A note on well-posedness for Camassa-Holm equation

Raphaël Danchin
Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, 175 rue Chevaleret, 75252 Paris, France

Received March 27, 2002; revised December 11, 2002

Abstract

In this note, we investigate the problem of well-posedness for a shallow water equation with data having critical regularity. Our results are based on the use of Besov spaces $B_{2, r}^{s}$ (which generalize the Sobolev spaces H^{s}) with critical index $s=3 / 2$. (C) 2003 Published by Elsevier Science (USA).

0. Introduction

In the past few years, a large amount of literature has been devoted to the following one-dimensional nonlinear dispersive equation:

$$
\begin{equation*}
\partial_{t} u-\partial_{t x x}^{3} u+3 u \partial_{x} u=2 \partial_{x} u \partial_{x x}^{2} u+u \partial_{x x x}^{3} u . \tag{1}
\end{equation*}
$$

In the above equation, the function $u=u(t, x)$ stands for the fluid velocity at time $t \geqslant 0$ in the x direction. Eq. (1), commonly called Camassa-Holm equation, has been derived independently by Fokas and Fuchssteiner [FF], and by Camassa and Holm in [CH] (see also [F]). Like the celebrated KdV equation, Camassa-Holm equation describes the unidirectional propagation of waves at the free surface of shallow water under the influence of gravity. It turns out that it is also a model for the propagation of nonlinear waves in cylindrical hyperelastic rods (see [Dai]).

The problem of finding the largest spaces E for which (1) with initial data in E is well-posed in the sense of Hadamard has retained a lot of attention recently. Before

[^0]going further into details, let us define what we mean by "local well-posedness in the sense of Hadamard":

Definition 1. Let E be a Banach space. System (1) is said to be locally well-posed in E in the sense of Hadamard if for any $u_{0} \in E$, there exists a neighborhood V of u_{0} and a $T>0$ such that for any $v_{0} \in V$, system (1) has a unique solution $v \in C([0, T] ; E)$ with initial datum v_{0}, and if in addition the map $v_{0} \mapsto v$ is continuous from V into $C([0, T] ; E)$.

In most of papers devoted to (1), only Sobolev spaces H^{s} are considered. It has been stated by different methods that (1) is well-posed in H^{s} for $s>3 / 2$ (see [Dan, HM,LO, RB]). On the other hand, counterexamples to well-posedness in the case $s<3 / 2$ have been exhibited by Himonas and Misiołek [HM] (actually what they do prove there is that uniform continuity with respect to the data cannot hold in H^{s} with $s<3 / 2$). Therefore, in the Sobolev spaces framework, $s=3 / 2$ seems to be the critical value for local well-posedness.

Let us mention in passing that Xin and Zhang showed recently that global weak solutions do exist for any data in H^{1} (see [XZ]), but local well-posedness (or even uniqueness) for such rough initial data is unlikely to be true.

That $s=3 / 2$ is critical for well-posedness has to do with the fact that it is also the critical value for the embedding $H^{s} \hookrightarrow$ Lip to be true (Lip here denotes the bounded lipschitz functions). Indeed, denoting $P(D)=-\partial_{x}\left(1-\partial_{x}^{2}\right)^{-1}$, Eq. (1) may be rewritten as a nonlinear transport equation:

$$
\left\{\begin{array}{l}
\partial_{t} u+u \partial_{x} u=P(D)\left(u^{2}+\frac{1}{2}\left(\partial_{x} u\right)^{2}\right) \tag{CH}\\
u_{\mid t=0}=u_{0}
\end{array}\right.
$$

For most "reasonable" Banach spaces E embedded in Lip, one can prove a priori estimates for linear transport equations

$$
\partial_{t} v+a \partial_{x} v=f
$$

with $v(0) \in E$ and, say, $a(t)$ and $f(t)$ uniformly bounded in E. Therefore, H^{s} has to be embedded in Lip in order that (CH) may be solved by a standard iterative scheme.

In [Dan], we gave examples of spaces E which are not related to Sobolev spaces and for which local well-posedness is true. For example, any Besov space $B_{p, r}^{s}$ with $s>\max (3 / 2,1+1 / p)$ does.

In the present paper, we aim at gleaning as much information as possible on the critical value $3 / 2$. Due to the lack of embedding $H^{\frac{3}{2}} \hookrightarrow$ Lip however, we will be induced to use Besov spaces $B_{2, r}^{s}$ which are closely related to H^{s}. To simplify the presentation, we shall assume throughout that x belongs to \mathbb{R}. That point is not essential: as our results are based on Fourier analysis, slight modifications of our proofs would enable us to handle the periodic case $x \in \mathbb{T}$ (a reading of [Dan] should convince the doubtful reader).

In the case $x \in \mathbb{R}$, those Besov spaces may be defined as follows:
Definition 2. Let $s \in \mathbb{R}$ and $r \in[1,+\infty]$. Denote

$$
\|u\|_{B_{2, r}^{s}} \stackrel{\text { def }}{=}\left[\left(\int_{-1}^{1}\left(1+\xi^{2}\right)^{s}|\hat{u}(\xi)|^{2} d \xi\right)^{\frac{r}{2}}+\sum_{q \in \mathbb{N}}\left(\int_{2^{q} \leqslant|\xi| \leqslant 2^{q+1}}\left(1+\xi^{2}\right)^{s}|\hat{u}(\xi)|^{2} d \xi\right)^{\frac{r}{2}}\right]^{\frac{1}{r}}
$$

with an obvious modification if $r=+\infty$.
We then define the Besov space $B_{2, r}^{s}$ as follows: $B_{2, r}^{s} \stackrel{\text { def }}{=}\left\{u \in \mathscr{S}^{\prime} \mid\|u\|_{B_{2, r}^{s}}<+\infty\right\}$.
Obviously, $H^{s}=B_{2,2}^{s}$. Moreover, the spaces H^{s} and $B_{2, r}^{s}$ are very close. We shall often use the following chain of continuous embedding for $s^{\prime}<3 / 2<s$:

$$
H^{s} \hookrightarrow B_{2,1}^{\frac{3}{2}} \hookrightarrow H^{\frac{3}{2}} \hookrightarrow B_{2, \infty}^{\frac{3}{2}} \hookrightarrow H^{s^{\prime}}
$$

In practical computations however, the spectral cut-off $1_{2^{q} \leqslant|\xi| \leqslant 2^{q+1}}$ is too rough and has to be replaced by a smoother one. This may be achieved by introducing a Littlewood-Paley decomposition, that is a dyadic partition of unity in Fourier variables.

Let (χ, φ) be a couple of C^{∞} functions with $\operatorname{Supp} \chi \subset\{|\xi| \leqslant 4 / 3\}$, Supp $\varphi \subset\{3 / 4 \leqslant|\xi| \leqslant 8 / 3\}$ and

$$
\chi(\xi)+\sum_{q \in \mathbb{N}} \varphi\left(2^{-q} \xi\right)=1 \quad \text { for } \xi \in \mathbb{R} .
$$

Denote $\varphi_{q}(\xi)=\varphi\left(2^{-q} \xi\right), h_{q}=\mathscr{F}^{-1} \varphi_{q}$ and $\check{h}=\mathscr{F}^{-1} \chi$. We then define the dyadic blocks as

$$
\begin{aligned}
& \Delta_{q} u \stackrel{\text { def }}{=} 0 \quad \text { if } q \leqslant-1, \quad \Delta_{-1} u \stackrel{\text { def }}{=} \chi(D) u=\int_{\mathbb{R}} \check{h}(y) u(x-y) d y, \\
& \Delta_{q} u \stackrel{\text { def }}{=} \varphi\left(2^{-q} D\right) u=\int_{\mathbb{R}} h_{q}(y) u(x-y) d y \quad \text { if } q \geqslant 0 .
\end{aligned}
$$

Now, for $s \in \mathbb{R}$ and $r \in[1,+\infty]$, the Besov spaces $B_{2, r}^{s}$ may be alternatively defined by

$$
B_{2, r}^{s} \stackrel{\text { def }}{=}\left\{u \in \mathscr{S}^{\prime}(\mathbb{R}) \mid\|\tilde{u}\|_{B_{2, r}^{s}}<+\infty\right\}
$$

where we denoted

$$
\begin{aligned}
& \|\tilde{u}\|_{B_{2, r}^{s}} \stackrel{\text { def }}{=}\left(\sum_{q \geqslant-1}\left(2^{s q}\left\|\Delta_{q} u\right\|_{L^{2}}\right)^{r}\right)^{\frac{1}{r}} \text { if } 1 \leqslant r<+\infty \\
& \text { and }\|\tilde{u}\|_{B_{2, \infty}^{s}} \stackrel{\text { def }}{=} \sup _{q \geqslant-1} 2^{s q}\left\|\Delta_{q} u\right\|_{L^{2}} .
\end{aligned}
$$

Of course, the norm above is equivalent to the one in Definition 2 so that we shall merely denote it by $\|\cdot\|_{B_{2, \infty}^{s}}$ instead of $\|\tilde{T} \cdot\|_{B_{2, \infty}^{s}}$.

Let us now state our main result:
Theorem 1. The exponent $3 / 2$ is critical in the following sense:

- System (CH) is locally well-posed in $B_{2,1}^{\frac{3}{2}}$ in the sense of Hadamard.
- System (CH) is not locally well-posed in $B_{2, \infty}^{\frac{3}{2}}$.

Let us emphasize that local well-posedness in $B_{2,1}^{\frac{3}{2}}$ is a new result. In [Dan], existence only was stated. Note that using Besov spaces $B_{p, 1}^{s}$ in hydrodynamics has been done before by Vishik [V] for the incompressible Euler equations (there, the critical value of s in dimension 2 is $1+2 / p$). The motivation there was the same as ours: getting the critical regularity exponent for local wellposedness.

The counterexample to well-posedness in $B_{2, \infty}^{\frac{3}{2}}$ is inspired by the one in [HM].

We have no definitive answer to the intermediate cases $B_{2, r}^{\frac{3}{2}}$. In particular, local well-posedness in $H^{\frac{3}{2}}$ remains an open question: our counterexample is closely related to the space $B_{2, \infty}^{\frac{3}{2}}$ (the corresponding initial data do not belong to any $B_{2, r}^{\frac{3}{2}}$ with $r<+\infty$) so that it does not provide us with any information on well-posedness in $B_{2, r}^{\frac{3}{2}}$ with $r<+\infty$. Besides, owing to the lack of embedding in Lip when $r>1$, well-posedness in $B_{2, r}^{\frac{3}{2}}$ for $r>1$ is unlikely to be proved by standard iterative methods. On the other hand, combining Proposition 1 below with our existence results in [Dan] yields local existence and uniqueness in any space $B_{2, r}^{\frac{3^{2}}{2}} \cap$ Lip.

Once uniqueness has been stated for a given Banach space E, one can actually get quite a lot of information on the solution. In the case $B_{2,1}^{\frac{3}{2}}$, a rereading of the proof of theorem 0.1 in [Dan] yields the following:

Theorem 2. Let u_{0} be in $B_{2,1}^{\frac{3}{2}}$. There exists a maximal $T_{u_{0}}^{\star}$ such that (1) has a unique solution in $C\left(\left[0, T_{u_{0}}^{\star}\left[; B_{2,1}^{\frac{3}{2}}\right) \cap C^{1}\left(\left[0, T_{u_{0}}^{\star}\left[; B_{2,1}^{\frac{1}{2}}\right)\right.\right.\right.\right.$ with constant H^{1} norm. Moreover, the
lifespan $T_{u_{0}}^{\star}$ satisfies

$$
T_{u_{0}}^{\star} \geqslant T_{u_{0}} \stackrel{\text { def }}{=}-\frac{2}{\|u\|_{H^{1}}} \arctan \left(\frac{\left\|u_{0}\right\|_{H^{1}}}{\inf _{x \in \mathbb{R}} \partial_{x} u_{0}(x)}\right),
$$

that estimate being optimal in general, and

$$
T_{u_{0}}^{\star}<+\infty \Rightarrow \int_{0}^{T_{u_{u_{0}}}^{\star}}\left(\inf _{x \in \mathbb{R}} \partial_{x} u(t, x)\right) d t=-\infty
$$

If the potential $y_{0} \stackrel{\text { def }}{=} u_{0}-\partial_{x x}^{2} u_{0}$ has a sign then $T_{u_{0}}^{\star}=+\infty$ and $\operatorname{sgn}\left(u(t)-\partial_{x x}^{2} u(t)\right)=$ $\operatorname{sgn} y_{0}$.

Our paper is organized as follows. In Section 1, we prove estimates in $L^{\infty}\left(0, T ; B_{2, \infty}^{\frac{1}{2}}\right)$ for the difference of two solutions of (CH) belonging to $L^{\infty}\left(0, T ; B_{2, \infty}^{\frac{3}{2}} \cap \mathrm{Lip}\right) \cap C\left([0, T] ; B_{2, \infty}^{\frac{1}{2}}\right)$. This in particular yields uniqueness of solutions with data in $B_{2,1}^{\frac{3}{2}}$. In Section 2, we address the question of continuity in $C\left([0, T] ; B_{2,1}^{\frac{3}{2}}\right)$ for data in $B_{2,1}^{\frac{3}{2}}$. In Section 3 , we show that continuity in $C\left([0, T] ; B_{2, \infty}^{\frac{3}{2}}\right)$ with respect to data in $B_{2, \infty}^{\frac{3}{2}}$ cannot be expected in general.

1. Uniqueness for critical regularity index

Uniqueness is a corollary of the following.
Proposition 1. Let $u(r e s p . v)$ be a solution to (CH) with initial datum u_{0} (resp. v_{0}). Assume that u_{0} and v_{0} belong to $B_{2, \infty}^{\frac{3}{2}} \cap \mathrm{Lip}$, and that u and v belong to $L^{\infty}\left(0, T ; B_{2, \infty}^{\frac{3}{2}} \cap \mathrm{Lip}\right) \cap C\left([0, T] ; B_{2, \infty}^{\frac{1}{2}}\right)$. Let $w \stackrel{\text { def }}{=} v-u$ and $w_{0} \stackrel{\text { def }}{=} v_{0}-u_{0}$. There exists a constant C such that if, for some $T^{\star} \leqslant T$,

$$
\begin{equation*}
\sup _{t \in\left[0, T^{\star}\right]}\left(e^{-C \int_{0}^{t}\left\|\partial_{x} u\right\|_{B_{2, \infty}^{\frac{1}{2}} \cap L^{\infty}} d \tau}\|w(t)\|_{B_{2, \infty}^{\frac{1}{2}}}\right) \leqslant 1 \tag{2}
\end{equation*}
$$

then, denoting $L(z) \stackrel{\text { def }}{=} z \log (e+z)$, the following inequality holds true for $t \in\left[0, T^{\star}\right]$:

In particular, (3) holds true on $[0, T]$ provided that

$$
\begin{equation*}
\left\|w_{0}\right\|_{B_{2, \infty}^{\frac{1}{2}}} \leqslant e^{1-\exp }\left[C \int_{0}^{T} L\left(\|u\|_{B_{2, \infty}^{\frac{3}{2}} \cap \text { Lip }}+\|v\|_{B_{2, \infty}^{\frac{3}{2}}} \cap \text { Lip }\right) d t .\right. \tag{4}
\end{equation*}
$$

Proof. Clearly, w solves the following linear transport equation:

$$
\partial_{t} w+u \partial_{x} w=-w \partial_{x} v+P(D)\left(w(u+v)+\frac{1}{2} \partial_{x} w \partial_{x}(u+v)\right)
$$

By virtue of estimate (A.1) in [Dan], the following inequality holds true:

$$
\begin{align*}
\|w(t)\|_{B_{2, \infty}^{\frac{1}{2}}} \leqslant & \left\|w_{0}\right\|_{B_{2, \infty}^{\frac{1}{2}}} e^{C \int_{0}^{t}\left\|\partial_{x} u\right\|_{B_{2, \infty}^{1}}^{\frac{1}{2}} \cap L^{\infty}} \text { d } \\
& +\int_{0}^{t} e^{C \int_{\tau}^{t}\left\|\partial_{x} u\right\|_{B_{2, \infty}} \cap L^{\frac{1}{2}}} d \tau^{\prime} \\
& \times\left(\left\|w \partial_{x} v\right\|_{B_{2, \infty}^{\frac{1}{2}}}+\left\|P(D)\left(w(u+v)+\frac{1}{2} \partial_{x} w \partial_{x}(u+v)\right)\right\|_{B_{2, \infty}^{\frac{1}{2}}}\right) d \tau \tag{5}
\end{align*}
$$

Bounding the right-hand side will be made possible thanks to the following five properties:
(i) The space $B_{2,1}^{\frac{1}{2}}$ is continuously embedded in $B_{2, \infty}^{\frac{1}{2}} \cap L^{\infty}$.
(ii) The space $B_{2, \infty}^{\frac{1}{2}} \cap L^{\infty}$ is an algebra.
(iii) The usual product is continuous from $B_{2,1}^{-\frac{1}{2}} \times\left(B_{2, \infty}^{\frac{1}{2}} \cap L^{\infty}\right)$ to $B_{2, \infty}^{-\frac{1}{2}}$.
(iv) For any $s \in \mathbb{R}$ and $r \in[1,+\infty]$, the operator $P(D)$ maps continuously $B_{2, r}^{s}$ into $B_{2, r}^{s+1}$.
(v) There exists a constant $C>0$ such that holds the following interpolation inequality:

$$
\|f\|_{B_{2,1}^{\frac{1}{2}}} \leqslant C\|f\|_{B_{2, \infty}^{\frac{1}{2}}} \log \left(e+\frac{\|f\|_{B_{2, \infty}^{\frac{3}{2}}}}{\|f\|_{B_{2, \infty}^{2}}^{\frac{1}{2}}}\right) .
$$

From (i)-(iv) we readily get

$$
\begin{gathered}
\left\|w \partial_{x} v\right\|_{B_{2, \infty}^{\frac{1}{2}}} \leqslant C\|w\|_{B_{2, \infty}^{\frac{1}{2}} \cap L^{\infty}}\left\|\partial_{x} v\right\|_{B_{2, \infty}^{\frac{1}{2}} \cap L^{\infty}} \leqslant C\|w\|_{B_{2,1}^{\frac{1}{2}}}\|v\|_{B_{2, \infty}^{\frac{3}{2}} \cap \operatorname{Lip}}, \\
\left\|P(D)\left(w(u+v)+\frac{1}{2} \partial_{x} w \partial_{x}(u+v)\right)\right\|_{B_{2, \infty}^{\frac{1}{2}}} \leqslant C\|w\|_{B_{2,1}^{\frac{1}{2}}}\left(\|u\|_{B_{2, \infty}^{\frac{3}{2}} \cap \operatorname{Lip}}+\|v\|_{B_{2, \infty}^{\frac{3}{2}} \cap \operatorname{Lip}}\right) .
\end{gathered}
$$

Plugging the above inequalities in (5) and using the logarithmic interpolation (v), we infer that

$$
\begin{align*}
& e^{-C \int_{0}^{t}\left\|\partial_{x} u\right\|_{B_{2, \infty}}^{\frac{1}{2}} \cap L^{\infty}}{ }^{d \tau}\|w(t)\|_{B_{2, \infty}^{\frac{1}{2}}} \leqslant\left\|w_{0}\right\|_{B_{2, \infty}^{\frac{1}{2}}} \\
& +C \int_{0}^{t} e^{-C \int_{0}^{\tau}\left\|\partial_{x} u\right\|_{B_{2, \infty}}^{\frac{1}{2}} \cap L^{\infty}}{ }^{d \tau^{\prime}}\|w\|_{B_{2, \infty}^{\frac{1}{2}}} \\
& \times\left(\|u\|_{B_{2, \infty}^{\frac{3}{2}} \cap \operatorname{Lip}}+\|v\|_{B_{2, \infty}^{\frac{3}{2}} \cap \operatorname{Lip}}\right) \\
& \times \log \left(e+\frac{\|w\|_{B_{2, \infty}^{\frac{3}{2}}}}{\|w\|_{B_{2, \infty}^{\frac{1}{2}}}}\right) d \tau . \tag{6}
\end{align*}
$$

Denote $W(t) \stackrel{\text { def }}{=} e^{-C \int_{0}^{t}\left\|\partial_{x} u(\tau)\right\|_{B_{2, \infty}^{\frac{1}{2}} \cap L^{\infty}} \| \tau}\|w(t)\|_{B_{2, \infty}^{\frac{1}{2}}}$ and $Z(t) \stackrel{\text { def }}{=}\|u(\tau)\|_{B_{2, \infty}^{\frac{3}{2}}}+\|v(\tau)\|_{B_{2, \infty}^{\frac{3}{2}}}$.
Since for $x \in(0,1]$ and $\alpha>0$,

$$
\log (e+\alpha / x) \leqslant \log (e+\alpha)(1-\log x)
$$

inequality (6) rewrites

$$
W(t) \leqslant W(0)+C \int_{0}^{t} Z(\tau) \log (e+Z(\tau)) W(\tau)(1-\log W(\tau)) d \tau
$$

provided that $W \leqslant 1$ on $[0, t]$.
Combining hypothesis (2) with a Gronwall type argument (see e.g. Lemma 5.2.1 in [Che]) yields

$$
\frac{W(t)}{e} \leqslant\left(\frac{W(0)}{e}\right)^{\exp \left[-C \int_{0}^{t} Z(\tau) \log (e+Z(\tau)) d \tau\right]}
$$

which is the desired result. Of course (4) implies that (2) holds with $T^{\star}=T$.
We still have to justify facts (i)-(v).
Property (i) is standard (see e.g. (81), p. 30 in [RS]). That $B_{2, \infty}^{\frac{1}{2}} \cap L^{\infty}$ is an algebra may be found in [RS]. Since

$$
\mathscr{F}(P(D) u)(\xi)=-\frac{i \xi}{1+\xi^{2}} \mathscr{F} u(\xi),
$$

property (iv) may be easily deduced from Definition 2.

The proof of (iii) lies on (elementary) paradifferential calculus, a tool introduced by Bony [Bo]. What we really need here is the paraproduct.

Introducing the following low-frequency cut-off $S_{q} u \stackrel{\text { def }}{=} \sum_{p \leqslant q-1} \Delta_{p} u$, the paraproduct between f and g is defined by

$$
T_{f} g \stackrel{\text { def }}{=} \sum_{q \in \mathbb{N}} S_{q-1} f \Delta_{q} g
$$

We have the following so-called Bony's decomposition:

$$
f g=T_{f} g+T_{g} f+R(f, g) \text { with } R(f, g) \stackrel{\text { def }}{=} \sum_{q \geqslant-1} \Delta_{q} f\left(\Delta_{q-1}+\Delta_{q}+\Delta_{q+1}\right) g
$$

Therefore, we only have to prove that the paraproducts $T_{f} g$ and $T_{g} f$, and the remainder $R(f, g)$ are continuous from $B_{2,1}^{-\frac{1}{2}} \times\left(B_{2, \infty}^{\frac{1}{2}} \cap L^{\infty}\right)$ to $B_{2, \infty}^{-\frac{1}{2}}$. According to estimates (7) and (9) p. 166, and (17) p. 168 in [RS], we have for a constant C independent of f and g :

$$
\begin{aligned}
\left\|T_{f} g\right\|_{B_{2, \infty}^{-\frac{1}{2}}} & \leqslant C\|f\|_{B_{2, \infty}^{-\frac{1}{2}}}\|g\|_{L^{\infty}} \leqslant C\|f\|_{B_{2,1}^{-\frac{1}{2}}}\|g\|_{L^{\infty}}, \\
\left\|T_{g} f\right\|_{B_{2, \infty}^{-\frac{1}{2}}} & \leqslant C\|f\|_{B_{2, \infty}^{-\frac{1}{2}}}\|g\|_{L^{\infty}} \leqslant C\|f\|_{B_{2,1}^{-\frac{1}{2}}}\|g\|_{L^{\infty}}, \\
\|R(f, g)\|_{B_{1, \infty}^{0}} & \leqslant C\|f\|_{B_{2,1}^{-\frac{1}{2}}}\|g\|_{B_{2, \infty}^{1}},
\end{aligned}
$$

which by virtue of the embedding $B_{1, \infty}^{0} \hookrightarrow B_{2, \infty}^{-\frac{1}{2}}$ (see e.g. [RS(2), p. 31]) clearly entails (iii).

Inequality (v) stems from the following lemma:
Lemma 1. For any $s \in \mathbb{R}$ and $\varepsilon \in(0,1]$, we have

$$
\|f\|_{B_{2,1}^{s}} \leqslant \frac{C}{\varepsilon}\|f\|_{B_{2, \infty}^{s}} \log \left(e+\frac{\|f\|_{B_{2, \infty}^{s+\varepsilon}}}{\|f\|_{B_{2, \infty}^{s}}}\right)
$$

Proof. Let $N \in \mathbb{N}$ be a cut-off parameter to be fixed hereafter. We have

$$
\begin{aligned}
\|f\|_{B_{2,1}^{s}} & =\sum_{q \leqslant N-1} 2^{q s}\left\|\Delta_{1} f\right\|_{L^{2}}+\sum_{q \geqslant N} 2^{-q \varepsilon}\left(2^{q(s+\varepsilon)}\left\|\Delta_{q} f\right\|_{L^{2}}\right), \\
& \leqslant(N+1)\|f\|_{B_{2, \infty}^{s}}+\frac{2^{-N \varepsilon}}{1-2^{-\varepsilon}}\|f\|_{B_{2, \infty}^{B_{\infty}+\varepsilon}} .
\end{aligned}
$$

Choosing $N=\left[\frac{1}{\varepsilon} \log _{2}\left(\frac{\|f\|_{S_{2}+\infty}^{s}}{\|f\|_{\mathcal{S}_{2, \infty}^{s}}^{s}}\right)\right]$ yields the desired inequality.

2. Continuity with respect to initial data in $B_{2,1}^{\frac{3}{2}}$

Proposition 2. For any $u_{0} \in B_{2,1}^{\frac{3}{2}}$, there exists a $T>0$ and a neighborhood V of u_{0} in $B_{2,1}^{\frac{3}{2}}$ such that the map

$$
\Phi:\left\{\begin{array}{l}
V \subset B_{2,1}^{\frac{3}{2}} \rightarrow C\left([0, T] ; B_{2,1}^{\frac{3}{2}}\right) \\
v_{0} \mapsto v \text { solution to }(C H) \text { with initial datum } v_{0}
\end{array}\right.
$$

is continuous.
The main ingredients for proving Proposition 2 are Proposition 1 and a continuity result for linear transport equations. More precisely, the following proposition holds true:

Proposition 3. Denote $\overline{\mathbb{N}}=\mathbb{N} \cup\{\infty\}$. Let $\left(v^{n}\right)_{n \in \mathbb{N}}$ be a sequence of functions belonging to $C\left([0, T] ; B_{2,1}^{\frac{1}{2}}\right)$. Assume that v^{n} is the solution to

$$
\left\{\begin{array}{l}
\partial_{t} v^{n}+a^{n} \partial_{x} v^{n}=f \\
v_{\mid t=0}^{n}=v_{0}
\end{array}\right.
$$

with $v_{0} \in B_{2,1}^{\frac{1}{2}}, f \in L^{1}\left(0, T ; B_{2,1}^{\frac{1}{2}}\right)$ and that, for some $\alpha \in L^{1}(0, T)$,

$$
\sup _{n \in \mathbb{N}}\left\|\partial_{x} a^{n}(t)\right\|_{B_{2,1}^{\frac{1}{2}}} \leqslant \alpha(t)
$$

If in addition a^{n} tends to a^{∞} in $L^{1}\left(0, T ; B_{2,1}^{\frac{1}{2}}\right)$ then v^{n} tends to v^{∞} in $C\left([0, T] ; B_{2,1}^{\frac{1}{2}}\right)$.

Proof. Let $w^{n} \stackrel{\text { def }}{=} v^{n}-v^{\infty}$. We have

$$
\partial_{t} w^{n}+a^{n} \partial_{x} w^{n}=\left(a^{\infty}-a^{n}\right) \partial_{x} v^{\infty} .
$$

Let us make the additional assumption that $v_{0} \in B_{2,1}^{\frac{3}{2}}$ and $f \in L^{1}\left(0, T ; B_{2,1}^{\frac{3}{2}}\right)$. In this particular case, Proposition A. 1 in $[\mathrm{Dan}]$ insures that $v^{n} \in C\left([0, T] ; B_{2,1}^{\frac{3}{2}}\right)$ with, besides,

$$
\begin{equation*}
\left\|v^{n}\right\|_{B_{2,1}^{\frac{3}{2}}}(t) \leqslant e^{C \int_{0}^{t} \alpha(\tau) d \tau}\left\|v_{0}\right\|_{B_{2,1}^{\frac{3}{2}}}+\int_{0}^{t} e^{C \int_{\tau}^{t} \alpha\left(\tau^{\prime}\right) d \tau^{\prime}}\|f(\tau)\|_{B_{2,1}^{\frac{3}{2}}} d \tau . \tag{7}
\end{equation*}
$$

On the other hand, Proposition A. 1 in [Dan] also yields

$$
\left\|w^{n}(t)\right\|_{B_{2,1}^{\frac{1}{2}}} \leqslant \int_{0}^{t} e^{C \int_{\tau}^{t}\left\|\partial_{x} a^{n}\left(\tau^{\prime}\right)\right\|_{B_{2,1}^{2}}^{\frac{1}{2}} d \tau^{\prime}}\left\|\left(a^{\infty}-a^{n}\right)(\tau) \partial_{x} v^{\infty}(\tau)\right\|_{B_{2,1}^{\frac{1}{2}}} d \tau
$$

therefore, using that $B_{2,1}^{\frac{1}{2}}$ is an algebra and combining with (7),

$$
\begin{equation*}
\left\|w^{n}(t)\right\|_{B_{2,1}^{\frac{1}{2}}} \leqslant C e^{C \int_{0}^{t} \alpha(\tau) d \tau}\left(\left\|v_{0}\right\|_{B_{2,1}^{\frac{3}{2}}}+\int_{0}^{t}\|f(\tau)\|_{B_{2,1}^{\frac{3}{2}}} d \tau\right) \int_{0}^{t}\left\|\left(a^{\infty}-a^{n}\right)(\tau)\right\|_{B_{2,1}^{\frac{1}{2}}} d \tau \tag{8}
\end{equation*}
$$

which yields the desired result of convergence.
To treat the non-smooth case, one can proceed as follows. For $n \in \overline{\mathbb{N}}$ and $p \in \mathbb{N}$, we write

$$
\begin{equation*}
\left\|w^{n}(t)\right\|_{B_{2,1}^{\frac{1}{2}}} \leqslant\left\|v^{n}(t)-v_{p}^{n}(t)\right\|_{B_{2,1}^{\frac{1}{2}}}+\left\|v_{p}^{n}(t)-v_{p}(t)\right\|_{B_{2,1}^{\frac{1}{2}}}+\left\|v_{p}(t)-v(t)\right\|_{B_{2,1}^{\frac{1}{2}}}, \tag{9}
\end{equation*}
$$

where v_{p}^{n} is the solution to

$$
\left\{\begin{array}{l}
\partial_{t} v_{p}^{n}+a^{n} \partial_{x} v_{p}^{n}=S_{p} f \\
v_{\mid t=0}^{n}=S_{p} v_{0}
\end{array}\right.
$$

Above, S_{p} stands for the low-frequency cut-off defined in Section 1. Of course, S_{p} is a mollifier, and in particular $S_{p} v_{0} \in B_{2,1}^{\frac{3}{2}}$ and $S_{p} f \in L^{1}\left(0, T ; B_{2,1}^{\frac{3}{2}}\right)$. Hence, according to (8), we have

$$
\begin{align*}
\| v_{p}^{n}(t) & -v_{p}^{\infty}(t) \|_{B_{2,1}^{\frac{1}{2}}} \\
\leqslant & C e^{C} \int_{0}^{t} \alpha(\tau) d \tau \\
& \left.\left\|S_{p} v_{0}\right\|_{B_{2,1}^{\frac{3}{2}}}+\int_{0}^{t}\left\|S_{p} f(\tau)\right\|_{B_{2,1}^{\frac{3}{2}}} d \tau\right) \tag{10}\\
& \left\|\left(a^{\infty}-a^{m}\right)(\tau)\right\|_{B_{2,1}^{\frac{1}{2}}} d \tau
\end{align*}
$$

On the other hand, for any $p \in \mathbb{N}$ and $m \in \overline{\mathbb{N}}, v^{m}-v_{p}^{m}$ solves

$$
\left\{\begin{array}{l}
\partial_{t} u+a^{m} \partial_{x} u=f-S_{p} f \\
v_{\mid t=0}^{n}=v_{0} S_{p} v_{0}
\end{array}\right.
$$

so that, applying once again Proposition A. 1 in [Dan],

$$
\begin{equation*}
\left\|v_{p}^{m}(t)-v^{m}(t)\right\|_{B_{2,1}^{\frac{1}{2}}} \leqslant e^{C} \int_{0}^{t} \alpha(\tau) d \tau\left(\left\|v_{0}-S_{p} v_{0}\right\|_{B_{2,1}^{\frac{1}{2}}}+\int_{0}^{t}\left\|f(\tau)-S_{p} f(\tau)\right\|_{B_{2,1}^{\frac{1}{2}}} d \tau\right) \tag{11}
\end{equation*}
$$

Plugging (10) and (11) in (9), we end up with

$$
\begin{aligned}
\left\|w^{n}\right\|_{L^{\infty}\left(0, T ; B_{2,1}^{\frac{1}{2}}\right)} \leqslant & C e^{C \int_{0}^{T} \alpha(\tau) d \tau}\left(\left\|v_{0}-S_{p} v_{0}\right\|_{B_{2,1}^{\frac{1}{2}}}+\int_{0}^{T}\left\|f(\tau)-S_{p} f(\tau)\right\|_{B_{2,1}^{\frac{3}{2}}} d \tau\right. \\
& \left.+\left(\left\|S_{p} v_{0}\right\|_{B_{2,1}^{\frac{3}{2}}}+\int_{0}^{t}\left\|S_{p} f(\tau)\right\|_{B_{2,1}^{\frac{3}{2}}} d \tau\right) \int_{0}^{t}\left\|\left(a^{\infty}-a^{n}\right)(\tau)\right\|_{B_{2,1}^{\frac{1}{2}}} d \tau\right) .
\end{aligned}
$$

By virtue of Definition 2 and Lebesgue dominated convergence theorem, the first two terms of the right member may be made arbitrarily small for p large enough. For fixed p, we then let n tend to infinity so that the last term tends to zero, and we conclude that w^{n} tends to 0 in $C\left([0, T] ; B_{2,1}^{\frac{1}{2}}\right)$.

Let us now tackle the proof of Proposition 2.
First step: Continuity in $C\left([0, T] ; B_{2,1}^{\frac{1}{2}}\right)$. Let us fix a $u_{0} \in B_{2,1}^{\frac{3}{2}}$ and a $r>0$. We claim that there exists a $T>0$ and a $M>0$ such that for any $u_{0}^{\prime} \in B_{2,1}^{\frac{3}{2}}$ with $\left\|u_{0}^{\prime}-u_{0}\right\|_{B_{2,1}^{\frac{3}{2}}} \leqslant r$, the solution $u^{\prime}=\Phi\left(u_{0}^{\prime}\right)$ of (1) associated to u_{0}^{\prime} belongs to $C\left([0, T] ; B_{2,1}^{\frac{3}{2}}\right)$ and satisfies

$$
\left\|u^{\prime}\right\|_{L^{\infty}\left(0, T ; B_{2,1}\right)} \leqslant M .
$$

Indeed, this is just a matter of following the proof of (2.13) in [Dan]. One can for instance take (for some suitable universal constant C)

$$
T=C /\left(r+\left\|u_{0}\right\|_{B_{2,1}^{\frac{3}{2}}}\right) \quad \text { and } \quad M=2 r+2\left\|u_{0}\right\|_{B_{2,1}^{\frac{3}{2}}}
$$

Now, combining the above uniform bounds with Proposition 1, we infer that
provided that

$$
\left\|u_{0}^{\prime}-u_{0}\right\|_{B_{2, \infty}^{1}} \leqslant e^{1-\exp [C M T \log (e+M)]}
$$

Interpolating with the uniform bounds in $C\left([0, T] ; B_{2,1}^{\frac{3}{2}}\right)$, we gather that for any $s<3 / 2$ and $\alpha \in[1,+\infty]$, the map Φ is (Hölder) continuous from $B_{2,1}^{\frac{3}{2}}$ into $C\left([0, T] ; B_{2, \alpha}^{s}\right)$. In particular, Φ is (Hölder) continuous from $B_{2,1}^{\frac{3}{2}}$ into $C\left([0, T] ; B_{2,1}^{\frac{1}{2}}\right)$.
Second step: Continuity in $C\left([0, T] ; B_{2,1}^{\frac{3}{2}}\right)$. Let $u_{0}^{\infty} \in B_{2,1}^{\frac{3}{2}}$ and $\left(u_{0}^{n}\right)_{n \in \mathbb{N}}$ tend to u_{0}^{∞} in $B_{2,1}^{\frac{3}{2}}$. Denote by u^{n} the solution corresponding to datum u_{0}^{n}. According to step one,
one can find $T, M>0$ such that for all $n \in \mathbb{N}, u^{n}$ is defined on $[0, T]$ and

$$
\begin{equation*}
\sup _{n \in \overline{\mathbb{N}}}\left\|u^{n}\right\|_{L_{T}^{\infty}\left(B_{2,1}^{\frac{3}{2}}\right)} \leqslant M \tag{12}
\end{equation*}
$$

Thanks to step one, proving that u^{n} tends to u^{∞} in $C\left([0, T] ; B_{2,1}^{\frac{3}{2}}\right)$ amounts to proving that $v^{n} \stackrel{\text { def }}{=} \partial_{x} u^{n}$ tends to $v^{\infty} \stackrel{\text { def }}{=} \partial_{x} u^{\infty}$ in $C\left([0, T] ; B_{2,1}^{\frac{1}{2}}\right)$.

Note that v^{n} solves the following linear transport equation:

$$
\left\{\begin{array}{l}
\partial_{t} v^{n}+u^{n} \partial_{x} v^{n}=f^{n} \\
v_{\mid t=0}^{n}=\partial_{x} u_{0}^{n}
\end{array}\right.
$$

with

$$
f^{n} \stackrel{\text { def }}{=}-\left(\partial_{x} u^{n}\right)^{2}+2 P(D)\left(u^{n} \partial_{x} u^{n}\right)+\partial_{x} P(D)\left[\left(\partial_{x} u\right)^{2}\right] / 2
$$

Following Kato [K, Section 10], we decompose v^{n} into $v^{n}=z^{n}+w^{n}$ with

$$
\left\{\begin{array} { l }
{ \partial _ { t } z ^ { n } + u ^ { n } \partial _ { x } z ^ { n } = f ^ { n } - f ^ { \infty } , } \\
{ v _ { | t = 0 } ^ { n } = \partial _ { x } u _ { 0 } ^ { n } - \partial _ { x } u _ { 0 } ^ { \infty } }
\end{array} \text { and } \quad \left\{\begin{array}{l}
\partial_{t} w^{n}+u^{n} \partial_{x} w^{n}=f^{\infty} \\
w_{\mid t=0}^{n}=\partial_{x} u_{0}^{\infty}
\end{array}\right.\right.
$$

Using the properties of Besov spaces exhibited in Section 1, one easily checks that $\left(f^{n}\right)_{n \in \mathbb{\mathbb { N }}}$ is uniformly bounded in $C\left([0, T] ; B_{2,1}^{\frac{1}{2}}\right)$. Moreover,

$$
\begin{aligned}
f^{n}-f^{\infty}= & \left.\left(\frac{\partial_{x} P(D)}{2}-1\right)\left[\partial_{x} u^{n}-\partial_{x} u^{\infty}\right)\left(\partial_{x} u^{\infty}+\partial_{x} u^{n}\right)\right] \\
& +2 P(D)\left[u^{n}\left(\partial_{x} u^{n}-\partial_{x} u^{\infty}\right)+\left(u^{n}-u^{\infty}\right) \partial_{x} u^{\infty}\right]
\end{aligned}
$$

therefore, product laws in Besov spaces combined with Proposition A. 1 in [Dan] yield

$$
\begin{align*}
\left\|z^{n}(t)\right\|_{B_{2,1}^{\frac{1}{2}}} \leqslant & e^{C \int_{0}^{t}\left\|u^{n}(\tau)\right\|_{B_{2,1}^{\frac{3}{2}}} d \tau}\left(\left\|\partial_{x} u_{0}^{n}-\partial_{x} u_{0}^{\infty}\right\|_{B_{2,1}^{\frac{1}{2}}}\right. \\
& +C \int_{0}^{t}\left\|\partial_{x} u^{\infty}(\tau)\right\|_{B_{2,1}^{\frac{1}{2}}}\left\|u^{n}(\tau)-u^{\infty}(\tau)\right\|_{B_{2,1}^{\frac{1}{2}}} d \tau \\
& \left.+C \int_{0}^{t}\left(\left\|\partial_{x} u^{n}(\tau)\right\|_{B_{2,1}^{\frac{1}{2}}}+\left\|\partial_{x} u^{\infty}(\tau)\right\|_{B_{2,1}^{\frac{1}{2}}}\right)\left\|\partial_{x} u^{n}(\tau)-\partial_{x} u^{\infty}(\tau)\right\|_{B_{2,1}^{\frac{1}{2}}} d \tau\right) \tag{13}
\end{align*}
$$

On the other hand, since the sequence $\left(u^{n}\right)_{n \in \mathbb{\mathbb { N }}}$ is uniformly bounded in $C\left([0, T] ; B_{2,1}^{\frac{3}{2}}\right)$ and tends to u^{∞} in $C\left([0, T] ; B_{2,1}^{\frac{1}{2}}\right)$, Proposition 3 tells us that w^{n} tends to $v^{\infty}=\partial_{x} u^{\infty}$ in $C\left([0, T] ; B_{2,1}^{\frac{1}{2}}\right)$.

Let $\varepsilon>0$. Combining the above result of convergence with estimates (12) and (13), one concludes that for large enough $n \in \mathbb{N}$,

$$
\begin{aligned}
\left\|\partial_{x} u^{n}(t)-\partial_{x} u^{\infty}(t)\right\|_{B_{2,1}^{\frac{1}{2}}} \leqslant & \varepsilon \\
& +C M e^{C M t}\left(\left\|\partial_{x} u_{0}^{n}-\partial_{x} u_{0}^{\infty}\right\|_{B_{2,1}^{\frac{1}{2}}}\right. \\
& +\int_{0}^{t}\left\|\partial_{x} u^{n}(\tau)-\partial_{x} u^{\infty}(\tau)\right\|_{B_{2,1}^{\frac{1}{2}}} d \tau \\
& \left.+\int_{0}^{t}\left\|u^{n}(\tau)-u^{\infty}(\tau)\right\|_{B_{2,1}^{\frac{1}{2}}} d \tau\right)
\end{aligned}
$$

As u^{n} tends to u^{∞} in $C\left([0, T] ; B_{2,1}^{\frac{1}{2}}\right)$, the last term is less than ε for large n. Hence, thanks to Gronwall lemma, we get

$$
\left\|\partial_{x} u^{n}-\partial_{x} u^{\infty}\right\|_{L^{\infty}\left(0, T ; B_{2,1}\right.}{ }^{\frac{1}{2}}, \leqslant C_{M, T}\left(\varepsilon+\left\|\partial_{x} u_{0}^{n}-\partial_{x} u_{0}^{\infty}\right\|_{\left.B_{2,1}^{\frac{1}{2}}\right)}\right.
$$

for some constant $C_{M, T}$ depending only on M and T. The proof of Proposition 2 is complete.

3. A counterexample

In this section, we show that local well-posedness in $B_{2, \infty}^{\frac{3}{2}}$ fails. More precisely, we have

Proposition 4. There exists a global solution $u \in L^{\infty}\left(\mathbb{R}^{+} ; B_{2, \infty}^{\frac{3}{2}}\right)$ to $(C H)$ such that for any positive T and ε, there exists a solution $v \in L^{\infty}\left(0, T ; B_{2, \infty}^{\frac{3}{2}}\right)$ with

$$
\|v(0)-u(0)\|_{B_{2, \infty}^{\frac{3}{2}}} \leqslant \varepsilon \quad \text { and } \quad\|v-u\|_{L^{\infty}\left(0, T ; B_{2, \infty}\right)} \geqslant 1
$$

Proof. Throughout T is a fixed positive real. For $c \in \mathbb{R}$, define $u_{c}(x, t) \stackrel{\text { def }}{=} c e^{-|x-c t|}$. Recall that u_{c} is the well-known solitary wave solution for (1). Its Fourier transform in x is

$$
\hat{u}_{c}(t, \xi)=2 c\left(\frac{e^{-i c t \xi}}{1+\xi^{2}}\right)
$$

Let c_{2} and c_{1} be two reals to be fixed hereafter. First compute $\left\|u_{c_{2}}(0)-u_{c_{1}}(0)\right\|_{B_{2, \infty}^{\frac{3}{2}}}$ according to Definition 2. Denoting $\delta c \stackrel{\text { def }}{=} c_{2}-c_{1}$, we have

$$
\begin{aligned}
\left\|u_{c_{2}}(0)-u_{c_{1}}(0)\right\|_{B_{2, \infty}^{3}}^{2} & =8 \delta c^{2} \max \left(\int_{0}^{1} \frac{d \xi}{\sqrt{1+\xi^{2}}}, \sup _{q \in \mathbb{N}} \int_{2^{q}}^{2^{q+1}} \frac{d \xi}{\sqrt{1+\xi^{2}}}\right) \\
& =8 \delta c^{2} \max \left(\log (1+\sqrt{2}), \sup _{q \in \mathbb{N}} \log \left(\frac{2^{q+1}+\sqrt{2^{2 q+2}+1}}{2^{q}+\sqrt{2^{2 q}+1}}\right)\right) \\
& =8 \delta c^{2} \log (1+\sqrt{2})
\end{aligned}
$$

Note that considering the particular case $c_{2}=c$ and $c_{1}=0$ yields $u_{c}(0) \in B_{2, \infty}^{\frac{3}{2}}$. A similar computation would also show that $\left\|u_{c}(t)\right\|_{B_{2, \infty}^{\frac{3}{2}}}$ does not depend on t. Since the part of the norm corresponding to each dyadic block does not tend to zero when q tends to infinity, one also gathers that $u_{c}(t)$ does not belong to any other space $B_{2, r}^{\frac{3}{2}}$ (unless $c=0$).

Let us now tackle the computation of $\left\|u_{c_{2}}(t)-u_{c_{1}}(t)\right\|_{B_{2, \infty}^{\frac{3}{2}}}$. As

$$
\left|c_{2} e^{-i c_{2} t \xi}-c_{1} e^{-i c_{1} t \xi}\right|^{2}=\delta c^{2}+2 c_{1} c_{2}(1-\cos (\delta c t \xi))
$$

we infer that

$$
\begin{aligned}
\frac{\left\|u_{c_{2}}(t)-u_{c_{1}}(t)\right\|_{B_{2, \infty}^{3}}^{2}}{8}= & \max \left(\int_{0}^{1} \frac{\delta c^{2}+2 c_{1} c_{2}(1-\cos \delta c t \xi)}{\sqrt{1+\xi^{2}}} d \xi\right. \\
& \left.\sup _{q \in \mathbb{N}} \int_{2^{q}}^{2^{q+1}} \frac{\delta c^{2}+2 c_{1} c_{2}(1-\cos \delta c t \xi)}{\sqrt{1+\xi^{2}}} d \xi\right)
\end{aligned}
$$

For $q \in \mathbb{N}$, choose c_{1} and c_{2} so that $T \delta c=2^{-q} \pi$. Clearly, the right-hand side above is greater than the term corresponding to frequencies of size 2^{q}. Therefore,

$$
\begin{align*}
\left\|u_{c_{2}}(T)-u_{c_{1}}(T)\right\|_{B_{2, \infty}^{\frac{3}{2}}}^{2} & \geqslant 16 c_{1} c_{2} \int_{2^{q}}^{2^{q+1}} \frac{1-\cos \left(2^{-q} \pi \xi\right)}{\sqrt{1+\xi^{2}}} d \xi \\
& \geqslant \frac{4}{\sqrt{2}} c_{1} c_{2} . \tag{14}
\end{align*}
$$

Choose $c_{1}=1$ and $c_{2}=1+2^{-q} T^{-1} \pi$. From the above computations, we have

$$
\left\|u_{c_{2}}(0)-u_{c_{1}}(0)\right\|_{B_{2, \infty}^{\frac{3}{2}}}=\frac{2 \pi}{2^{q} T} \sqrt{2 \log (1+\sqrt{2})}
$$

which may be arbitrary small whereas, according to (14), $\| u_{c_{2}}(T)-$ $u_{c_{1}}(T) \|_{B_{2, \infty}^{\frac{3}{2}}} \geqslant 2$.

Remark 2. Note that the use of solutions u_{c} provides us with counterexamples to continuity in $B_{2, \infty}^{\frac{3}{2}}$ whereas it only gives counterexamples to uniform continuity in H^{s} with $s<3 / 2$ (see [HM]).

Remark 3. The result of Proposition 2 does not contradict the properties of orbital stability stated in [CS] for the H^{1} norm. Indeed, the norm in $B_{2, \infty}^{\frac{3}{2}}$ is far stronger.

References

[Bo] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci École Norm. Sup. 14 (1981) 209-246.
[CH] R. Camassa, D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993) 1661-1664.
[Che] J.-Y. Chemin, Perfect Incompressible Fluids, in: Oxford Lecture Series in Mathematics and its Applications, Vol. 14, The Clarendon Press, Oxford University Press, New York, 1998.
[CS] A. Constantin, W. Strauss, Stability of peakons, Commun. Pure Appl. Math. 53 (2000) 603-610.
[Dai] H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech. 127 (1998) 193-207.
[Dan] R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations 14 (2001) 953-988.
[FF] A. Fokas, B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D Nonlinear Phenomena 4 (1981) 47-66.
[F] B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation, Physica D Nonlinear Phenomena 95 (1996) 296-343.
[HM] A. Himonas, G. Misiołek, The Cauchy problem for an integrable shallow-water equation, Differential Integral Equations 14 (2001) 821-831.
[K] T. Kato, Quasi-linear Equations of Evolution, with Applications to Partial Differential Equations, Lecture Notes in Mathematics, Vol. 448, Springer, Berlin, 1975, pp. 25-70.
[LO] Y. Li, P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations 162 (2000) 27-63.
[RB] G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal. Theory Methods Appl. 46 (2001) 309-327.
[RS] T. Runst, W. Sickel, Sobolev spaces of fractional order, in: Nemytskij operators, and nonlinear partial differential equations. de Gruyter Series in Nonlinear Analysis and Applications, Vol. 3, Walter de Gruyter \& Co., Berlin, 1996.
[V] M. Vishik, Hydrodynamics in Besov spaces, Arch. Rational Mech. Anal. 145 (1998) 197-214.
[XZ] Z. Xin, P. Zhang, On the weak solutions to a shallow water equations, Commun. Pure Appl. Math. 53 (2000) 1411-1433.

[^0]: E-mail address: danchin@ann.jussieu.fr.

