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The decoupling limit in the MSSM Higgs sector is the most likely scenario in light of the Higgs discovery.
This scenario is further constrained by MSSM Higgs search bounds and flavor observables. We perform
a comprehensive scan of MSSM parameters and update the constraints on the decoupling MSSM Higgs
sector in terms of 8 TeV LHC data. We highlight the effect of light SUSY spectrum in the heavy neutral
Higgs decay in the decoupling limit. We find that the chargino and neutralino decay mode can reach
at most 40% and 20% branching ratio, respectively. In particular, the invisible decay mode BR(H0(A0) →
χ̃0

1 χ̃0
1 ) increases with increasing Bino LSP mass and is between 12%–15% (13%–20%) for 30 < mχ̃0

1
<

100 GeV. The leading branching fraction of heavy Higgses decay into sfermions can be as large as 80%
for H0 → t̃1t̃∗

1 and H0/A0 → τ̃1τ̃
∗
2 + τ̃ ∗

1 τ̃2. The branching fractions are less than 10% for H0 → h0h0

and 1% for A0 → h0 Z for mA > 400 GeV. The charged Higgs decays to neutralino plus chargino and
sfermions with branching ratio as large as 40% and 60%, respectively. Moreover, the exclusion limit of
leading MSSM Higgs search channel, namely gg,bb̄ → H0, A0 → τ+τ−, is extrapolated to 14 TeV LHC
with high luminosities. It turns out that the ττ mode can essentially exclude regime with tan β > 20 for
L = 300 fb−1 and tanβ > 15 for L = 3000 fb−1.

© 2013 The Author. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

The discovery of the Higgs boson at the LHC [1] raises two
questions to theoretical particle physicists about the Higgs mecha-
nism: Is the discovered Higgs boson a pure Standard Model (SM)
Higgs or SM-like Higgs from new physics theory? Can the LHC
prove or disprove new physics associated with Higgs sector? To an-
swer these questions, it is important to investigate the implication
of existing Higgs search data for extended Higgs sector in new
physics framework and propose dedicated Higgs search signatures
for experimentalists to test.

One of the best motivated theories beyond the SM is the weak
scale supersymmetry (SUSY). In the framework of the Minimal Su-
persymmetric Standard Model (MSSM), unlike SM, the Higgs sector
is composed of two Higgs doublets [2,3]. After electroweak sym-
metry breaking, one has five physical Higgses, namely two CP-
even Higgses h0, H0, one CP-odd one A0 and charged Higgses
H± . Between the two CP-even Higgs bosons, the one which cou-
ples to gauge bosons more strongly is SM-like. Moreover, the tree
level Higgs masses are only determined by CP-odd Higgs mass pa-
rameter mA and the ratio of two doublets’ vacuum expectation
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values tanβ . Requiring the SM-like production cross sections of a
126 GeV Higgs boson with decay to diphoton and gauge bosons
splits the MSSM Higgs parameters into two distinct regions [4]:

(a) The “non-decoupling” region with mA � 130 GeV and tanβ <

10 [5]. In this region, the heavy CP-even state H0 is SM-like,
while the light CP-even Higgs h0 and the CP-odd one A0 are
nearly degenerate in mass and close to mZ , and the charged
state H± is slightly heavier [6].

(b) The “decoupling” region with mA � 300 GeV [5]. In this region,
the light CP-even Higgs h0 is SM-like, while all the other Higgs
bosons are nearly degenerate with mA [7].

The non-decoupling scenario leads to light non-SM-like Higgs
states which could be searched immediately without SUSY param-
eter dependence [8]. However, this scenario is highly constrained
by both MSSM Higgs search bounds and b-quark rare decays [9].
The decoupling limit could thus be the most likely MSSM Higgs
scenario in light of MSSM Higgs search results and the measure-
ments of low-energy observables.

The leading channels probing decoupling scenario are the pro-
duction of heavy neutral Higgses H0, A0 from gluon fusion, bb̄ an-
nihilation and associated process with b quarks in final state,
followed by decay into bb̄ or τ+τ− [10]. In particular, with tau
Yukawa coupling enhanced in large tan β regime, the ττ decay
mode puts the most stringent constraints on the heavy Higgs
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states as the bb̄ production would be overwhelmed by a huge QCD
background. However, the current bound and exclusion limit of ττ
channel are generally based on predictions from generic two Higgs
doublet model or some particular SUSY benchmarks [11]. As well
known, the fit to 126 GeV Higgs mass and signal excesses indicates
light SUSY sparticles, for instance superpartners of top quark and
tau lepton. Given light SUSY spectrum, the heavy neutral Higgses
decay would change dramatically and result into altered exclusion
limit of ττ channel [12]. The SUSY products effect in the heavy
Higgs decay would also open rich LHC phenomenology [13]. This
Letter aims to examine the current status of decoupling scenario
and future perspectives for heavy Higgses decay and production.
We highlight the complex pattern of heavy Higgses decay, in par-
ticular for small tan β region, taking into account the updated
Higgs search bounds and latest flavor measurements. We perform
the extrapolation of ττ mode to the center-of-mass energy of
14 TeV with high luminosities at the LHC.

The rest of the Letter is organized as follows. In Section 2,
we present the parameter choices relevant for Higgs observation
in our scan. We also present the scanning results with subject to
the constraints from the searches of Higgs and sparticles and fla-
vor measurements. We also highlight the exotic patterns of heavy
Higgs decay and extrapolate the ττ decay mode in Section 3.
We summarize our results in Section 4.

2. SUSY parameter region and experimental bounds

To figure out the impact of experimental data on SUSY, it is
crucial to scan the parameters relevant for the current Higgs
observation and flavor measurements and extract the surviving
space. We follow the procedure in Ref. [4] to explore the consis-
tent parameter space. To perform a comprehensive scan over the
MSSM parameter space, besides the parameters adopted in Ref. [4],
we take into account the stau sector in the scan

1 < tanβ < 55, 50 GeV < M A < 1000 GeV,

100 GeV < μ < 2000 GeV, (1)

100 GeV < Mt̃R
, M Q̃ 3

< 2000 GeV,

−4000 GeV < At < 4000 GeV, (2)

100 GeV < Mτ̃R , ML̃3
< 2000 GeV,

−4000 GeV < Aτ < 4000 GeV, (3)

100 GeV < M2 < 2000 GeV. (4)

In addition, we focus on the reduced high M A range in order to
study the decoupling region:

300 GeV < M A < 1000 GeV. (5)

The U (1) gaugino mass M1, however, is unconstrained in the
MSSM since Bino does not contribute much to either the Higgs
sector, or the flavor observables. Moreover, as indicated by the
measurement of dark matter relic density, the dark matter can-
didate in the MSSM is more likely to be a Bino-like neutralino
with a mass heavier than 30 GeV [14,15]. We thus prefer the Bino
neutralino as the lightest supersymmetric particle (LSP) and take
mχ̃0

1
≈ M1 = 90 GeV for illustration, unless stated otherwise. Other

SUSY soft masses, which are less relevant to our consideration,
are all fixed to be 3 TeV.

2.1. Constraints from the Higgs searches and b rare decays

We perform our scan by using the FeynHiggs 2.9.5 pack-
age [16–19] to calculate the Higgs masses, SUSY spectrum, cou-
plings and Higgs decay/production rates. HiggsBound 4.0.0 [20] is
used to impose the exclusion constraints from LEP2 [21], the Teva-
tron [22] and the LHC. We further require that the light CP-even
Higgs boson is SM-like and satisfies the following properties

h0 in the mass range of 124–128 GeV, (6)

σ × BR
(

gg → h0 → γ γ
)

MSSM � 80%(σ × BR)SM, (7)

σ × BR
(

gg → h0 → W W /Z Z
)

MSSM � 60%(σ × BR)SM. (8)

The experimental flavor measurements considered here include
b → sγ [23] and the LHCb report on Bs → μ+μ− [24]. In our
study, we use the following experimental limits

BR(Bs → Xsγ )exp = (3.43 ± 0.21) × 10−4,

BR
(

Bs → μ+μ−)
exp = (

2.9+1.1
−1.0

) × 10−9, (9)

which are consistent with SM predictions [25–27]

BR(Bs → Xsγ )SM = (3.15 ± 0.23) × 10−4,

BR
(

Bs → μ+μ−)
SM = (3.23 ± 0.27) × 10−9. (10)

We also take the observed excess of B → Dτντ [28] as an upper
limit. In our numerical study, we use SuperIso 3.3 [29] to evaluate
the above flavor observables.

2.2. Results for allowed region

We generate large random data samples and pass them through
the above constraints. Taking into account both the Higgs search
results and the flavor constraints, we first show the surviving
points in Fig. 1(a) in the tanβ–mA plane. One can see that the
measured Higgs mass window and current Higgs search data push
the lower limit of mA to 400 GeV. Further b rare decay constraints
allow the whole region of mA > 400 GeV and 5 < tan β < 40.
However, due to the enhancement of MSSM contributions to Bs →
μ+μ− by tan6 β and reduction by 1/m4

A , the large tan β and small
mA regime is highly constrained by b rare decays. Note that al-
though some points have tan β � 45, more data probing for heavy
Higgs regime in near future would immediately restrict mA >

800 GeV with large tan β . In the following we examine the sur-
viving region favored by Higgs observation and flavor constraints.

In the MSSM, as is well known, the loop correction of the light-
est MSSM Higgs mass is dominated by the stop sector and can
raise mh0 to the observed value of Higgs boson mass. The leading
stop loop correction is given by [30]

ε = 3m4
t

2π2 v2 sin2 β

[
ln

(
M2

S

m2
t

)
+ X2

t

M2
S

(
1 − X2

t

12M2
S

)]
, (11)

where Xt = At − μ cot β and M S = √
mt̃1

mt̃2
. Thus, as the mea-

sured Higgs mass is relatively heavier than tree level MSSM Higgs,
the stop masses and stop mixing parameter Xt are strongly related
to the Higgs mass in the MSSM. To satisfy the Higgs mass con-
straint, the stop masses are approximately given by [31]

m2
t̃1

� m2
Q̃ 3

+ m2
t

(
1 − X2

t

m2
t̃R

)
, m2

t̃2
� m2

t̃R
+ m2

t

(
1 + X2

t

m2
t̃R

)
,

for |Xt | � mt̃R
� mQ̃ 3

, (12)

with the switch of mQ̃ 3
↔ mt̃R

for |Xt | � mQ̃ 3
� mt̃R

, unless both
stops are very heavy. The light stop is thus mostly left-handed
(right-handed) and its mass is governed by mQ̃ 3

(mt̃R
) for mt̃R

�
mQ̃ 3

(mQ̃ 3
� mt̃R

). As seen from the stop mixing effect in Fig. 1(b)
in the plane of Xt/

√
m ˜ mt̃ vs. mt̃ , the ranges of Xt , m ˜ , mt̃
Q 3 R 1 Q 3 R
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Fig. 1. (a) tanβ vs. mA for surviving points satisfying bounds from LEP2, Tevatron, LHC and mh0 = 126 ± 2 GeV (red open square), and further including b rare decay
constraints (blue filled circle). The following figures are all for points passing all constraints considered here. (b) Xt/

√
mt̃1

mt̃2
vs. mt̃1

. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this Letter.)
sit nearly maximal stop mixing for light stops. Note that the val-
ues of light sbottom and sneutrino mass are determined by mQ̃ 3

and mL̃3
, respectively, and thus mostly b̃L and ν̃τ L .

As well discussed before, there are two main mechanisms lead-
ing to a simultaneous enhancement of the diphoton production
rate in the MSSM [32]. Firstly, the largest partial contribution to
the total width of SM-like Higgs decay, namely Γ (h0 → bb̄), would
decrease if the bottom Yukawa is enhanced. As a result, the total
decay width of h0 will be reduced and thus the γ γ rate gets en-
hancement. Fig. 2 (a) shows the allowed parameter space relevant
for the SM-like Higgs production in the plane of At versus mQ̃ 3

.
The current Higgs bounds strongly favor relatively large μ and
positive At with |At | � 2 TeV. This is because large positive prod-
uct μAt leads to a large positive radiative correction to bottom
Yukawa which is needed to suppress Γ (h0 → bb̄) so as to enhance
σ(gg → h0 → γ γ ) [4,32].

The second mechanism is due to the effect of SUSY particles in
the direct enhancement of the Γ (h0 → gg/γ γ ), for instance light
stop and stau [33]. The stop loop contributions to the gg and γ γ
amplitudes are approximately proportional to [31,34]

± m2
t

m2
t̃1

m2
t̃2

(
m2

t̃1
+ m2

t̃2
− X2

t

)
. (13)

Hence, we show the stop effect in Higgs production described in
Eq. (13) in Fig. 2 (b) in the plane of (m2

t̃1
+m2

t̃2
− X2

t )/104 GeV ver-

sus mt̃1
. For light stop, as one can see, the enhanced contribu-

tion of stop in the Γ (h0 → γ γ ) dominates over the reduction
in the gluon fusion production such that for gg → h0 → γ γ rate
being above 0.8 of the SM value. Moreover, an enhancement of
Γ (h0 → γ γ )/Γ (h0 → γ γ )S M as large as a factor of 2 is possible
as a result of light stau effect in the loop, as seen in Fig. 2 (c).

2.3. Discussion of SUSY sparticle searches

Additional constraints come from direct sparticle searches,
for instance stop and sbottom. In principle, the stop and sbot-
tom mass limit drops lower for small mass difference between the
stop/sbottom and the Bino LSP. One can always tune the free Bino
mass to be large enough to give soft decay products and thus
evade the stop/sbottom search limits. Recently, ATLAS reported
that light stops with mt̃ � 200 GeV and any kinematically allowed
1

neutralino LSP mass are essentially excluded if BR(t̃1 → cχ̃0
1 ) =

100% [35]. However, this bound could be weakened if other de-
cay mode with lighter sparticle, such as t̃1 → τ̃1ντ b, overwhelms
t̃1 → cχ̃0

1 as pointed out in Ref. [31]. Also, if Bino mass is not
that large and mt̃1

− mχ̃0
1

> mW + mb(mt), the main decay mode

is given by t̃1 → bW +χ̃0
1 (tχ̃0

1 ). We then have freedom for Bino
mass to survive light stop, given the gap between stop bound and
kinematic limit.

ATLAS also released that any sbottom with mass less than
650 GeV is not allowed if mχ̃0

1
< 100 GeV and BR(b̃1 → bχ̃0

1 ) =
100% [36]. For small values of mQ̃ 3

, we have light left-handed
sbottom in the spectrum as mb̃1

∼ mQ̃ 3
. Thus, this case tends to

be in conflict with the above limit if mb̃1
− mχ̃0

1
� 20 GeV or

mχ̃0
1

< 100 GeV. However, if Wino neutralino stays between sbot-

tom and Bino LSP, the left-handed sbottom prefers to decay to
it with BR(b̃1 → bχ̃0

2 ) being typically around 80%–90% [9], even
though relatively suppressed by the available phase space. With
the further decay of χ̃0

2 into h0(∗)χ̃0
1 or Z (∗)χ̃0

1 , these longer decay
chains give soft decay products and small missing energy unde-
tected in the detector. As a result, the current sbottom search
would not highly restrict the small mQ̃ 3

case.
In addition, CMS put the lower limit on the mχ̃±

1 ,χ̃0
2

to 330 GeV

under the assumption of mχ̃0
2

− mχ̃0
1

> mZ and BR(χ̃0
2 → Z χ̃0

1 ) =
BR(χ̃±

1 → W ±χ̃0
1 ) = 100% [37]. This limit would not directly con-

strain the spectrum with small mass difference mχ̃0
2

− mχ̃0
1

as well

as possible suppression of chargino/neutralino decays.

3. Heavy Higgs decay and search sensitivity

3.1. Heavy Higgs decay

In the decoupling limit, the heavy non-SM-like Higgses H0,
A0 and H± have rich decay modes, especially in the small tanβ

regime. Fig. 3 shows the branching ratios of heavy neutral Higgs
bosons decay into fermion pairs. In this limit, the H0/A0 coupling
to the top quarks is suppressed by 1/ tan β , while the couplings
to bottom quarks and tau leptons are enhanced by tan β . As seen
in Fig. 3, a majority of points have BR(H0/A0 → bb̄) � 80% and
BR(H0/A0 → τ+τ−) � 30%. However, for exceptional significant
points in Fig. 3, the H0/A0 → tt̄ mode could be dominant for
tanβ � 10 in particular.
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Fig. 2. (a) At vs. mQ̃ 3
, (b) (m2

t̃1
+ m2

t̃2
− X2

t )/104 GeV vs. mt̃1
and (c) Γ (h0 → γ γ )/Γ (h0 → γ γ )S M vs. mτ̃1 .

Fig. 3. (a) BR(H0 → f f̄ ) vs. m 0 and (b) BR(A0 → f f̄ ) vs. m 0 .
H A
Small values of μ, M2 are allowed in the decoupling scenario.
We thus expect kinematically occurred heavy Higgs decay into
pairs of chargino and neutralino. The MSSM Higgs bosons mainly
couple to mixtures of higgsino and gaugino components [3].
Therefore, for μ � M1,2 or μ 	 M1,2, the decays of the heavy
Higgs bosons into pairs of pure gaugino or higgsino are strongly
suppressed. The mixed decay H0/A0 → χ̃±

1 χ̃∓
2 , χ̃0

1,2χ̃
0
3,4 will

then have significant branching fractions. For μ ∼ M2, on the
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Fig. 4. (a) BR(H0 → χ̃±
i χ̃∓

j ) vs. mH0 and (b) BR(A0 → χ̃±
i χ̃∓

j ) vs. mA0 .

Fig. 5. BR(H0 → χ̃±
i χ̃∓

j ) in the plane of M2 vs. μ, for (a) i = j = 1 and (b) i = 1, j = 2. The color scale gives the branching fraction of H0 → χ̃±
i χ̃∓

j decay. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this Letter.)
other hand, all the heavy Higgses have comparable decay rates
into chargino/neutralino. We show the BR(H0/A0 → χ̃±

i χ̃∓
j ) and

BR(H0/A0 → χ̃0
i χ̃0

j ) in Figs. 4, 5 and 6. One can see that the
branching ratio of chargino and neutralino decay mode can reach
at most 40% and 20%, respectively. In particular, the invisible de-
cay mode of heavy Higgses, namely H0/A0 → χ̃0

1 χ̃0
1 , relies on the

arbitrary Bino LSP mass and has important implication for the
dark matter candidate search at the LHC. The BR(H0(A0) → χ̃0

1 χ̃0
1 )

increases with increasing Bino LSP mass and the maximal value
can reach between 12%–15% (13%–20%) for 30 < mχ̃0

1
< 100 GeV.

For the sample with maximal H0/A0 → χ̃0
1 χ̃0

1 decay rate, with
increasing mχ̃0

1
, some other leading neutralino modes H0/A0 →

χ̃0
1 χ̃0

i �=1 have decreasing branching fractions by a few percent cor-
respondingly. This invisible decay mode could be tested through
mono-b-jet signature in gb → bH0/A0 production.

Indicated by the fit to Higgs mass and signals, light sfermions
also play important role in the heavy Higgs decay. In the decou-
pling limit, the heavy neutral Higgses couplings to sfermion cur-
rent eigenstates are given by [3]
C H0 f̃ f̃

=
(

(I3L
f − Q f s2

W )m2
Z sin 2β + m2

f r f
1

1
2 m f (A f r f

1 + μr f
2 )

1
2 m f (A f r f

1 + μr f
2 ) Q f s2

W m2
Z sin 2β + m2

f r f
1

)
,

(14)

C A0 f̃ f̃

=
(

0 − 1
2 m f (A f (tanβ)−2I f

3 + μ)

1
2 m f (A f (tanβ)−2I f

3 + μ) 0

)
,

(15)

where ru
1 = − cot β , rd

1 = rl
1 = − tan β , ru

2 = −1 and rd
2 = rl

2 = 1.
For CP-even Higgs H0, these couplings contain term proportional
to m2

f and thus get enhanced for the third generation sfermions.

The CP-odd Higgs A0 only couples to f̃1 f̃2 mixtures with cou-
plings ∝ m f . The stop decay mode for A0 is then forbidden as at
least one stop has to be very heavy to accommodate SM-like Higgs
mass. Figs. 7 (a) and (b) show that the branching fraction of heavy
Higgses decay into sfermions can be as large as 80% for H0 → t̃1t̃∗

1
and H0/A0 → τ̃1τ̃

∗ + τ̃ ∗τ̃2. Moreover, with increasing |Aτ |, both
2 1
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Fig. 6. (a) BR(H0 → χ̃0
i χ̃0

j ) vs. mH0 and (b) BR(A0 → χ̃0
i χ̃0

j ) vs. mA0 .

Fig. 7. (a) BR(H0 → f̃ f̃ ∗) vs. mH0 , (b) BR(A0 → f̃ f̃ ∗) vs. mA0 .
H0 and A0 have increasing branching ratio of τ̃1τ̃
∗
2 + τ̃ ∗

1 τ̃2 de-
cay mode [31]. In Fig. 8 we display the dependence of heavy
Higgs decay into light sfermions on SUSY soft masses. The decay
H0 → t̃1t̃∗

1 is dominant for either mQ̃ 3
< 500 GeV, mt̃R

> 0.9 TeV
or mQ̃ 3

> 1 TeV, mt̃R
< 500 GeV with only one light stop. While

H0 → τ̃1τ̃
∗
2 + τ̃ ∗

1 τ̃2 could be dominant for mL̃3
,mτ̃R < 800 GeV with

two light staus.
The decays H0 → h0h0 and A0 → h0 Z are known to com-

plement heavy Higgs searches at low values of tanβ and inter-
mediate M A masses [10,38]. In the decoupling limit with M A >

400 GeV constrained by current Higgs searches, the correspond-
ing partial decay widths are suppressed by 1/mH0 and coupling
cos2(β − α) 	 1, respectively. Their branching fractions are thus
decreasing quickly with at most 10% for H0 → h0h0 and 1% for
A0 → h0 Z .

3.2. Future heavy Higgs search sensitivity

As one can see from previous subsection, SUSY effects could
vary the ττ mode of heavy Higgs decay significantly. One has
to consider the variation of ττ exclusion limit given various
SUSY decay products, for the small values of tanβ in particular.
We now improve measurement potential for the search of heavy
MSSM Higgs decay into τ+τ− . Assuming the signal and back-
ground events go up by the same factor when the energy en-
hanced, we simply scale the signal sensitivity with

√
σsignal × L

based on the expected upper limit on the ττ channel [11], where
σsignal = σ(gg,bb̄ → H0, A0 → τ+τ−) at 14 TeV LHC and L is the
integrated luminosity. The extrapolation of excluded region for ττ
mode at 14 TeV LHC is shown in Fig. 9 with L = 300 fb−1 and
3000 fb−1. Note that as the expected limit of M A is 800 GeV
in the CMS search, we only show the extrapolation for M A less
than 800 GeV. One can see that, in the plane of tanβ–M A with
M A < 800 GeV, the ττ mode can only essentially exclude regime
with tanβ > 20 for L = 300 fb−1 and tanβ > 15 for L = 3000 fb−1.
The dominant SUSY decay modes of neutral Higgses give at most a
few percent of uncertainty for the above exclusion.

4. Conclusions

The decoupling limit in the MSSM Higgs sector is the most
likely scenario in light of the Higgs discovery. This scenario is
further constrained by MSSM Higgs search bounds and flavor mea-
surements. We performed a comprehensive scan of MSSM param-
eter space and updated the constraints on the decoupling MSSM
Higgs sector in terms of 8 TeV data. The light SUSY spectrum in



T. Li / Physics Letters B 728 (2014) 77–84 83
Fig. 8. (a) BR(H0 → t̃1t̃∗
1) in the plane of Mt̃R

vs. M Q̃ 3
and (b) BR(H0 → τ̃1τ̃

∗
2 + τ̃2τ̃

∗
1 ) in the plane of Mτ̃R vs. ML̃3

. The color scale gives the branching fraction of H0 → f̃ f̃ ∗
decay. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)
Fig. 9. Exclusion for H0/A0 → ττ mode in the plane of tanβ vs. mA with L =
300 fb−1 (purple open circle) and 3000 fb−1 (green open triangle), based on sur-
viving region in Fig. 1. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this Letter.)

charge of SM-like Higgs mass and signal excesses was discussed.
We highlighted the effect of light SUSY spectrum in the heavy neu-
tral Higgs decay in the decoupling limit. We found that the mea-
sured Higgs mass window and current Higgs search data push mA

to at least 400 GeV. Further b rare decays do not put more strin-
gent constraints on the surviving region. The chargino and neu-
tralino decay mode can reach at most 40% and 20% branching ratio,
respectively. In particular, the invisible decay mode BR(H0(A0) →
χ̃0

1 χ̃0
1 ) increases with increasing Bino LSP mass and is between

12%–15% (13%–20%) for 30 < mχ̃0
1

< 100 GeV. The leading branch-

ing fraction of heavy Higgses decay into sfermions can be as large
as 80% for H0 → t̃1t̃∗

1 and H0/A0 → τ̃1τ̃
∗
2 + τ̃ ∗

1 τ̃2. H0 → h0h0

and A0 → h0 Z have the branching fraction less than 10% and 1%,
respectively, for mA > 400 GeV. The branching ratio of charged
Higgs decay to neutralino plus chargino and sfermions can be as
large as 40% and 60%, respectively. Moreover, these dominant SUSY
products alter the normal heavy Higgs decay modes dramatically,
in particular for small tanβ region. We extrapolated the exclusion
limit of leading MSSM Higgs search channel, namely gg,bb̄ → H0,
A0 → τ+τ− , to center-of-mass energy of 14 TeV with high lumi-
nosities at the LHC based on surviving region and exceptions of
dominant SUSY decay channels. It turns out that the ττ mode can
essentially exclude regime with tanβ > 20 for L = 300 fb−1 and
tanβ > 15 for L = 3000 fb−1.
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