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Abstract

In this note, we investigate the problem of well-posedness for a shallow water equation with
data having critical regularity. Our results are based on the use of Besov spaces B3, (which

generalize the Sobolev spaces H*) with critical index s = 3/2.
© 2003 Published by Elsevier Science (USA).

0. Introduction

In the past few years, a large amount of literature has been devoted to the
following one-dimensional nonlinear dispersive equation:

O — 3 _u+ 3udu = 20.ud* u+ ud> _u (1)

txx xXxx7r

In the above equation, the function u = u(¢, x) stands for the fluid velocity at time
t=0 in the x direction. Eq. (1), commonly called Camassa—Holm equation, has been
derived independently by Fokas and Fuchssteiner [FF], and by Camassa and Holm
in [CH] (see also [F]). Like the celebrated KdV equation, Camassa—Holm equation
describes the unidirectional propagation of waves at the free surface of shallow water
under the influence of gravity. It turns out that it is also a model for the propagation
of nonlinear waves in cylindrical hyperelastic rods (see [Dai]).

The problem of finding the largest spaces E for which (1) with initial data in E is
well-posed in the sense of Hadamard has retained a lot of attention recently. Before
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going further into details, let us define what we mean by “local well-posedness in the
sense of Hadamard™:

Definition 1. Let E be a Banach space. System (1) is said to be locally well-posed in £
in the sense of Hadamard if for any u € E, there exists a neighborhood V' of #y and a
T >0 such that for any vye V, system (1) has a unique solution ve C([0, T]; E) with
initial datum vy, and if in addition the map vo+>v is continuous from V into
([0, T); E).

In most of papers devoted to (1), only Sobolev spaces H* are considered. It has
been stated by different methods that (1) is well-posed in H*® for s>3/2 (see
[Dan,HM,LO,RB]). On the other hand, counterexamples to well-posedness in the
case s<3/2 have been exhibited by Himonas and Misiotek [HM] (actually what they
do prove there is that uniform continuity with respect to the data cannot hold in H*®
with s<3/2). Therefore, in the Sobolev spaces framework, s = 3/2 seems to be the
critical value for local well-posedness.

Let us mention in passing that Xin and Zhang showed recently that global weak
solutions do exist for any data in H' (see [XZ]), but local well-posedness (or even
uniqueness) for such rough initial data is unlikely to be true.

That s = 3/2 is critical for well-posedness has to do with the fact that it is also the
critical value for the embedding H* < Lip to be true (Lip here denotes the bounded
lipschitz functions). Indeed, denoting P(D) = —0.(1 — 3%)717 Eq. (1) may be
rewritten as a nonlinear transport equation:

{ O + udsu = P(D) (s + 3(du)?), (CH)

u‘t:() = Uy.

For most “reasonable” Banach spaces E embedded in Lip, one can prove a priori
estimates for linear transport equations

O+ adww = f,

with v(0) € E and, say, a(t) and f(¢) uniformly bounded in E. Therefore, H* has to be
embedded in Lip in order that (CH) may be solved by a standard iterative scheme.

In [Dan], we gave examples of spaces £ which are not related to Sobolev spaces
and for which local well-posedness is true. For example, any Besov space B, with
s>max(3/2,1+ 1/p) does.

In the present paper, we aim at gleaning as much information as possible on the
critical value 3/2. Due to the lack of embedding H%L>Lip however, we will
be induced to use Besov spaces B5, which are closely related to H*. To simplify the
presentation, we shall assume throughout that x belongs to R. That point is not
essential: as our results are based on Fourier analysis, slight modifications of our
proofs would enable us to handle the periodic case xe T (a reading of [Dan] should
convince the doubtful reader).
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In the case xe R, those Besov spaces may be defined as follows:

Definition 2. Let se R and re[l,+o0]. Denote

djf ! 22N\S| A 2 :
B, = (/1(1 + &) (&) di) +(EZN</24<§|<24+1(1 + &) (&) dé)

with an obvious modification if r = + 0.

1
r

r—.

We then define the Besov space B . as follows: B;, def

{ue | [jullp <+ 0}
Obviously, H® = Bj,. Moreover, the spaces H* and B}, are very close. We shall
often use the following chain of continuous embedding for s’ <3/2<s:

3 3 3
H' OB SHGB) G HY.

In practical computations however, the spectral cut-off 1 <j¢j<2¢+1 18 too rough and
has to be replaced by a smoother one. This may be achieved by introducing a
Littlewood—Paley decomposition, that is a dyadic partition of unity in Fourier
variables.

Let (y,9) be a couple of C* functions with Suppy<{|¢|<4/3},
Supp ¢ = {3/4<¢|<8/3} and

1O+ e2%) =1 for éeR.

qeN

Denote ¢ (&) = @(279¢), hy = ﬁf"l% and h = 7 'y. We then define the dyadic
blocks as

40 it gs =1, A D= [ Koty dy
R

4™ o@Dy = [ hou(x—y)dy it g0

Now, for se R and re[l, 4+ 0], the Besov spaces B;, may be alternatively defined by

,df ~
 Eue s ®) | fully, <+ o0},
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where we denoted

||~u||332md§f< > (2W||Aqu||Lz)r> if 1<r< 4+ o,

g>—1

def

and ||u||B;Y1 Supl 2% Aqul| 2.

q=—

Of course, the norm above is equivalent to the one in Definition 2 so that we shall
merely denote it by || - |

s, instead of I - HB;_%'

Let us now state our main result:
Theorem 1. The exponent 3/2 is critical in the following sense:

® System (CH) is locally well-posed in 3%2’1 in the sense of Hadamard.
o System (CH) is not locally well-posed in Béw.

ER
Let us emphasize that local well-posedness in B, is a new result. In
[Dan], existence only was stated. Note that using Besov spaces B, in hydro-

dynamics has been done before by Vishik [V] for the incompressible Euler
equations (there, the critical value of s in dimension 2 is 1 + 2/p). The motivation
there was the same as ours: getting the critical regularity exponent for local well-
posedness.

3 . .
The counterexample to well-posedness in B , is inspired by the one
in [HM].
3 :
We have no definitive answer to the intermediate cases Bj,. In particular, local
well-posedness in H? remains an open question: our counterexample is closely

3 . . 3
related to the space B, , (the corresponding initial data do not belong to any B;,
with r< + o0) so that it does not provide us with any information on well-posedness

3
in B;, with r< + co. Besides, owing to the lack of embedding in Lip when r>1,

3 . . . .
well-posedness in Bj , for r> 1 is unlikely to be proved by standard iterative methods.
On the other hand, combining Proposition 1 below with our existence results in

3 .
[Dan] yields local existence and uniqueness in any space B;,nLip.
Once uniqueness has been stated for a given Banach space E, one can actually get

quite a lot of information on the solution. In the case B; |, a rereading of the proof of
theorem 0.1 in [Dan] yields the following:

3
Theorem 2. Let ug be in B . There exists a maximal Tu’: such that (1) has a unique

solution in C([0, T.X[; B%Z,l) NCH[0, TX; B%Z,l) with constant H' norm. Moreover, the
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lifespan T, satisfies

def 2 ||u0||H1
T*>T, = — arctan | ————— |,
v [l <1nfxe[R Oxt(x)

that estimate being optimal in general, and

<+oo:>/ (1nf8utx))dt=—

If the potential yo ™ uy — 82 uy has a sign then TX =+o0 and sgn(u(r) — 8%u(t)) =
sgn Y.
Our paper is organized as follows. In Section 1, we prove estimates in
1
L™ (0, T;B; ) for the difference of two solutions of (CH) belonging to
3 1
L*(0,T;B5 ,, nLip)nC([0,T]; B5 ). This in particular yields uniqueness of
3
solutions with data in B3 . In Section 2, we address the question of continuity
3 3
in C([0,T];B5;) for data in B5;. In Section 3, we show that continuity in

3 3
C([0, T); B3, ) with respect to data in B, cannot be expected in general.

1. Uniqueness for critical regularity index
Uniqueness is a corollary of the following.

Proposition 1. Let u (resp. v) be a solulion to (CH) with initial datum ug (resp. vo).

Assume that uy and vy belong to B o NLip, and that u and v belong to
L>(0,T; Bzz,oo NLip)nC([0, T}; 2x) Lel wy — u and wo :fvo — ug. There exists

a constant C such that if, for some T* <T,

!
-cf H@quB% dr

sup (e 2 w()]] 4 )< (2)
1€[0,T*] B

then, denoting L(z ) = Zlog(e + z), the following inequality holds true for te[0, T*]:

—cf'L : d
||W(l)||B% Cj;\l&u\l ! de ||Wo||B% eXp[ fo (ul i, nLierIILl%anp> T]
2, B E 2 ’

2,00 <e 2.7\:ﬁLL , 0 . 3
oS — (3)
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In particular, (3) holds true on [0, T| provided that

1—exp
|\W0||B§ <e

Proof. Clearly, w solves the following linear transport equation:

T
CfiLfluly el dr|.
Bg - nLip B% o nLip

0w + udyw = —woyv + P(D)(w(u +v) + % Oxw Ox(u + v)).

By virtue of estimate (A.1) in [Dan], the following inequality holds true:

t
Cﬂ)HQ\uHB% e
<lwill y e

1
2 2
BZ.cc BZ

[[w(2)

L0

!
¢ € Nl v
+/ e BilmL’ﬁ
0

500

1
X <||w6xv||3% + ||P(D)(w(u + v) + Eaxw Ox(u +0))

properties:

1 1
(i) The space B3 is continuously embedded in B , nL™.

1
(ii) The space B; , NL™ is an algebra.

I3

S

L0

L 1 L
(iii) The usual product is continuous from B, x (B3 , nL™) to B, .
(iv) For any seR and re(l,+co], the operator P(D) maps continuously B, into

s+1
B3t

(4)

) dz. (5)

Bounding the right-hand side will be made possible thanks to the following five

(V) There exists a constant C >0 such that holds the following interpolation inequality:

LAl 5

[P ] I
1 X 1 ogl e _—
7

B2

2,0
From (i)—(iv) we readily get

|lwovl| 4
BA_

2,0

[lo]]

<Clw|| 1 [10xv]| 1 < Cl|w||
B%_xmL“ B AL® B%,l

2,0

1
|[P(D)(w(u +v) + 5 Dyw 8x(u+v))||B% Ll Y

3
2
2,

©

9

N Lip

<C
<Cliwll g el g Ml

3

2
BZ

., NLip

).
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Plugging the above inequalities in (5) and using the logarithmic interpolation (v), we
infer that

t
=C Jyllowull | dr
B: NL®
e 2 w1 4 HWOII
p cf (|0 u|| ! dv
+c/ S
0 B,
X [ZA D] 3
g ol )
[l 5
x log| e+ 22 | dt (6)
[l 4
B
ot —CfHdurH dr »
Denote W (1) = " w()] 4 and Z(0) = [Ju(c )H 3 +||v(f)\|3g
21‘-): o] Mool

Since for xe(0, 1] and «>0,

log(e + a/x) <log(e + o)(1 — log x),

inequality (6) rewrites

W) <W(0)+ C/OtZ(r) log(e + Z(z)) W(z)(1 —log W(r)) dz

provided that W <1 on [0, 7].
Combining hypothesis (2) with a Gronwall type argument (see e.g. Lemma 5.2.1 in
[Che]) yields

W(Z) W exp[— Cf (7) log(e+Z(7)) d1]
—<

e e

which is the desired result. Of course (4) implies that (2) holds with T* = 7. O

We still have to justify facts (i)—(v).
Property (i) is standard (see e.g. (81), p. 30 in [RS]). That B%M N L* is an algebra
may be found in [RS]. Since
i

Z (PO =

Fu(Q),

property (iv) may be easily deduced from Definition 2.
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The proof of (iii) lies on (elementary) paradifferential calculus, a tool introduced

by Bony [Bo]. What we really need here is the paraproduct.

def

Introducing the following low-frequency cut-off S,u= )"

p<q—1 dptt; the para-

product between f and ¢ is defined by
def
Trg = Z Sg-1/ 449

qeN

We have the following so-called Bony’s decomposition:

def
f9=Trg+ Tyf + R(f,9) with R(f,9)= Y Agf (441 + 44+ Ay1)g-
q>71
Therefore, we only have to prove that the paraproducts Tyg and T,f, and the

remainder R(f,g) are continuous from Bzz1 X (B 50 NL”) to By 2 . According to

estimates (7) and (9) p. 166, and (17) p. 168 in [RS], we have for a constant C
independent of f and g:

191l 4 < CIAI 3 gl < CIAA llgll,

1
2
2,0 500 2,1

T/ 1] 4 CHfII 3 gl < Il llgll
BZ BZ,]
IRl <l sl
2,1 2,0
which by virtue of the embedding B?7OC L»ij (see e.g. [RS(2), p. 31]) clearly
entails (iii).
Inequality (v) stems from the following lemma:

Lemma 1. For any seR and ¢€(0, 1], we have

|11
|11

C
B, <; ||f||3;” log (6 +

B
BE% '
Proof. Let NeN be a cut-off parameter to be fixed hereafter. We have

||f||B;J = Z 29|40 f | 2 + Z Z_qg(zq(‘HS)HAquLZ),

g<N—-1 q=N

27Nz;
<N+ DI Mlag, + 75 11l

171 g
Choosing N = [1 logy(; fH:'“‘)] yields the desired inequality. [

2,00
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3
2. Continuity with respect to initial data in B; |

3 3
Proposition 2. For any u € B, |, there exists a T >0 and a neighborhood V' of ug in B; |
such that the map

3 3
o - VeB, - C(0,T];B3,),
v+ v solution to (CH) with initial datum v,

Is continuous.

The main ingredients for proving Proposition 2 are Proposition 1 and a continuity
result for linear transport equations. More precisely, the following proposition
holds true:

Proposition 3. Denote N =Nu{ow}. Let ("), be a sequence of functions

1
belonging to C([0,T]; B3 ). Assume that v" is the solution to

oV +d"o" = f,
Vo = V0
| !
with voe B |, feLY0,T; B ) and that, for some xeL1(0,T),

sup [|0vd"(8)]| 1 <a(?).

neN BZI

1 1
If in addition a" tends to a* in L'(0, T; B ) then v" tends to v* in C([0, T]; B3 ).

def
Proof. Let w" = ¢ — v®. We have

W' + d"ow" = (@™ — da")0 ™.

3 3
Let us make the additional assumption that vye B3, and feL'(0,T;Bj ). In this

3
particular case, Proposition A.1 in [Dan] insures that v" € C([0, T; B3 ) with, besides,

3 dr. (7)

t ! 1
C | a(r)de C | a(t)dd ||,
1615 (=Rl 5+ [ eSO 1)

21 21

On the other hand, Proposition A.1 in [Dan] also yields

o ¢ [y
WOl 4 </ e B i@ —d)(@awT (o] 4 dr
B, 0 B,
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1
therefore, using that B | is an algebra and combining with (7),

W0l 4 <Cecf°‘<”df(||v||z +/ @il d)/ I(@* —a)(@)| 4 dr, (8)

71 2,1

which yields the desired result of convergence.

To treat the non-smooth case, one can proceed as follows. For neN and pe N, we
write

WDl 3 <Il"(1) =gl 4+l (0) = o]y + o) —v (O 5 )

2,1 2,1

where UZ is the solution to

oy +d"0yvy = Spf,,
Vo = Splo-

Above, S, stands for the low-frequency cut-off defined in Section 1. Of course, S, is a

mollifier, and in particular SpvoeBél and S,/ e L' (0, T; Bél). Hence, according to
(8), we have

[lop () = 0,7 (D] 4
BZ.I

SCECJ;X(T )dt <|S UOH 3 / HSpf % )

x/otnw — @), de. (10)

1
2
B,

On the other hand, for any peN and meN, v — vy’ solves

{ Ou+d"ou=f—Syf,

n —
Vo = oSy U0

so that, applying once again Proposition A.1 in [Dan],

l(a) = @) <l (nuO—SuOn SALCE >||1dr> (1)

2,1
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Plugging (10) and (11) in (9), we end up with

Tot‘r dt r
Wil < G O g — Syl tﬁlww—syum;df
21 2,1

L*(0,T;B2)
@Smw+/W&f )/H nldQ

By virtue of Definition 2 and Lebesgue dominated convergence theorem, the first two
terms of the right member may be made arbitrarily small for p large enough. For
fixed p, we then let n tend to infinity so that the last term tends to zero, and we

conclude that w” tends to 0 in C([0, T];Bél). O

Let us now tackle the proof of Proposition 2.
1 3
First step: Continuity in C([0, T]; B ;). Let us fix a upe B3 and a r>0. We claim

3
that there exists a 7>0 and a M >0 such that for any u, € B} | with |[u — uo|| 3 <r,

3
the solution «' = ®(u;) of (1) associated to u; belongs to C([0, T; B3 ) and satisfies

1] <M.

3
L*(0,T;B2 )

Indeed, this is just a matter of following the proof of (2.13) in [Dan]. One can for
instance take (for some suitable universal constant C)

T= C/(r+\|uo|\ ;) and M:2r+2||u0||3% .

7] 2,1

Now, combining the above uniform bounds with Proposition 1, we infer that

[P (up) — P (uo)| ) lluty — o]y L M logler Ml
0 L7018 ) _ cyr 0 By
<e

e e

provided that

||u6 - uoH % Sel*exp[CMT lOg(e+M>].
B

2,0

Interpolating with the uniform bounds in C([0, T];Bél)7 we gather that for any
§<3/2 and ae[l,+o0], the map @ is (Holder) continuous from Bél into
C([0, TT; B ). In particular, @ is (Holder) continuous from Bél into C([0, T7; B%z.,l)'

Second step: Continuity in C([0,T7; B%_l). Let ug° eB%Z’1 and (ug), .y tend to u® in

3 . . .
B; |. Denote by u" the solution corresponding to datum ug. According to step one,
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one can find T, M >0 such that for all neN, »” is defined on [0, 7] and

"Il s <M. (12)

sup ||u
p || L)

neN

Thanks to step one, proving that " tends to u® in C([0, T; B2 |) amounts to proving
that v" & 94" tends to v* ¥ 9u™ in c(Jo, T];B;l).
Note that v solves the following linear transport equation:

{ " + "o = [,

i — n
V=0 = Oxtg

with
ol def (0, ) +2P(D) ("B + axP(D)[(axu)z}/Z.

Following Kato [K, Section 10], we decompose ¢v" into v" = z" + w" with

Oxuf — Oxug’ = Oyuy’.

{azn U =" — [, { oW + U O = [,
and

|t0 |z0

Using the properties of Besov spaces exhibited in Section 1, one easily checks that
1
(/") e 18 uniformly bounded in C([0, T; B3 |). Moreover,

== (a‘PT(D) - 1) (Ot — Ou™ ) (Ou™ + D)
+ 2P(D)[u"(Osu" — Ovu™) + (U — u™)0u™],

therefore, product laws in Besov spaces combined with Proposition A.l in
[Dan] yield

cfo’uu"muB
12"y <e

2
BZI

t
+c/0 X (T>||Bél||u (1) — u (T>||B§1 dr
t

[y

dt
1 (”a‘fug - axugc ||B%

2,1

2 1

+C/O (Ilaxu”(f)llBé] +|I3xu°°(T)HB;)IIBxu”(f) w? (Il 4 df)

(13)
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On the other hand, since the sequence ("), _r; is uniformly bounded in C([0, T7; 3%2,1)
and tends to ™ in C([0, T; Bél)7 Proposition 3 tells us that w" tends to v* = O,u®
in C([0, T]; B ).

Let e>0. Combining the above result of convergence with estimates (12) and (13),
one concludes that for large enough ne N,

|51 (1) — Ocu™ (1)

>~
1=
—

B

e

1

< &4 CMeM <||8xu8 — Oy’ ||

1
As u" tends to u™ in C([0, T]; B3 ), the last term is less than ¢ for large n. Hence,
thanks to Gronwall lemma, we get

)

8!

ow" — ™|\ <Cyrr(e+||0xuf — Osug ||
L (0,T:B3,) B

[oe

for some constant Cys r depending only on M and T'. The proof of Proposition 2 is
complete. [

3. A counterexample

3
In this section, we show that local well-posedness in B3  fails. More precisely,
we have

3
Proposition 4. There exists a global solution ue L* (R*; B, , ) to (CH) such that for

3
any positive T and ¢, there exists a solution ve L* (0, T; BZZm) with

1o(0) (O ; <& and |lo—ul >1.

2,0

3
L=(0,T:B )

Proof. Throughout T is a fixed positive real. For ceR, define u.(x,?) &l pelx—etl,

Recall that u, is the well-known solitary wave solution for (1). Its Fourier transform

in x1s
e—icti
U.(t,8) =2c|l——= ).
.9 (1 +62>
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Let ¢, and ¢; be two reals to be fixed hereafter. First compute ||u.,(0) — u,, (0)||B%
2,0

according to Definition 2. Denoting 5cd§fc2 — ¢1, we have

1 dé 24+1
|[tre, (0) — ue, (0)]]*: = 86¢? max / —— sup /
B, 0 V14 & geN Jo \/1+
<2q+1 + /22q+2+1>)

=80¢® max | log(1 + v2), sup lo
(g( ), sup log YR,

qeN

=85¢? log(1 + V2).

3
Note that considering the particular case ¢; = ¢ and ¢; =0 yields u.(0)eB; . A
similar computation would also show that ||u, (¢ )|| does not depend on ¢. Since

the part of the norm corresponding to each dyadic block does not tend to zero when

¢ tends to infinity, one also gathers that u.(¢) does not belong to any other space B2.r
(unless ¢ = 0).

Let us now tackle the computation of ||u,, (¢) — u., (2)||
B

. As

©

IS

ey — ere™ 12 = §¢2 4 2¢165(1 — cos(deté)),
we infer that

[utey (£) = ey (DI s
Bo _ max </ 0c* + 2¢i¢e2(1 — cos octé) n
0

8

V14 &
27 5 2 _
sup/ oc* + 2c1¢c2(1 — cos dcté) dé).
2L

geN 1 \/1+é2

For ge N, choose ¢ and ¢; so that T'éc = 279n. Clearly, the right-hand side above is
greater than the term corresponding to frequencies of size 29. Therefore,

27— cos(274mé)

2 V1t é

4
> —ci0. 14
N (14)

[t (T) = e, (T3 > 1612 de,
2,0
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Choose ¢; = 1 and ¢, = 1 + 2797 'n. From the above computations, we have

2n
=——1/2log(l 2
Sa7 V 2log( +12)

I

[l (0) = we, (0]

(S0

©

which may be arbitrary small whereas, according to (14), ||u,(T)—
u, (T) =>2. O

I &
Remark 2. Note that the use of solutions u,. provides us with counterexamples to

3
continuity in B} , whereas it only gives counterexamples to uniform continuity in H*
with s<3/2 (see [HM]).

Remark 3. The result of Proposition 2 does not contradict the properties of

3
orbital stability stated in [CS] for the H' norm. Indeed, the norm in B3  is far
stronger.
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