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Abstract

In this note, we investigate the problem of well-posedness for a shallow water equation with

data having critical regularity. Our results are based on the use of Besov spaces Bs
2;r (which

generalize the Sobolev spaces Hs) with critical index s ¼ 3=2:
r 2003 Published by Elsevier Science (USA).

0. Introduction

In the past few years, a large amount of literature has been devoted to the
following one-dimensional nonlinear dispersive equation:

@tu � @3txxu þ 3u@xu ¼ 2@xu@2xxu þ u@3xxxu: ð1Þ

In the above equation, the function u ¼ uðt; xÞ stands for the fluid velocity at time
tX0 in the x direction. Eq. (1), commonly called Camassa–Holm equation, has been
derived independently by Fokas and Fuchssteiner [FF], and by Camassa and Holm
in [CH] (see also [F]). Like the celebrated KdV equation, Camassa–Holm equation
describes the unidirectional propagation of waves at the free surface of shallow water
under the influence of gravity. It turns out that it is also a model for the propagation
of nonlinear waves in cylindrical hyperelastic rods (see [Dai]).
The problem of finding the largest spaces E for which (1) with initial data in E is

well-posed in the sense of Hadamard has retained a lot of attention recently. Before
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going further into details, let us define what we mean by ‘‘local well-posedness in the
sense of Hadamard’’:

Definition 1. Let E be a Banach space. System (1) is said to be locally well-posed in E

in the sense of Hadamard if for any u0AE; there exists a neighborhood V of u0 and a
T40 such that for any v0AV ; system (1) has a unique solution vACð½0;T �;EÞ with
initial datum v0; and if in addition the map v0/v is continuous from V into
Cð½0;T �;EÞ:

In most of papers devoted to (1), only Sobolev spaces Hs are considered. It has
been stated by different methods that (1) is well-posed in Hs for s43=2 (see
[Dan,HM,LO,RB]). On the other hand, counterexamples to well-posedness in the
case so3=2 have been exhibited by Himonas and Misio"ek [HM] (actually what they
do prove there is that uniform continuity with respect to the data cannot hold in Hs

with so3=2). Therefore, in the Sobolev spaces framework, s ¼ 3=2 seems to be the
critical value for local well-posedness.
Let us mention in passing that Xin and Zhang showed recently that global weak

solutions do exist for any data in H1 (see [XZ]), but local well-posedness (or even
uniqueness) for such rough initial data is unlikely to be true.
That s ¼ 3=2 is critical for well-posedness has to do with the fact that it is also the

critical value for the embedding Hs+Lip to be true (Lip here denotes the bounded

lipschitz functions). Indeed, denoting PðDÞ ¼ �@xð1� @2xÞ
�1; Eq. (1) may be

rewritten as a nonlinear transport equation:

@tu þ u@xu ¼ PðDÞðu2 þ 1
2
ð@xuÞ2Þ;

ujt¼0 ¼ u0:

(
ðCHÞ

For most ‘‘reasonable’’ Banach spaces E embedded in Lip; one can prove a priori
estimates for linear transport equations

@tv þ a@xv ¼ f ;

with vð0ÞAE and, say, aðtÞ and f ðtÞ uniformly bounded in E: Therefore, Hs has to be
embedded in Lip in order that (CH) may be solved by a standard iterative scheme.
In [Dan], we gave examples of spaces E which are not related to Sobolev spaces

and for which local well-posedness is true. For example, any Besov space Bs
p;r with

s4maxð3=2; 1þ 1=pÞ does.
In the present paper, we aim at gleaning as much information as possible on the

critical value 3=2: Due to the lack of embedding H
3
2+Lip however, we will

be induced to use Besov spaces Bs
2;r which are closely related to Hs: To simplify the

presentation, we shall assume throughout that x belongs to R: That point is not
essential: as our results are based on Fourier analysis, slight modifications of our
proofs would enable us to handle the periodic case xAT (a reading of [Dan] should
convince the doubtful reader).
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In the case xAR; those Besov spaces may be defined as follows:

Definition 2. Let sAR and rA½1;þN�: Denote

jjujjBs
2;r
¼def

Z 1

�1
ð1þ x2Þsjû ðxÞj2 dx

� �r
2

þ
X
qAN

Z
2qpjxjp2qþ1

ð1þ x2Þsjû ðxÞj2 dx

 !r
2

2
4

3
5
1
r

with an obvious modification if r ¼ þN:

We then define the Besov space Bs
2;r as follows: Bs

2;r ¼
deffuAS0 j jjujjBs

2;r
oþNg:

Obviously, Hs ¼ Bs
2;2: Moreover, the spaces Hs and Bs

2;r are very close. We shall

often use the following chain of continuous embedding for s0o3=2os:

Hs+B
3
2

2;1+H
3
2+B

3
2

2;N+Hs0 :

In practical computations however, the spectral cut-off 12qpjxjp2qþ1 is too rough and

has to be replaced by a smoother one. This may be achieved by introducing a
Littlewood–Paley decomposition, that is a dyadic partition of unity in Fourier
variables.
Let ðw;jÞ be a couple of CN functions with Supp wCfjxjp4=3g;

Supp jCf3=4pjxjp8=3g and

wðxÞ þ
X
qAN

jð2�qxÞ ¼ 1 for xAR:

Denote jqðxÞ ¼ jð2�qxÞ; hq ¼ F�1jq and ȟ ¼ F�1w: We then define the dyadic
blocks as

Dqu ¼def 0 if qp� 1; D�1u ¼def wðDÞu ¼
Z
R

ȟðyÞuðx � yÞ dy;

Dqu ¼def jð2�qDÞu ¼
Z
R

hqðyÞuðx � yÞ dy if qX0:

Now, for sAR and rA½1;þN�; the Besov spaces Bs
2;r may be alternatively defined by

Bs
2;r ¼
deffuAS0ðRÞ j *jjujjBs

2;r
oþNg;
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where we denoted

*jjujjBs
2;r
¼def

X
qX�1

ð2sqjjDqujjL2Þ
r

 !1
r

if 1proþN;

and *jjujjBs
2;N

¼def sup
qX�1

2sqjjDqujjL2 :

Of course, the norm above is equivalent to the one in Definition 2 so that we shall

merely denote it by jj � jjBs
2;N
instead of *jj � jjBs

2;N
:

Let us now state our main result:

Theorem 1. The exponent 3=2 is critical in the following sense:

* System (CH) is locally well-posed in B
3
2

2;1 in the sense of Hadamard.

* System (CH) is not locally well-posed in B
3
2

2;N:

Let us emphasize that local well-posedness in B
3
2

2;1 is a new result. In

[Dan], existence only was stated. Note that using Besov spaces Bs
p;1 in hydro-

dynamics has been done before by Vishik [V] for the incompressible Euler
equations (there, the critical value of s in dimension 2 is 1þ 2=p). The motivation
there was the same as ours: getting the critical regularity exponent for local well-
posedness.

The counterexample to well-posedness in B
3
2

2;N is inspired by the one

in [HM].

We have no definitive answer to the intermediate cases B
3
2

2;r: In particular, local

well-posedness in H
3
2 remains an open question: our counterexample is closely

related to the space B
3
2

2;N (the corresponding initial data do not belong to any B
3
2

2;r

with roþN) so that it does not provide us with any information on well-posedness

in B
3
2

2;r with roþN: Besides, owing to the lack of embedding in Lip when r41;

well-posedness in B
3
2

2;r for r41 is unlikely to be proved by standard iterative methods.
On the other hand, combining Proposition 1 below with our existence results in

[Dan] yields local existence and uniqueness in any space B
3
2

2;r-Lip:
Once uniqueness has been stated for a given Banach space E; one can actually get

quite a lot of information on the solution. In the case B
3
2

2;1; a rereading of the proof of

theorem 0.1 in [Dan] yields the following:

Theorem 2. Let u0 be in B
3
2

2;1: There exists a maximal T%
u0

such that (1) has a unique

solution in Cð½0;T%
u0
½;B

3
2

2;1Þ-C1ð½0;T%
u0
½;B

1
2

2;1Þ with constant H1 norm. Moreover, the
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lifespan T%
u0

satisfies

T%
u0
XTu0 ¼

def� 2

jjujjH1

arctan
jju0jjH1

infxAR @xu0ðxÞ

� �
;

that estimate being optimal in general, and

T%
u0
oþN )

Z T%
u0

0

inf
xAR

@xuðt; xÞ
� �

dt ¼ �N:

If the potential y0 ¼
def

u0 � @2xxu0 has a sign then T%
u0

¼ þN and sgnðuðtÞ � @2xxuðtÞÞ ¼
sgn y0:

Our paper is organized as follows. In Section 1, we prove estimates in

LNð0;T ;B
1
2

2;NÞ for the difference of two solutions of (CH) belonging to

LNð0;T ;B
3
2

2;N-LipÞ-Cð½0;T �;B
1
2

2;NÞ: This in particular yields uniqueness of

solutions with data in B
3
2

2;1: In Section 2, we address the question of continuity

in Cð½0;T �;B
3
2

2;1Þ for data in B
3
2

2;1: In Section 3, we show that continuity in

Cð½0;T �;B
3
2

2;NÞ with respect to data in B
3
2

2;N cannot be expected in general.

1. Uniqueness for critical regularity index

Uniqueness is a corollary of the following.

Proposition 1. Let u (resp. v) be a solution to (CH) with initial datum u0 (resp. v0).

Assume that u0 and v0 belong to B
3
2

2;N-Lip; and that u and v belong to

LNð0;T ;B
3
2

2;N-LipÞ-Cð½0;T �;B
1
2

2;NÞ: Let w ¼def v � u and w0 ¼def v0 � u0: There exists

a constant C such that if, for some T%pT ;

sup
tA½0;T%�

ðe
�C
R t

0
jj@xujj

B

1
2
2;N

-LN
dt

jjwðtÞjj
B
1
2
2;N

Þp1 ð2Þ

then, denoting LðzÞ ¼def z logðe þ zÞ; the following inequality holds true for tA½0;T%�:

jjwðtÞjj
B
1
2
2;N

e
pe

C
R t

0
jj@xujj

B

1
2
2;N

-LN
dt jjw0jj

B
1
2
2;N

e

0
@

1
A
exp �C

R t

0
L jjujj

B

3
2
2;N

-Lip
þjjvjj

B

3
2
2;N

-Lip

 !
dt

" #
: ð3Þ
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In particular, (3) holds true on ½0;T � provided that

jjw0jj
B
1
2
2;N

pe

1�exp C
R T

0
L jjujj

B

3
2
2;N

-Lip
þjjvjj

B

3
2
2;N

-Lip

 !
dt

" #
:

ð4Þ

Proof. Clearly, w solves the following linear transport equation:

@tw þ u@xw ¼ �w@xv þ PðDÞðwðu þ vÞ þ 1
2
@xw @xðu þ vÞÞ:

By virtue of estimate (A.1) in [Dan], the following inequality holds true:

jjwðtÞjj
B
1
2
2;N

p jjw0jj
B
1
2
2;N

e

C
R t

0
jj@xujj

B

1
2
2;N

-LN

dt

þ
Z t

0

e

C
R t

t
jj@xujj

B

1
2
2;N

-LN

dt0

� jjw@xvjj
B
1
2
2;N

þ jjPðDÞðwðu þ vÞ þ 1
2
@xw @xðu þ vÞÞjj

B
1
2
2;N

 !
dt: ð5Þ

Bounding the right-hand side will be made possible thanks to the following five
properties:

(i) The space B
1
2

2;1 is continuously embedded in B
1
2

2;N-LN:

(ii) The space B
1
2

2;N-LN is an algebra.

(iii) The usual product is continuous from B
�12
2;1 � ðB

1
2

2;N-LNÞ to B
�12
2;N:

(iv) For any sAR and rA½1;þN�; the operator PðDÞ maps continuously Bs
2;r into

Bsþ1
2;r :

(v) There exists a constantC40 such that holds the following interpolation inequality:

jj f jj
B
1
2
2;1

pCjj f jj
B
1
2
2;N

log e þ
jj f jj

B
3
2
2;N

jj f jj
B
1
2
2;N

0
B@

1
CA:

From (i)–(iv) we readily get

jjw@xvjj
B
1
2
2;N

pCjjwjj
B
1
2
2;N

-LN

jj@xvjj
B
1
2
2;N

-LN

pCjjwjj
B
1
2
2;1

jjvjj
B
3
2
2;N

-Lip
;

jjPðDÞðwðu þ vÞ þ 1
2
@xw @xðu þ vÞÞjj

B
1
2
2;N

pCjjwjj
B
1
2
2;1

ðjjujj
B
3
2
2;N

-Lip
þ jjvjj

B
3
2
2;N

-Lip
Þ:
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Plugging the above inequalities in (5) and using the logarithmic interpolation (v), we
infer that

e

�C
R t

0
jj@xujj

B

1
2
2;N

-LN

dt

jjwðtÞjj
B
1
2
2;N

p jjw0jj
B
1
2
2;N

þ C

Z t

0

e

�C
R t

0
jj@xujj

B

1
2
2;N

-LN
dt0

jjwjj
B
1
2
2;N

� ðjjujj
B
3
2
2;N

-Lip
þ jjvjj

B
3
2
2;N

-Lip
Þ

� log e þ
jjwjj

B
3
2
2;N

jjwjj
B
1
2
2;N

0
B@

1
CA dt: ð6Þ

Denote WðtÞ ¼def e

�C
R t

0
jj@xuðtÞjj

B

1
2
2;N

-LN
dt

jjwðtÞjj
B
1
2
2;N

and ZðtÞ ¼def jjuðtÞjj
B
3
2
2;N

þ jjvðtÞjj
B
3
2
2;N

:

Since for xAð0; 1� and a40;

logðe þ a=xÞplogðe þ aÞð1� log xÞ;

inequality (6) rewrites

WðtÞpWð0Þ þ C

Z t

0

ZðtÞ logðe þ ZðtÞÞ WðtÞð1� logWðtÞÞ dt

provided that Wp1 on ½0; t�:
Combining hypothesis (2) with a Gronwall type argument (see e.g. Lemma 5.2.1 in

[Che]) yields

WðtÞ
e

p
Wð0Þ

e

� �exp½�C
R t

0
ZðtÞ logðeþZðtÞÞ dt�

which is the desired result. Of course (4) implies that (2) holds with T% ¼ T : &

We still have to justify facts (i)–(v).

Property (i) is standard (see e.g. (81), p. 30 in [RS]). That B
1
2

2;N-LN is an algebra

may be found in [RS]. Since

FðPðDÞuÞðxÞ ¼ � ix

1þ x2
FuðxÞ;

property (iv) may be easily deduced from Definition 2.
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The proof of (iii) lies on (elementary) paradifferential calculus, a tool introduced
by Bony [Bo]. What we really need here is the paraproduct.

Introducing the following low-frequency cut-off Squ ¼def
P

ppq�1 Dpu; the para-

product between f and g is defined by

Tf g ¼def
X
qAN

Sq�1fDqg:

We have the following so-called Bony’s decomposition:

fg ¼ Tf g þ Tgf þ Rð f ; gÞ with Rð f ; gÞ ¼def
X

qX�1
Dqf ðDq�1 þ Dq þ Dqþ1Þg:

Therefore, we only have to prove that the paraproducts Tf g and Tgf ; and the

remainder Rð f ; gÞ are continuous from B
�12
2;1 � ðB

1
2

2;N-LNÞ to B
�12
2;N: According to

estimates (7) and (9) p. 166, and (17) p. 168 in [RS], we have for a constant C

independent of f and g:

jjTf gjj
B
�1
2
2;N

pCjj f jj
B
�1
2
2;N

jjgjjLNpCjj f jj
B
�1
2
2;1

jjgjjLN ;

jjTgf jj
B
�1
2
2;N

pCjj f jj
B
�1
2
2;N

jjgjjLNpCjj f jj
B
�1
2
2;1

jjgjjLN ;

jjRð f ; gÞjjB0
1;N

pCjj f jj
B
�1
2
2;1

jjgjj
B
1
2
2;N

;

which by virtue of the embedding B01;N+B
�12
2;N (see e.g. [RS(2), p. 31]) clearly

entails (iii).
Inequality (v) stems from the following lemma:

Lemma 1. For any sAR and eAð0; 1�; we have

jj f jjBs
2;1
p

C

e
jj f jjBs

2;N
log e þ

jj f jjBsþe
2;N

jj f jjBs
2;N

 !
:

Proof. Let NAN be a cut-off parameter to be fixed hereafter. We have

jj f jjBs
2;1

¼
X

qpN�1
2qsjjD1f jjL2 þ

X
qXN

2�qeð2qðsþeÞjjDqf jjL2Þ;

p ðN þ 1Þjj f jjBs
2;N

þ 2�Ne

1� 2�e jj f jjBsþe
2;N

:

Choosing N ¼ ½1e log2ð
jj f jj

Bsþe
2;N

jj f jjBs
2;N

Þ� yields the desired inequality. &
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2. Continuity with respect to initial data in B
3
2

2;1

Proposition 2. For any u0AB
3
2

2;1; there exists a T40 and a neighborhood V of u0 in B
3
2

2;1

such that the map

F :
VCB

3
2

2;1-Cð½0;T �;B
3
2

2;1Þ;
v0/v solution to ðCHÞ with initial datum v0

(

is continuous.

The main ingredients for proving Proposition 2 are Proposition 1 and a continuity
result for linear transport equations. More precisely, the following proposition
holds true:

Proposition 3. Denote N ¼ N,fNg: Let ðvnÞnAN
be a sequence of functions

belonging to Cð½0;T �;B
1
2

2;1Þ: Assume that vn is the solution to

@tv
n þ an@xvn ¼ f ;

vn
jt¼0 ¼ v0

(

with v0AB
1
2

2;1; fAL1ð0;T ;B
1
2

2;1Þ and that, for some aAL1ð0;TÞ;

sup
nAN

jj@xanðtÞjj
B
1
2
2;1

paðtÞ:

If in addition an tends to aN in L1ð0;T ;B
1
2

2;1Þ then vn tends to vN in Cð½0;T �;B
1
2

2;1Þ:

Proof. Let wn ¼def vn � vN: We have

@tw
n þ an@xwn ¼ ðaN � anÞ@xvN:

Let us make the additional assumption that v0AB
3
2

2;1 and fAL1ð0;T ;B
3
2

2;1Þ: In this

particular case, Proposition A.1 in [Dan] insures that vnACð½0;T �;B
3
2

2;1Þ with, besides,

jjvnjj
B
3
2
2;1

ðtÞpe
C
R t

0
aðtÞ dtjjv0jj

B
3
2
2;1

þ
Z t

0

e
C
R t

t
aðt0Þ dt0 jjf ðtÞjj

B
3
2
2;1

dt: ð7Þ

On the other hand, Proposition A.1 in [Dan] also yields

jjwnðtÞjj
B
1
2
2;1

p
Z t

0

e

C
R t

t
jj@xanðt0Þjj

B

1
2
2;1

dt0

jjðaN � anÞðtÞ@xvNðtÞjj
B
1
2
2;1

dt
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therefore, using that B
1
2

2;1 is an algebra and combining with (7),

jjwnðtÞjj
B
1
2
2;1

pCe
C
R t

0
aðtÞ dt jjv0jj

B
3
2
2;1

þ
Z t

0

jjf ðtÞjj
B
3
2
2;1

dt

 !Z t

0

jjðaN � anÞðtÞjj
B
1
2
2;1

dt; ð8Þ

which yields the desired result of convergence.

To treat the non-smooth case, one can proceed as follows. For nAN and pAN; we
write

jjwnðtÞjj
B
1
2
2;1

pjjvnðtÞ � vn
pðtÞjj

B
1
2
2;1

þ jjvn
pðtÞ � vpðtÞjj

B
1
2
2;1

þ jjvpðtÞ � vðtÞjj
B
1
2
2;1

; ð9Þ

where vn
p is the solution to

@tv
n
p þ an@xvn

p ¼ Spf ;

vn
jt¼0 ¼ Spv0:

(

Above, Sp stands for the low-frequency cut-off defined in Section 1. Of course, Sp is a

mollifier, and in particular Spv0AB
3
2

2;1 and SpfAL1ð0;T ;B
3
2

2;1Þ: Hence, according to
(8), we have

jjvn
pðtÞ � vNp ðtÞjj

B
1
2
2;1

pCe
C
R t

0
aðtÞdt jjSpv0jj

B
3
2
2;1

þ
Z t

0

jjSpf ðtÞjj
B
3
2
2;1

dt

 !

�
Z t

0

jjðaN � amÞðtÞjj
B
1
2
2;1

dt: ð10Þ

On the other hand, for any pAN and mAN; vm � vm
p solves

@tu þ am@xu ¼ f � Spf ;

vn
jt¼0 ¼ v0Spv0

(

so that, applying once again Proposition A.1 in [Dan],

jjvm
p ðtÞ � vmðtÞjj

B
1
2
2;1

pe
C
R t

0
aðtÞ dt jjv0 � Spv0jj

B
1
2
2;1

þ
Z t

0

jjf ðtÞ � Spf ðtÞjj
B
1
2
2;1

dt

 !
: ð11Þ
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Plugging (10) and (11) in (9), we end up with

jjwnjj
LNð0;T ;B

1
2
2;1
Þ
pCe

C
R T

0
aðtÞ dt jjv0 � Spv0jj

B
1
2
2;1

þ
Z T

0

jjf ðtÞ � Spf ðtÞjj
B
3
2
2;1

dt

 

þ jjSpv0jj
B
3
2
2;1

þ
Z t

0

jjSpf ðtÞjj
B
3
2
2;1

dt

 !Z t

0

jjðaN � anÞðtÞjj
B
1
2
2;1

dt

!
:

By virtue of Definition 2 and Lebesgue dominated convergence theorem, the first two
terms of the right member may be made arbitrarily small for p large enough. For
fixed p; we then let n tend to infinity so that the last term tends to zero, and we

conclude that wn tends to 0 in Cð½0;T �;B
1
2

2;1Þ: &

Let us now tackle the proof of Proposition 2.

First step: Continuity in Cð½0;T �;B
1
2

2;1Þ: Let us fix a u0AB
3
2

2;1 and a r40: We claim

that there exists a T40 and a M40 such that for any u0
0AB

3
2

2;1 with jju0
0 � u0jj

B
3
2
2;1

pr;

the solution u0 ¼ Fðu0
0Þ of (1) associated to u0

0 belongs to Cð½0;T �;B
3
2

2;1Þ and satisfies

jju0jj
LNð0;T ;B

3
2
2;1
Þ
pM:

Indeed, this is just a matter of following the proof of (2.13) in [Dan]. One can for
instance take (for some suitable universal constant C)

T ¼ C=ðr þ jju0jj
B
3
2
2;1

Þ and M ¼ 2r þ 2jju0jj
B
3
2
2;1

:

Now, combining the above uniform bounds with Proposition 1, we infer that

jjFðu0
0Þ � Fðu0Þjj

LNð0;T ;B
1
2
2;N

Þ

e
peCMT

jju0
0 � u0jj

B
1
2
2;N

e

0
@

1
A
exp½�CMT logðeþMÞ�

provided that

jju0
0 � u0jj

B
1
2
2;N

pe1�exp½CMT logðeþMÞ�:

Interpolating with the uniform bounds in Cð½0;T �;B
3
2

2;1Þ; we gather that for any

so3=2 and aA½1;þN�; the map F is (Hölder) continuous from B
3
2

2;1 into

Cð½0;T �;Bs
2;aÞ: In particular, F is (Hölder) continuous from B

3
2

2;1 into Cð½0;T �;B
1
2

2;1Þ:

Second step: Continuity in Cð½0;T �;B
3
2

2;1Þ: Let uN

0 AB
3
2

2;1 and ðun
0ÞnAN tend to uN

0 in

B
3
2

2;1: Denote by un the solution corresponding to datum un
0: According to step one,
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one can find T ;M40 such that for all nAN; un is defined on ½0;T � and

sup
nAN

jjunjj
LN

T
ðB
3
2
2;1
Þ
pM: ð12Þ

Thanks to step one, proving that un tends to uN in Cð½0;T �;B
3
2

2;1Þ amounts to proving

that vn ¼def @xun tends to vN ¼def @xuN in Cð½0;T �;B
1
2

2;1Þ:
Note that vn solves the following linear transport equation:

@tv
n þ un@xvn ¼ f n;

vn
jt¼0 ¼ @xun

0

(

with

f n ¼def�ð@xunÞ2 þ 2PðDÞðun@xunÞ þ @xPðDÞ½ð@xuÞ2�=2:

Following Kato [K, Section 10], we decompose vn into vn ¼ zn þ wn with

@tz
n þ un@xzn ¼ f n � f N;

vn
jt¼0 ¼ @xun

0 � @xuN

0

(
and

@tw
n þ un@xwn ¼ f N;

wn
jt¼0 ¼ @xuN

0 :

(

Using the properties of Besov spaces exhibited in Section 1, one easily checks that

ð f nÞnAN is uniformly bounded in Cð½0;T �;B
1
2

2;1Þ: Moreover,

f n � f N ¼ @xPðDÞ
2

� 1
� �

½@xun � @xuNÞð@xuN þ @xunÞ�

þ 2PðDÞ½unð@xun � @xuNÞ þ ðun � uNÞ@xuN�;

therefore, product laws in Besov spaces combined with Proposition A.1 in
[Dan] yield

jjznðtÞjj
B
1
2
2;1

p e

C
R t

0
jjunðtÞjj

B

3
2
2;1

dt

jj@xun
0 � @xuN

0 jj
B
1
2
2;1

 

þC

Z t

0

jj@xuNðtÞjj
B
1
2
2;1

jjunðtÞ � uNðtÞjj
B
1
2
2;1

dt

þ C

Z t

0

ðjj@xunðtÞjj
B
1
2
2;1

þ jj@xuNðtÞjj
B
1
2
2;1

Þjj@xunðtÞ � @xuNðtÞjj
B
1
2
2;1

dt

!
:

ð13Þ
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On the other hand, since the sequence ðunÞnAN
is uniformly bounded in Cð½0;T �;B

3
2

2;1Þ

and tends to uN in Cð½0;T �;B
1
2

2;1Þ; Proposition 3 tells us that wn tends to vN ¼ @xuN

in Cð½0;T �;B
1
2

2;1Þ:
Let e40: Combining the above result of convergence with estimates (12) and (13),

one concludes that for large enough nAN;

jj@xunðtÞ � @xuNðtÞjj
B
1
2
2;1

p eþ CMeCMt jj@xun
0 � @xuN

0 jj
B
1
2
2;1

 

þ
Z t

0

jj@xunðtÞ � @xuNðtÞjj
B
1
2
2;1

dt

þ
Z t

0

jjunðtÞ � uNðtÞjj
B
1
2
2;1

dt

!
:

As un tends to uN in Cð½0;T �;B
1
2

2;1Þ; the last term is less than e for large n: Hence,

thanks to Gronwall lemma, we get

jj@xun � @xuNjj
LNð0;T ;B

1
2
2;1
Þ
pCM;Tðeþ jj@xun

0 � @xuN

0 jj
B
1
2
2;1

Þ

for some constant CM;T depending only on M and T : The proof of Proposition 2 is
complete. &

3. A counterexample

In this section, we show that local well-posedness in B
3
2

2;N fails. More precisely,

we have

Proposition 4. There exists a global solution uALNðRþ;B
3
2

2;NÞ to ðCHÞ such that for

any positive T and e; there exists a solution vALNð0;T ;B
3
2

2;NÞ with

jjvð0Þ � uð0Þjj
B
3
2
2;N

pe and jjv � ujj
LNð0;T ;B

3
2
2;N

Þ
X1:

Proof. Throughout T is a fixed positive real. For cAR; define ucðx; tÞ ¼def ce�jx�ctj:

Recall that uc is the well-known solitary wave solution for (1). Its Fourier transform
in x is

û cðt; xÞ ¼ 2c
e�ictx

1þ x2

� �
:
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Let c2 and c1 be two reals to be fixed hereafter. First compute jjuc2ð0Þ � uc1ð0Þjj
B
3
2
2;N

according to Definition 2. Denoting dc ¼def c2 � c1; we have

jjuc2ð0Þ � uc1ð0Þjj
2

B
3
2
2;N

¼ 8dc2 max

Z 1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p ; sup
qAN

Z 2qþ1

2q

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
 !

;

¼ 8dc2 max logð1þ
ffiffiffi
2

p
Þ; sup

qAN

log
2qþ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22qþ2 þ 1

p

2q þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22q þ 1

p
 ! !

;

¼ 8dc2 logð1þ
ffiffiffi
2

p
Þ:

Note that considering the particular case c2 ¼ c and c1 ¼ 0 yields ucð0ÞAB
3
2

2;N: A

similar computation would also show that jjucðtÞjj
B
3
2
2;N

does not depend on t: Since

the part of the norm corresponding to each dyadic block does not tend to zero when

q tends to infinity, one also gathers that ucðtÞ does not belong to any other space B
3
2

2;r

(unless c ¼ 0).
Let us now tackle the computation of jjuc2ðtÞ � uc1ðtÞjj

B
3
2
2;N

: As

jc2e�ic2tx � c1e
�ic1txj2 ¼ dc2 þ 2c1c2ð1� cosðdctxÞÞ;

we infer that

jjuc2ðtÞ � uc1ðtÞjj
2

B
3
2
2;N

8
¼max

Z 1

0

dc2 þ 2c1c2ð1� cos dctxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p dx;

 

sup
qAN

Z 2qþ1

2q

dc2 þ 2c1c2ð1� cos dctxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p dx

!
:

For qAN; choose c1 and c2 so that Tdc ¼ 2�qp: Clearly, the right-hand side above is
greater than the term corresponding to frequencies of size 2q: Therefore,

jjuc2ðTÞ � uc1ðTÞjj2
B
3
2
2;N

X 16c1c2

Z 2qþ1

2q

1� cosð2�qpxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p dx;

X
4ffiffiffi
2

p c1c2: ð14Þ
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Choose c1 ¼ 1 and c2 ¼ 1þ 2�qT�1p: From the above computations, we have

jjuc2ð0Þ � uc1ð0Þjj
B
3
2
2;N

¼ 2p
2qT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logð1þ

ffiffiffi
2

p
Þ

q

which may be arbitrary small whereas, according to (14), jjuc2ðTÞ�
uc1ðTÞjj

B
3
2
2;N

X2: &

Remark 2. Note that the use of solutions uc provides us with counterexamples to

continuity in B
3
2

2;N whereas it only gives counterexamples to uniform continuity inHs

with so3=2 (see [HM]).

Remark 3. The result of Proposition 2 does not contradict the properties of

orbital stability stated in [CS] for the H1 norm. Indeed, the norm in B
3
2

2;N is far

stronger.
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