). The conjugation of ATG5

to ATG12 requires ATG7, and both ATG7 and the ATG5-

ATG12 complex are required for the conjugation of phosphati-

dylethanolamine to LC3 (the mammalian homolog of Atg8) and

its localization to the membrane of the developing autophago-

some (Ichimura et al., 2000; Suzuki et al., 2001). The conversion

of LC3 from an unlipidated form (LC3-I) to a lipidated form

(LC3-II) and its subsequent localization to the autophagosome

are required for membrane expansion and formation of mature

autophagosomes (Nakatogawa et al., 2007). The expected dis-

ruptions in these two conjugation systems are evident in the

mutant clones. The deletion of ATG5 and ATG7 results in com-

plete disappearance of LC3-II, and the deletion of ATG7 pre-

vents the conjugation of ATG5 to ATG12 (Figure 1B).

p62 (also known as SQSTM1) is a scaffold protein commonly

found in ubiquitinated inclusion bodies (Ciuffa et al., 2015). p62

has been shown to play an important role as a receptor in

some selective modes of autophagy by targeting specific sub-

strates to autophagosomes. p62 is itself constitutively degraded

by autophagy, and its expression level is a marker of autophagic

flux (Bjørkøy et al., 2009). As expected, the basal level of p62 is

significantly elevated in ATG5�/� and ATG7�/� cells (Figure 1B).

Together, the above data confirm that autophagy is constitu-

tively active at basal levels in quiescent HCA2-hTert cells and

that this activity is fully abolished in ATG5�/� and ATG7�/�

clones.

ATG5�/� and ATG7�/� cells can readily proliferate in rich

media supplemented with the full complement of amino acids.

Under starvation conditions, wild-type cells upregulate auto-

phagy as indicated by increased levels of LC3-II detected by

western blots (Figure 1C). This marker of starvation-induced

autophagy is completely absent in the mutant clones. Concom-

itantly, in comparison to wild-type cells, mutant cells experience

a faster rate of cell death following the initiation of amino acid

starvation (Figure 1D).

Global Analysis of Protein Degradation Rates
It had previously been shown that time-resolved analysis of

fractional isotopic labeling could be used to accurately measure

protein degradation rate constants (and hence half-lives) on

proteome-wide scales (Cambridge et al., 2011; Claydon and
Reports 14, 2426–2439, March 15, 2016 ª2016 The Authors 2427
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Figure 1. Creation and Validation of Autophagy-Deficient Human Fibroblasts

(A) The schematics on the left are gene maps of human ATG5 and ATG7 showing the site of the introduced mutations (red line and circle) and the PCR strategy

for amplifying the mutated genomic regions for the SURVEYOR assay. The numbers indicate the expected sizes of the mutated amplicon fragments after

SURVEYOR nuclease cleavage. The right panel shows the results of the SURVEYOR assay indicating the introduction of mutations at expected genomic

positions.

(B) Western blots show the expression of ATG5, ATG7, LC3, p62, and b-actin control in WT+vector, ATG5�/�, and ATG7�/� cells. The blots indicate that ATG5 and

ATG7 are completely knocked out in HCA2-hTert cells. The deletion of ATG5 and ATG7 results in complete disappearance of LC3-II, and the deletion of ATG7

prevents the conjugation of ATG5 to ATG12. The basal level of p62 is significantly elevated in ATG5�/� and ATG7�/� cells.

(C) LC3-II levels increase under starvation conditions in WT+vector, but not ATG5�/� and ATG7�/� cells.

(D) ATG5�/� and ATG7�/� cells are more sensitive to amino acid starvation. Cell viabilities were measured after different periods of amino acid starvation. Each

time point was measured in three replicate experiments, and the error bar indicates SD. n = 3 biological replicates; **p < 0.01.

See also Figure S1.
Beynon, 2012; Price et al., 2010; Zhang et al., 2014). This

approach uses mass spectrometry and stable isotope labeling

with amino acids in cell culture (SILAC) (Ong et al., 2002; Zhang

et al., 2014) to detect and quantify the incorporation kinetics of

isotopically labeled amino acids in proteins (Figure 2A). Here,

we used this technology to determine the proteome-wide impact

of autophagy inhibition on protein degradation rates.

Wild-type cells (WT), wild-type cells transfected with lenti-

CRISPR vector lacking an sgRNA sequence (WT+vector), and

ATG5�/� and ATG7�/� cells were grown to confluency. The

quiescence states of cultures were verified by analysis of DNA

content with flow cytometry and upregulation of the cyclin-

dependent kinase inhibitor p27 (Coats et al., 1996) (Figure S2).

After reaching quiescence, the cultures were switched to a me-

dia containing 13C-labeled lysines and arginines. The cells were

collected after 0, 2, 4 and 6 days of labeling. Cell extracts were

digested with trypsin using a surfactant-aided precipitation/on

pellet-digestion (SOD) procedure that provides high peptide

recovery from both soluble and membrane proteins (An et al.,
2428 Cell Reports 14, 2426–2439, March 15, 2016 ª2016 The Author
2015; Duan et al., 2009). The digested peptide samples were

resolved on a nano liquid chromatography (LC) column prior to

analysis by an Orbitrap Fusion Tribrid mass spectrometer (See

Experimental Procedures for additional details). Peptides were

identified from tandem mass spectrometry (MS/MS) spectra by

searching against the Homo sapiens Swiss-Prot database using

the integrated Andromeda search engine with the software

MaxQuant (Cox et al., 2011), and the relative ratio of labeled

and unlabeled peptide MS1 spectra were quantified. Searches

against decoy sequences indicated that the false discovery rates

for protein identifications were less than 1% for all experiments.

For each peptide, the relative labeling ratio was determined by a

regression model fitted to all scans in a given elution peak.

Labeling ratios for proteins were determined as the median of

all peptides assigned to each protein. Measurements of frac-

tional labeling at different time points were fitted to a single expo-

nential function to obtain first order degradation rate constants

(kdeg) for each protein. The formal kinetic model relating frac-

tional labeling to kdeg is presented in Experimental Procedures.
s
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Figure 2. Global Measurement of Degradation Rates by Isotopic Labeling and LC-MS/MS

(A) The schematic illustrates the experimental design. Cells were cultured in unlabeled (12C) media. Four days after reaching confluency, labeled (13C) media was

added to the cells. During the following 6 days, cells were collected at different time points for LC-MS/MS analysis.

(B) Isotopic labeling kinetics of p62-SQSTM1 and RPS11 are shown as example proteins. The spectra show the increase in fractional isotopic labeling of single

peptides mapped to the two proteins. The unlabeled (‘‘light’’) spectra are shown in blue and the labeled (‘‘heavy’’) spectra are shown in red. Data from all peptides

mapped to the proteins were combined and the kinetics of labeling were fitted to a first-order exponential equation to measure the degradation rate constant

(kdeg) and half-life of each protein in the four genetic backgrounds. The scatterplots indicate the median of peptide measurements at different time points, and the

error bars indicate the SD of all peptides mapped to each protein.

(C) Numbers of peptides and proteins detected and quantified in the proteomic analyses.

(D) Scatterplot indicating a comparison of measured fractional labeling of WT+vector proteins at 4 days for two biologically replicate experiments.

See also Figures S2–S4.
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Figure 3. Global Impact of Autophagy Impairment on Basal Degradation Rates

(A) Distribution of protein half-lives and degradation rates in WT, WT+vector, ATG5�/�, and ATG7�/� cells.

(B) Distribution of differences in degradation rates (Dkdeg) between WT+vector cells, and ATG5�/�, ATG7�/�, and WT cells.

(C) Pairwise comparisons of protein degradation rates in WT, WT+vector, ATG5�/�, and ATG7�/� cells. Black lines indicate identity lines, and red lines indicate

best-fit lines to the proteome-wide data.
The kinetic analysis for two proteins, p62 and the 40S ribosomal

protein RPS11, is shown in Figure 2B as illustrative examples.

Analyses of labeling kinetics of multiple peptides mapped to

each protein provide measurements of degradation rate con-

stants and half-lives. As expected, the degradation rate of the

autophagy receptor p62, a known substrate of autophagy, was

significantly reduced in autophagy-impaired cells from >5 d�1

to �0.5 d�1. Conversely, the degradation rate of RPS11 was

largely unaffected and remained at �0.2 d�1 in the presence or

absence of functional autophagy.

In total, we were able to quantify the labeling kinetics of 2,726,

4,224, 3,815, and 4,206 protein groups in WT�vector, WT+vector,

Atg5�/� and Atg7�/� cells, which together comprise �5,500

distinct protein groups (Figure 2C; Tables S4, S5, and S6). The

higher number of analyzed proteins for the latter three back-

grounds reflects additional fractionation steps of cell extracts

that were conducted prior to the LC-MS/MS analysis in order

to provide deeper proteome coverage (see Experimental Proce-

dures for additional details). For most proteins, multiple indepen-

dent time-points were included in the analysis. On average,

approximately six independent peptides were analyzed to deter-

mine the degradation rate of each protein. For all subsequent an-

alyses, only proteins that were quantified by more than one pep-

tide analyzed in more than one time-point were considered. We

also excluded rapidly degrading proteins that were completely
2430 Cell Reports 14, 2426–2439, March 15, 2016 ª2016 The Author
labeled at the earliest time-point, for which exact degradation

rates could not be measured. Three observations attest to the

robustness of the data and computational analysis. First, there

is little variation in measurements of fractional labeling at a

time-point obtained from biological replicates (Pearson correla-

tion coefficient = 0.95, Figure 2D). Second, there is little variation

in protein rate measurements obtained from WT and WT+vector

cells (Figure 3). Third, there is relatively little variability in the la-

beling kinetics of multiple peptides mapped to the same protein.

The median coefficient of variation (CV) in degradation rate mea-

surements between peptides encompassing a single protein is

significantly less than the CV among all peptides for a given ge-

netic background (Figure S3).

In equating rate constants for fractional labeling to degradation

rate constants, two important criteria must be met (Guan et al.,

2011). First, the cells must be in a non-proliferating state and

cellular protein levels must remain at a steady-state level

throughout the labeling time course. Second, the cellular pool of

precursor amino acids must become fully labeled prior to the first

time point and remain fully labeled during the entire experiment

(Zhang et al., 2014). In our quiescent cultures, cells are in a non-

proliferating state and total protein levels do not change during

the courseof the experiment (FigureS4A). Furthermore, using iso-

topomer analysis (Hellerstein and Neese, 1992), we showed that

when exposed to fully 15N-labeled media (where all 20 natural
s



amino acids are isotopically labeled), the fraction of proteins that

are synthesized within the first day is almost fully labeled. Thus,

the pool of precursor amino acids utilized for protein synthesis is

completely labeledprior to thefirstmeasured timepoint, satisfying

a key assumption in our analysis (Figure S4B).

For the subset of proteins that were quantifiable by our anal-

ysis, half-lives generally ranged from a few hours to several

days (kdeg ranged from 0.05 d�1 to 0.5 d�1). Distributions and

pairwise comparisons of kdeg indicate that protein degradation

rates for many proteins are slower in ATG5�/� and ATG7�/� cells

in comparison to wild-type cells (Figure 3). Based on the exclu-

sion criteria described above, we quantified the change in degra-

dation rate upon inhibition of autophagy (Dkdeg) of 2,013 proteins

by comparing datasets obtained from ATG5�/� and ATG7�/�

cells withWT+vector cells (Table S6). Themedian difference in pro-

tein degradation rates (Dkdeg) between WT+vector and ATG5�/�

cells, and WT+vector and ATG7�/� cells was �0.03 d�1. Interest-

ingly, the degradation rates of a small subset of proteins actually

appeared to increase in the autophagy deficient cells, suggesting

that compensatory clearancemechanismmaybebecoming acti-

vated in ATG5�/� and ATG7�/� cells (see below).

Gene Ontology Enrichment within theDkdeg Distribution
The impact of the ATG5�/� and ATG7�/� mutations on degrada-

tion rates is variable between proteins, with Dkdeg ranging

from�0.10 d�1 to +0.05 d�1 for most proteins (Figure 3B). We

analyzed the statistical enrichment of specific Gene Ontology

(GO) terms in the outer limits of this distribution. The analysis

was conducted using the software tool GOrilla and visualized

by ReviGO (Eden et al., 2009; Supek et al., 2011). Using this

analysis, we identified GO terms with statistically significant

high and low Dkdeg values relative to the entire quantified prote-

ome in both ATG5�/� and ATG7�/� cells (Figure 4; Table S7).

Proteins in our dataset associated with autophagosomes were

significantly stabilized in autophagy deficient cells. This subset

included known autophagosome interacting proteins FYCO1

(Pankiv et al., 2010) and subunits of the HOPS complex (Jiang

et al., 2014) (Table S7). Cytosolic proteins, known to be the pre-

dominant substrates of autophagy, were enriched in the subset

of the proteome with low Dkdeg. values, whereas proteins map-

ped to the mitochondria, endoplasmic reticulum, and the extra-

cellular matrix were less impacted by the two mutations.

Additionally, a number of GO terms related to non-autophagy

degradation pathways were among the most highly enriched

in the subset of proteins with low Dkdeg values. In particular,

the subunits of the 19S and 20S proteasome showed dramatic

decreases in degradation rates (Figure 5A). Another set of GO

terms whose constituent proteins were significantly stabilized

in ATG5�/� and ATG7�/� cells were those related to cellular pro-

tein folding and molecular chaperones. Most significantly, the

CCT/TRiC chaperonin was dramatically stabilized in ATG5�/�

and ATG7�/� cells. Conversely, the degradation rates of many

proteins involved in mRNA processing and protein synthesis,

including the constituents of the splicesome and ribosome,

were unaffected by the mutations (Figure 5A).

Changes in the stability of the proteasome, ribosome, and

CCT/TRiC chaperonin were reflected in their steady-state levels

(Figure 5B).Western blot analysis indicated that proteasome and
Cell
CCT/TRiC levels were significantly increased in both ATG5�/�

and ATG7�/� cells, whereas the ribosome levels remained unaf-

fected. mRNA transcript levels for the analyzed subunits of the

proteasome, CCT/TRiC, and ribosome were not altered by the

Atg5�/� mutation (Figure S5), supporting the conclusion that

the observed changes in expression levels were caused by

altered protein stability. Re-expression of ATG5 in ATG5�/�

cells, engineered with synonymous mutations to avoid targeting

by anti-ATG5 sgRNA (see Supplemental Experimental Proce-

dures), was able to re-establish autophagic flux and selectively

diminish the expression levels of the proteasome and CCT/

TRiC (Figure 5C).

The Activity of UPS in ATG5�/� and ATG7�/� Cells
The above results indicate that the deletion of ATG5 and ATG7

not only inhibits the autophagy pathway but also potentially

impacts protein flux through the UPS due to stabilization of the

proteasome. To examine the effects ofATG5 andATG7deletions

on theUPS, wemeasured the total cellular proteasome activity in

cell-free assays (Figure 5D). Our results indicate that proteasome

activity is increased by�25% in both deletion backgrounds, par-

alleling the increase in intracellular proteasome levels. Thus,

clearance of proteins in autophagy-impaired cells is impacted

by at least two mechanisms. First, the elimination of autophago-

some formation may decrease the clearance rates of autophagy

substrates. Second, the increase in proteasome levels could

potentially increase the degradation rate of some UPS sub-

strates, mitigating some of the impact of autophagy impairment.

Thus, for an individual protein, themeasuredDkdegpotentially en-

compasses the sumcontribution of at least twoopposing effects.

To gain more insight into the relative magnitude of each of the

above effects, we examined the distribution of Dkdeg for subsets

of proteins with varying degradation rates in autophagy-deficient

cells (Figure 6A). If we assume that UPS is a principal route of

protein clearance in ATG5�/� and ATG7�/� cells, we would

expect that proteins with faster rates of degradation in these

cells should generally have more positive Dkdeg values. In other

words, proteins that have higher rates of flux through the UPS

should become more destabilized as a result of increases in

proteasome levels. Indeed, for the most rapidly degrading pro-

teins in ATG5�/� and ATG7�/� cells, Dkdeg is generally (though

not uniformly) more positive. In fact, as a group, proteins whose

rate of degradation exceeds �0.35 d�1 have a positive Dkdeg
value and are less stable in autophagy-deficient cells in compar-

ison to wild-type cells. However, for more long-lived proteins

(kdeg < 0.3 d�1),Dkdeg values are negative and relatively constant

as a function of kdeg. In this subset of stable proteins, the increase

in proteasome levels does not seem to greatly increase the rate

of flux through the UPS. We suggest that although long-lived

proteins can be degraded by the UPS (e.g., even for the most

stable proteins, kdeg generally decreases by less than 50% in

autophagy-deficient cells), their flux through this pathway is

not rate-limited by the level of the proteasome. Rather, for these

stable proteins, targeting and ubiquitination may establish the

rate of flux through the UPS. For this subset of stable pro-

teins, the measured Dkdeg values are unaffected by changes in

proteasome levels induced by the ATG5�/� and ATG7�/� muta-

tion and may reflect true rates of basal autophagy.
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Figure 4. Degradation Kinetics of Proteins

Belonging to Specific Cellular Component

Gene Ontology Categories Are Differentially

Impacted by the Inhibition of Autophagy

(A) Gene Ontology (GO) term enrichments of pro-

teins with high (green) or low (red) Dkdeg values

were organized based on semantic similarity and

visualized by REViGO. x axis represents the

semantic similarity between GO terms based on

overlap of their constituent proteins, and y axis is

the Benjamini-corrected p values of statistical

significance for GO category enrichment; the

symbol size is correlated to the number of proteins

mapped to each GO term.

(B) The median of Dkdeg values for proteins map-

ped to GO categories indicated in (A).

See also Table S7 for a complete list of GO term

enrichments and genes mapped to each term.
To obtain additinoal support for upregulation of UPS in auto-

phagy impaired cells, we analyzed the global impact of ATG5

and ATG7 mutations on steady-state protein levels by a stan-

dard SILAC experiment. WT+vector cells were grown in isotopi-

cally labeled media for a number of passages in order to fully

label the proteome. Unlabeled ATG5�/� cells and labeled

WT+vector cells were grown to confluency and protein extracts
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from quiescent cultures were combined

at a 1:1 ratio and analyzed by LC-MS/

MS as described in Experimental Proce-

dures. In this experiment, ratios of labeled

to unlabeled spectra report on changes

in steady-state expression levels of pro-

teins induced by impairment of auto-

phagy. Our data indicate that, as a group,

proteins that have slow rates of degra-

dation (kdeg < 0.35 d�1) have increased

relative expression levels in autophagy-

impaired cells (Figure 6B; Table S8).

Conversely, rapidly degrading proteins

(kdeg > 0.35 d�1) that are likely to be en-

riched in proteasome substrates have

generally lower relative expression levels

in autophagy-impaired cells. However,

it is important to note that the overall

correlation between kdeg and changes

in expression levels is weak (Pearson

correlation coefficient of 0.21 and 0.20

for ATG5�/� and ATG7�/�, respectively),
suggesting that for many proteins, ATG

mutations can alter expression levels in-

dependent of their effect on degradation

rates.

Coordinated Degradation of Multi-
subunit Protein Complexes by
Autophagy
The mechanism of autophagy involves

the capture of relatively large volumes of
cytoplasm within vesicles, suggesting that large stable protein

complexes are captured and degraded as a single unit. This

is in contrast to the proteasome, which is generally believed

to degrade individual monomeric proteins (Coux et al., 1996;

Kish-Trier and Hill, 2013). Thus, subunits of large protein com-

plexes can potentially be degraded by two distinct mechanisms:

one where they dissociate from the complex prior to degradation



A

B

C

D

Figure 5. The Inhibition of Autophagy Impacts the Stability

and Expression Levels of Protein Complexes Involved in

Proteome Homeostasis

(A) Degradation rates of subunits of the ribosome, proteasome, and

CCT/TRiC in WT+vector, ATG5�/� and ATG7�/� cells.

(B) The proteasome and CCT/TRiC accumulate in autophagy-

deficient cells while ribosome levels remain unchanged.

(C) Re-expression of ATG5 in ATG5�/� cells restores autophagy

and reduces expression levels of the proteasome and CCT/TRiC.

(D) Autophagy-deficient cells have higher levels of proteasome

activity in cell free assays (n = 5, **p < 0.01).

See also Figure S5.
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Figure 6. The Differential Impact of Autophagy Inhibition on Long-

Lived and Short-Lived Proteins

(A) The average Dkdeg for subsets of proteins with varying degradation rates in

ATG5�/� and ATG7�/� cells. The trend is consistent with the idea that the

change in degradation rates of long-lived proteins is primarily due to reduced

flux through the autophagy pathway whereas short-lived proteins may be
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by the proteasome, and one where they are degraded in

conjunction with other complex subunits by autophagy (Fig-

ure 7A). In the former mechanism, each subunit of the complex

could potentially be degraded at a distinct rate, whereas in the

latter mechanism, degradation rates of subunits are expected

to be similar. Thus, if the measured Dkdeg values for long-lived

stable protein complexes are indeed a true measure of basal

autophagy, we would predict that these values would be similar

for subunits of stable protein complexes.

Indeed, we observe that Dkdeg is remarkably uniform among

subunits of most stable complexes. As an example, Figure 7B

compares the degradation rates of the subunits of the

proteasome, CCT/TRiC, and ribosome between WT+vector and

ATG5�/� cells. The data indicate substantial variation between

kdeg of complex subunits within each genetic background. How-

ever, Dkdeg values of subunits are relatively uniform within each

complex. This phenomenon globally holds for most stable com-

plexes in our dataset and is also observed in ATG7�/� cells (Fig-

ures 7C and S6). Analysis of complexes for which we were able

to quantify multiple subunits indicates that Dkdeg values within

subunits of complexes are relatively uniform. However, inter-

complex Dkdeg values are variable, reflecting differential rates

of basal autophagy for each complex.

DISCUSSION

Previous proteomic analyses had sought to globally characterize

the selectivity of autophagy either by analyzing changes in

steady-state levels of proteins upon autophagic inhibition

(Mathew et al., 2014) or identifying subsets of proteins that are

co-isolated with autophagosomes (Dengjel et al., 2012; Mancias

et al., 2014). Here, we instead utilized a dynamic proteomic

approach to quantitatively analyze rates of degradation in auto-

phagy-deficient cells and measured relative contributions of

autophagy to proteome turnover. This strategy offers two impor-

tant advantages over previous proteomic approaches. First, it

can analyze the impact of autophagy impairment on protein

flux independently of its potential effects on transcription and

protein synthesis that may also influence steady-state expres-

sion levels. Second, it can analyze the impact of autophagy on

protein flux under conditions where a small minority of the

steady-state protein population is associated with autophago-

somes, and is therefore particularly well suited for analysis of

autophagy under basal conditions.

Our current study highlights a number of principles regarding

the selectivity of autophagy and the division of labor between

autophagy and ATG5/7-independent degradation pathways.

Our results indicate that autophagy is highly redundant with
de-stabilized due to increased proteasome levels. Bars indicate the mean of

Dkdeg measurements for subsets of proteins with the indicated range of kdeg
values, and error bars indicate SEM.

(B) Steady-state SILAC analysis indicates that, as a group, relative expression

levels of long-lived proteins are increased and relative expression levels of

short-lived proteins are decreased in ATG5�/� and ATG7�/� cells. Bars indi-

cate the mean of the log2 ratio of expression levels between ATG5�/� and

WT+vector cells for subsets of proteins with the indicated range of kdeg values,

and error bars indicate SEM.

s
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Figure 7. Subunits of Protein Complexes Are Degraded as a Unit by Autophagy

(A) Proposed model for the degradation of protein complexes. Subunits of protein complexes may be degraded as a unit by ATG5/7-dependent autophagy or at

distinct rates by ATG5/7-independent pathways.

(B) Comparison of degradation rates of ribosome, proteasome, and CCT/TRiC subunits in WT+vector and ATG5�/� cells. The data indicate that the degradation

rates of most subunits belonging to a complex are decreased by a relatively constant factor (Dkdeg).

(C) This general trend is observed for a number of stable complexes.

See also Figure S6.
alternative degradation pathways. A large fraction of the prote-

ome can be degraded, to different extents, by both ATG5/

7-dependent and ATG5/7-independent degradation pathways.

However, the range of protein degradation rates by ATG5/

7-independent pathways (reflected in the distribution of kdegs

in autophagy-impaired cells) is significantly broader than the

autophagy pathway (reflected in the distribution of Dkdegs be-

tween wild-type and autophagy-impaired cells). The results sug-

gest that whereas short-lived proteins are degraded almost

exclusively by ATG5/7-independent pathways, long-lived pro-

teins can be robustly degraded by both ATG5/7-dependent
Cell
and ATG5/7-independent pathways. Even among the most sta-

ble proteins, ATG5/7-dependent autophagy typically accounts

for significantly less than 50% of the basal protein flux.

Although the range of basal protein degradation rates by auto-

phagy is narrower than ATG5/7-independent pathways, there

are clear biases in autophagic target selection. For example,

we show that the proteasome and the CCT/TRiC are robustly

targeted for autophagy, while the ribosome is largely protected

from autophagy under basal conditions. Thus, the selectivity

of basal autophagy may establish a self-compensatory system

of protein degradation and synthesis. Because the proteasome
Reports 14, 2426–2439, March 15, 2016 ª2016 The Authors 2435



is an autophagic substrate under basal conditions, the inhibition

of autophagy results in the stabilization of the proteasome com-

plex and enhancement of degradative flux through the UPS.

Conversely, the ribosome and other complexes involved in

protein synthesis are excluded from autophagy. As a result, in-

creases in protein synthesis are prevented under conditions

where autophagic protein degradation is compromised. Addi-

tionally, the stabilization of chaperones may counteract proteo-

static disruptions resulting from the inhibition of autophagy.

An increase in proteasome activity within autophagy-deficient

cells is consistent with recent results indicating that protea-

somes can be selectively targeted for degradation by autophagy

(Dengjel et al., 2012; Marshall et al., 2015). Upon impairment of

autophagy, the resulting increase in proteasome levels destabi-

lizes some short-lived proteins in the cell but does not impact the

degradation of long-lived proteins by the UPS. We suggest that

unlike transient proteins, the degradation of stable proteins by

the UPS may be rate limited not by proteasome levels but rather

by the rate of polyubiquitination. It is important to note that

previous studies had indicated that autophagy impairment

results in inhibition of the degradation of specific substrates

(e.g., p53) by the UPS (Korolchuk et al., 2009). These studies

showed that p62 accumulates as a result of autophagic inhibition

and impedes the degradation of specific ubiquitinated proteins

by the proteasome. Thus, autophagic inhibition may influence

the degradation of UPS substrates by two opposing mecha-

nisms: changes in proteasome levels and accumulation of p62.

The degradation of ribosomes and other organelles by auto-

phagy has been documented by a number of previous studies.

For example, ribosomes are typically found to be sequestered

in autophagosomes when autophagy is induced by starvation

(Kraft et al., 2008). The selective autophagic degradation of or-

ganelles is mediated by specialized receptors (e.g., Nix or p62

for autophagy) or requires other modifying enzymes (e.g.,

Ubp3-Bre5 deubiquitinating enzyme complex or ribophagy).

Interestingly, we have shown here that the basal turnover ki-

netics of ribosomes and organelles such as mitochondria are

not strongly impacted by the impairment of autophagy in quies-

cent cells. We speculate that starvation or damaged-induced se-

lective degradation of organelles requires specialized receptors

or factors to override their natural tendency to be excluded from

basal autophagy. For example, in the case of ribophagy, it is

known that the Ubp3-Bre5 deubiquitinating enzyme complex is

required for the selective degradation of the 60S ribosome in

yeast and that Ltn1/Rkr1, a ribosome-associate E3 ligase, in-

hibits this degradation by ubiquitinating the ribosomal subunit

Rpl25 (Ossareh-Nazari et al., 2014). Thus, under basal condi-

tions, ribosomes may harbor post-translational modifications

that protect them from autophagy, and these modifications

may need to be removed to induce their selective degradation

by autophagy under starvation.

In recent years, there has been a general shift from the percep-

tion of autophagy as a non-selective starvation response to a se-

lective degradation mechanism capable of targeting specific

proteins and organelles for clearance. Here, we have provided

a large-scale census of the contribution of basal autophagy to

constitutive turnover of proteins in quiescent human fibroblasts.

Our results demonstrate that the contribution of autophagy to
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constitutive protein turnover is variable within the proteome,

and that this selectivity results in the stabilization of specific

protein complexes responsible for maintaining proteome ho-

meostasis under conditions where autophagy is inhibited. The

observed selectivity of basal autophagy may reflect the pres-

ence of a compendium of cargo-specific autophagic receptors

within the cell or a range of affinities toward a more limited set

of receptors. Whether the magnitude and selectivity of auto-

phagic flux observed in our studies is specific to quiescent

fibroblasts or can be extended to other cell types remains to

be determined. The proteomic methodology outlined in this

study may provide a useful global approach for elucidating the

mechanisms of autophagic selectivity in diverse cell types and

environmental conditions.
EXPERIMENTAL PROCEDURES

Generation of ATG5�/� and ATG7�/� Fibroblasts

ATG5�/� and ATG7�/� human primary fibroblasts were generated by utilizing

the LentiCRISPR v1 (Addgene plasmid 49535) vector and LentiCRISPR v2

(Addgene plasmid 52961) co-expressing the mammalian codon-optimized

Cas9 nuclease and sgRNAs (Sanjana et al., 2014; Shalem et al., 2014). The

puromycin selection marker in LentiCRISPR v2 sgRNAs was substituted by

blasticidin. sgRNAs were designed using the CRISPR design tool (http://

crispr.mit.edu) to minimize potential off-target effects. Five sgRNAs targeting

three different exons in each gene were designed. The sequences of sgRNAs

that ultimately produced successful deletion clones and were further analyzed

are listed in Table S1. HEK293FT cells were seeded in six-well plates 1 day

prior to transfection at a density of 500,000 cells per well. HEK293FT cells

were transfected with LentiCRISPRv1, pMG2.G (Addgene), and psPAX2

(Addgene) plasmids in DMEM (10569-010) using Lipofectamine 3000 (Life

Technologies) following the recommended protocol. At 72 hr post-transfec-

tion, the cell culture media was collected and filtered using Steriflip-HV sterile

centrifuge tube top filter (Millipore). HCA2-hTert cells were plated in 80% con-

fluency, and 2 ml resulting lentivirus was used for infection. 72 hr post-infec-

tion, cells were cloned by limiting dilution and individual clones were isolated.

72 hr post-infection, cells were selected using 4 mg/ml blasticidin for 5 days

and used for further analysis. Subsequently, cells were cloned by limiting dilu-

tion and individual clones were isolated.

To re-expressATG5 in ATG5�/� cells,H. sapiens ATG5 autophagy-related 5

homolog in pLX304 lentiviral plasmid (clone HsCD00418067) was obtained

from Harvard PlasmID database. Gibson cloning was used to introduce silent

mutations in the target region of sgRNA to prevent deletion by Cas9 (Supple-

mental Experimental Procedures). The cloned vectors were used for viral pro-

duction, and Atg5�/� cells were infected with the resulting lentiviruses as

described above. At 72 hr post-infection, cells were selected using 4 mg/ml

blasticidin for 5 days and used for further analysis.

Stable Isotope Labeling

The media utilized for isotopic labeling was Eagle’s minimum essential medium

(ATCC) supplementedwith 15%dialyzed fetal bovine serum (ThermoScientific),

100U/ml penicillin, and 100U/ml streptomycin. Cells were gradually adapted to

this media using the procedure outlined in Table S2. Cells were then plated at a

densityof 500,000 cellsper10cmplate. 8 daysafterplating, theconfluentquies-

cent cultures were switched to MEM labelingmedia for SILAC (Thermo Scienti-

fic) supplemented with L-arginine:HCl (13C6, 99%) and L-lysine:2HCl (13C6,

99%; Cambridge Isotope Laboratories) at concentrations of 0.1264 g/l and

0.087 g/l and 15% dialyzed fetal bovine serum (Thermo Scientific). Cells were

collected after 0, 2, 4, and 6 days of labeling, washed with PBS and cell pellets

were frozen prior to further analysis. In order to assess the precision of our

measurements, biological replicate experiments were conducted for WT+vector

and ATG5�/� experiments and cells were collected after 4 days for analysis.

In order to measure changes in steady-state protein levels by standard

SILAC, WT+vector and ATG5�/� cells were gradually adapted to Eagle’s
s

http://crispr.mit.edu
http://crispr.mit.edu


minimum essential medium (ATCC) supplemented with 15% dialyzed fetal

bovine serum (Thermo Scientific), 100 U/ml penicillin, and 100 U/ml strepto-

mycin. Then, WT+vector cells were passaged in MEM labeling media for SILAC

(Thermo Scientific) supplemented with L-arginine:HCl (13 C6, 99%) and L-lysi-

ne:2HCl (13 C6, 99%; Cambridge Isotope Laboratories) at concentrations of

0.1264 g/l and 0.087 g/l and 15% dialyzed fetal bovine serum (Thermo scien-

tific) for eight passages. Cells were then plated at a density of 500,000 cells per

10-cm plate. 8 days after plating, confluent quiescent cells were collected and

washed with PBS, and cell pellets were frozen prior to further analysis.

Following extraction (see below), equal protein amounts of WT+vector and

ATG5�/� were mixed before mass spectrometric analysis.

Mass Spectrometry Sample Preparation and Protein Digestion

A buffer containing 50 mM Tris-formic acid (FA) (pH = 7.8), 150 mM sodium

chloride, 1% sodium deoxycholate, 2% IGEPAL CA-630, 2% SDS, and prote-

ase/phosphatase inhibitor cocktail tablets (Roche Applied Science) was used

for cell lysis. 200 ml lysis buffer was added to �106 cells. The samples were

sonicated using a high-energy sonicator (Qsonica) with 5-s bursts for 30 s

(non-continuous) on ice. The samples were then centrifuged for 30 min at

4�C at 20,000 3 g. The supernatant were transferred to a new Eppendorf

tube, while the cell debris pellet at the bottom and the lipid layer on the top

of the supernatant were avoided. Protein concentration were measured by

the bicinchoninic acid assay (BCA) kit (Pierce Biotechnology), and the final pro-

tein concentration was adjusted to 1 mg/ml. Reduction of protein disulfide

bonds was performed with 3 mM Tris (2-carboxyethyl) phosphine (TCEP) at

37�C for 30 min in an Eppendorf Thermomixer (Eppendorf), and protein alkyl-

ation was performed with 20 mM iodoacetamide at 37�C for 30 min in dark-

ness. A SOD procedure was employed to derive tryptic peptides for LC-MS/

MS analysis. Proteins were first precipitated by stepwise addition of nine vol-

umes of chilled acetone and overnight incubation under �20�C to remove

undesirable components in the sample matrix, e.g., detergents, non-protein

cellular components. After centrifugation at 4�C and 20,000 3 g for 30 min,

the supernatant was discarded and the protein pellet was washed with

800 ml chilled acetone/water mixture (85/15, v/v %), followed by solvent

removal and air drying (�5 min). The protein pellet was then re-suspended in

80 ml Tris-FA buffer, and a two-step digestion procedure was performed as

previously described (An et al., 2015; Duan et al., 2009). In the first step, trypsin

at an enzyme:substrate ratio of 1:40 (w/w) was added to the solution and the

mixture was incubated at 37�C for 6 hr with constant vortexing to cleave the

proteins into large peptide fragments. In the second step, a same amount of

trypsin was added to reach a final enzyme: substrate ratio of 1:20 (w/w), and

the mixture was incubated at 37�C overnight (12 hr) with constant vortexing

to achieve complete cleavage of proteins. Digestion was terminated by adding

1% FA to the solution, followed by centrifugation at 20,000 3 g for 30 min at

4�C to remove impurity particles. The supernatant containing tryptic peptides

derived from 4 mg proteins from each sample was used for LC-MS/MS

analysis.

In order to increase proteome coverage, high-pH fractionationwas conduct-

ed for some time points in the experiment (all time points for ATG7�/� and

4-day time points for WT+vector and ATG5�/�) using the Pierce High pH

Reversed-Phase Peptide Fractionation Kit (catalog #84868). Eight different

elution buffers were made in 0.1% trimethylamine, with 5%, 7.5%, 10%,

12.5%, 15%, 17.5%, 20%, and 50% acetonitrile added. After conditioning

the column with acetonitrile and 0.1% TFA, the samples are added and then

centrifuged. A water wash was conducted to wash away any residual salts

before the eight elutions were collected in fresh tubes. Samples were dried

down and subsequently re-suspended in 50 ml 0.1% formic acid.

Nano-LC-MS/MS

Tryptic peptides were analyzed using an Eksigent (Dublin) ekspert nano-LC

425 system coupled to an Orbitrap Fusion Tribrid mass spectrometer (Thermo

Scientific). The mobile phases consisted of 0.1% FA in 2% acetonitrile (ACN)

for A and 0.1% FA in 88% ACN for B. Samples were loaded onto a reversed-

phase trap (300 mm inner diameter [ID]3 0.5 cm, packedwith Zorbax5-mmC18

material), with 1%mobile phase B at a flow rate of 10 mL/min, and the trap was

washed for 3 min. A series of nanoflow gradients at a flow rate of 250 ml/min

was used to back-flush the trapped samples onto the nano-LC column
Cell
(75 mm ID 3 100 cm, packed with 3-mm particles) for chromatographic sepa-

ration. The nano-LC columnwas heated at 52�C so that both chromatographic

resolution and reproducibility could be significantly improved. A 3 hr shallow

gradient was used to achieve sufficient peptide separation. The gradient pro-

file was listed as follows: 3% B for 3 min, 3%–6% B for 5 min, 6%–28% B for

125min, 28%–50%B for 10min, 50%–97%B for 1min, and isocratic at 97%B

for 18 min, and then the column was equilibrated with 3% B for 18 min.

An Orbitrap Fusion Tribrid mass spectrometer was used for ion detection.

The data-dependent product ion mode was selected for all analyses. One

scan cycle consisted of one MS1 survey scan (m/z 400–1,500) at a resolution

of 120,000 and 20 MS2 scans to fragment the 20 most abundant precursor

ions in the survey scan via high-energy collision dissociation (HCD) activation.

For MS1 survey scans, automatic gain control (AGC) target was set to 43 105,

and peptide precursors with charge states of 2–7 were sampled for MS2.

Dynamic exclusion was enabled with the following settings: repeat count = 1,

exclusion duration = 60 s, and mass tolerance = ±10 ppm. Monoisotopic pre-

cursor selection was turned on. The instrument was run in top speed mode

with a cycle time of 3 s. MS2 scans was performed with ddMS2 Orbitrap

(OT)-HCD, and the isolation window was set at 1 Th with quadrupole. The

normalized collision energy was 35%, and tandem mass spectra were

analyzed with a resolution of 15,000. The MS2 AGC target was set to 5 3

104, and the maximal injection time was 50 ms with centroid data type of

one microscan.

Quantitative Proteomic Data Analysis

Peptides were identified from MS/MS spectra by searching against the

H. sapiens Swiss-Prot database using the integrated Andromeda search en-

gine with the software MaxQuant (Cox et al., 2011). SILAC peptide and protein

quantification was performed with MaxQuant using the parameter settings

listed in Table S3. For each peptide, the heavy/light (H/L) ratio was determined

by a regression model fitted to all isotopic peaks within all scans that the pep-

tide eluted in. H/L ratio for each protein was determined as themedian of all the

peptides assigned to the protein (de Godoy et al., 2008). For a given protein,

H/(H+L) ratio was calculated based on the H/L ratio from MaxQuant outputs.

All H/(H+L) ratios at all time-points were combined to obtain an aggregated

plot for the kinetics of labeling. The aggregated plots were fitted to a single

exponential function by least-square fitting to obtain the first-order degrada-

tion rate constant (kdeg) for each protein.
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Walther, T.C., andMann,M. (2008). Comprehensivemass-spectrometry-based

proteomequantification of haploid versusdiploid yeast. Nature455, 1251–1254.

Dengjel, J., Høyer-Hansen, M., Nielsen, M.O., Eisenberg, T., Harder, L.M.,

Schandorff, S., Farkas, T., Kirkegaard, T., Becker, A.C., Schroeder, S., et al.

(2012). Identification of autophagosome-associated proteins and regulators

by quantitative proteomic analysis and genetic screens. Mol. Cell. Proteomics

11, 014035.

Duan, X., Young, R., Straubinger, R.M., Page, B., Cao, J., Wang, H., Yu, H.,

Canty, J.M., Jr., and Qu, J. (2009). A straightforward and highly efficient pre-

cipitation/on-pellet digestion procedure coupled with a long gradient nano-

LC separation and Orbitrap mass spectrometry for label-free expression

profiling of the swine heart mitochondrial proteome. J. Proteome Res. 8,

2838–2850.

Eden, E., Navon, R., Steinfeld, I., Lipson, D., and Yakhini, Z. (2009). GOrilla: a

tool for discovery and visualization of enriched GO terms in ranked gene lists.

BMC Bioinformatics 10, 48.

Eden, E., Geva-Zatorsky, N., Issaeva, I., Cohen, A., Dekel, E., Danon, T., Co-

hen, L., Mayo, A., and Alon, U. (2011). Proteome half-life dynamics in living

human cells. Science 331, 764–768.

Fimia, G.M., Kroemer, G., and Piacentini, M. (2013). Molecular mechanisms of

selective autophagy. Cell Death Differ. 20, 1–2.
2438 Cell Reports 14, 2426–2439, March 15, 2016 ª2016 The Author
Garfinkel, D., and Lajtha, A. (1963). A metabolic inhomogeneity of glycine

in vivo. I. Experimental determination. J. Biol. Chem. 238, 2429–2434.

Goldberg, A.L., and St John, A.C. (1976). Intracellular protein degradation in

mammalian and bacterial cells: Part 2. Annu. Rev. Biochem. 45, 747–803.

Guan, S., Price, J.C., Prusiner, S.B., Ghaemmaghami, S., and Burlingame, A.L.

(2011). A data processing pipeline for mammalian proteome dynamics studies

using stable isotope metabolic labeling. Mol. Cell. Proteomics 10, 010728.

Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Mi-

gishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H., and Mizushima,

N. (2006). Suppression of basal autophagy in neural cells causes neurodegen-

erative disease in mice. Nature 441, 885–889.

Hellerstein, M.K., and Neese, R.A. (1992). Mass isotopomer distribution anal-

ysis: a technique for measuring biosynthesis and turnover of polymers. Am. J.

Physiol. 263, E988–E1001.

Horvath, P., and Barrangou, R. (2010). CRISPR/Cas, the immune system of

bacteria and archaea. Science 327, 167–170.

Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N.,

Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., et al. (2000). A ubiqui-

tin-like system mediates protein lipidation. Nature 408, 488–492.

Jiang, P., Nishimura, T., Sakamaki, Y., Itakura, E., Hatta, T., Natsume, T., and

Mizushima, N. (2014). The HOPS complex mediates autophagosome-lyso-

some fusion through interaction with syntaxin 17. Mol. Biol. Cell 25, 1327–

1337.

Kish-Trier, E., and Hill, C.P. (2013). Structural biology of the proteasome. Annu.

Rev. Biophys. 42, 29–49.

Klionsky, D.J., and Emr, S.D. (2000). Autophagy as a regulated pathway of

cellular degradation. Science 290, 1717–1721.

Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J.,

Mizushima, N., Ohsumi, Y., Uchiyama, Y., et al. (2005). Impairment of starva-

tion-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol.

169, 425–434.

Korolchuk, V.I., Mansilla, A., Menzies, F.M., and Rubinsztein, D.C. (2009).

Autophagy inhibition compromises degradation of ubiquitin-proteasome

pathway substrates. Mol. Cell 33, 517–527.

Kraft, C., Deplazes, A., Sohrmann, M., and Peter, M. (2008). Mature ribosomes

are selectively degraded upon starvation by an autophagy pathway requiring

the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 10, 602–610.

Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T.,

Ohsumi, Y., Tokuhisa, T., and Mizushima, N. (2004). The role of autophagy

during the early neonatal starvation period. Nature 432, 1032–1036.

Lemons, J.M.S., Feng, X.-J., Bennett, B.D., Legesse-Miller, A., Johnson, E.L.,

Raitman, I., Pollina, E.A., Rabitz, H.A., Rabinowitz, J.D., and Coller, H.A.

(2010). Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol. 8,

e1000514.

Levine, A.J. (1997). p53, the cellular gatekeeper for growth and division. Cell

88, 323–331.

Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W., and Kimmelman, A.C.

(2014). Quantitative proteomics identifies NCOA4 as the cargo receptor medi-

ating ferritinophagy. Nature 509, 105–109.

Marshall, R.S., Li, F., Gemperline, D.C., Book, A.J., and Vierstra, R.D. (2015).

Autophagic degradation of the 26S proteasome is mediated by the dual

ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol. Cell 58, 1053–1066.

Mathew, R., Khor, S., Hackett, S.R., Rabinowitz, J.D., Perlman, D.H., and

White, E. (2014). Functional role of autophagy-mediated proteome remodeling

in cell survival signaling and innate immunity. Mol. Cell 55, 916–930.

Mizushima, N. (2007a). Autophagy: process and function. Genes Dev. 21,

2861–2873.

Mizushima, N. (2007b). The role of mammalian autophagy in protein meta-

bolism. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 83, 39–46.

Mizushima, N., and Komatsu, M. (2011). Autophagy: renovation of cells and

tissues. Cell 147, 728–741.
s

http://refhub.elsevier.com/S2211-1247(16)30143-7/sref1
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref1
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref1
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref1
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref2
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref2
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref2
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref3
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref3
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref3
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref3
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref4
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref4
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref5
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref5
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref5
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref5
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref6
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref6
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref7
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref7
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref7
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref8
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref8
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref9
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref9
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref9
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref10
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref10
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref10
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref11
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref11
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref12
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref12
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref12
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref13
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref13
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref13
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref14
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref14
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref14
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref14
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref14
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref15
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref15
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref15
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref15
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref15
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref15
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref16
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref16
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref16
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref17
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref17
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref17
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref18
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref18
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref19
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref19
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref20
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref20
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref21
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref21
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref21
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref22
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref22
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref22
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref22
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref23
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref23
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref23
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref24
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref24
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref25
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref25
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref25
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref26
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref26
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref26
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref26
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref27
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref27
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref28
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref28
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref29
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref29
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref29
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref29
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref30
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref30
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref30
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref31
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref31
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref31
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref32
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref32
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref32
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref33
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref33
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref33
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref33
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref34
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref34
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref35
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref35
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref35
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref36
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref36
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref36
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref37
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref37
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref37
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref38
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref38
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref39
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref39
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref40
http://refhub.elsevier.com/S2211-1247(16)30143-7/sref40


Mizushima, N., Yamamoto, A., Hatano, M., Kobayashi, Y., Kabeya, Y., Suzuki,

K., Tokuhisa, T., Ohsumi, Y., and Yoshimori, T. (2001). Dissection of autopha-

gosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell

Biol. 152, 657–668.

Nakatogawa, H., Ichimura, Y., and Ohsumi, Y. (2007). Atg8, a ubiquitin-like

protein required for autophagosome formation, mediates membrane tethering

and hemifusion. Cell 130, 165–178.

Nedelsky, N.B., Todd, P.K., and Taylor, J.P. (2008). Autophagy and the ubiq-

uitin-proteasome system: collaborators in neuroprotection. Biochim. Biophys.

Acta 1782, 691–699.

Nixon, R.A. (2013). The role of autophagy in neurodegenerative disease. Nat.

Med. 19, 983–997.

Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey,

A., and Mann, M. (2002). Stable isotope labeling by amino acids in cell culture,

SILAC, as a simple and accurate approach to expression proteomics. Mol.

Cell. Proteomics 1, 376–386.

Ossareh-Nazari, B., Niño, C.A., Bengtson, M.H., Lee, J.W., Joazeiro, C.A., and

Dargemont, C. (2014). Ubiquitylation by the Ltn1 E3 ligase protects 60S

ribosomes from starvation-induced selective autophagy. J. Cell Biol. 204,

909–917.

Pankiv, S., Alemu, E.A., Brech, A., Bruun, J.A., Lamark, T., Overvatn, A., Bjør-

køy, G., and Johansen, T. (2010). FYCO1 is a Rab7 effector that binds to LC3

and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell

Biol. 188, 253–269.

Price, J.C., Guan, S., Burlingame, A., Prusiner, S.B., and Ghaemmaghami, S.

(2010). Analysis of proteome dynamics in the mouse brain. Proc. Natl. Acad.

Sci. USA 107, 14508–14513.

Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F. (2013).

Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–

2308.
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