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Abstract

This paper discusses the fault-tolerance of symmetric systems with respect to controlla-
bility, which is a fundamental characteristic of control systems. In particular, we reveal the
underlying mathematical mechanism of the loss of controllability for symmetric systems in-
duced by failures. Based on the decomposition of the symmetric systems into subsystems
under the symmetry, the controllability of the entire system can be discussed by checking that
of each subsystem. The analysis of the fault-tolerance in this paper is an extension of this
idea with the aid of the chain-adapted transformation matrix for the decomposition. The result
is shown as a necessary condition for symmetric systems to retain the controllability despite
some symmetric failures. We also discuss sufficient conditions. © 2000 Published by Elsevier
Science Inc. All rights reserved.
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1. Introduction

Mathematical treatment of the symmetry found in various phenomena is system-
atized based on the group theory. From this standpoint, great deal of researches in
diverse fields have been considerably developed, for instance, in bifurcation theo-
ry [3,15], quantum mechanics [23], crystallography [25], chemical molecular sys-
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tems [10], structural engineering [7] and so on. Also in the field of control theory,
scattered researches have been carried out concerning the control of group-theoretic
symmetric systems [4,5,8,14,16]. In [5], it is shown that the characteristics of the
symmetric systems can be investigated by those of subsystems obtained by the de-
composition based on the group-theoretic symmetry. In addition, Refs. [12,18,19,24]
have considered decentralized control systems composed of identical modules that
are connected with certain regularity. In such systems, the symmetry of the entire
system results from the homogeneity of the constituent modules and the regularity
of their connections.

For control systems in general, practical importance of the fault-tolerance has
been fully recognized. That is, the systems are desired to retain some characteristics
in spite of some failures. There are largely two approaches in fault-tolerant control
systems design. The first is by the synthesis of controllers for a given plant to make
the entire system fault-tolerant [2,17,22]. The second is by the appropriate design
of the plants themselves before the design of the controllers, in order to achieve the
fault-tolerance as a whole. Relating to the latter idea, there are some studies on the
adjustment of design parameters of plants to increase the fault-tolerance [11].

As for the fault-tolerance of symmetric control systems, there are only studies
on the graph-theoretic connectivity [1,6,9] and few researches on the control the-
oretic characteristics. This paper will discuss the fault-tolerance of symmetric sys-
tems with respect to controllability, which is a fundamental characteristic of control
systems. We consider the controllability of a system as a characteristic that should
be retained in spite of failures in some control channels, and clarify those failures
which cause the symmetric system to lose its controllability. A first attempt in this
direction is found in [19], where the fault-tolerance of some symmetric systems has
been evaluated. The analysis has revealed the failure patterns that make the systems
uncontrollable. Whereas Ref. [19] has dealt with the restricted class of symmetric
systems whose symmetry as a whole originates in the identity of the modules and
certain regularity of their connections, the present paper will be concerned with sys-
tems with more general symmetry. Based on the decomposition of the symmetric
systems into subsystems under the symmetry, the controllability of the entire system
can be discussed by checking that of each subsystem [5]. The analysis of the fault-
tolerance in this paper is an extension of this idea with the aid of the chain-adapted
transformation matrix for the decomposition.

An interesting relationship between the symmetry and the fault-tolerance has been
observed in [19]. That is, when some failures cause a symmetric system to be un-
controllable, the system after the failures has certain symmetry as well. For example,
consider a system that consists of nine identical modules connected in a ring as
shown in Fig. 1(a). It is symmetric with respect to 2π/9 rotations. The arrows in
the figure represent effective inputs. Then, the failures shown in Fig. 1(b) turn out to
cause the system to be uncontrollable, where the modules without the arrow are in the
outage. As can be seen from the figure, the system after the failures retains a partial
symmetry, being symmetric with regard to 2π/3 rotations. Conversely, if the system
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Fig. 1. (a) A symmetric system consisting of nine identical modules connected in ring-type. The
arrows represent the effective control inputs. (b) The system is also symmetric but becomes uncontrollable
because of the failures. (c) The system is not symmetric and retains its controllability in spite of the
failures.

after failure is completely nonsymmetric, the entire system keeps its controllability
(Fig. 1(c)). Note that the partial symmetry in the symmetric system results from
the symmetric failures. From the observation above, we can deduce that symmetric
failure patterns tend to cause the symmetric systems to lose their controllability. Now,
a question comes about if all the symmetric failures cause general symmetric systems
to be uncontrollable or not.

The example below (Fig. 2) illustrates our main result in this paper: Consider a
symmetric spherical diamond system. According to our result, the system shown in
Fig. 2(a) turns out to be uncontrollable because of the symmetric failures, where-
as the system shown in Fig. 2(b) turns out to retain its controllability despite the
symmetry in the failures. Note that the both systems shown in Fig. 2 are symmetric
regarding 2π/3 rotations. Based on the group representation theory, the present paper
will reveal the underlying mathematical mechanism of the loss of controllability for
symmetric systems induced by failures.

The outline of this paper is as follows. In Section 2, we show the main results
that reveal the mechanism of the loss of controllability for systems with general
symmetry. There, the standard results in the group representation theory are properly

Fig. 2. Two examples of D3-symmetric failures. (a) Uncontrollable because of D3-symmetric failures.
(b) Controllable in spite of D3-symmetric failures.



148 R. Tanaka, K. Murota / Linear Algebra and its Applications 318 (2000) 145–172

applied to the discussion of the control theoretic characteristics, i.e., the controllabil-
ity specifically. The result is shown as a necessary condition for symmetric systems
to retain the controllability. Section 3 provides some examples of the main results
for systems with other symmetries. In Section 4, we discuss sufficient conditions
for the controllability of symmetric systems after some symmetric failures. Finally,
concluding remarks are given in Section 5.

2. Group theoretic treatment of failure in symmetric systems

2.1. Symmetric failures in symmetric systems

As explained in Section 1, the main concern of this paper is to reveal the math-
ematical mechanism of the loss of controllability for symmetric systems caused by
symmetric failures. In this section, we will formulate the notions of symmetric sys-
tems and symmetric failure patterns in precise terms.

Consider a linear time-invariant systemS that consists ofm control modules
{S1,S2, . . . ,Sm}, each of which has its own control channel. The entire system
S is then described by


ẋ1
ẋ2
...

ẋm


=




A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

Am1 Am2 · · · Amm






x1
x2
...

xm




+




B11 B12 · · · B1m

B21 B22 · · · B2m

...
...

. . .
...

Bm1 Bm2 · · · Bmm






u1
u2
...

um


 , (1)

wherexi (t) ∈ Rni and ui(t) ∈ Rri denote the state ofSi and the input from its
control channel, respectively, withRn being the set of real vectors of dimensionn.
By denoting the state and the input of the entire systemS as

x =




x1
x2
...

xm


 ∈ Rn, u =




u1
u2
...

um


 ∈ Rr , (2)

respectively, Eq. (1) can be given in the standard form of a state transition equation:

ẋ(t) = Ax(t) + Bu(t). (3)

Among the systems described by (3), we are interested in ones with group-theoretic
symmetry. We say that system(3) is symmetric with respect to a finite groupG if
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T (g)A = AT (g), T (g)B = BS(g), g ∈ G, (4)

whereT andSare unitary representations ofG on Rn andRr , respectively (see e.g.,
[13] for group representation theory). Eq. (4) often reflects the underlying geometric
symmetry in the system structure. It should be mentioned here that we are interested
in the characteristics of a system determined by its symmetric structure and not by
the numerical information of the system matricesA andB.

Example 1. The formulation above is illustrated for a ring-type homogeneous sys-
tem, as shown in Fig. 1(a), consisting of nine identical modules(m = 9) with ni =
n0 andri = r0 (1 6 i 6 9). The matricesA andB in (3) are given as

A=




P Q O O O O O O Q

Q P Q O O O O O O

O Q P Q O O O O O

O O Q P Q O O O O

O O O Q P Q O O O

O O O O Q P Q O O

O O O O O Q P Q O

O O O O O O Q P Q

Q O O O O O O Q P




,

(5)

B=




K O O O O O O O O

O K O O O O O O O

O O K O O O O O O

O O O K O O O O O

O O O O K O O O O

O O O O O K O O O

O O O O O O K O O

O O O O O O O K O

O O O O O O O O K




,

where the modules {Si } (1 6 i 6 9) are indexed clockwise from an arbitrary mod-
ule. The matricesP andQ in (5) aren0 × n0 andK isn0 × r0. The system is therefore
symmetric with respect to the dihedral group D9. The dihedral group D9, of order
18, is defined by

D9 = {e, ρ, ρ2, . . . , ρ8; σ, σρ, . . . , σρ8} (6)

with ρ9 = σ 2 = (σρ)2 = e (e is the identity element). The group D9 generally rep-
resents the geometric symmetry of a regular nonagon. The representationsT (g) in
(4) for D9 are given by
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T (ρ)=




O O O O O O O O I

I O O O O O O O O

O I O O O O O O O

O O I O O O O O O

O O O I O O O O O

O O O O I O O O O

O O O O O I O O O

O O O O O O I O O

O O O O O O O I O




,

(7)

T (σ)=




I O O O O O O O O

O O O O O O O O I

O O O O O O O I O

O O O O O O I O O

O O O O O I O O O

O O O O I O O O O

O O O I O O O O O

O O I O O O O O O

O I O O O O O O O




,

whereI denotes the unit matrix of ordern0.

In order to discuss the fault-tolerance of the symmetric systems, we restrict the
failure to that of the control channels. Generally, if a control channel of the module,
saySi , is in the outage or replacement, the control inputui (t) has no influence on
statex(t). This situation is described in the mathematical model (1) by

ui (t) = 0 (Si is in the outage). (8)

According to the failure defined in (8), letM andN denote the index sets of the func-
tioning modules and of the modules in the outage, respectively (M ∩ N = ∅,M ∪
N = {1, . . . ,m}). The failure pattern of the system is thus described by the pair of
M andN. In addition, we introduce the failure matrixF of orderr in such a way that
the matrixBF has zero column blocks that correspond to the control channels in the
outage. Such a matrixF is given byF = ⊕m

i=1 Fi with

Fi =
{
Iri (i ∈ M),

Ori (i ∈ N),

where the matricesIk andOk denote, respectively, the unit matrix and the zero matrix
of orderk in general. This means

F = FM ⊕ FN = If ⊕ Or−f (9)

with FM = ⊕
i∈M Fi = If , FN = ⊕

i∈N Fi = Or−f , f = ∑
i∈M ri, by an appro-

priate permutation of the indices of the modules. Note that any failure pattern can be
given in the form of (9) and that the system after the failures is denoted as(A,BF).
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The symmetry of a failure pattern can then be formulated similarly to (4) for the
matrixF in (9). A failure patternF is said to be symmetric with respect to a subgroup
H of G if

S(h)F = FS(h), h ∈ H. (10)

Note that the symmetry of failure patterns is defined with respect to a subgroupH
of G. Given a subgroupH of G, we have a set of failure patternsF that satisfy (10).
Conversely, for a givenF,

H(F) = {g ∈ G | S(g)F = FS(g)} (11)

is a subgroup ofG and can be chosen as the subgroupH in (10).
From the assumption above, the form of the unitary representation matricesS(h)

satisfying (10) is restricted to

S(h) = SM(h) ⊕ SN(h), h ∈ H, (12)

whereSM(h) is of orderf andSN(h) is of order(r − f ), corresponding to the blocks
of F in (9). Namely, the representation matricesS(h) in (10) splits into diagonal
blocks for allh ∈ H .

Example 2. The formulation above is illustrated for the system shown in Example
1 (Fig. 1(b)). The matricesA andB are given in (5) and the corresponding matrix
representationsT (g) in (4) are given in (7). Similarly, representation matricesS(g)

for (4) are given as (7), withI denoting the unit matrix of orderr0.
The failure pattern of the system is described byM = {1, 4, 7} andN = {2, 3, 5,

6, 8, 9}. Whereas the system(A,B) is symmetric with respect to the dihedral group
D9, the failure is symmetric with respect to D3 = {e, ρ3, ρ6; σ, σρ3, σρ6}, which is
a subgroup of D9.

The failure matrix is given by

F =

1 2 3 4 5 6 7 8 9
1 I O O O O O O O O

2 O O O O O O O O O

3 O O O O O O O O O

4 O O O I O O O O O

5 O O O O O O O O O

6 O O O O O O O O O

7 O O O O O O I O O

8 O O O O O O O O O

9 O O O O O O O O O

, (13)

which satisfies (10) forH = D3 with
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S(ρ3) =

1 2 3 4 5 6 7 8 9

1 O O O O O O I O O

2 O O O O O O O I O

3 O O O O O O O O I

4 I O O O O O O O O

5 O I O O O O O O O

6 O O I O O O O O O

7 O O O I O O O O O

8 O O O O I O O O O

9 O O O O O I O O O

,

(14)

S(σ) =

1 2 3 4 5 6 7 8 9

1 I O O O O O O O O

2 O O O O O O O O I

3 O O O O O O O I O

4 O O O O O O I O O

5 O O O O O I O O O

6 O O O O I O O O O

7 O O O I O O O O O

8 O O I O O O O O O

9 O I O O O O O O O

.

A permutation of the modules makes the matrixF in (13) into the form of (9) as

F =

1 4 7 2 3 5 6 8 9

1 I O O O O O O O O

4 O I O O O O O O O

7 O O I O O O O O O

2 O O O O O O O O O

3 O O O O O O O O O

5 O O O O O O O O O

6 O O O O O O O O O

8 O O O O O O O O O

9 O O O O O O O O O

. (15)

Accordingly,S in (14) takes the form of (12):
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S(ρ3) =

1 4 7 2 3 5 6 8 9
1 O O I O O O O O O

4 I O O O O O O O O

7 O I O O O O O O O

2 O O O O O O O I O

3 O O O O O O O O I

5 O O O I O O O O O

6 O O O O I O O O O

8 O O O O O I O O O

9 O O O O O O I O O

,

(16)

S(σ) =

1 4 7 2 3 5 6 8 9
1 I O O O O O O O O

4 O O I O O O O O O

7 O I O O O O O O O

2 O O O O O O O O I

3 O O O O O O O I O

5 O O O O O O I O O

6 O O O O O I O O O

8 O O O O I O O O O

9 O O O I O O O O O

.

Remark 3. From Eqs. (4) and (10), the system after the failures(A,BF ) with BF =
BF is also symmetric with respect toH in the sense of (4), since

T (h)A = AT (h), T (h)BF = BF S(h), h ∈ H.

Therefore, the symmetry of the original system and that of the failure patterns yield
a partial symmetry of the system after the failures.

Our concern in the present paper is whether the controllability is retained in the
symmetric system after some symmetric failures. The main result shown below will
clarify that the groupsG andH and the representationSof G play a crucial role to
determine the rank of the matrixC(A,BF), whereC(A,B) = [B AB · · ·An−1B] is
the controllability matrix of a system(A,B).

2.2. Main result

The main result of this paper is stated in this section in the form of Theorem 4,
which gives a group-theoretic condition for the controllability after anH-symmetric
failure in aG-symmetric system.

In the following, we consider the state spaceX ' Cn and the input spaceU '
Cr for the simplicity of mathematical treatment,1 although the systems formulated

1 Namely, we consider the complexifications ofX andU.
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above are described on real spaces. The family of all nonequivalent absolutely ir-
reducible matrix representations ofG is denoted by{Dµ

G | µ ∈ R(G)}, whereD
µ
G

is a unitary irreducible matrix representation, of dimensionNµ, overC andR(G)

is the index set for the absolutely irreducible representations ofG. Let the repre-
sentationsT (g) andS(g) of G be decomposed into diagonal blocks of irreducible
representations (see (27)) as

T =
∑

µ∈R(G)

aµµ, S =
∑

µ∈R(G)

bµµ, (17)

where the nonnegative integersaµ andbµ are the multiplicities ofµ in T andS,
respectively.

Consider anH-symmetric failureF, whereH is a subgroup ofG. The family
of all nonequivalent irreducible matrix representations ofH is denoted by{Dν

H | ν ∈
R(H)}, where the dimension ofDν

H is denoted byNν . Let the representationsSM(h)

andSN (h) of H, defined in (12), be decomposed into diagonal blocks of irreducible
representations as

SM =
∑

ν∈R(H)

bν
Mν, SN =

∑
ν∈R(H)

bν
Nν (18)

with the multiplicitiesbν
M andbν

N of ν in SM andSN , respectively.
An important technical ingredient in our argument is the use of chain-adapted

bases with respect toG and its subgroupH. Let the restriction of irreducible repre-
sentationsµ of G to H be described as

µ ↓ H =
∑

ν∈R(H)

αν
µν, µ ∈ R(G), (19)

with nonnegative integersαν
µ representing the multiplicity ofν in µ ↓ H , the restric-

tion of µ to H.
Then, a necessary condition of group-theoretic nature for the controllability is

obtained as follows. The proof will be given in Section 2.3.

Theorem 4. A G-symmetric system(A,B) retains its controllability in spite of an
H-symmetric failure F only if there exists no pair ofC-irreducible representationµ
of G andν of H such that

aµ /= 0, αν
µ /= 0, bν

M = 0, (20)

whereaµ, αν
µ andbν

M are defined by(17), (19)and(18),respectively.

The three conditions in (20) are concerned withT, the pair ofG andH, andS,
respectively. Condition (20) often turns out to be sufficient, as we will see later in
Section 4. Therefore, as a rule of thumb, we may hopefully expect that the sys-
tem retains its controllability if condition (20) is not satisfied by anyµ ∈ R(G) and
ν ∈ R(H).
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Remark 5. Whereas the conditions in (20) are given forC-irreducible representa-
tionsµ of G andν of H, it is noted that the same statement of Theorem 4 holds true
whenC-irreducibility is replaced byR-irreducibility.

Moreover, the following theorem is derived concerning the rank deficiency of the
controllability matrix byH-symmetric failures.

Theorem 6. By an H-symmetric failure in a G-symmetric system, the rank of the
controllability matrix is reduced at least by

∑
(µ,ν)∈F aµαν

µNν , whereF denotes the
family of all the pairs(µ, ν) which satisfy(20), i.e.,

F = {
(µ, ν) ∈ R(G) × R(H) | aµ /= 0, αν

µ /= 0, bν
M = 0

}
. (21)

Theorem 6 implies that aG-symmetric system(A,B) becomes uncontrollable
by anH-symmetric failureF if the subsetF is nonempty, which is the statement of
Theorem 4.

2.3. Proofs

We prove Theorems 4 and 6. The spacesX andU are decomposed as direct sums
of the invariant subspaces corresponding toD

µ
G, which is (often) abbreviated toDµ,

as

X =
⊕

µ∈R(G)

aµ⊕
i=1

X
µ
i , U =

⊕
µ∈R(G)

bµ⊕
j=1

U
µ
j , (22)

where the nonnegative integersaµ andbµ are the multiplicities. We define two uni-
tary matricesZ of ordern andW of orderr as

Z = (
Zµ | µ ∈ R(G)

)
, W = (

Wµ | µ ∈ R(G)
)
, (23)

where

Zµ =(Zµ
i | 1 6 i 6 aµ

) ∈ Cn×aµNµ

, (24)

Wµ =(W
µ
j | 1 6 j 6 bµ) ∈ Cr×bµNµ

,

with Z
µ
i ∈ Cn×Nµ

andW
µ
j ∈ Cr×Nµ

being sets of bases ofXµ
i andUµ

j , respective-
ly. Note that the unitarity ofT andSallows us to choose the matricesZ andW to be
unitary overC, i.e.,Z∗Z = In andW∗W = Ir , whereZ∗ andW∗ are the transposed
conjugate matrices ofZ andW, respectively. SinceZµ

i andW
µ
j are bases ofXµ

i and

U
µ
j , respectively,

T (g)Z
µ
i = Z

µ
i Dµ(g), S(g)W

µ
j = W

µ
j Dµ(g), g ∈ G, (25)

holds and thus
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T (g)Zµ = Zµ

(
aµ⊕
i=1

Dµ(g)

)
,

(26)

S(g)Wµ = Wµ


 bµ⊕

j=1

Dµ(g)


 , g ∈ G,

where
⊕aµ

i=1 Dµ(g) denotes a block-diagonal matrix consisting ofaµ identical di-
agonal blocksDµ(g). Then the representationsT (g) andS(g) of G are decomposed
by Z andW into diagonal blocks of irreducible representations as

Z∗T (g)Z =
⊕

µ∈R(G)

aµ⊕
i=1

Dµ(g),

(27)

W∗S(g)W =
⊕

µ∈R(G)

bµ⊕
j=1

Dµ(g), g ∈ G.

From (4) and (27), the system matricesA andB are also block diagonalized by the
same matricesZ andW, from Schur’s lemma, as

Ã = Z∗AZ =
⊕

µ∈R(G)

Nµ⊕
k=1

Aµ, B̃ = Z∗BW =
⊕

µ∈R(G)

Nµ⊕
k=1

Bµ (28)

with matricesAµ ∈ Caµ×aµ
andBµ ∈ Caµ×bµ

. Note that
⊕Nµ

k=1 Aµ in (28) denotes
a block-diagonal matrix consisting ofNµ identical diagonal blocksAµ.

We can take the matrixWµ
j (1 6 j 6 bµ) in (24) compatibly with (19) so that it

is further decomposed as

W
µ
j = (W

µν
j | ν ∈ R(H)) (29)

with eachWµν
j ∈ Cr×αν

µNν

being a set of bases of the invariant subspace correspond-

ing to ν ∈ R(H). Such basisW = (W
µν
j | µ ∈ R(G), 1 6 j 6 bµ, ν ∈ R(H)) is

said to be chain-adapted with respect toG and its subgroupH, which is a key
technical ingredient of the proof. Consequently, with the chain-adapted basesW

µ
j

in (29), the irreducible matrix representationD
µ
G(g) in the second expression of (27)

is decomposed as

D
µ
G(h) =

⊕
ν∈R(H)

αν
µ⊕

l=1

Dν
H (h), h ∈ H, (30)

that is,

W∗S(h)W =
⊕

µ∈R(H)

bµ⊕
j=1


 ⊕

ν∈R(H)

αν
µ⊕

l=1

Dν
H (h)


 , h ∈ H. (31)
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Since the rank of the controllability matrix is invariant under state transformations,

rankC(A,BF ) = rankC(Z∗AZ,Z∗BF ) (32)

holds. From (28) together with the unitarity ofW leading toZ∗BF = Z∗BW · W∗F ,
rank (32) is calculated as

rankC(Z∗AZ,Z∗BF ) = rank

{
[B̃ ÃB̃ · · · Ãn−1B̃]

(
n⊕

i=1

W∗F
)}

. (33)

Therefore, according to decomposition (28), the controllability of theG-symmetric
system(A,B) after theH-symmetric failureF is equivalent to that of the system

(Ã, B̃W∗F) =

 ⊕

µ∈R(G)

Nµ⊕
k=1

Aµ,
⊕

µ∈R(G)

((
Nµ⊕
k=1

Bµ

)
(Wµ)∗F

) . (34)

The matrix(Wµ)∗F in (34) is denoted as

(Wµ)∗F = [(Wµ
M)∗O] (35)

with the failure matrixF in (9), whereWµ
M denotes the firstf rows ofWµ as

Wµ =
(

W
µ
M

W
µ
N

)
. (36)

From (24) and (29),Wµ
M andW

µ
N in (36) are described as

W
µ
M =

(
W

µν
jM | 1 6 j 6 bµ, ν ∈ R(H)

)
,

W
µ
N =

(
W

µν
jN | 1 6 j 6 bµ, ν ∈ R(H)

)
,

whereW
µν
jM ∈ Cf ×αν

µNν

andW
µν
jN ∈ C(r−f )×αν

µNν

. Moreover, with reference to

W
µν
M =

(
W

µν
jM | 1 6 j 6 bµ

)
∈ Cf ×(bµαν

µNν ), (37)

the matrixWµ
M is described as

W
µ
M = (

W
µν
M | ν ∈ R(H)

)
. (38)

Consequently, if(Wµ
M)∗ has a zero row block compatible with the block structure of

B̃, the controllability matrix is not of full row-rank, and hence the system becomes
uncontrollable. Namely, we obtain the following lemma.

Lemma 7. A G-symmetric system(A,B) becomes uncontrollable by an H-symmet-
ric failure F if 2 W

µν
M = O for someµ ∈ R(G), ν ∈ R(H) with aµαν

µ /= 0.

2 We use the convention that “W = O” includes the cases where the column-set or the row-set of a
matrix W is empty.
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Proof. If W
µν
M = O for a pair ofµ ∈ R(G) and ν ∈ R(H) with aµαν

µ /= 0, the

product(
⊕Nµ

k=1 Bµ)(Wµ)∗F in (34) has a zero row block compatible with the de-
composition

Nµ⊕
k=1

Bµ =
⊕

ν∈R(H)

αν
µNν⊕
l=1

Bµ,

corresponding toNµ = ∑
ν∈R(H) αν

µNν . �

We are now to clarify a group-theoretic mechanism that produces a zero row block
in (W

µ
M)∗, that is,Wµν

M = O.

Lemma 8. W
µν
M = O if bν

M = 0.

Proof. The matrix(Wµ)∗F satisfies

(Wµ)∗F =(Wµ)∗S(h)∗S(h)F

=

 bµ⊕

j=1

D
µ
G(h)




∗
(Wµ)∗FS(h), h ∈ H, (39)

from (10) and (26). Therefore,
 bµ⊕

j=1

D
µ
G(h)


 (Wµ)∗F = (Wµ)∗FS(h), h ∈ H, (40)

holds by the unitarity ofDµ
G. Using the decomposition ofDµ

G(h) in (30), Eq. (40) is
rewritten as

 bµ⊕
j=1

⊕
ν∈R(H)

αν
µ⊕

l=1

Dν
H (h)


 (Wµ)∗F = (Wµ)∗FS(h), h ∈ H. (41)

Therefore, with the matrixWµ
M in (38), Eq. (41) is rewritten as

 ⊕
ν∈R(H)

bµ⊕
j=1

αν
µ⊕

l=1

Dν
H (h)


 (W

µ
M)∗ = (W

µ
M)∗SM(h), h ∈ H. (42)

Furthermore,SM(h) andSN(h) are decomposed into irreducible representations by
unitary matrices, say,PM of orderf andPN of orderr − f , respectively. Note that
they are defined in a similar way as forZ andW in (23), andSM andSN are decom-
posed as
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P ∗
MSM(h)PM =

⊕
ν∈R(H)

bν
M⊕

p=1

Dν
H (h), h ∈ H,

(43)

P ∗
NSN(h)PN =

⊕
ν∈R(H)

bν
N⊕

p=1

Dν
H (h), h ∈ H,

with multiplicitiesbν
M andbν

N defined in (18). Substituting (43) into (42) leads to
 ⊕

ν∈R(H)

bµ⊕
j=1

αν
µ⊕

l=1

Dν
H (h)


 (W

µ
M)∗PM

= (W
µ
M)∗PM


 ⊕

ν ′∈R(H)

bν′
M⊕

p=1

Dν ′
H(h)


 , h ∈ H. (44)

In this expression, the matrix(Wµ
M)∗PM is naturally divided into some blocks as

(W
µ
M)∗PM = ((

(W
µ
M)∗PM

)
νν ′ | ν ∈ R(H), ν′ ∈ R(H)

)
, (45)

where
(
(W

µ
M)∗PM

)
νν ′ is of sizebµαν

µNν × bν ′
MNν ′

. Then, an application of Schur’s
lemma to (44) clarifies that for a pair ofµ andν satisfyingbν

M = 0,(
(W

µ
M)∗PM

)
νν ′ = O (46)

holds for allν′ ∈ R(H). This is equivalent to(Wµν
M )∗ = O. �

Combination of Lemmas 7 and 8 results in Theorem 6. Moreover, if the subsetF
defined in (21) is nonempty, the system becomes uncontrollable. Hence Theorem 4.

3. Examples

3.1. Spherical diamond system

Consider a spherical diamond system as shown in Fig. 3. It is symmetric with
respect to D6. The dihedral group Dm (m = 1, 2, . . .) of order 2m is defined as

Dm = {e, ρ, . . . , ρm−1; σ, σρ, . . . , σρm−1}, (47)

whereρm = σ 2 = (σρ)2 = e. The index set of all the irreducible representations of
Dm, denoted asR(Dm), is given by

R(Dm) =
{{

A1, A2, B1, B2, E1, E2, . . . , E(m/2)−1
}

(m is even),{
A1, A2, E1, E2, . . . , E(m−1/2)

}
(m is odd),

(48)
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Fig. 3. D6-symmetric spherical diamond system consisting of identicalm = 43 modules.

whereA1, A2, B1 andB2 are one-dimensional irreducible matrix representations,
andEi (i = 1, 2, . . .) are two-dimensional ones. The group Dm generally represents
the geometric symmetry of a regularm-gon.

The symmetry condition (4) holds forT andSdefined naturally as representations
of permutations. In this example, we assume thatn0 = r0 = 1, henceT = S follows.
The irreducible representation decomposition ofSof D6 is described as

S = 7A1 ⊕ A2 ⊕ 4B1 ⊕ 3B2 ⊕ 7E1 ⊕ 7E2. (49)

The following show D3-, D2- and D6-symmetric failures, each of which consists of
two examples: one causes the system to be uncontrollable and the other keeps the
system controllable. The system before the failures is D6-symmetric and controlla-
ble. It is worth mentioning that D3-symmetric failures in D6-symmetric ring-type
homogeneous system does not cause the system to be uncontrollable [19].

Two examples of the D3-symmetric failures are shown in Fig. 2. The restrictions
of the irreducible representations of D6 to D3 are given as

A1 ↓ D3 = A1, A2 ↓ D3 = A2,

B1 ↓ D3 = A1, B2 ↓ D3 = A2, (50)

E1 ↓ D3 = E1, E2 ↓ D3 = E1.

For the failure pattern shown in Fig. 2(a) withM = {1, 3, 5, 7, 8, 12, 16, 32, 36, 40},
the representationsSM andSN of D3 are decomposed as

SM = 4A1 ⊕ 3E1, SN = 7A1 ⊕ 4A2 ⊕ 11E1. (51)

Therefore, condition (20) holds for(µ, ν) = (A2, A2), (B2, A2). Consequently, The-
orem 4 reveals that the system is uncontrollable.

The system shown in Fig. 2(b) has the D3-symmetric failure pattern described as
M = {1, 20, 23, 24, 27, 28, 31, 32, 36, 40}. Note that the number of the functioning
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modules, i.e., the size ofM, is same as that of the system in Fig. 2(a). The represen-
tationsSM andSN are decomposed as

SM = 3A1 ⊕ A2 ⊕ 3E1, SN = 8A1 ⊕ 3A2 ⊕ 11E1. (52)

Since condition (20) does not hold for any pair ofµ ∈ R(D6) andν ∈ R(D3), the
system is likely to be controllable. In fact, Theorem 12 in Section 4 reveals that the
system is controllable.

Two examples of the D2-symmetric failures are shown in Fig. 4. The restrictions
of the irreducible representations of D6 to D2 are given as

A1 ↓ D2 = A1, A2 ↓ D2 = A2,

B1 ↓ D2 = B1, B2 ↓ D2 = B2, (53)

E1 ↓ D2 = B1 + B2, E2 ↓ D2 = A1 + A2.

For the failure pattern shown in Fig. 4(b) withM = {1, 2, 5, 8, 11, 14, 17, 32, 38},
the representationsSM andSN of D2 are decomposed as

SM = 5A1 ⊕ 3B1 ⊕ B2, SN = 9A1 ⊕ 8A2 ⊕ 8B1 ⊕ 9B2. (54)

Therefore, condition (20) holds for(µ, ν) = (A2, A2), (E2, A2). Consequently, The-
orem 4 reveals that the system is uncontrollable.

The system shown in Fig. 4(a) has the D2-symmetric failure pattern described by
M = {1, 2, 5, 22, 23, 28, 29, 35, 41}. Note that the number of the functioning mod-
ules, i.e., the size ofM, is the same as that of the system in Fig. 4(b). The represen-
tationsSM andSN are decomposed as

SM = 4A1 ⊕ A2 ⊕ 2B1 ⊕ 2B2, SN = 10A1 ⊕ 7A2 ⊕ 9B1 ⊕ 8B2. (55)

Therefore, condition (20) does not hold for any pair ofµ ∈ R(D6) andν ∈ R(D2).
The system is revealed to be controllable by Theorem 12 in Section 4.

Fig. 4. Two examples of D2-symmetric failures. (a) Controllable in spite of D2-symmetric failures.
(b) Uncontrollable because of D2-symmetric failures.
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Fig. 5. Two examples of D6-symmetric failures. (a) Uncontrollable because of D6-symmetric failures.
(b) Controllable in spite of D6-symmetric failures.

Two examples of the D6-symmetric failures are shown in Fig. 5. For the failure
pattern shown in Fig. 5(a) withM = {1, 2, . . . , 19, 32, 33, . . . , 43}, the representa-
tionsSM andSN of D6 are decomposed as

SM =6A1 ⊕ 3B1 ⊕ 2B2 ⊕ 5E1 ⊕ 5E2, (56)

SN =A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ 2E1 ⊕ 2E2.

Therefore, condition (20) holds forµ = ν = A2 ∈ R(D6). Consequently, Theorem
4 reveals that the system is uncontrollable.

The system shown in Fig. 5(b) has the D6-symmetric failure pattern described by
M = {20, 21, . . . , 31}. The representationsSM andSN are decomposed as

SM =A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ 2E1 ⊕ 2E2, (57)

SN =6A1 ⊕ 3B1 ⊕ 2B2 ⊕ 5E1 ⊕ 5E2.

Therefore, condition (20) does not hold for anyµ, ν ∈ R(D6). The system is revealed
to be controllable by Theorem 12 in Section 4.

3.2. Cubic network

Consider a cubic system as shown in Fig. 6(a). The system is symmetric with
respect to the group Oh of order 48, the symmetry group of the cube. The group is
obtained as the direct product of the octahedral group O of order 24 and the group of
reflection D1 = {e, σ }, whereσ 2 = e. The 24 elements of O are classified into five
conjugacy classes:

E = {e},
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Fig. 6. (a) An example of cubic systems. (b) The system retains its controllability despite the D3-sym-
metric failures. (c) The system becomes uncontrollable because of the D2h-symmetric failures. (d) The
system retains its controllability despite the D1-symmetric failures.

C2
4 = {three rotations ofπ about fourfold axes},

C2 = {six rotations ofπ about twofold axes},
C4 = {three rotations ofπ/2 and three rotations of 3π/2 about fourfold axes},
C3 = {four rotations of 2π/3 and four rotations of 4π/3 about threefold axes},

according to the notation of [13]. The index setR(O) of the irreducible representa-
tions of O is given by

R(O) = {A1, A2, E, T1, T2},
whereA1 is the one-dimensional unit representation,A2 is a nonunit one-dimension-
al representation,E is a two-dimensional irreducible representation, andT1 andT2
are three-dimensional ones. The products of elements in O with those of D1 produces
the 48 elements of Oh. The index setR(Oh) of the irreducible representations is then
given by

Table 1
The character table of the octahedral group Oh

E C2
4 C2 C4 C3 E′ C2

4
′

C2
′ C4

′ C3
′

A1 1 1 1 1 1 1 1 1 1 1
A2 1 1 −1 −1 1 1 1 −1 −1 1
E 2 2 0 0 −1 2 2 0 0 −1
T1 3 −1 −1 1 0 3 −1 −1 1 0
T2 3 −1 1 −1 0 3 −1 1 −1 0

A′
1 1 1 1 1 1 −1 −1 −1 −1 −1

A′
2 1 1 −1 −1 1 −1 −1 1 1 −1

E′ 2 2 0 0 −1 −2 −2 0 0 1
T ′

1 3 −1 −1 1 0 −3 1 1 −1 0
T ′

2 3 −1 1 −1 0 −3 1 −1 1 0
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R(Oh) = {A1, A2, E, T1, T2, A
′
1, A

′
2, E

′, T ′
1, T

′
2}.

The character table of the octahedral group Oh is given in Table 1.
The system matricesA andB for the cubic system (Fig. 6(a)) are given as

A=




P Q O Q Q O O O

Q P Q O O Q O O

O Q P Q O O Q O

Q O Q P O O O Q

Q O O O P Q O Q

O Q O O Q P Q O

O O Q O O Q P Q

O O O Q Q O Q P




,

(58)

B=




K O O O O O O O

O K O O O O O O

O O K O O O O O

O O O K O O O O

O O O O K O O O

O O O O O K O O

O O O O O O K O

O O O O O O O K




.

The symmetry condition (4) holds forT andSdefined naturally as representations of
permutations. In this example, we assume thatn0 = r0 = 1, henceT = S follows.
The irreducible representation decomposition ofSof Oh is described as

S = A1 ⊕ T2 ⊕ A′
1 ⊕ T ′

2. (59)

We deal with three cases of failures as examples: a D3-symmetric failure, a D2h-
symmetric one and a D1-symmetric one. The group Dm (m = 1, 2, . . .) is defined
in (47) and the group D2h of order 8 is defined as the direct product of D2 and
D1. The index setR(D2h) of the irreducible representations is given byR(D2h) =
{A,B1, B2, B3, A

′, B ′
1, B

′
2, B

′
3}, with the obvious meaning of primes.

An example of the first case with D3-symmetric failure is shown in Fig. 6(b) with
M = {2, 4, 5} andN = {1, 3, 6, 7, 8}. The restrictions of the irreducible representa-
tions in (59) to D3 are

A
Oh
1 ↓ D3 = A

D3
1 , A

′Oh
1 ↓ D3 = A

D3
1 ,

T
Oh
2 ↓ D3 = A

D3
1 + E

D3
1 , T

′Oh
2 ↓ D3 = A

D3
1 + E

D3
1 ,

whereµOh denotes an index inR(Oh) andνD3 denotes an index inR(D3). The super-
scripts toµ andν are omitted if there is no danger of confusion. The representations
SM andSN of D3 are decomposed as

SM = A1 ⊕ E1, SN = 3A1 ⊕ E1. (60)
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Since condition (20) is not satisfied by any pair ofµ ∈ R(D6) andν ∈ R(D3), The-
orem 4 indicates that the system is likely to be controllable. In fact, Theorem 12,
which will be shown in Section 4, reveals that the system is controllable. Thus, the
system turns out to retain its controllability despite the D3-symmetric failure with
M = {2, 4, 5}.

The second case is where the failure pattern is symmetric with respect to D2h.
An example of the D2h-symmetric failure patterns is shown in Fig. 6(c) withM =
{3, 4, 5, 6} andN = {1, 2, 7, 8}. The restrictions of the irreducible representations in
(59) to D2h are

A
Oh
1 ↓ D2h = AD2h, A

′Oh
1 ↓ D2h = B

′D2h
3 ,

T
Oh
2 ↓ D2h = AD2h + B

D2h
1 + B

D2h
2 , T

′Oh
2 ↓ D2h = B

′D2h
1 + B

′D2h
2 + B

′D2h
3 .

The representationsSM andSN of D2h are decomposed as

SM = A ⊕ B1 ⊕ B ′
2 ⊕ B ′

3, SN = A ⊕ B2 ⊕ B ′
1 ⊕ B ′

3. (61)

Since condition (20) holds for(µ, ν) = (T2, B2), (T
′
2, B

′
1), Theorem 4 reveals that

the system is uncontrollable.
The third case is where the failure pattern is symmetric with respect to D1. An ex-

ample of the D1-symmetric failure patterns is shown in Fig. 6(d) withM = {1, 2, 3}
andN = {4, 5, 6, 7, 8}. The restrictions of the irreducible representations in (59) to
D1 are

A
Oh
1 ↓ D1 = A

D1
1 , A

′Oh
1 ↓ D1 = A

D1
1 ,

T
Oh
2 ↓ D1 = 2A

D1
1 + A

D1
2 , T

′Oh
2 ↓ D1 = 2A

D1
1 + A

D1
2 .

The representationsSM andSN of D1 are decomposed as

SM = 2A1 ⊕ A2, SN = 4A1 ⊕ A2. (62)

Since condition (20) does not hold for any pair ofµ ∈ R(Oh) andν ∈ R(D1), the
system is expected to be controllable. Actually, Theorem 12 in Section 4 confirms
its controllability.

4. Sufficient condition for controllability

The main theorem of the present paper (Theorem 4) describes only a necessary
condition for the controllability of aG-symmetric system after anH-symmetric
failure. This section discusses sufficient conditions. The main result of this section,
giving a sufficient condition for the controllability after some failures, is shown in
Theorem 12, which has been applied to determine the controllability of the systems
in Figs. 2(b), 4(a) and 5(b) in Section 3.1. We will then discuss the relationship be-
tween the sufficient condition in Theorem 12 and the necessary condition in Theorem
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4, and clarify that the condition in Theorem 4 is necessary and sufficient ifH = G,
that is, ifG-symmetric failures occur inG-symmetric systems as is the case in Fig. 5.

Our concern in this section is the controllability of theG-symmetric system after
some failures. The symmetry of the system(A,B) has been defined in terms of Eq.
(4) for the groupG and its unitary representationsT andS. We consider a generic
system subject to this symmetry constraint. Since(A,B) satisfies this symmetry
constraint if and only ifA andB are decomposed as (28), the genericity with respect
to the symmetry condition (4) is equivalent to the genericity of the matricesAµ and
Bµ in (28) in the sense that all of their entries are independent parameters. It should
be emphasized that the following discussion is based on the genericity under the
symmetry.

The controllability of theG-symmetric system(A,B) after a failureF is equiv-
alent to that of system (34). Note that the matricesAµ andAµ′

(µ /= µ′) have no
common eigenvalues by their genericity. The discussion above, together with the
well-known lemma below, leads us to Lemma 10.

Lemma 9. Suppose the matrices A and B for a system(A,B) are given as

A =
[
A1 O

O A2

]
, B =

[
B1
B2

]
,

and square sub-matricesA1 and A2 have no common eigenvalues. Then the sys-
tem(A,B) is controllable if and only if two subsystems(A1, B1) and (A2, B2) are
controllable.

Lemma 10. A generic G-symmetric system(A,B) remains to be controllable by a
failure F if and only if(

⊕Nµ

k=1 Aµ, (
⊕Nµ

k=1 Bµ)(Wµ)∗F) is controllable for eachµ
satisfyingaµ /= 0.

Accordingly, we are to investigate the sufficient condition for the controllability
of the subsystem(

⊕Nµ

k=1 Aµ, (
⊕Nµ

k=1 Bµ)(Wµ)∗F) for µ with aµ /= 0.
A sufficient condition for the controllability of a system(

⊕N
k=1 A, (

⊕N
k=1 B)W∗)

in general is given in the following, which serves as a key technical lemma of this
section. The controllability of the system will be proved with reference to the rank
of Cm(A,B) = [A − λI | B] , λ ∈ C, the modal controllability matrix of the system
(A,B).

Lemma 11. Consider a system(Ā, B̄) with the matricesĀ andB̄ given as

Ā =
N⊕

k=1

A =




A

A

ð
A


 ,

(63)
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B̄ =
(

N⊕
k=1

B

)
W∗ =




B(W1)∗
B(W2)∗

...

B(WN )∗


 ,

where A ∈ Ca×a, B ∈ Ca×b, and W = (Wk | 1 6 k 6 N) ∈ Cf×bN with Wk =
(wk

j | 1 6 j 6 b) ∈ Cf×b. Suppose that A and B are fully dense generic matrices.

Then, the system(Ā, B̄) is controllable if there exists an integerj (1 6 j 6 b) such
that

rankW∗
j = N, (64)

where

W∗
j =




(w1
j )

∗

(w2
j )

∗
...

(wN
j )∗


 ∈ CN×f .

Proof. The modal controllability matrix of the system(Ā, B̄) is given as

Cm(Ā, B̄)

=




A − λI B(W1)∗
A − λI B(W2)∗

. . .
...

A − λI B(WN )∗


 , λ ∈ C. (65)

If the equation[
n∗

1 n∗
2 · · · n∗

N

]
Cm(Ā, B̄) = O (66)

holds only for[n∗
1n

∗
2 · · · n∗

N ] = O, wherenk ∈ Ca (1 6 k 6 N), the modal control-
lability matrix is of full row-rank, and thus the system(Ā, B̄) is controllable.

Eq. (66) is equivalent to

n∗
k(A − λI)=O (1 6 k 6 N), (67)

N∑
k=1

n∗
kB(Wk)∗ =O. (68)

Eq. (67) shows thatn∗
k (1 6 k 6 N) are left eigenvectors ofA for the eigenvalueλ.

By the assumed genericity ofA, the eigenspace for an eigenvalue is one-dimensional.
Therefore, the vectorsnk (1 6 k 6 N) are given asnk = αkn with αk ∈ C and a
nonzero vectorn ∈ Ca satisfyingn∗A = λn∗. Then Eq. (68) is rewritten as
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N∑
k=1

αkg
∗(Wk)∗ = O, (69)

whereg ∈ Cb is given as

g∗ = n∗B. (70)

From condition (64), there exists an integerj0 (1 6 j0 6 b) such that rankW∗
j0

=
N . Therefore, the matrixW∗

j0
containsN independent columns with the column

indices{i1, i2, . . . , iN }, for which

detW∗
j0

[i1, i2, . . . , iN ] /= 0, (71)

rankW∗[i1, i2, . . . , iN ] = N, (72)

whereW∗
j0

[i1, i2, . . . , iN ] andW∗[i1, i2, . . . , iN ] denote the submatrices obtained
by takingN columns indexed by{i1, i2, . . . , iN } of W∗

j0
andW∗, respectively. From

Eq. (72), Eq. (69) containsN independent equations

N∑
k=1

αkg
∗(Wk)∗[il] = O (l = 1, 2, . . . , N).

This is a system ofN equations inN variables{αk | 1 6 k 6 N}. If (α1, α2, . . . , αN)

/= (0, 0, . . . , 0), the coefficient matrix must be singular, i.e.,

det(g∗(Wk)∗[il] | 1 6 k, l 6 N) = 0 (73)

holds. The left-hand side of Eq. (73) is a nontrivial polynomial ing∗ = (η1, η2, . . . ,

ηb), since the coefficient of the termηN
j0

in det(g∗(Wk)∗[il]) in (73) is equal to (71).
Hence, (73) describes a nontrivial algebraic relation among the elements ofA and
B, sinceg∗ defined in (70) is obtained by the eigenvectorn of A and the matrixB.
However, this is a contradiction to the genericity ofA andB. Therefore,g∗ = 0 which
leads ton = 0 and thus the controllability of the system(Ā, B̄) is proved. �

Thus, the following theorem, giving a sufficient condition for the controllability,
is obtained.

Theorem 12. A generic G-symmetric system(A,B) retains its controllability in
spite of a failure F, if, for eachµ ∈ R(G) satisfyingaµ /= 0, there exists an integer
jµ (1 6 jµ 6 bµ) such that

rank
(
W

µ
jµM

)∗ = Nµ. (74)
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Proof. Apply Lemma 11 to each subsystem
(⊕Nµ

k=1 Aµ,
(⊕Nµ

k=1 Bµ
)
(W

µ
M)∗

)
corre-

sponding toµ. �

Condition (74) means that the projection of the basisW
µ
jµ

of an invariant subspace

U
µ
jµ

in (22) onto the space of effective inputsCf still serves as a basis.
In the examples in Section 3, such as Figs. 2(b), 4(a), and 5(b), the systems have

been shown to be controllable by Theorem 12.
It is mentioned that the converse of the statement of Lemma 11 is not always true,

as follows.

Example 13. Consider a system(A,B) given as

A = α, B = [
β1 β2

]
, N = 3, W∗ =




1 0 0
0 0 1
0 1 0
0 0 0
1 0 0
0 0 2




.

Since rankW∗
j < N for all j ∈ {1, 2}, the condition is not satisfied. However,B̃ is

calculated as

B̃ =

β1 0 β2

0 β1 0
β1 0 2β2


 ,

and thus the system is generically controllable.

In the case ofH = G, the necessary condition in Theorem 4 turns out to be also
sufficient for the controllability of the system.

Theorem 14. A generic G-symmetric system(A,B) remains to be controllable in
spite of a G-symmetric failure F if and only if there exist no absolutely irreducible
representationsµ of G such that

aµ /= 0, b
µ
M = 0, (75)

whereb
µ
M is the multiplicity ofµ in the representationsSM of G.

Proof. The necessity has been shown in Theorem 4.
Since the system after the failure is alsoG-symmetric, the representationsS(g) of

G are given as

S(g) = SM(g) ⊕ SN (g), g ∈ G, (76)

whereSM andSN are also representations ofG (cf. (12)). The representationsSM(g)

andSN (g) are decomposed into a direct sum of irreducible representations as



170 R. Tanaka, K. Murota / Linear Algebra and its Applications 318 (2000) 145–172

W∗
MSM(g)WM =

⊕
µ∈R(G)

b
µ
M⊕

j=1

Dµ(g), g ∈ G,

(77)

W∗
NSN(g)WN =

⊕
µ∈R(G)

b
µ
N⊕

j=1

Dµ(g), g ∈ G,

by unitary matricesWM andWN , respectively, where the nonnegative integersb
µ
M

andb
µ
N are the multiplicities ofµ in SM andSN , respectively and thusbµ = b

µ
M +

b
µ
N holds. Moreover,bµ

M /= 0 holds forµ satisfyingaµ /= 0 since there exist no irre-
ducible representationsµ of G which satisfy (75). The controllability of the system
(A,BF ) after the failureF is to be proved by the controllability of the subsystems
(
⊕Nµ

k=1 Aµ, (
⊕Nµ

k=1 Bµ)(Wµ)∗F) for eachµ satisfyingaµ /= 0 by Lemma 10.
Corresponding to the decomposition ofS(g) in (76), W in (23) is given here as

W = WM ⊕ WN . The matrixWµ is then described as

Wµ =
[
W

µ
M O

O W
µ
N

]
,

whereWM = (
W

µ
M | µ ∈ R(G)

)
, WN = (

W
µ
N | µ ∈ R(G)

)
with W

µ
M ∈ Cf ×b

µ
MNµ

andW
µ
N ∈ C(r−f )×b

µ
NNµ

, and thus

(Wµ)∗F =
[
(W

µ
M)∗ O

O O

]
.

Consequently, we are to prove the controllability of the subsystem(
Nµ⊕
k=1

Aµ,

(
Nµ⊕
k=1

Bµ

)[
(W

µ
M)∗
O

])

on the basis of Lemma 11. Corresponding to the block structure of(
⊕Nµ

k=1 Bµ), the
matrixW

µ
M is divided into

W
µ
M =

(
w

µ
Mkj | 1 6 k 6 Nµ, 1 6 j 6 b

µ
M

)
,

wherew
µ
Mkj ∈ Cf . Since the matrixWM has been chosen to be unitary, the vectors

{wµ
Mkj | 1 6 j 6 b

µ
M, 1 6 k 6 Nµ} are mutually independent. Note thatW

µ
Mj ∈

Cf ×b
µ
M defined as

W
µ
Mj = (w

µ
Mkj | 1 6 k 6 Nµ)

is the base of an invariant subspace forµ, and thus
rankW

µ
Mj = Nµ

holds for all j (1 6 j 6 b
µ
M), whereb

µ
M /= 0 by the assumption. Consequently, the

subsystem is controllable by Lemma 11.�
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5. Conclusion

This paper has discussed the fault-tolerance of symmetric systems with respect
to controllability. We consider the controllability of a system as a characteristic that
should be retained despite failures in some control channels, and have revealed the
underlying mathematical mechanism of the loss of controllability for symmetric sys-
tems induced by failures. The main result has been clarified in the form of a necessary
condition for symmetric systems to retain their controllability in spite of symmetric
failures. In the discussion, the standard results in group representation theory have
been properly applied. In particular, the irreducible representations have played an
important role in order to decompose the symmetric system into subsystems. More-
over, a sufficient condition for the controllability despite the symmetric failures
has been also discussed based on the genericity of the subsystems. The condition
has been revealed to be necessary and sufficient ifG-symmetric failures occur in
G-symmetric systems. Further study on the controllability of symmetric systems
can be found in [20,21].
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