Topology and its Applications

ELSEVIER

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

On higher analogs of topological complexity

Yuli B. Rudyak

Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, FL 32611-8105, USA

ARTICLE INFO

Article history: Received 19 November 2009 Received in revised form 7 December 2009 Accepted 7 December 2009

MSC: primary 55M30 secondary 53C23, 57N65

Keywords: Topological complexity Schwarz genus Lusternik–Schnirelmann category

ABSTRACT

Farber introduced a notion of topological complexity TC(X) that is related to robotics. Here we introduce a series of numerical invariants $TC_n(X)$, n = 2, 3, ..., such that $TC_2(X) = TC(X)$ and $TC_n(X) \leq TC_{n+1}(X)$. For these higher complexities, we define their symmetric versions that can also be regarded as higher analogs of the symmetric topological complexity.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In [4] Farber introduced a notion of topological complexity TC(X) and related it to a problem of robot motion planning algorithm. Here we introduce a series of numerical invariants $TC_n(X)$, n = 2, 3, ..., such that $TC_2(X) = TC(X)$ and $TC_n(X) \leq TC_{n+1}(X)$. We learn some properties of TC_n and, in particular, compute $TC_n(S^k)$. We also define symmetric analogs of higher complexities (= higher analogs of symmetric complexity) introduced in [5, Section 31] and developed in [7,8].

Throughout the paper cat *X* denotes the Lusternik–Schnirelmann category of a space *X*, i.e. cat *X* is one less than the minimal of open and contractible sets in *X* that cover *X*. For example, *X* is contractible iff cat X = 0.

2. The Schwarz genus of a map

Given a map $f: X \to Y$ with X, Y path connected, a *fibrational substitute* of f is defined as a fibration $\hat{f}: E \to Y$ such that there exists a commutative diagram

where h is a homotopy equivalence. The well-known result of Serre [9] tells us that every map has a fibrational substitute, and it can be proved that any two fibrational substitutes of a map are fiber homotopy equivalent fibrations.

Given a map $f: X \to Y$, we say that a subset A of Y is a local f-section if there exists a map $s: A \to X$ (a local section) such that fs = id.

E-mail address: rudyak@ufl.edu.

^{0166-8641/\$ –} see front matter $\,\,\odot$ 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2009.12.007

The Schwarz genus of a fibration $p: E \to B$ is defined as a minimum number k such that there exists an open covering U_1, \ldots, U_k of B where each map U_i has a local p-section [11]. We define the Schwarz genus of a map f as the Schwarz genus of its fibrational substitute, and we denote it by genus(f). This notion is well defined since any two fibrational substitutes of a map are fiber homotopy equivalent.

Proposition 2.1. For any diagram $X \xrightarrow{f} Y \xrightarrow{g} Z$ we have $genus(gf) \ge genus(g)$.

Proof. This is clear if both f and g (and therefore gf) are fibrations. In the general case, replace f and g by fibrational substitutes. \Box

The following proposition is useful for applications. Recall that $X \subset W$ is a neighborhood retract if there exists an open subset *O* of *W* that is a retract of *X*. Furthermore, Euclidean neighborhood retract (ENR) is a space *Y* that is homeomorphic to a space *X* such that there is a neighborhood retract $X \subset \mathbb{R}^N$. In particular, every finite polyhedron is an ENR. See [3, Chapter 4] for properties of ENR's.

Proposition 2.2. Let $p: E \to B$ be a fibration over a polyhedron B. Suppose that $B = X_1 \cup \cdots \cup X_n$ where each X_i is an ENR and has a local p-section. Then genus $(f) \leq n$.

Proof. We enlarge each X_i to an open subset of B over which there is a section of p. Take an ENR $X_i = X$ and an embedding $X \subset B \subset \mathbb{R}^N$. Let $r: V \to X$ be a neighborhood retraction. Then there exists an open set U of V with $X \subset U \subset V$ such that the maps $U \subset V$ and $U \subset V \xrightarrow{r} X \subset V$ are homotopic [3, Chapter 4, especially 8.6, 8.7]. So, there is a homotopy $H: U \times I \to V$, H(u, 0) = u, $H(u, 1) \subset X$. Consider a section $s: X \to E$ and put $g: U \to E$, g(u) = sH(u, 1). Now use the homotopy extension property to construct a homotopy $G: U \times I \to E$ with pG = H and G(u, 1) = g(u). Then $\sigma: U \to E$, $\sigma(u) = G(u, 0)$ is a section over U. \Box

3. Higher topological complexity

Recall that the topological complexity TC(X) of a space X is defined to be the Schwarz genus of the fibration

$$\pi: PX \to X \times X$$

where *PX* is the space of paths in *X* and $\pi(\alpha) = (\alpha(0), \alpha(1)) \in X \times X$ for $\alpha \in PX$, Farber [4].

Definition 3.1. Let J_n , $n \in \mathbb{N}$, denote the wedge of n closed intervals $[0, 1]_i$, i = 1, ..., n, where the zero points $0_i \in [0, 1]_i$ are identified. Consider a path connected space X and set $T_n(X) := X^{J_n}$. There is an obvious map (fibration) $e_n : T_n(X) \to X^n$, $e_n(f) = (f(1_1), ..., f(1_n))$ where 1_i is the unit in $[0, 1]_i$, and we define $TC_n(X)$ to be the Schwarz genus of e_n .

Remarks 3.2. 1. The above definition makes also sense for $TC_1(X)$, but it was always equal to 1. The notation is more elegant if we take $TC_n(X)$, n > 1.

2. It is easy to see that $TC_n(X) \ge TC_n(Y)$ if X dominates Y. So, TC_n is a homotopy invariant.

3. It is also worth noting that the fibration e_n can be described as follows: Take the diagonal map $d_n: X \to X^n$ and regard e_n as its fibrational substitute à la Serre. Hence, in fact, the higher topological complexity $TC_n(X)$ is the Schwarz genus of the diagonal map $d_n: X \to X^n$. Note also that the (homotopy) fiber of e_n is $(\Omega X)^{n-1}$ where ΩX denotes the loop space of X.

4. The fibration e_n is homotopy equivalent to the following fibration e'_n . Define $S_n(X) \subset X^I \times X^n$ as

$$S_n(X) = \{(\alpha, x_1, \dots, x_n) \mid x_i \in \text{Im}(\alpha : I \to X, i = 1, \dots, n)\}$$

and define $e'_n : S_n(X) \to X^n$ as $e'_n(\alpha, x_1, ..., x_n) = (x_1, ..., x_n)$. To prove that e'_n is a fibrational substitute of d_n , consider the homotopy equivalence $h : X \to S_n(X)$, $h(x) = (\varepsilon_x, x, ..., x)$ where ε_x is the constant path at x. Note that $e'_n h = d_n : X \to X^n$, and thus e'_n is the fibrational substitute of d_n .

5. The fibration e_n is homotopy equivalent to the fibration

$$e_n'': X^I \to X^n, \quad e_n''(\alpha) = \left(\alpha(0), \alpha\left(\frac{1}{n-1}\right), \dots, \alpha\left(\frac{k}{n-1}\right), \dots, \alpha(1)\right)$$

where $\alpha: I \to X$. Indeed, consider the homotopy equivalence $h: X \to X^l$, $h(x) = \varepsilon_x$, and note that $e''_n h = d_n$.

6. It is easy to see (especially in view of the previous item) that $TC_2(X)$ coincides with the topological complexity TC(X). Indeed, $TC_2(X)$ is the Schwarz genus of e_2'' , while TC(X) is the Schwarz genus of (3.1). Furthermore, given a path $\alpha \in X^I = PX$, $\alpha : I \to X$, the map $e_2'' : X^I \to X^2$ assigns the pair $(\alpha(0), \alpha(1)) \in X \times X$ to α . Hence, e_2'' is the same as the fibration (3.1), and thus has the same Schwarz genus.

(3.1)

7. Mark Grant pointed out to me that, as with $TC_2(X)$, the invariant $TC_n(X)$ is related to robotics. In detail, $TC_2(X)$ is related to motion planning algorithm when a robot moves from a point to another point, see [4], while $TC_n(X)$ is related to motion planning problem whose input is not only an initial and final point but also an additional n - 2 intermediate points.

Proposition 3.3. $TC_n(X) \leq TC_{n+1}(X)$.

Proof. Let $d_k: X \to X^k$ denote the diagonal, $d_k(x) = (x, \ldots, x)$. Note that $TC_k(X)$ is the Schwarz genus of the map d_k . Define

$$\varphi: X^n \to X^{n+1}, \quad \varphi(x_1, \dots, x_{n-1}, x_n) = (x_1, \dots, x_{n-1}, x_n, x_n).$$

Then $d_{n+1} = \varphi d_n$, and hence the Schwarz genus of d_{n+1} is greater than or equal to the Schwarz genus of d_n by Proposition 2.1. \Box

To compute TC_n , we can apply known methods of calculation of the Schwarz genus. For example, the Schwarz genus of a fibration over *B* does not exceed $1 + \operatorname{cat} B$. So,

$$TC_n(X) \le 1 + \operatorname{cat}(X^n) \le n \operatorname{cat} X + 1.$$
(3.2)

Furthermore, we have the following claim [11, Theorem 4].

Proposition 3.4. Let $d_n: X \to X^n$ be the diagonal. If there exist $u_i \in H^*(X^n; A_i)$, i = 1, ..., m, so that $d_n^*u_i = 0$ and

 $u_1 \smile \cdots \smile u_m \neq 0 \in H^*(X^n; A_1 \otimes \cdots \otimes A_m),$

then $TC_n(X) \ge m + 1$.

Here, generally, we consider cohomology with local coefficients.

Proposition 3.5. If *X* is a connected finite CW-space that is not contractible, then $TC_n(X) \ge n$.

Proof. If X is (k-1)-connected with k > 1 then $H^k(X; \mathbb{F}) \neq 0$ for some field \mathbb{F} . Take a non-zero $v \in H^k(X; \mathbb{F})$ and put $v_i = p_i^* v$ where $p_i : X^n \to X$ is the projection onto the *i*th factor. Then $u_i := v_i - v_n \in \text{Ker } d_n^*$ for i = 1, ..., n-1 and $u_1 \smile \cdots \smile u_{n-1} \neq 0$, and so $\text{TC}_n(X) \ge n$ by Proposition 3.4.

Now, assume that X is not simply connected. Then there exists a non-zero cohomology class $v \in H^1(X; A)$ (generally, with local coefficients). Now argue as in the previous paragraph.

To find a non-zero 1-dimensional element v as above, we can do the following. Let $\pi = \pi_1(X)$ and $\mathbb{Z}[\pi]$ denote the group ring of π . Let I be the augmentation ideal in $\mathbb{Z}[\pi]$. Then the exact sequence $0 \to I \to \mathbb{Z}[\pi] \to \mathbb{Z} \to 0$ of $\mathbb{Z}[\pi]$ -modules yields the long cohomology exact sequence

$$H^0(X; \mathbb{Z}[\pi]) \longrightarrow H^0(X; \mathbb{Z}) \xrightarrow{\delta} H^1(X; I) \longrightarrow \cdots$$

It turns out to be that the so-called Berstein class $\delta(1) \in H^1(X; I)$ is non-zero whenever $\pi \neq 0$ [1,2]. Thus, we can put $\nu = \delta(1)$. \Box

4. An example: $TC_n(S^k)$

Farber [4, Theorem 8] proved that $TC(S^k) = 2$ for k odd and $TC(S^k) = 3$ for k even. We extend this result (and method) and show that $TC_n(S^k) = n$ for k odd and $TC_n(S^k) = n + 1$ for k even. Fix n > 2 and k > 0.

For k even, take a generator $u \in H^k(S^k) = \mathbb{Z}$ and denote by u_i its image in the copy S_i^k of S^k , i = 1, ..., n. In the class $H^k((S^k)^n)$, consider the element

$$\nu = \left(\sum_{i=1}^{n-1} 1 \otimes \cdots \otimes 1 \otimes u_i \otimes 1 \otimes \cdots \otimes 1\right) - 1 \otimes \cdots \otimes 1 \otimes (n-1)u_n.$$

Then $v^n = (1 - n)n!(u_1 \otimes \cdots \otimes u_n)$ since k is even, and so $v^n \neq 0$. On the other hand, $d_n^* v = 0$. Thus, $TC_n(S^k) = n + 1$ by (3.2) and Proposition 3.4.

Now we prove that $TC_n(S^k) = n$ for k odd. Consider a unit tangent vector field V on S^k , $V = \{V_x | x \in S^k\}$. Given $x, y \in S^k$ such that y is the antipode of x, denote by [x, y] the path [0, 1] determined by the geodesic semicircle joining x to y and such that the V_x is the direction of the semicircle at x.

Furthermore, if x and y are not antipodes, denote by [x, y] the path [0, 1] determined by the shortest geodesic from x to y.

Define an injective (non-continuous) function

$$\varphi: (S^k)^n \longrightarrow T_n(S^k),$$

$$\varphi(x_1, \ldots, x_n) = \{ [x_1, x_1], \ldots, [x_1, x_n] \}.$$

For each j = 0, ..., n - 1 consider the submanifold (with boundary) U_j in $(S^k)^n$ such that each *n*-tuple $(x_1, ..., x_n)$ in U_j has exactly *j* antipodes to x_1 . Then $\varphi|_{U_j}: U_j \to T_n(S^k)$ is a continuous section of e_n , and $\bigcup_{i=0}^{n-1} U_i = (S^k)^n$. Furthermore, each U_i , i = 0, ..., n - 1, is an ENR, and so $TC_n(S^k) \leq n$ by Proposition 2.2. Thus, $TC_n(S^k) = n$ by Proposition 3.5.

5. Sequences $\{TC_n(X)\}$

Of course, it is useful and interesting to compute invariants $TC_n(X)$ for different spaces.

However, there is a general problem: to describe all possible (non-decreasing) sequences that can be realized as ${TC_n(X)}_{n=1}^{\infty}$ with some fixed X.

As a first step, note that the inequality $TC(X) \ge 1 + \operatorname{cat} X$ [6, Proposition 4.19] together with (3.2) implies that

$$\mathrm{TC}_{n}(X) \leq n \,\mathrm{TC}_{2}(X) - n + 1. \tag{5.1}$$

So, any sequence $\{TC_n(X)\}\$ has linear growth.

Given $a \in \mathbb{N}$, we can also consider two functions

$$f_a(n) = \max_X \{ \operatorname{TC}_n(X) \mid \operatorname{TC}(X) = a \}$$

and

$$g_a(n) = \min_{X} \{ \operatorname{TC}_n(X) \mid \operatorname{TC}(X) = a \}.$$

So,

$$n \leq g_a(n) \leq f_a(n) \leq na - n + 1.$$

(5.2)

We can ask about the evaluation of the functions f_a and g_a . (This question was inspired by a discussion with M. Grant.) Now we show that $g_3(n) < f_3(n)$ for n > 2. We have $TC(S^2) = 3 = TC(T^2)$ (here T^2 is the 2-torus, the last equality can be found in [4, Theorem 13]).

Proposition 5.1. $TC_n(T^2) \ge 2n - 1$.

Proof. Let x, y be the canonical generators of $H^1(T^2)$. Put $x_i = p_i^* x$ where $p_i : (T^2)^n \to T^2$ is the projection on *i*th factor. Similarly, put $y_i = p_i^* y$. Then $d_n^*(x_2 - x_i) = 0 = d_n^*(y_2 - y_i)$ for i = 2, ..., n. On the other hand, the product

$$(x_2-x_1) \smile \cdots \smile (x_n-x_1) \smile (y_2-y_1) \smile \cdots \smile (y_n-y_1)$$

is non-zero. Indeed, it maps to $x_2 \sim \cdots \sim x_n \sim y_2 \sim \cdots \sim y_n \neq 0$ under the inclusion $(T^2)^{(n-1)} \rightarrow (T^2)^n$ on the last n-1copies of T^2 .

Now the claim follows from Proposition 3.4. \Box

Thus, for n > 2 we have

$$g_3(n) \leq \operatorname{TC}_n(S^2) = n + 1 < 2n - 1 \leq \operatorname{TC}_n(T^2) \leq f_3(n).$$

So, we see that the sequence $\{TC_n(X)\}$ contains more information on (the complexity of) a space X than just the number TC(X).

6. Symmetric topological complexity

Farber [5, Section 31] considered a symmetric version $TC^{S}(X)$ of the topological complexity. More detailed information about this invariant can be found in the papers by Farber and Grant [7] and González and Landweber [8]. We define its higher analogs $TC_n^S(X)$ as follows: Let $\Delta = \Delta_X^n \subset X^n$ be the discriminant,

$$\Delta = \{ (x_1, \dots, x_n) \mid x_i = x_j \text{ for some pair } (i, j) \text{ with } i \neq j \}.$$

The space $X^n \setminus \Delta$ consists of ordered configurations of n distinct points in X and is frequently denoted by F(X,n). Let $v_n: Y \to F(X, n)$ be the restriction of the fibration e_n . Then the symmetric group Σ_n acts on Y by permuting paths and on F(X,n) by permuting coordinates. These actions are free and the map v_n is equivariant. So, the map v_n yields a map (fibration) ev_n of the corresponding orbit spaces, and we define $TC_n^S(X)$ as $TC_n^S(X) = 1 + genus(ev_n)$. Note that, for the symmetric complexity we have $TC^{S}(X) = TC_{2}^{S}(X)$.

It is worth mentioning that in case $X = \mathbb{R}^2$ the space $F(X, n) / \Sigma_n$ is the classifying space for the *n*-braid group β_n . So, the symmetric topological complexity TC_n^S turns out to be related to the topological complexity of algorithms considered by Smale [10] and Vassiliev [12].

Acknowledgements

I am grateful to Mark Grant, Jesús González and Peter Landweber who have read the previous versions of the paper and made several useful and helpful comments. I would also like to thank the anonymous referee for his/her advantage notices.

References

- [1] I. Berstein, On the Lusternik–Schnirelmann category of Grassmannians, Math. Proc. Cambridge Philos. Soc. 79 (1) (1976) 129–134.
- [2] A. Dranishnikov, Yu. Rudyak, On the Berstein-Schwarz theorem in dimension 2, Math. Proc. Cambridge Philos. Soc. 146 (2) (2009) 407-413.
- [3] A. Dold, Lectures on Algebraic Topology, reprint of the 1972 edition, Classics Math., Springer-Verlag, Berlin, 1995.
- [4] M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003) 211-221.
- [5] M. Farber, Topology of robot motion planning, in: Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, in: NATO Sci. Ser. II Math. Phys. Chem., vol. 217, Springer, Dordrecht, 2006, pp. 185–230.
- [6] M. Farber, Invitation to Topological Robotics, Zur. Lect. Adv. Math., Eur. Math. Soc., Zürich, 2008.
- [7] M. Farber, M. Grant, Symmetric motion planning, in: Topology and Robotics, in: Contemp. Math., vol. 438, Amer. Math. Soc., Providence, RI, 2007, pp. 85-104.
- [8] J. González, P. Landweber, Symmetric topological complexity of projective and lens spaces, Algebr. Geom. Topol. 9 (1) (2009) 473-494.
- [9] J.-P. Serre, Homologie singulère des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951) 425-505.
- [10] S. Smale, On the topology of algorithms. I, J. Complexity 3 (2) (1987) 81-89.
- [11] A. Švarc, The genus of a fiber space, Amer. Math. Soc. Transl. Ser. 2 55 (1966) 49-140.
- [12] V. Vassiliev, Cohomology of braid groups and complexity of algorithms, Funct. Anal. Appl. 22 (1988) 15-24.