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Farber introduced a notion of topological complexity TC(X) that is related to robotics. Here
we introduce a series of numerical invariants TCn(X), n = 2,3, . . . , such that TC2(X) =
TC(X) and TCn(X) � TCn+1(X). For these higher complexities, we define their symmetric
versions that can also be regarded as higher analogs of the symmetric topological
complexity.
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1. Introduction

In [4] Farber introduced a notion of topological complexity TC(X) and related it to a problem of robot motion planning
algorithm. Here we introduce a series of numerical invariants TCn(X),n = 2,3, . . . , such that TC2(X) = TC(X) and TCn(X) �
TCn+1(X). We learn some properties of TCn and, in particular, compute TCn(Sk). We also define symmetric analogs of higher
complexities (= higher analogs of symmetric complexity) introduced in [5, Section 31] and developed in [7,8].

Throughout the paper cat X denotes the Lusternik–Schnirelmann category of a space X , i.e. cat X is one less than the
minimal of open and contractible sets in X that cover X . For example, X is contractible iff cat X = 0.

2. The Schwarz genus of a map

Given a map f : X → Y with X, Y path connected, a fibrational substitute of f is defined as a fibration f̂ : E → Y such
that there exists a commutative diagram

X
h

f

E

f̂

Y Y

where h is a homotopy equivalence. The well-known result of Serre [9] tells us that every map has a fibrational substitute,
and it can be proved that any two fibrational substitutes of a map are fiber homotopy equivalent fibrations.

Given a map f : X → Y , we say that a subset A of Y is a local f -section if there exists a map s : A → X (a local section)
such that f s = id.
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The Schwarz genus of a fibration p : E → B is defined as a minimum number k such that there exists an open covering
U1, . . . , Uk of B where each map Ui has a local p-section [11]. We define the Schwarz genus of a map f as the Schwarz
genus of its fibrational substitute, and we denote it by genus( f ). This notion is well defined since any two fibrational
substitutes of a map are fiber homotopy equivalent.

Proposition 2.1. For any diagram X
f−→ Y

g−→ Z we have genus(g f ) � genus(g).

Proof. This is clear if both f and g (and therefore g f ) are fibrations. In the general case, replace f and g by fibrational
substitutes. �

The following proposition is useful for applications. Recall that X ⊂ W is a neighborhood retract if there exists an open
subset O of W that is a retract of X . Furthermore, Euclidean neighborhood retract (ENR) is a space Y that is homeomorphic
to a space X such that there is a neighborhood retract X ⊂ R

N . In particular, every finite polyhedron is an ENR. See [3,
Chapter 4] for properties of ENR’s.

Proposition 2.2. Let p : E → B be a fibration over a polyhedron B. Suppose that B = X1 ∪ · · · ∪ Xn where each Xi is an ENR and has
a local p-section. Then genus( f ) � n.

Proof. We enlarge each Xi to an open subset of B over which there is a section of p. Take an ENR Xi = X and an embedding
X ⊂ B ⊂ R

N . Let r : V → X be a neighborhood retraction. Then there exists an open set U of V with X ⊂ U ⊂ V such that the
maps U ⊂ V and U ⊂ V r−→ X ⊂ V are homotopic [3, Chapter 4, especially 8.6, 8.7]. So, there is a homotopy H : U × I → V ,
H(u,0) = u, H(u,1) ⊂ X . Consider a section s : X → E and put g : U → E , g(u) = sH(u,1). Now use the homotopy extension
property to construct a homotopy G : U × I → E with pG = H and G(u,1) = g(u). Then σ : U → E , σ(u) = G(u,0) is a
section over U . �
3. Higher topological complexity

Recall that the topological complexity TC(X) of a space X is defined to be the Schwarz genus of the fibration

π : P X → X × X (3.1)

where P X is the space of paths in X and π(α) = (α(0),α(1)) ∈ X × X for α ∈ P X , Farber [4].

Definition 3.1. Let Jn , n ∈ N, denote the wedge of n closed intervals [0,1]i, i = 1, . . . ,n, where the zero points 0i ∈ [0,1]i are
identified. Consider a path connected space X and set Tn(X) := X Jn . There is an obvious map (fibration) en : Tn(X) → Xn ,
en( f ) = ( f (11), . . . , f (1n)) where 1i is the unit in [0,1]i , and we define TCn(X) to be the Schwarz genus of en .

Remarks 3.2. 1. The above definition makes also sense for TC1(X), but it was always equal to 1. The notation is more elegant
if we take TCn(X), n > 1.

2. It is easy to see that TCn(X) � TCn(Y ) if X dominates Y . So, TCn is a homotopy invariant.
3. It is also worth noting that the fibration en can be described as follows: Take the diagonal map dn : X → Xn and

regard en as its fibrational substitute à la Serre. Hence, in fact, the higher topological complexity TCn(X) is the Schwarz
genus of the diagonal map dn : X → Xn . Note also that the (homotopy) fiber of en is (Ω X)n−1 where Ω X denotes the loop
space of X .

4. The fibration en is homotopy equivalent to the following fibration e′
n . Define Sn(X) ⊂ X I × Xn as

Sn(X) = {
(α, x1, . . . , xn)

∣∣ xi ∈ Im(α : I → X, i = 1, . . . ,n)
}

and define e′
n : Sn(X) → Xn as e′

n(α, x1, . . . , xn) = (x1, . . . , xn). To prove that e′
n is a fibrational substitute of dn , consider the

homotopy equivalence h : X → Sn(X),h(x) = (εx, x, . . . , x) where εx is the constant path at x. Note that e′
nh = dn : X → Xn ,

and thus e′
n is the fibrational substitute of dn .

5. The fibration en is homotopy equivalent to the fibration

e′′
n : X I → Xn, e′′

n(α) =
(
α(0),α

(
1

n − 1

)
, . . . ,α

(
k

n − 1

)
, . . . ,α(1)

)
where α : I → X . Indeed, consider the homotopy equivalence h : X → X I , h(x) = εx , and note that e′′

nh = dn .
6. It is easy to see (especially in view of the previous item) that TC2(X) coincides with the topological complexity

TC(X). Indeed, TC2(X) is the Schwarz genus of e′′
2, while TC(X) is the Schwarz genus of (3.1). Furthermore, given a path

α ∈ X I = P X , α : I → X , the map e′′
2 : X I → X2 assigns the pair (α(0),α(1)) ∈ X × X to α. Hence, e′′

2 is the same as the
fibration (3.1), and thus has the same Schwarz genus.
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7. Mark Grant pointed out to me that, as with TC2(X), the invariant TCn(X) is related to robotics. In detail, TC2(X) is
related to motion planning algorithm when a robot moves from a point to another point, see [4], while TCn(X) is related to
motion planning problem whose input is not only an initial and final point but also an additional n − 2 intermediate points.

Proposition 3.3. TCn(X) � TCn+1(X).

Proof. Let dk : X → Xk denote the diagonal, dk(x) = (x, . . . , x). Note that TCk(X) is the Schwarz genus of the map dk . Define

ϕ : Xn → Xn+1, ϕ(x1, . . . , xn−1, xn) = (x1, . . . , xn−1, xn, xn).

Then dn+1 = ϕdn , and hence the Schwarz genus of dn+1 is greater than or equal to the Schwarz genus of dn by Proposi-
tion 2.1. �

To compute TCn , we can apply known methods of calculation of the Schwarz genus. For example, the Schwarz genus of
a fibration over B does not exceed 1 + cat B . So,

TCn(X) � 1 + cat
(

Xn) � n cat X + 1. (3.2)

Furthermore, we have the following claim [11, Theorem 4].

Proposition 3.4. Let dn : X → Xn be the diagonal. If there exist ui ∈ H∗(Xn; Ai), i = 1, . . . ,m, so that d∗
nui = 0 and

u1 � · · · � um �= 0 ∈ H∗(Xn; A1 ⊗ · · · ⊗ Am
)
,

then TCn(X) � m + 1.

Here, generally, we consider cohomology with local coefficients.

Proposition 3.5. If X is a connected finite CW-space that is not contractible, then TCn(X) � n.

Proof. If X is (k − 1)-connected with k > 1 then Hk(X;F) �= 0 for some field F. Take a non-zero v ∈ Hk(X;F) and put
vi = p∗

i v where pi : Xn → X is the projection onto the ith factor. Then ui := vi − vn ∈ Ker d∗
n for i = 1, . . . ,n − 1 and

u1 � · · · � un−1 �= 0, and so TCn(X) � n by Proposition 3.4.
Now, assume that X is not simply connected. Then there exists a non-zero cohomology class v ∈ H1(X; A) (generally,

with local coefficients). Now argue as in the previous paragraph.
To find a non-zero 1-dimensional element v as above, we can do the following. Let π = π1(X) and Z[π ] denote the

group ring of π . Let I be the augmentation ideal in Z[π ]. Then the exact sequence 0 → I → Z[π ] → Z → 0 of Z[π ]-
modules yields the long cohomology exact sequence

H0(X;Z[π ]) −→ H0(X;Z)
δ−−→ H1(X; I) −→ · · · .

It turns out to be that the so-called Berstein class δ(1) ∈ H1(X; I) is non-zero whenever π �= 0 [1,2]. Thus, we can put
v = δ(1). �
4. An example: TCn(Sk)

Farber [4, Theorem 8] proved that TC(Sk) = 2 for k odd and TC(Sk) = 3 for k even. We extend this result (and method)
and show that TCn(Sk) = n for k odd and TCn(Sk) = n + 1 for k even. Fix n > 2 and k > 0.

For k even, take a generator u ∈ Hk(Sk) = Z and denote by ui its image in the copy Sk
i of Sk , i = 1, . . . ,n. In the class

Hk((Sk)n), consider the element

v =
(

n−1∑
i=1

1 ⊗ · · · ⊗ 1 ⊗ ui ⊗ 1 ⊗ · · · ⊗ 1

)
− 1 ⊗ · · · ⊗ 1 ⊗ (n − 1)un.

Then vn = (1 −n)n!(u1 ⊗· · ·⊗ un) since k is even, and so vn �= 0. On the other hand, d∗
n v = 0. Thus, TCn(Sk) = n + 1 by (3.2)

and Proposition 3.4.
Now we prove that TCn(Sk) = n for k odd. Consider a unit tangent vector field V on Sk , V = {V x | x ∈ Sk}. Given x, y ∈ Sk

such that y is the antipode of x, denote by [x, y] the path [0,1] determined by the geodesic semicircle joining x to y and
such that the V x is the direction of the semicircle at x.

Furthermore, if x and y are not antipodes, denote by [x, y] the path [0,1] determined by the shortest geodesic from x
to y.
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Define an injective (non-continuous) function

ϕ :
(

Sk)n −→ Tn
(

Sk),
ϕ(x1, . . . , xn) = {[x1, x1], . . . , [x1, xn]}.

For each j = 0, . . . ,n − 1 consider the submanifold (with boundary) U j in (Sk)n such that each n-tuple (x1, . . . , xn) in U j

has exactly j antipodes to x1. Then ϕ|U j : U j → Tn(Sk) is a continuous section of en , and
⋃n−1

i=0 Ui = (Sk)n . Furthermore,

each Ui, i = 0, . . . ,n − 1, is an ENR, and so TCn(Sk) � n by Proposition 2.2. Thus, TCn(Sk) = n by Proposition 3.5.

5. Sequences {TCn(X)}
Of course, it is useful and interesting to compute invariants TCn(X) for different spaces.
However, there is a general problem: to describe all possible (non-decreasing) sequences that can be realized as

{TCn(X)}∞n=1 with some fixed X .
As a first step, note that the inequality TC(X) � 1 + cat X [6, Proposition 4.19] together with (3.2) implies that

TCn(X) � n TC2(X) − n + 1. (5.1)

So, any sequence {TCn(X)} has linear growth.
Given a ∈ N, we can also consider two functions

fa(n) = max
X

{
TCn(X)

∣∣ TC(X) = a
}

and

ga(n) = min
X

{
TCn(X)

∣∣ TC(X) = a
}
.

So,

n � ga(n) � fa(n) � na − n + 1. (5.2)

We can ask about the evaluation of the functions fa and ga . (This question was inspired by a discussion with M. Grant.)
Now we show that g3(n) < f3(n) for n > 2.
We have TC(S2) = 3 = TC(T 2) (here T 2 is the 2-torus, the last equality can be found in [4, Theorem 13]).

Proposition 5.1. TCn(T 2) � 2n − 1.

Proof. Let x, y be the canonical generators of H1(T 2). Put xi = p∗
i x where pi : (T 2)n → T 2 is the projection on ith factor.

Similarly, put yi = p∗
i y. Then d∗

n(x2 − xi) = 0 = d∗
n(y2 − yi) for i = 2, . . . ,n. On the other hand, the product

(x2 − x1) � · · · � (xn − x1) � (y2 − y1) � · · · � (yn − y1)

is non-zero. Indeed, it maps to x2 � · · · � xn � y2 � · · · � yn �= 0 under the inclusion (T 2)(n−1) → (T 2)n on the last n − 1
copies of T 2.

Now the claim follows from Proposition 3.4. �
Thus, for n > 2 we have

g3(n) � TCn
(

S2) = n + 1 < 2n − 1 � TCn
(
T 2) � f3(n).

So, we see that the sequence {TCn(X)} contains more information on (the complexity of) a space X than just the number
TC(X).

6. Symmetric topological complexity

Farber [5, Section 31] considered a symmetric version TCS(X) of the topological complexity. More detailed information
about this invariant can be found in the papers by Farber and Grant [7] and González and Landweber [8]. We define its
higher analogs TCS

n (X) as follows: Let 	 = 	n
X ⊂ Xn be the discriminant,

	 = {
(x1, . . . , xn)

∣∣ xi = x j for some pair (i, j) with i �= j
}
.

The space Xn \ 	 consists of ordered configurations of n distinct points in X and is frequently denoted by F (X,n). Let
vn : Y → F (X,n) be the restriction of the fibration en . Then the symmetric group Σn acts on Y by permuting paths and
on F (X,n) by permuting coordinates. These actions are free and the map vn is equivariant. So, the map vn yields a map
(fibration) evn of the corresponding orbit spaces, and we define TCS

n (X) as TCS
n (X) = 1 + genus(evn). Note that, for the

symmetric complexity we have TCS (X) = TCS
2(X).

It is worth mentioning that in case X = R
2 the space F (X,n)/Σn is the classifying space for the n-braid group βn . So,

the symmetric topological complexity TCS
n turns out to be related to the topological complexity of algorithms considered by

Smale [10] and Vassiliev [12].
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