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Abstract

This paper discusses the fault-tolerance of symmetric systems with respect to controlla-
bility, which is a fundamental characteristic of control systems. In particular, we reveal the
underlying mathematical mechanism of the loss of controllability for symmetric systems in-
duced by failures. Based on the decomposition of the symmetric systems into subsystems
under the symmetry, the controllability of the entire system can be discussed by checking that
of each subsystem. The analysis of the fault-tolerance in this paper is an extension of this
idea with the aid of the chain-adapted transformation matrix for the decomposition. The result
is shown as a necessary condition for symmetric systems to retain the controllability despite
some symmetric failures. We also discuss sufficient conditions. © 2000 Published by Elsevier
Science Inc. All rights reserved.
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1. Introduction

Mathematical treatment of the symmetry found in various phenomena is system-
atized based on the group theory. From this standpoint, great deal of researches in
diverse fields have been considerably developed, for instance, in bifurcation theo-
ry [3,15], quantum mechanics [23], crystallography [25], chemical molecular sys-
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tems [10], structural engineering [7] and so on. Also in the field of control theory,
scattered researches have been carried out concerning the control of group-theoretic
symmetric systems [4,5,8,14,16]. In [5], it is shown that the characteristics of the
symmetric systems can be investigated by those of subsystems obtained by the de-
composition based on the group-theoretic symmetry. In addition, Refs. [12,18,19,24]
have considered decentralized control systems composed of identical modules that
are connected with certain regularity. In such systems, the symmetry of the entire
system results from the homogeneity of the constituent modules and the regularity
of their connections.

For control systems in general, practical importance of the fault-tolerance has
been fully recognized. That is, the systems are desired to retain some characteristics
in spite of some failures. There are largely two approaches in fault-tolerant control
systems design. The first is by the synthesis of controllers for a given plant to make
the entire system fault-tolerant [2,17,22]. The second is by the appropriate design
of the plants themselves before the design of the controllers, in order to achieve the
fault-tolerance as a whole. Relating to the latter idea, there are some studies on the
adjustment of design parameters of plants to increase the fault-tolerance [11].

As for the fault-tolerance of symmetric control systems, there are only studies
on the graph-theoretic connectivity [1,6,9] and few researches on the control the-
oretic characteristics. This paper will discuss the fault-tolerance of symmetric sys-
tems with respect to controllability, which is a fundamental characteristic of control
systems. We consider the controllability of a system as a characteristic that should
be retained in spite of failures in some control channels, and clarify those failures
which cause the symmetric system to lose its controllability. A first attempt in this
direction is found in [19], where the fault-tolerance of some symmetric systems has
been evaluated. The analysis has revealed the failure patterns that make the systems
uncontrollable. Whereas Ref. [19] has dealt with the restricted class of symmetric
systems whose symmetry as a whole originates in the identity of the modules and
certain regularity of their connections, the present paper will be concerned with sys-
tems with more general symmetry. Based on the decomposition of the symmetric
systems into subsystems under the symmetry, the controllability of the entire system
can be discussed by checking that of each subsystem [5]. The analysis of the fault-
tolerance in this paper is an extension of this idea with the aid of the chain-adapted
transformation matrix for the decomposition.

An interesting relationship between the symmetry and the fault-tolerance has been
observed in [19]. That is, when some failures cause a symmetric system to be un-
controllable, the system after the failures has certain symmetry as well. For example,
consider a system that consists of nine identical modules connected in a ring as
shown in Fig. 1(a). It is symmetric with respect ta /D rotations. The arrows in
the figure represent effective inputs. Then, the failures shown in Fig. 1(b) turn out to
cause the system to be uncontrollable, where the modules without the arrow are in the
outage. As can be seen from the figure, the system after the failures retains a partial
symmetry, being symmetric with regard te 23 rotations. Conversely, if the system
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(a) (b) (0

Fig. 1. (a) A symmetric system consisting of nine identical modules connected in ring-type. The
arrows represent the effective control inputs. (b) The system is also symmetric but becomes uncontrollable
because of the failures. (c) The system is not symmetric and retains its controllability in spite of the
failures.

after failure is completely nonsymmetric, the entire system keeps its controllability
(Fig. 1(c)). Note that the partial symmetry in the symmetric system results from
the symmetric failures. From the observation above, we can deduce that symmetric
failure patterns tend to cause the symmetric systems to lose their controllability. Now,
a question comes about if all the symmetric failures cause general symmetric systems
to be uncontrollable or not.

The example below (Fig. 2) illustrates our main result in this paper: Consider a
symmetric spherical diamond system. According to our result, the system shown in
Fig. 2(a) turns out to be uncontrollable because of the symmetric failures, where-
as the system shown in Fig. 2(b) turns out to retain its controllability despite the
symmetry in the failures. Note that the both systems shown in Fig. 2 are symmetric
regarding z /3 rotations. Based on the group representation theory, the present paper
will reveal the underlying mathematical mechanism of the loss of controllability for
symmetric systems induced by failures.

The outline of this paper is as follows. In Section 2, we show the main results
that reveal the mechanism of the loss of controllability for systems with general
symmetry. There, the standard results in the group representation theory are properly
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Fig. 2. Two examples of Bsymmetric failures. (a) Uncontrollable because af$ymmetric failures.
(b) Controllable in spite of B-symmetric failures.
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applied to the discussion of the control theoretic characteristics, i.e., the controllabil-
ity specifically. The result is shown as a necessary condition for symmetric systems
to retain the controllability. Section 3 provides some examples of the main results
for systems with other symmetries. In Section 4, we discuss sufficient conditions
for the controllability of symmetric systems after some symmetric failures. Finally,
concluding remarks are given in Section 5.

2. Group theoretic treatment of failure in symmetric systems
2.1. Symmetric failures in symmetric systems

As explained in Section 1, the main concern of this paper is to reveal the math-
ematical mechanism of the loss of controllability for symmetric systems caused by
symmetric failures. In this section, we will formulate the notions of symmetric sys-
tems and symmetric failure patterns in precise terms.

Consider a linear time-invariant systeffi that consists ofn control modules
{1, L2, ..., %n}, each of which has its own control channel. The entire system
& is then described by

X1 A1 A1z - A | [Xxa
X2 Ap1 Az - Agy || X2
Xim Aml Am2 0 Aum | Xim
Bi1 B2 -+ Biy |[u1
Bz1 B2z -+ Boy uz
+1 . . . s (1)
Bui  Bm2 - Bmm_ U

wherex; (1) € R" andu; () € R denote the state of/; and the input from its
control channel, respectively, witR" being the set of real vectors of dimensian
By denoting the state and the input of the entire sysféims

X1 uz
X2 uz

X=|.|eR" u=| . |eR, (2)
Xm um

respectively, Eq. (1) can be given in the standard form of a state transition equation:
X(t) = AX(t) + Bu(z). 3)

Among the systems described by (3), we are interested in ones with group-theoretic
symmetry. We say that systef8) is symmetric with respect to a finite groGif
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T(e)A=AT(g), T(g)B=BS(g), g€G, 4)

whereT andSare unitary representations Gfon R” andR”, respectively (see e.g.,

[13] for group representation theory). Eq. (4) often reflects the underlying geometric
symmetry in the system structure. It should be mentioned here that we are interested
in the characteristics of a system determined by its symmetric structure and not by
the numerical information of the system matriéeandB.

Example 1. The formulation above is illustrated for a ring-type homogeneous sys-
tem, as shown in Fig. 1(a), consisting of nine identical modutes= 9) with n; =
noandr; = rg (1 <i < 9). The matriced\ andB in (3) are given as

P 0 0 0 0 0 O 0 0
O P Q O O O O O O
O 0 P Q O 0 O O O
0O 0 0 P Q O O O O

A=lo o o o0 P Q o0 o o,
0O 0 0 0O 0 P Q O O
O 0 0 0 0O Q P Q O
0O 0 0 0 0 0 Q P O
0 0 0 0 0 0 0 Q P| 5)
K 0 0 O 0 O O 0 O]
O K 0 0 O 0 0 O O
0O 0 K 0 0O 0 0 O O
O 0 0 K 0 0 0 O O

B=|lo o0 0 0 kK 0O O 0 o0
O 0 0 0 0 K 0 O O
0O 0 0 0 0 0 K O O
0O 0 0 0 0O 0 0 K O
0O 0 0 0 0 0 0 O K

where the modules¥;} (1 <i < 9) are indexed clockwise from an arbitrary mod-
ule. The matrice® andQin (5) areng x ng andKisng x ro. The system is therefore
symmetric with respect to the dihedral group.rhe dihedral group B of order
18, is defined by

Dg:{e,p,pz,...,ps;a,a,o,...,Ups} (6)

with p° = 02 = (op)? = e (eis the identity element). The group@enerally rep-
resents the geometric symmetry of a regular nonagon. The represenfations
(4) for Dg are given by
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O 0 0 0 0 0 0 0 I
I O O O O O O 0 O
o I O O O O O 0 O
o o I 0O O O O 0 O
T(p)=l0 0o o I O O O 0 0],
o o o o I O O 0 O
o o o0 0O O I O 0 O
O 0O o0 0O O O I 0 O
lo o0 o 0o 0 0o o0 I O] Ko
(1 o o O O O O O O]
o 0 o0 0O 0 0 o0 0 I
O 0O O 0O O O O I O
O 0O 0o 0O O O I 0 O
Te)=l0 0 0 O o0 I O 0 0],
o 0o o o I O O 0 O
o o o I O O O 0 O
o o I 0O O O O 0 O
o I 0 0 0 0 O 0 O]

wherel denotes the unit matrix of ordep.

In order to discuss the fault-tolerance of the symmetric systems, we restrict the
failure to that of the control channels. Generally, if a control channel of the module,
say.¥;, is in the outage or replacement, the control inpyt) has no influence on
statex(z). This situation is described in the mathematical model (1) by

u;(t) =0 (¥ isinthe outage) (8)

According to the failure defined in (8), I&t andN denote the index sets of the func-
tioning modules and of the modules in the outage, respectivéin(N = ¢4, M U
N ={1,...,m}). The failure pattern of the system is thus described by the pair of
M andN. In addition, we introduce the failure matixof orderr in such a way that
the matrixBF has zero column blocks that correspond to the control channels in the
outage. Such a matrix is given byF = @@} ; F; with

F‘ _ Ir; (l € M)7

T Or; (l € N)7

where the matricek andOy, denote, respectively, the unit matrix and the zero matrix
of orderk in general. This means

F=Fy®Fy=1;® 0,y 9)

with Fyy = @jepy Fi =15 Fn = @iy Fi = Or—y, f =) ;e i, by an appro-
priate permutation of the indices of the modules. Note that any failure pattern can be
given in the form of (9) and that the system after the failures is denotéd,asF).
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The symmetry of a failure pattern can then be formulated similarly to (4) for the
matrixF in (9). A failure patterrf is said to be symmetric with respect to a subgroup
Hof Gif

S(h)F = FS(h), he H. (10)

Note that the symmetry of failure patterns is defined with respect to a subfroup
of G. Given a subgroupl of G, we have a set of failure patterfghat satisfy (10).
Conversely, for a giveF,

H(F)={geG|S(@QF =FS(@)} 11)

is a subgroup ofs and can be chosen as the subgrbuip (10).
From the assumption above, the form of the unitary representation maf(ices
satisfying (10) is restricted to

S(h) = Su(h) ® Sy(h), heH, (12)

whereS,; (h) is of orderf andSy (k) is of order(r — f), corresponding to the blocks
of F in (9). Namely, the representation matriceg:) in (10) splits into diagonal
blocks forallh € H.

Example 2. The formulation above is illustrated for the system shown in Example
1 (Fig. 1(b)). The matriced andB are given in (5) and the corresponding matrix
representation¥ (g) in (4) are given in (7). Similarly, representation matricgg)
for (4) are given as (7), withdenoting the unit matrix of ordet.

The failure pattern of the system is describedy= {1, 4, 7} andN = {2, 3, 5,
6, 8, 9}. Whereas the systefd, B) is symmetric with respect to the dihedral group
Do, the failure is symmetric with respect tgB- {e, p2, p°; o, 03, 0p®}, which is
a subgroup of .

The failure matrix is given by

~
Il

(13)

O©CoOoO~NOOOUOTLDdWN P
SRR RS N N
SRS RS RS RS RS ISR
OO0V Jw
QOO ~O QO
QOO
SESECESES RS RS ES RPN
QO~00QQQ Q|
SESECECECEGECREGR S
SESESESESECESENEN IS

which satisfies (10) foFf = D3 with
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(14)

QO ~ QO QO OO S~ Q0 O QO O O
O~ Q0 O QO T QO ~ Q0 OO ST
~ Q0 QO O O © O QO O~ Q0 ST
S QOO O O O ~ QOO ~0Q0 SO
QOO OO OO~ QOO OO ~Q QO
SO OO OO ~0Q 0 SO OO OO ~0Q 0
QOO OO ~Q QO QOO OO ~0
QO OO ~O QO QSO O O QOO ~
SO0~ 0 0 O OO ~ QO O O © O O O O

A permutation of the modules makes the makii (13) into the form of (9) as

(15)

o O O O O O

o o|o0o O O O O O

1

o|lo O O O O O

1

o o o|lo O O O O O

1

0

0o 0O

o o o|lo O O O O O
o o o|0 O O 0 0 O
o o o|lo O O O O O

7
2

3|0 o o|l0 O O O O O

5
6
8

9]0 0o o|l0 O O O O O

Accordingly,Sin (14) takes the form of (12):
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1 4 7 2 3 5 6 8 9
110 o 1|0 O O O O O
4|11 o0 o|0 O O O O O
710 I O|O0 O O O O O

S(p?) :2 o o o|o0o o O O I O

3|o o o|0o O O O O 1YV
5/0 o o1 O O O O O
6|l0 0O o|0o I O O O O
8/lo 0o o|o o I O O O
9|0 0o o|0 O O I O O (16)

1 4 7 2 3 5 6 8 9
117 o o|lo0o O O O O O
410 o I |0 O O O O O
710 I O|0O0 O O O O O

(o) =2 o o o|0 oOo O O o0 I

3|0 0O Oo|0 O O O I OFf
5|0 0o o]0 O O I O O
6|l0 O o|0 O I O O O
8/lo o o|o I O O O O
9970 o o1 O O O O O

Remark 3. From Egs. (4) and (10), the system after the failyesBr) with Bp =
BF is also symmetric with respect tdin the sense of (4), since

T(h)A = AT(h), T(h)Br = BrS(h), heH.

Therefore, the symmetry of the original system and that of the failure patterns yield
a partial symmetry of the system after the failures.

Our concern in the present paper is whether the controllability is retained in the
symmetric system after some symmetric failures. The main result shown below will
clarify that the group$ andH and the representatidhof G play a crucial role to
determine the rank of the matri&(A, BF), where% (A, B) = [B AB --- A" 1B] is
the controllability matrix of a systertd, B).

2.2. Main result

The main result of this paper is stated in this section in the form of Theorem 4,
which gives a group-theoretic condition for the controllability afteiHaaymmetric
failure in aG-symmetric system.

In the following, we consider the state spate~ C" and the input spac#& ~
C’ for the simplicity of mathematical treatmehglthough the systems formulated

1 Namely, we consider the complexificationssfand.
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above are described on real spaces. The family of all nonequivalent absolutely ir-
reducible matrix representations Gfis denoted by{Dg | u e R(G)}, whereDg

is a unitary irreducible matrix representation, of dimensih, over C and R(G)

is the index set for the absolutely irreducible representatiors. dfet the repre-
sentationsl'(g) and S(g) of G be decomposed into diagonal blocks of irreducible
representations (see (27)) as

T = Z atu, S= Z b*u, (17)

HER(G) MER(G)

where the nonnegative integer8 and b are the multiplicities ofu in T and S,
respectively.

Consider arH-symmetric failureF, whereH is a subgroup ofs. The family
of all nonequivalentirreducible matrix representationkia$ denoted by D}, | v €
R(H)}, where the dimension db}, is denoted byv". Let the representatiorss, ()
andSy (h) of H, defined in (12), be decomposed into diagonal blocks of irreducible
representations as

Su= Y byv. Sy= Y biv (18)

veR(H) VER(H)

with the multiplicitiesb), andby, of v in Sy, andSy, respectively.

An important technical ingredient in our argument is the use of chain-adapted
bases with respect 16 and its subgroupl. Let the restriction of irreducible repre-
sentationg:. of G to H be described as

wliH= ) o pneRG), (19)
veR(H)

with nonnegative integets, representing the multiplicity of in x | H, the restric-
tion of u to H.

Then, a necessary condition of group-theoretic nature for the controllability is
obtained as follows. The proof will be given in Section 2.3.

Theorem 4. A G-symmetric systelfi, B) retains its controllability in spite of an
H-symmetric failure F only if there exists no pair ©firreducible representatiom
of G andv of H such that

a"#0, a,#0, by =0, (20)
wherea, ) andb;, are defined by17), (19)and(18),respectively.

The three conditions in (20) are concerned witithe pair ofG andH, andS
respectively. Condition (20) often turns out to be sufficient, as we will see later in
Section 4. Therefore, as a rule of thumb, we may hopefully expect that the sys-
tem retains its controllability if condition (20) is not satisfied by ang R(G) and
v e R(H).
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Remark 5. Whereas the conditions in (20) are given foiirreducible representa-
tionsu of G andv of H, it is noted that the same statement of Theorem 4 holds true
whenC-irreducibility is replaced byR-irreducibility.

Moreover, the following theorem is derived concerning the rank deficiency of the
controllability matrix byH-symmetric failures.

Theorem 6. By an H-symmetric failure in a G- symmetric systéhe rank of the
controllability matrix is reduced at least bZ(M mer alay N, whereF denotes the
family of all the pairs(u, v) which satisfy(20),i.e.,

F={(u.v) € R(G) x R(H) | a" # 0,a}, # 0, b}, =0} . (21)
Theorem 6 implies that &-symmetric systeni{A, B) becomes uncontrollable

by anH-symmetric failureF if the subsef is nonempty, which is the statement of
Theorem 4.

2.3. Proofs

We prove Theorems 4 and 6. The spag¢esnd% are decomposed as direct sums
of the invariant subspaces corresponding)(::q which is (often) abbreviated tb*,
as

alt b*
S B - @ B @)

HER(G) i=1 HER(G) j=1
where the nonnegative integer$ andb* are the multiplicities. We define two uni-
tary matrice< of ordern andW of orderr as

Z=(Z"|peRG), W=(W'|ueRG), (23)
where

Zh=(Z! |1<i<at) eV, (24)
Wh=(WE 1< j < by e Cr N,

with z!* e €N andw!" € C™M" being sets of bases af.' and%"!, respective-
ly. Note that the unitarity of andSallows us to choose the matricBendW to be
unitary overC, i.e.,Z*Z = I, andW*W = [, whereZ* andW* are the transposed
conjugate matrices af andW, respectively. Sinc&!* and Wj‘.‘ are bases ot and

Y5, respectively,

T(9)Z; = Z{D"(g), S@W; =W;D"(g), g€, (25)
holds and thus
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T(9)Z" = 7" (EB Dﬂ(g)) :
i=1 (26)
bt
S@wr=wr| EPphe) |, g€,
j=1

where@fﬁl D*(g) denotes a block-diagonal matrix consistingadtf identical di-
agonal block*(g). Then the representatiofigg) andS(g) of G are decomposed
by Z andW into diagonal blocks of irreducible representations as

at
zT@Z= @ P,
HER(G) i=1 27)
b
wisW= P Prie. gcG
HER(G) j=1

From (4) and (27), the system matrickendB are also block diagonalized by the
same matriceg andW, from Schur’s lemma, as

NI NH
A=zaz= P Pa. B=zBw= Pp PHs" (28)
WER(G) k=1 WER(G) k=1
with matricesA# e C* " andB* € C*'*¥". Note thatd®}", A* in (28) denotes
a block-diagonal matrix consisting of* identical diagonal blockd*.
We can take the matriW]‘.‘ (1 < j < b%)in(24) compatibly with (19) so that it
is further decomposed as

Wit = (W)™ | v e R(H)) (29)

with eachW]‘.” e N being a set of bases of the invariant subspace correspond-
ing to v € R(H). Such basisW = (W} | u € R(G),1< j <b*,v e R(H)) is

said to be chain-adapted with respect@oand its subgrougH, which is a key
technical ingredient of the proof. Consequently, with the chain-adapted w%ées

in (29), the irreducible matrix representatiD@ (g) in the second expression of (27)

is decomposed as

%
Dithy = P @by, heH, (30)
veR(H) =1
that s,

i ozl‘i
wesimw= @ P P Poyw|. heh (31)

weR(H) j=1 \ veR(H) I=1
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Since the rank of the controllability matrix is invariant under state transformations,
rank@ (A, Br) = ranké(Z*AZ, Z*Br) (32)

holds. From (28) together with the unitarity 0f leading toZ*Br = Z*BW - W*F,
rank (32) is calculated as

n
rank@(Z*AZ, Z*Br) = rank {[E’ AB .- A"1B] (@ W*F) } ) (33)
i=1
Therefore, according to decomposition (28), the controllability ofGhgymmetric
system(A, B) after theH-symmetric failureF is equivalent to that of the system

NH NH
A.Bwr = @ Ppa. P ((@B“) (W“)*F) . (39

WER(G) k=1 weR(G) \ \ k=1
The matrix(W#*)*F in (34) is denoted as
(W*F = [(Wy)* 0] (35)
with the failure matrix in (9), whereWA‘j denotes the firdtrows of W# as
Wi = (WM) (@6)
Wy

From (24) and (29)W,, andWy}, in (36) are described as

Wi = (Wi 11<) <b*v e RUD),

Wi = (Wi 11<j <t v e RHD)),
wherew!y e C/xeN” andW'y e Ccr=H*N" Moreover, with reference to
Wy = (W,’-ﬁ& 11<j < b“) € C/x@lauN) (37)
the matrixW), is described as

Wy, = (W) | v e RH)). (38)

Consequently, if W,{j)* has a zero row block compatible with the block structure of

B, the controllability matrix is not of full row-rank, and hence the system becomes
uncontrollable. Namely, we obtain the following lemma.

Lemma 7. A G-symmetric syste, B) becomes uncontrollable by an H-symmet-
ric failure F if 2 W},” = O for someu € R(G), v € R(H) with atay, # 0.

2 We use the convention that* = 0” includes the cases where the column-set or the row-set of a
matrix W is empty.
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Proof. If W}," = O for a pair of u € R(G) andv € R(H) with a*a), # 0, the

product(@,’("ﬁl B*)(WHM)*F in (34) has a zero row block compatible with the de-
composition

AN
D= @ D
veR(H) I=1

corresponding tdv* = ", gy @i NY. O

We are now to clarify a group-theoretic mechanism that produces a zero row block
in (W))*, thatis,w;,” = 0.

Lemma8. W, = 0if b}, =0.
Proof. The matrix(W*)*F satisfies

(W F=(W")*S(h)*S(h)F

b
(@ D" (h)) (WM*FS(h), heH, (39)

from (10) and (26). Therefore,
bH
(@ Dg(h)) (WHY'F = (WH*FS(h), heH, (40)

holds by the unitarity oDy;. Using the decomposition @b (1) in (30), Eq. (40) is
rewritten as

(@ $H @D (h)) (WHY'F = (WH*FS(h), heH. (41)

j=1veR(H) I=1

Therefore, with the matriwj"j in (38), Eq. (41) is rewritten as

b 0‘,”1
( D @@DW)) (Wip* = (W) Su(h), he H. 42)

veR(H) j=1 I=1

FurthermoreSy, (h) andSy (h) are decomposed into irreducible representations by
unitary matrices, say?y,; of orderf and Py of orderr — f, respectively. Note that
they are defined in a similar way as foandW in (23), andSy; andSy are decom-
posed as



R. Tanaka, K. Murota / Linear Algebra and its Applications 318 (2000) 145-172 159

by
PySuPu= @ @D}, heH,
vER(H) p=1 (43)

by
PiSy(ihPy = € €Dy, heH,

vER(H) p=1

with multiplicities b}, andb}, defined in (18). Substituting (43) into (42) leads to

b al‘i
B P Poym | Wity

VeR(H) j=1 1=1

by
=wi'Pu| P @oymw|. hen. (44)
VeR(H) p=1
In this expression, the matr'(W,{j)*PM is naturally divided into some blocks as
(Wi)* Py = ((Wy)*Pu),,, | ve R(H),V € R(H)), (45)
where((W};)*Py),, is of sizeb"a!, NV x b}, NV'. Then, an application of Schur’s
lemmato (44) clarifies that for a pair pfandv satisfyingb}, = 0,
(W) Pu),, =0 (46)
holds for allv’ € R(H). This is equivalentteW),")* = 0. O

Combination of Lemmas 7 and 8 results in Theorem 6. Moreover, if the sBbset
defined in (21) is nonempty, the system becomes uncontrollable. Hence Theorem 4.

3. Examples
3.1. Spherical diamond system

Consider a spherical diamond system as shown in Fig. 3. It is symmetric with
respect to 3. The dihedral group | im = 1, 2, ...) of order 2n is defined as

D ={e.p,....0" Lo,0p,....0p" 1), (47)

wherep™ = 02 = (0p)? = e. The index set of all the irreducible representations of
D,,, denoted aR(D,,), is given by

A1,A2,B1, B2, E1, E2, ..., Eguj2-1}  (mis even)

. 48
A1, A2, E1, E2, ..., En-1/2)} (mis odd) (48)

wou-
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Fig. 3. Dg-symmetric spherical diamond system consisting of identicat 43 modules.

where A1, Az, B1 and Bp are one-dimensional irreducible matrix representations,
andE; (i =1, 2,...) are two-dimensional ones. The group Denerally represents
the geometric symmetry of a reguiargon.

The symmetry condition (4) holds farandSdefined naturally as representations
of permutations. In this example, we assume igat rg = 1, hencel’ = S follows.
The irreducible representation decompositioisof Dg is described as

S=7A1®A2®4B1 ®3B> D TE1 D TE>. (49)

The following show B-, D»- and Ds-symmetric failures, each of which consists of
two examples: one causes the system to be uncontrollable and the other keeps the
system controllable. The system before the failuresgsypimmetric and controlla-
ble. It is worth mentioning that ®symmetric failures in [g-symmetric ring-type
homogeneous system does not cause the system to be uncontrollable [19].

Two examples of the Bsymmetric failures are shown in Fig. 2. The restrictions
of the irreducible representations of b D3 are given as

A1} D3=A1, Az ] D3= A,
B1 | D3= A1, Bz | D3= A, (50)
E1 |l D3=E;, E| D3z=E;.

For the failure pattern shown in Fig. 2(a) withh = {1, 3,5, 7, 8, 12, 16, 32, 36, 40},
the representation$y, andSy of D3 are decomposed as

Sy =4A1 0 3E1, Sy =T7A194A> D 11E;. (51)

Therefore, condition (20) holds for, v) = (A2, A2), (B2, A2). Consequently, The-
orem 4 reveals that the system is uncontrollable.

The system shown in Fig. 2(b) has the-Bymmetric failure pattern described as
M = {1, 20, 23, 24, 27, 28, 31, 32, 36, 40}. Note that the number of the functioning
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modules, i.e., the size &fl, is same as that of the system in Fig. 2(a). The represen-
tationsSy; andSy are decomposed as

Sy =3A10 A2 D 3E1, Sy =8A10 3A>® 11E;. (52)

Since condition (20) does not hold for any pairof R(Dg) andv € R(D3), the
system is likely to be controllable. In fact, Theorem 12 in Section 4 reveals that the
system is controllable.

Two examples of the psymmetric failures are shown in Fig. 4. The restrictions
of the irreducible representations of b D, are given as

A1 Do=A1, Az | D= Ay,
B1 | D2=B1, B>|Dx=Bo, (53)
E1 |l Dy=B1+ Bz, Ez] Dy=A1+ Ap.

For the failure pattern shown in Fig. 4(b) wit = {1, 2,5, 8,11, 14, 17, 32, 38},
the representationy, andSy of D, are decomposed as

Sy =5A1®3B1® B2, Sy =9A1® 8A> P 8B1 P 9B>. (54)

Therefore, condition (20) holds for, v) = (A2, A2), (E2, A2). Consequently, The-
orem 4 reveals that the system is uncontrollable.

The system shown in Fig. 4(a) has the-Bymmetric failure pattern described by
M ={1,2,5, 22,23, 28, 29, 35, 41}. Note that the number of the functioning mod-
ules, i.e., the size d¥l, is the same as that of the system in Fig. 4(b). The represen-
tationsSy; andSy are decomposed as

Sy =4A1 D A>D2B1 ®2B>, Sy =10A18 7A> @ 9B1 P 8Bo. (55)

Therefore, condition (20) does not hold for any paino€& R(Ds) andv € R(D2).
The system is revealed to be controllable by Theorem 12 in Section 4.

2322 D .=flfnctioning

' ' ‘ (@) =faited
Q‘.."g D
\ D\
%535%3‘1%"»
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(@) (b)

Fig. 4. Two examples of Ppsymmetric failures. (a) Controllable in spite ofbBBymmetric failures.
(b) Uncontrollable because of,Bsymmetric failures.
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Fig. 5. Two examples of prsymmetric failures. (a) Uncontrollable because gf€ymmetric failures.
(b) Controllable in spite of g-symmetric failures.

Two examples of the psymmetric failures are shown in Fig. 5. For the failure
pattern shown in Fig. 5(a) with = {1, 2, ..., 19,32 33,..., 43}, the representa-
tions Sy, andSy of Dg are decomposed as

Sy =6A1® 3B1 D 2B> d 5F1 ® 5E>, (56)
SN=A1B A2® B1® B2 ® 2E1 @ 2F>.

Therefore, condition (20) holds for = v = A2 € R(Dg). Consequently, Theorem

4 reveals that the system is uncontrollable.

The system shown in Fig. 5(b) has thg-Bymmetric failure pattern described by

M = {20, 21, ..., 31}. The representatiorn,; andSy are decomposed as
Su=A1® A2@® B1® B @ 2E1 @ 2E>, (57)
Sy =6A1® 3B1 D 2B ® 5E1 ® 5E».

Therefore, condition (20) does not hold for gnyv € R(Dg). The systemis revealed
to be controllable by Theorem 12 in Section 4.

3.2. Cubic network

Consider a cubic system as shown in Fig. 6(a). The system is symmetric with
respect to the group of order 48, the symmetry group of the cube. The group is
obtained as the direct product of the octahedral group O of order 24 and the group of
reflection O = {e, o}, wheres? = ¢. The 24 elements of O are classified into five
conjugacy classes:

& = {e},
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2 &F . = functioning

4 y- &
@ =rtailed
110 0

Fig. 6. (a) An example of cubic systems. (b) The system retains its controllability despite;thenD
metric failures. (c) The system becomes uncontrollable because ofstheyhmetric failures. (d) The
system retains its controllability despite the-Bymmetric failures.

%21 = {three rotations ofr about fourfold axels

%2 = {six rotations ofr about twofold axes

%4 = {three rotations ofr /2 and three rotations of3/2 about fourfold axgs

%3 = {four rotations of zr /3 and four rotations of #/3 about threefold axés

according to the notation of [13]. The index $&tO) of the irreducible representa-
tions of O is given by

R(O) = {A1, A, E, T1, To},

whereA is the one-dimensional unit representatidp js a nonunit one-dimension-
al representatiort is a two-dimensional irreducible representation, dnénd 7>
are three-dimensional ones. The products of elements in O with thoggowbBuces
the 48 elements of ) The index seR (Op) of the irreducible representations is then
given by

Table 1
The character table of the octahedral groyp O
& “3 %y %4 %3 &' ©7 %, %4 3

Aq 1 1 1 1 1 1 1 1 1 1
Ao 1 1 -1 -1 1 1 1 -1 -1 1
E 2 2 0 0 -1 2 2 0 0 -1
T1 3 -1 -1 1 0 3 -1 -1 1 0
T 3 -1 1 -1 0 3 -1 1 -1 0
A/1 1 1 1 1 1 -1 -1 -1 -1 -1
A/2 1 1 -1 -1 1 -1 -1 1 1 -1
E’ 2 2 0 0 -1 -2 -2 0 0 1
1y 3 -1 -1 1 0o -3 1 1 -1 0
T, 3 -1 1 -1 0o -3 1 -1 1 0
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R(On) = {A1, Ao, E, Ty, To, A3, A5, E', Ty, T5}.

The character table of the octahedral groygd€given in Table 1.
The system matricets andB for the cubic system (Fig. 6(a)) are given as

P 0 0 Q0|lo 0o o o
0O P Q0 0|0 0 0 o0
O 0 P Q|lo 0 Q o

4_|Q 0 0 PlO 0 0 0
0O 0 0 O|P Q0 O 0O}
O 0 0 0|0 P Q O
0O 0 0 olo o0 P 0
0o 0 0 0|0 O 0 P| (59)
'K 0 0 0|0 0 0 0]
O K 0 0|0 0 0 o0
O 0 K 0|0 0 0 O

3_|0_ 0 0 K|O 0 0 0
O 0 0 O|K 0 0 o
O 0 0 0|0 K 0O O
O 0 0 0|0 O K O
0O 0 0 0|0 0 0 K

The symmetry condition (4) holds fGrandSdefined naturally as representations of
permutations. In this example, we assume that ro = 1, hencel = S follows.
The irreducible representation decompositioisof Oy, is described as

S=A10T® AT, (59)

We deal with three cases of failures as examplesz-ayPnmetric failure, a by
symmetric one and a {2symmetric one. The group,P(m =1, 2, ...) is defined
in (47) and the group B of order 8 is defined as the direct product of Bnd
D1. The index setR(D2p) of the irreducible representations is given RyD2p) =
{A, B1, B, B3, A, B}, By, B3}, with the obvious meaning of primes.

An example of the first case withsasymmetric failure is shown in Fig. 6(b) with
M ={2,4,5} andN = {1, 3, 6, 7, 8}. The restrictions of the irreducible representa-
tionsin (59) to 3 are

A" | D3 =A% A" | Dg= AT,
T | D3 = AP+ ED3, 1,70 | D3 = AD® + Ep2,
whereu© denotes an index iR (Op) andvP2 denotes an index iR (D3). The super-

scripts tou andv are omitted if there is no danger of confusion. The representations
Sy andSy of Dz are decomposed as

Sy=A1®E,, Sy=3A1®E;. (60)
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Since condition (20) is not satisfied by any paino& R(Dg) andv € R(D3), The-
orem 4 indicates that the system is likely to be controllable. In fact, Theorem 12,
which will be shown in Section 4, reveals that the system is controllable. Thus, the
system turns out to retain its controllability despite the 9ymmetric failure with

M = {2,4,5}.

The second case is where the failure pattern is symmetric with respechto D
An example of the By-symmetric failure patterns is shown in Fig. 6(c) with =
{3,4,5,6}andN = {1, 2, 7, 8}. The restrictions of the irreducible representations in
(59) to Dy are

AT | Don= AP AT | Doy = BY?,

TZOh | Dop = ADan BlDzh + BZDZh, Tz/oh | Dop = B/lDzh + BéDZh + BéDzh.
The representation$, andSy of Dz, are decomposed as

Su=A®BI®B,®B;, SNn=A®B2® B ® B;. (61)

Since condition (20) holds fofu, v) = (T2, B2), (T, B;), Theorem 4 reveals that
the system is uncontrollable.

The third case is where the failure pattern is symmetric with respect.tiex-
ample of the @-symmetric failure patterns is shown in Fig. 6(d) with= {1, 2, 3}
andN = {4,5, 6, 7, 8}. The restrictions of the irreducible representations in (59) to
D; are

A LDy = A0t AP Dy = Al
T | Dy =242+ ARt 7% | Dy = 2401 4 ADY
The representations,; andSy of D1 are decomposed as
Sy =2A1® Az, Sy =4A1® A. (62)

Since condition (20) does not hold for any pairok R(Oy) andv € R(Dy), the
system is expected to be controllable. Actually, Theorem 12 in Section 4 confirms
its controllability.

4. Sufficient condition for controllability

The main theorem of the present paper (Theorem 4) describes only a necessary
condition for the controllability of aG-symmetric system after alH-symmetric
failure. This section discusses sufficient conditions. The main result of this section,
giving a sufficient condition for the controllability after some failures, is shown in
Theorem 12, which has been applied to determine the controllability of the systems
in Figs. 2(b), 4(a) and 5(b) in Section 3.1. We will then discuss the relationship be-
tween the sufficient condition in Theorem 12 and the necessary condition in Theorem
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4, and clarify that the condition in Theorem 4 is necessary and sufficiéghttf G,
that s, if G-symmetric failures occur is-symmetric systems as is the case in Fig. 5.
Our concern in this section is the controllability of tBesymmetric system after
some failures. The symmetry of the systém B) has been defined in terms of Eq.
(4) for the groupG and its unitary representatioiisandS. We consider a generic
system subject to this symmetry constraint. Siide B) satisfies this symmetry
constraint if and only ifA andB are decomposed as (28), the genericity with respect
to the symmetry condition (4) is equivalent to the genericity of the matid¢eand
B" in (28) in the sense that all of their entries are independent parameters. It should
be emphasized that the following discussion is based on the genericity under the
symmetry.
The controllability of theG-symmetric systeniA, B) after a failureF is equiv-
alent to that of system (34). Note that the matriggsand A (n # 1) have no
common eigenvalues by their genericity. The discussion above, together with the
well-known lemma below, leads us to Lemma 10.

Lemma 9. Suppose the matrices A and B for a systeémB) are given as

_|A1 O | B1
=o 5] -]
and square sub-matrices; and A> have no common eigenvalues. Then the sys-

tem(A, B) is controllable if and only if two subsyster$;, B1) and (A2, B2) are
controllable.

Lemma 10. A generic G-symmetric system, B) remains to be controllable by a
failure F if and only if (D", A*, (BN, B*)(WH)*F) is controllable for eachu
satisfyinga” # 0.

Accordingly, we are to investigate the sufficient condition for the controllability
of the subsysterd®!", A%, (@L, B*)(W™)* F) for ju with a”* # 0.

A sufficient condition for the controllability of a systet@®;_; A, (&1, B)W*)
in general is given in the following, which serves as a key technical lemma of this
section. The controllability of the system will be proved with reference to the rank
of m(A, B) =[A — Al | B], A € C, the modal controllability matrix of the system
(A, B).

Lemma 11. Consider a systerfd, B) with the matricesA and B given as

A

N
A:@A: A.. ,
k=1 :
(63)
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B(Wl)*

N B WZ *
B=<@B>W*= (.) ,

k=1 B(WN)*

where A € C9*“ B e C**, and W = (W¥ | 1 <k < N) € C/*PN with wk =

(wh | 1< j <b) € C/*". Suppose that A and B are fully dense generic matrices.
Then the systeniA, B) is controllable if there exists an integgrl < j < b) such
that

rankW; = N, (64)
where
(w})*
2\ %
Wi = (w;) e CN*/,
(w?’)*

Proof. The modal controllability matrix of the syste(d, B) is given as

A=Al B(WhH*
A—Al B(W?)*
= ) . , reC. (65)
A—rl | B(WN)y*
If the equation
[ & - &v]%mA.B)=0 (66)
holds only for[£]&5 - - - &1 = O, whereé, € C* (1 < k < N), the modal control-

lability matrix is of full row-rank, and thus the systefa, B) is controllable.
Eq. (66) is equivalent to

EA—-1)=0 (1<k<N), 67)
N
Y &gBWhH*=o0. (68)
k=1

Eq. (67) shows thaf; (1 < k < N) are left eigenvectors di for the eigenvalue.

By the assumed genericity 8f the eigenspace for an eigenvalue is one-dimensional.
Therefore, the vector§, (1< k < N) are given as;, = o4& with o € C and a
nonzero vectoé € C* satisfyingé*A = L&*. Then Eq. (68) is rewritten as
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N
Y ant(Wh* = o, (69)

k=1

wherey € C’ is given as
n=¢&B. (70)

From condition (64), there exists an integel(1 < jo < b) such that ranlw;‘0 =
N. Therefore, the matriX¥* containsN independent columns with the column
indices{i1, i2, ..., iy}, for which

detW}‘o[il, i2,...,in] # 0, (71)

rank W*[i1,io,...,in] = N, (72)
where W}Z[il, io,...,in] and W*[iq, io, ..., iny] denote the submatrices obtained
by takingN columns indexed byi1, i, ..., iy} Of W;.“o andW*, respectively. From

Eq. (72), Eq. (69) containd independent equations

N
Y W il=0 (=12....N).

k=1
This is a system dfl equations i\ variablea; | 1 < k < N} If (a1, a2, ..., ay)
#+ (0,0, ..., 0), the coefficient matrix must be singular, i.e.,

deto* (W5 [ir] | 1<k, I < N) =0 (73)

holds. The left-hand side of Eq. (73) is a nontrivial polynomiajin= (n1, n2, . . .,
np), since the coefficient of the tern% in det(y* (W5)*[4;]) in (73) is equal to (71).
Hence, (73) describes a nontrivial algebraic relation among the elemeAtard
B, sincen™® defined in (70) is obtained by the eigenvecfarf A and the matrixB.
However, this is a contradiction to the genericity*\dindB. Thereforey™ = 0which
leads tof = 0 and thus the controllability of the system, B) is proved. [

Thus, the following theorem, giving a sufficient condition for the controllability,
is obtained.

Theorem 12. A generic G-symmetric syste(d, B) retains its controllability in
spite of a failure Fif, for eachu € R(G) satisfyinga” # 0, there exists an integer
Ju (A < ju < bM*) such that

rank(Wj’zM)* = N". (74)
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Proof. Apply Lemma 11 to each subsystd@®i; A%, (DN, B*)(Wh)*) corre-
sponding tqu. [

Condition (74) means that the projection of the ba’sj}@ of an invariant subspace

%’j‘“ in (22) onto the space of effective inpui¢ still serves as a basis.

In the examples in Section 3, such as Figs. 2(b), 4(a), and 5(b), the systems have
been shown to be controllable by Theorem 12.

Itis mentioned that the converse of the statement of Lemma 11 is not always true,
as follows.

Example 13. Consider a systerfd, B) given as

O RO OOk
[eNeliol JieNe]
N OO Ol O

Since rankW* < N for all j € {1, 2}, the condition is not satisfied. Howevét,is
calculated as

B 0 B
B=|0 §1 o |,
B 0 28

and thus the system is generically controllable.

In the case off = G, the necessary condition in Theorem 4 turns out to be also
sufficient for the controllability of the system.

Theorem 14. A generic G-symmetric systefi, B) remains to be controllable in
spite of a G-symmetric failure F if and only if there exist no absolutely irreducible
representationg of G such that

a' #0, b, =0, (75)
wherebjfl is the multiplicity ofu in the representationS,, of G.
Proof. The necessity has been shown in Theorem 4.

Since the system after the failure is alS&symmetric, the representatiofi&) of
G are given as

S(8) =Su(g) ®Sn(g), ge€G, (76)

whereS); andSy are also representations®f(cf. (12)). The representatioss; (g)
andSy (g) are decomposed into a direct sum of irreducible representations as
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by
WiSu@Wn = @ PDp*e. ged.
HER(G) j=1 77

by
WisSn@Wy = @ @D ). g€,
KER(G) j=1

by unitary matricedv,; and Wy, respectively, where the nonnegative integﬁ&s
andbx are the multiplicities ofx in Sy, and Sy, respectively and thus* = bﬁ +
bx holds. Moreoverbf‘w #+ 0 holds foru satisfyinga* # 0 since there exist no irre-
ducible representations of G which satisfy (75). The controllability of the system
(A, Br) after the failureF is to be proved by the controllability of the subsystems
@M, Ar, (@Y, B (WH)*F) for eachy satisfyinga” + 0 by Lemma 10.
Corresponding to the decomposition$g) in (76), Win (23) is given here as
W = Wy @ Wy. The matrixW# is then described as

Wy | O
Ho_—
W_[O Wll}’
N

where Wy = (W | 1 € R(G)), Wy = (Wi | 1 € R(G)) with Wiy e C/*PuN"
andW! e CU=*PN" “and thus
Wy* | 0
0 0} '
Consequently, we are to prove the controllability of the subsystem

(@~ (&)%)

on the basis of Lemma 11. Corresponding to the block structu(r@é\ﬂl B"), the
matrix W), is divided into

(W*F = |:

Wh = (whyyy 1 1<k <NP 1< <)),
wherewjfdkj e C/. Since the matri#¥y; has been chosen to be unitary, the vectors
{wiyy; 1 1< j < by, 1<k < N*) are mutually independent. Note that,;
C/ Py defined as
Wi = Wy | 1<k <N
is the base of an invariant subspaceorlnd thus
rankWA’jj = NH

holds for allj (1 < j < bl,), whereb), # 0 by the assumption. Consequently, the
subsystem is controllable by Lemma 110
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5. Conclusion

This paper has discussed the fault-tolerance of symmetric systems with respect
to controllability. We consider the controllability of a system as a characteristic that
should be retained despite failures in some control channels, and have revealed the
underlying mathematical mechanism of the loss of controllability for symmetric sys-
tems induced by failures. The main result has been clarified in the form of a necessary
condition for symmetric systems to retain their controllability in spite of symmetric
failures. In the discussion, the standard results in group representation theory have
been properly applied. In particular, the irreducible representations have played an
important role in order to decompose the symmetric system into subsystems. More-
over, a sufficient condition for the controllability despite the symmetric failures
has been also discussed based on the genericity of the subsystems. The condition
has been revealed to be necessary and sufficiggtsymmetric failures occur in
G-symmetric systems. Further study on the controllability of symmetric systems
can be found in [20,21].
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