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Abstract: Mixed traffic flow composed of autos and non-autos widely exists in developing countries 

and areas. To investigate the operational characteristics of the mixed traffic flow consisting of vehicles 

in different types ( large vehicles, cars , and bicycles) , we develop a cellular automaton model to repli­

cate the travel behaviors on a bi-directional road segment with respect to the physical and mechanic fea­

tures of different vehicle types. By implementing the essential parameters calibrated through the field 

data collection, a numerical study is carried out considering the variation in volume , density , and ve­

locity with different compositions of mixed traffic flows. The primary findings include: the average ve­

locity of traffic flow and total volume decrease 60% and 30% after incorporating 10% bicycles, respec­

tively; the phenomenon of double-summit in terms of the total volume appears when the proportion of 

bicycle is beyond 60% ; the maximal total volume starts to recover when the proportion of bicycle is 

higher than 10% . 

Key words: mixed traffic flow; operational characteristic; cellular automaton; bi-directional environ­

ment 

1 Introduction 

1.1 Ba~round 

Mixed traffic flow consisting of autos and non-autos 

widely exists in many developing countries and areas, 

such as China, India and Indonesia ( Khan and Maini 

1999) , especially at road segments without median 

separation. The discrepancies in the operational char-

• Corresponding author: Yue Liu, PhD, Associate Professor. 
E-mafi: liu2B@uwm. edu. 

acteristics of different vehicles and their interactions 

and interferences play an important role in affecting 

the traffic operational efficiencies ( e. g. throughput, 

speed, volume, etc. ) . To capture and replicate such 

behaviors, many researchers have made attempts on 

developing various types of methods, tools, and mod­

els to better understand such operational characteris­

tics. 

In review of the literature, early efforts tackling 
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with traffic flow modeling primarily apply statistical 

methods to explain the fundamental relations between 

flow , density and speed. One pioneering work illus­

trated the potential of applying Poisson distribution in 

explaining traffic operational characteristics ( Kinzer 

1993 ) . Adams published the statistical result consid­

ering the input of traffic flow as random series. 

Greenshields et a!. ( 194 7 ) used Poisson distribution 

in investigating the traffic flow across intersections. 

In the 1950s-1970s, more researchers have devel­

oped advanced models gaining a better description of 

traffic flow instead of performing statistical analysis in 

early research. For example, the car following theory 

( Chander et a!. 1958; Herman et a!. 1959) focused 

on interactions between the leading vehicles and fol­

lowing vehicles. Ligbthill and Whitham ( 1955) dem­

onstrated that the moving of traffic flow is similar to 

other phenomena in the natural world such as ocean 

waves, avalanches, and debris flows. By incorpora­

ting the fluid mechanic theory , FREFLO ( Payne 

1971 , 1979) was developed and widely used in real 

world practices. 

Recently, the advance of computational technology 

has facilitated the exploration of more sophisticated 

microscopic traffic flow models that are able to suc­

cessfully capture the behaviors of individual vehicles 

and pedestrians with respect to various influential fac­

tors , such as types of vehicles , weathers , facility 

types, and control methods. Cellular automaton 

( CA ) is one of the most prevailing and successful 

microscopic models. It was first applied in the trans­

portation field to simulate car movements including 

lane changing , turning , queuing, acceleration, and 

deceleration in the road network, and the results dem­

onstrated its ability to capture the phenomena of mac­

roscopic models while in the meantime reproduce the 

mechanics of microscopic models ( Cremer and Lud­

wig 1986 ) . Nagel and Schreckenberg ( 1992 ) ex­

tended the cellular automaton model by setting more 

traffic evolvement rules to capture more realities. 

Fukui and Ishibashi ( 1996 ) considered that the opera­

tional speed of an individual vehicle is not ouly influ­

enced by its leading vehicle , but also by the density 

of the neighboring environment. Foulaadvand and 

Belbasi ( 2007 ) studied vehicular traffic flow at an 
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un-signalized intersection by a cellular automaton 

model and validated the model characteristics by a 

mean-field approach and extensive simulations. Ruskin 

and Wang ( 2007) studied un-signalized intersections 

by introducing the concept of acceptable headway. 

In modeling mixed traffic flow using cellular au­

tomaton, Gundaliya et a!. ( 2008 ) developed the 

models with multiple cell occupancy, reflecting sizes 

and shapes of different vehicles to reproduce the mac­

roscopic properties of heterogeneous traffic typical of 

Indian cities. Jiang et a!. ( 2004 ) modelled the " in 

bulk" movement of traffic flow consisting of bicy­

cles. Whereas, Vasic and Ruskin ( 2012) modeled 

the mixed traffic flow in which bicycles sparsely 

spread in a one dimensioual single lane environment. 

Meng et a!. ( 2007 ) incorporated motorcycles into the 

traffic to investigate the interrelation between different 

vehicle types and the impact on traffic operations. Xie 

et a!. ( 2009 ) used CA model to investigate mixed 

traffic flows at un-signalized intersections and sugges­

ted that the velocity difference between different types 

of vehicles is an important factor reflecting travel be­

haviors. Zhao and Gao ( 2005) described mixed traf­

fic flow by combining the NaSch model (Nagel and 

Schreckenberg 1992) and the Burger cellular automa­

ta ( BCA) model ( Nishinari and Takahashi 1998 ) , 

and investigated the mixed traffic system near a bus 

stop. 

The problem to be addressed in this paper is the 

lack of a comprehensive model describing the traffic 

condition associated with mixed traffic flow at hi-di­

rection road segments. Under a bi-directional environ­

ment without median separation, the under estimation 

of the impacts caused by the opposing flow at the oth­

er lane and the differences underlying lane-changing 

behavior will limit the model's applicability and result 

in simulation results far away from the reality. 

1 2 Research objectives 

To contend with the above problems , the objectives 

of this study are to investigate the operational charac­

teristics of mixed traffic flow consisting of autos and 

bicycles at bi-directioual road segments without the 

setting of exclusive lanes and road medians. More 

specifically, we will determine the representation of 
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mixed traffic flow in a two-lane bi-directional envi­

ronment; develop the evolvement rules for the CA 

model considering the physical and mechanic charac­

teristics of different types of vehicles under a hi -direc­

tional environment; investigate the operational charac­

teristics of mixed traffic flow by using the proposed 

model. 

2 Model development 

2.1 Base CA model 

Our model is based on the NaSch model which is de­

fmed on a one-dimensional array of L " cells" under 

open or periodic boundary conditions and each " cell" 

may either be occupied by at most one vehicle or be 

empty as shown in Fig. 1. Suppose xn and v n denote 

the location and the speed of vehicle n, respectively, 

and vmax represents the maximum velocity of a vehi­

cle. dn = Xn +I - Xn -1 iS the diStanCe from the Vehicle 

~ 1~1~1 ~I 
D 

n to its front vehicle. Then each vehicle can move 

with an integer velocity. An update of vehicle state in 

the CA model involves with the following four con­

secutive steps. 

Step 1 : Acceleration , if v n < v max , then increase the 

velocity of vehicle n by one unit , v n = min j v n + 1 , 

vmax}. 
Step 2 : Deceleration , if dn < v n , then the speed of 

vehicle n is decreased to dn ' i. e. v n =min l v n ' dn f . 

Step 3: Randomization, if vn >0, then the velocity 

decreases by one unit with a probability p which is ac­

counting for conditions that the velocity decreases due 

to the influence of other uncertain factors , such as pe­

destrians' obstructions' and distractions' i. e. v n = 

max l vn -1, 0 f. 
Step 4 : Movement, the vehicle updates its location 

with the velocity determined by Steps 1-3 , i. e. xn = 

~ I~ I 
~ I~ I I~ I I~ I ~ I ~ I 

~ I~ I I ~ I~ I I ~ ~ 

Fig. 1 illustration of NaSch model 

2.2 Cell sze specification 

To establish our model, we need to make some addi­

tional assumptions to determine the size of the " cell" 

aiming at achieving a convenient representation of the 

operations of different vehicle types in the mixed traf­

fic flow. 

Firstly, given a typical two-lane urban road with a 

3-meter lane width, we need to know how many bi­

cycles can be accommodated. According to Ren et al. 

( 2003) , we assume that one single lane can hold 3 

bicycles in a row and a bicycle may share a cell with 

a car. A large vehicle (e. g. bus, truck) is assumed 

to occupy 3 m according to our observation. For the 

longitude space required for different types of vehi­

cles, a bicycle is assumed to occupy a 2. 75 m longi-

tude distance in a complete traffic jam, which is the 

half of the distance that a car needs. While the length 

for a large vehicle considering the safety distance is 

set to be 11 m. 

With the information regarding the length and width 

for each type of vehicle , we can determine the cell 

size to be 2. 75 m by 3. 00 m, which is able to ac­

commodate 3 bicycles. A car takes 2 cells in length 

and 2/3 cell in width. While a large vehicle takes 4 

cells in length, 1 cell in width. The similar concept 

has already been employed in the case of mixed 

car/truck traffic in which cars are "shorter" vehicles 

and trucks are "longer" vehicles (Nagel and Schreck­

enberg 1992) . An example of mixed traffic flow rep­

resentation environment at a two-lane bi-directional 

road segment is illustrated in Fig. 2. 
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Fig. 2 Representation of mixed traffic flow at a two-lane bi-directional road segment 

2.3 Evolvement rules 

The evolvement rules set for the mixed traffic flow 

should take into account the mechanical characteristics 

of different types of vehicles. For example, bicycles 

are smaller in size and easier to operate , therefore 

they have more flexibility in acceleration, decelera­

tion, and lane changing. However, they are associat­

ed with a relative low maximal velocity compared 

with other vehicles. Cars have a higher maximal ve­

locity but a lower probability for conducting lane­

changing behaviors due to the limitation in their sizes 

and safety considerations. In our model, car follow­

ing , lane changing , and parallel operating are explic-

loll loll 

0~ 
-v-u-

n' n'+I n 
.....--. r'--. L::':-..... ~~ c¥~ -.: -(J-JII ~ 

n+l 

n+2 

itly modeled and illustrated in Fig. 3. 

For the lane changing behavior, there should be 

sufficient gap in the target lane with the consideration 

of safety. Technically, there must be sufficient inter­

vals to meet the requirements that 
dB ;:3':gapB 

1,n ' 

d(: ;:3':gap~PP 
where d~n is the distance from the back of the vehicle n 

in type i to the back of the vehicle that has just passed 

it on the target lane ; ~';: is the gap from the front of 

the vehicle to the front of the closest one on the other 
lane; gap~ and gap(P account for the minimal back 

and front gaps for vehicle type i ensuring the safety of 

lane changing behavior, respectively (Fig. 3) . 

c¥~ C)~ 
0~ Lane 1 (1)~ m 

Lane2 I [] [] I 
I 

Fig. 3 illustration of driving behaviors 

The second criterion for lane changing is that the 

operational velocity of the front vehicle is slower than 

the vehicle's expected velocity in the next time step , 

and the driver expects a better driving condition on 

the other lane. Such situation becomes more compli­
cated when there are multiple vehicles ahead (e. g. 

two bicycles in front of the vehicle n in Fig. 3) . To 

account for such situation, we deem that the speed 

criterion is satisfied if the minimal expected speed of 

the front vehicles is lower than the expected velocity 

of current vehicle, given by 

min l vi,max 'vi,n +1l >min l vj,n+l +1' 

vj,max 'vk, n+2 +1 'vk,max l v dn,n+l =dn,n+2 

where dn,n +l and dn,n +2 represent the distances from 
vehicles n + 1 and n + 2 to vehicle n, respectively; 

v;,max is the maximal velocity set for the vehicle type i. 

Since the proposed model allows multiple vehicles 

operating in parallel , it is possible that a vehicle can 

overtake another one without lane changing. For ex­

ample in Fig. 3, the distance from the vehicle n to its 

front vehicle ( i. e. d;,n') is equal to 2 instead of 0 be­
cause there is sufficient space in the cell occupied by 
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the vehicle n' + 1. The same criterion also applies for 

the calculation of t:l'(: and d~.. Furthermore , we 

adopt the concept of positional discipline which im­

plies that in a mixed traffic flow environment, bicy­

cles keep to the side of the road nearest to the curb , 

while autos accommodate space for any present bicy­

cles by staying as far away from the curb as possible 

without crossing the median line. 

Considering safety , we also assume that when the 

space is sufficient ( t:l'(: -. 0 ) , the vehicle making a 

change to the opposing lane will immediately go back 

to the farthest location on the original lane with re­

spect to its velocity. If there is no space allowing ve­

hicles changing to the opposing lane to move back 

( t:l'(: <0, e. g. the vehicle n in Fig. 3) , the vehicle 

will keep driving on the opposing lane until there is a 

gap. 

Although most CA studies have modeled single­

lane( Nagel and Schreckenberg 1992 ; Fukui and Ishi­

bashi 1996; Vasic and Ruskin 2012) or multiple­

lanes ( Nishinari and Takahashi 1998 ; Jiang et al. 

2004 ; Meng et al. 2007 ) operations in one direction 

and have incorporated speed randomization factors to 

reflect the changes in speed due to uncertainties, it 

might not be sufficient to represent the impact of op­

posing flows under a bi-directional environment. As 

drivers may be more cautious and will decrease the 

speed with a higher probability to avoid the conflict 

with the opposing flows , we propose to set the ran­

domization factor for type i vehicles that are experien­

cing or have just experienced a crossing on the oppo­

sing lane to be p;. For those vehicles that are not fa­

cing crossings , their randomization factor is set to be 

p 1• However, this rule is not imposed on vehicles 

driving on the opposing lane when they are overtaking 

because of no conflict between the flows on the origi­

nal lane. 

In sururnary, the evolvement rules in the proposed 

model are given by 

Step 1 : Acceleration 

vi,n = min j vi,n + 1, vi,max} 

Vvi,n E j0,1,2,···,vi,max} 
For the vehicle n in the opposing lane 

v;;! = min j v;;: + 1 , vi,mu} 

llv':'; E j0,1,2,···,v1.-1 

Step 2 : Deceleration 

v. = minlv., d.l lid. E j0,1,2,···,NI 

For the vehicle n in the opposing lane 
opp_ •loppdl 

vi,n - min 1 vi,n , "' 

Step 3 : Randomization 

vi,n = max { vi,n - 1 , 0} 
with the probability p; for the vehicle n experiencing 

or experienced a crossing on the opposing lane, other­

wise with a probability p,. 

For the vehicle n in the opposing lane 

v;;,!' = max { v;;!' - 1 , 0} 

with a probability p,. 

Step 4 : Lane changing 

For the vehicle n in the original lane , if 

min { vi,m.u ,vi,n + 1} > min { vj,n+l + 1 ,vj,mu, 

vk, n+2 + t , vk,max, • • • I v dn,n+l = dn,n+2 = 

dB B 
i,n;;:::: gapi 

d~: ~gap(~' 

then, the vehicle changes the lane with a probability 

p;PP and vi,n = v;;!'. 

For the vehicles on the opposing lane 

v. = v'" = min 1 d"' v'" I II d"' _. 0 
l,ll '•" 1 '•" ' '•" l,ll 

Step 5 : Vehicle movement 

For the vehicle n that operates or comes back to the 

original lane 

xn =xn +vi,n 
For the vehicle n on the opposing lane 

xn =xn +v~ 

where v'(; indicates that the velocity of the vehicle n 
of type i on the opposing lane. 

3 Model calibration and validation 

This section details the calibration of the essential 

model parameters and sets the following criteria for 

data collection site selection : 

1 ) Low impact of pedestrians; 

2 ) Low impact of signalized intersections : intersec­

tion signals are not explicitly modeled in our stndy , 

thus the data collection site should be far away from 

signals; 

3) Low impact of roadway parking. 

According to the above requirements, we per­

formed data collection during the peak periods ( 7 am-

9 am and 5 pm-7 pm) on August 27, 2009 at a two­

lane bi-directional road segment of Chengxian Road, 
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Nanjing City, China. As illustrated in Fig. 4, we 

used cameras to record the traffic data including the 

density , velocity , volume and the proportion of large 

A 
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vehicles, cars, and bicycles every 15 s. The width 

of each lane is 3m (N =3 x2 =6 m), and LAB= 

15.5 m. 

............ 

........ 

B 

1 ............... ,*' ,, ,., 

~ - t<-_;_ ____ :_:::_ ... _ ....... _ .. _:_~_-_-_-_-..:,-... -;:----_-_-_-_-_-_-_-_-_-___ :_~_-_--::_:o"_J:;_;,_ ______ :_~_~ __ :::_::_: .. __ ....:_"'+_ ,"'" ................ ,., ,, 
,, ..... , QB ,,' ..... ,, .. ' / .... -..... ,, 

........... ,, 
..... , .,.,. 

........ .. 
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Fig. 4 illustration of data collection method 

4 Numerical study 

4.1 Model installment 

In simulation, a system of 2500 cells is considered 

under the periodic boundary condition. According to 

Section 2 , the size of each cell is set to be 2. 7 5 m by 

3. 00 m, so the system is equivalent to a road of 6. 9 

km long. When we start to perform a numerical simu­

lation, the types of vehicle with a given density are 

initially distributed randomly on the road. After a 
transition time period t0 = 1000 time steps ( each time 

step equals 1 s in the real world) , we start to record 

the time-averaged velocity of traffic flow and the total 

volume in every period of T ( 1000 time steps). Fi­

nally , we obtain the average velocity and total volume 

in a run, i. e. the density of total traffic flow is 

p=~pi 
I 

The density for each type vehicle is 

p; = CN; size/2L 

The total average velocity is 

V = I I V; n biN; 
i n ' 

The total volume is 

q = I I Pi bv; /N; 
i n ' 

where p; is density of vehicle type i; N; and L denote 

the total number of vehicle in type i and length of 

road segment, respectively; size; is the size of vehicle 

type i (for bicycle, size; is 1 x 113 = 113 , for big ve­

hicle, 4 x 1 =4, and for car, 2 X213 =413) ; the pa­

rameter Cis used to convert the non-dimensional den­

sity into a dimensional form and equals to 363. 4 

( C =100012. 75); b is used to change the velocity 

measured by cells into meters ; q is total volume with 

the consideration of car equivalence principle for 

mixed traffic flow in China ( Ren et al. 2003) . 

Together with the observation and calibration 

process using the field data, the key parameters, in­

cluding maximal velocity, randomization probabilities 

and lane changing probability for each type of vehi­

cle, are given in Tab. 1. Accordingly, the parameter 

b used to change the velocity measured by cells into 

meters is set to be 4. In Tab. 2, a volume comparison 

between the field data and simulation result is given 

indicating an average error of 4. 7%, where the MIS 

represents the ratio of big vehicle to car. 

4.2 Numerical analysis 

In order to capture the consecutive change in opera­

tional condition of mixed traffic flow due to the varia­

tion of vehicle composition, we increase the propor­

tion of bicycles based on a given ratio of the big vehi-



Journal of Traffic and Transportation Engineering( English Edition) 389 

cles (buses/trucks) to cars, and !ben smoothly add more vehicles until all cells are occupied. 

Tab.l Essential parameters 

Vehicle type VI,Dllll[ Pt p'{" Pt capr capF 

Car 12 m/s (4 cells) 0.18 0.20 0.26 6 m (3 cells) 21m (7 cells) 

Bicycle 6 m/s (2 cells) 0.13 0.40 0.20 3m(1cell) 12m (4 cells) 

Big vehicle 9 m/s (3 cells) 0.18 0.25 0.26 6 m (2 cells) 27m (9 cells) 

Tab. 2 Volume comparison between simuladon result and field data 
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4.2.1 Volume-densty analylis 

Density 
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Figures 5-7 illustrate tbe volume-density analysis 

results : 1 ) The maximal volume increases firstly and 

decreases latterly witb tbe increase of density. 2 ) 

Witb tbe increase in tbe proportion of tbe big vehicle 

tbe total volume decreases. As big vehicles require 

larger spaces for operations while associated witb a 

relatively low speed, all vehicles therefore have a 

lower probability to conduct overtakes but follow tbeir 

Simulation result( vph) 

2722 

1375 

952 

1411 

1533 

2736 

1433 

1750 

1928 

1514 

1922 

1222 

987 

1497 

1601 

2854 

1319 

1772 

1294 

1475 

1314 

1369 

956 

1272 

1198 

Field data( vph) 

2688 

1396 

912 

1310 

1478 

2789 

1502 

1688 

1875 

1526 

1847 

1310 

957 

1526 

1497 

2777 

1260 

1712 

1287 

1447 

1322 

1392 

914 

1181 

1101 

Enm(%) 

1.26 

1.50 

4.39 

7.71 

3.72 

1. 90 

4.59 

3.67 

2.83 

0.79 

4.06 

6. 72 

3.13 

1. 90 

6.95 

2.77 

4.68 

3.50 

0.54 

1. 94 

0.61 

1.65 

4.60 

7.71 

8.81 

front ones witb tbe consideration of safety. 3 ) Bicy­

cles have a great impact to tbe traffic condition in 

terms of tbe total volume. The total volume drops 

drantatically by 30% after we add 10% bicycle into 

tbe flow which is ouly consisted by autos (big vehi­

cles and cars) . As bicycles have more flexibility witb 

smaller sizes and higher probabilities in lane changing 

when tbe safety criteria are met, otber vehicles there­

fore are easily to be inferred and forced to follow 
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them with a relatively low speed. 4) The maximal to­

tal volume starts to recover when the proportion of bi­

cycle is higher than 10% . Though the bicycles have a 

low velocity, their advantages lying on the low re­

quirement for the space can compensate such deficien­

cy and increase the traffic volume by adding more bi­

cycles into the network. 5 ) The phenomenon of 

double-summit in terms of the total volume appears 

when the proportion of bicycle is beyond 60% . One 

reasonable explanation is that: for the first summit, 

with the increase of the density ( lower than 0. 2 ) , 

vehicles with higher velocity may change their lanes 

to avoid the interference caused by their front vehicles 

with a relative low speed. While for the consideration 

of safety requirement, the total volume drops along 

with decrease in opportunities of lane changing when 

the density is higher than 0. 2. However, when the 

density approximately reaches 0. 45 , the whole traffic 

may operate with a low speed and bicycles therefore 
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higher than 1 0% . Because most autos ( big vehicles 

and cars ) are following their front vehicles with a 

slow speed after the incorporation of bicycles , the 

space requirement for bicycles moving with their max­

imal speed is relatively easy to be satisfied. The aver­

age speed of the flow is therefore concentrated around 

the maximal velocity of bicycles. 3) As the cars have 

higher maximal velocities, the increase in the propor­

tion of cars will lead to the increase in total average 

speed though it is not significant when the bicycles are 

taken into account. 
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Fig. 5 Volume-density curves when the ratio of big 

vehicles to cars is 3: 1 

4.2.2 Velocity-demity analyss 
As shown in Figs. 8-10, we illustrate the relation 

between velocity and density with different composi­

tions of vehicle types. The following fmdings can be 

reached: 1 ) Bicycles have a great impact on the aver­

age velocity. Compared with the velocity of traffic 

flow only consisted by big vehicles and cars , the op­

erational speed drop 60% approximately when the bi­

cycle is added. 2 ) The variation of velocity changes 

in a small range when the proportion of bicycle is 

0 0.1 0.2 0.3 0.4 0.5 0.6 0. 7 0.8 0.9 1.0 
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Fig. 6 Volume-density curves when the ratio of big 

vehicles to cars is 1: 1 
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Fig. 7 Volume-density curves when the ratio of big 

vehicles to cars is 1 : 3 

5 Conclusions 

In summary, in this paper, we build a CA model to 

investigate the operational characteristics of mixed traf­

fic flow at a two lane bi-directional road segment. To 
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Fig. 9 Speed-density curves when the ratio of 

big vehicles to cars is 1 : 1 
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Fig. 10 Speed-density curves when the ratio of 

big vehicles to cars is 1 : 3 

capture more reality , we categorize vehicles into dif­

ferent groups including big vehicles (buses/trucks), 

cars, and bicycles, and take into account their physi­

cal and mechanic differences. Essential parameters 

with regards to different vehicle types are calibrated 

by using the field data collected at a two-lane bi-di­

rectional road segment in Nanjing City, China. We 

have detailed the relations of volume-density and ve­

locity -density under the various compositions of traffic 

flow which leads to some key findings including: 

1 ) Bicycles impact the traffic conditions in terms of 

volume and velocity to a large extent that is the aver­

age speed and maximal volume drop 60% and 30% 

respectively after the incorporation of 10% bicycles 

into the mixed traffic flow. 2 ) The volume starts to 

recover when the proportion of bicycles is higher than 

10% . 3 ) The phenomenon of double summits of the 

traffic volume appears when the proportion of bicycles 

is higher than 60% . 4 ) The average speed of total 

traffic flow is highly concentrated after the incorpora­

tion of bicycles. 

In the next step, this model will be extended to in­

corporate signals at intersection, and queuing behav­

ior and stop-and-go conditions will be explicitly mod­

eled. Behaviors and impact of pedestrian's will be 

taken into account to describe more complex traffic 

flow at both intersections and road segments. Further, 

the situation of multiple lanes ( more than 2 ) will be 

considered as which may induce other lane changing 

behaviors having a great influence on the traffic con­

ditions ( i. e. change to another in the same direc­

tion). 
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