On higher analogs of topological complexity

Yuli B. Rudyak
Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, FL 32611-8105, USA

ARTICLE INFO

Article history:

Received 19 November 2009
Received in revised form 7 December 2009
Accepted 7 December 2009

MSC:

primary 55M30
secondary 53C23, 57N65

Keywords:

Topological complexity
Schwarz genus
Lusternik-Schnirelmann category

Abstract

Farber introduced a notion of topological complexity $\mathrm{TC}(X)$ that is related to robotics. Here we introduce a series of numerical invariants $\mathrm{TC}_{n}(X), n=2,3, \ldots$, such that $\mathrm{TC}_{2}(X)=$ $\mathrm{TC}(X)$ and $\mathrm{TC}_{n}(X) \leqslant \mathrm{TC}_{n+1}(X)$. For these higher complexities, we define their symmetric versions that can also be regarded as higher analogs of the symmetric topological complexity.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In [4] Farber introduced a notion of topological complexity $\mathrm{TC}(X)$ and related it to a problem of robot motion planning algorithm. Here we introduce a series of numerical invariants $\mathrm{TC}_{n}(X), n=2,3, \ldots$, such that $\mathrm{TC}_{2}(X)=\mathrm{TC}(X)$ and $\mathrm{TC}_{n}(X) \leqslant$ $\mathrm{TC}_{n+1}(X)$. We learn some properties of TC_{n} and, in particular, compute $\mathrm{TC}_{n}\left(S^{k}\right)$. We also define symmetric analogs of higher complexities ($=$ higher analogs of symmetric complexity) introduced in [5, Section 31] and developed in [7,8].

Throughout the paper cat X denotes the Lusternik-Schnirelmann category of a space X, i.e. cat X is one less than the minimal of open and contractible sets in X that cover X. For example, X is contractible iff cat $X=0$.

2. The Schwarz genus of a map

Given a map $f: X \rightarrow Y$ with X, Y path connected, a fibrational substitute of f is defined as a fibration $\widehat{f}: E \rightarrow Y$ such that there exists a commutative diagram

where h is a homotopy equivalence. The well-known result of Serre [9] tells us that every map has a fibrational substitute, and it can be proved that any two fibrational substitutes of a map are fiber homotopy equivalent fibrations.

Given a map $f: X \rightarrow Y$, we say that a subset A of Y is a local f-section if there exists a map $s: A \rightarrow X$ (a local section) such that $f s=\mathrm{id}$.

[^0]The Schwarz genus of a fibration $p: E \rightarrow B$ is defined as a minimum number k such that there exists an open covering U_{1}, \ldots, U_{k} of B where each map U_{i} has a local p-section [11]. We define the Schwarz genus of a map f as the Schwarz genus of its fibrational substitute, and we denote it by $\mathfrak{g e n u s}(f)$. This notion is well defined since any two fibrational substitutes of a map are fiber homotopy equivalent.

Proposition 2.1. For any diagram $X \xrightarrow{f} Y \xrightarrow{g} Z$ we have $\mathfrak{g e n u s}(g f) \geqslant \mathfrak{g e n u s}(g)$.
Proof. This is clear if both f and g (and therefore $g f$) are fibrations. In the general case, replace f and g by fibrational substitutes.

The following proposition is useful for applications. Recall that $X \subset W$ is a neighborhood retract if there exists an open subset O of W that is a retract of X. Furthermore, Euclidean neighborhood retract (ENR) is a space Y that is homeomorphic to a space X such that there is a neighborhood retract $X \subset \mathbb{R}^{N}$. In particular, every finite polyhedron is an ENR. See [3, Chapter 4] for properties of ENR's.

Proposition 2.2. Let $p: E \rightarrow B$ be a fibration over a polyhedron B. Suppose that $B=X_{1} \cup \cdots \cup X_{n}$ where each X_{i} is an ENR and has a local p-section. Then $\mathfrak{g e n u s}(f) \leqslant n$.

Proof. We enlarge each X_{i} to an open subset of B over which there is a section of p. Take an ENR $X_{i}=X$ and an embedding $X \subset B \subset \mathbb{R}^{N}$. Let $r: V \rightarrow X$ be a neighborhood retraction. Then there exists an open set U of V with $X \subset U \subset V$ such that the maps $U \subset V$ and $U \subset V \xrightarrow{r} X \subset V$ are homotopic [3, Chapter 4, especially 8.6, 8.7]. So, there is a homotopy $H: U \times I \rightarrow V$, $H(u, 0)=u, H(u, 1) \subset X$. Consider a section $s: X \rightarrow E$ and put $g: U \rightarrow E, g(u)=s H(u, 1)$. Now use the homotopy extension property to construct a homotopy $G: U \times I \rightarrow E$ with $p G=H$ and $G(u, 1)=g(u)$. Then $\sigma: U \rightarrow E, \sigma(u)=G(u, 0)$ is a section over U.

3. Higher topological complexity

Recall that the topological complexity $\mathrm{TC}(X)$ of a space X is defined to be the Schwarz genus of the fibration

$$
\begin{equation*}
\pi: P X \rightarrow X \times X \tag{3.1}
\end{equation*}
$$

where $P X$ is the space of paths in X and $\pi(\alpha)=(\alpha(0), \alpha(1)) \in X \times X$ for $\alpha \in P X$, Farber [4].
Definition 3.1. Let $J_{n}, n \in \mathbb{N}$, denote the wedge of n closed intervals $[0,1]_{i}, i=1, \ldots, n$, where the zero points $0_{i} \in[0,1]_{i}$ are identified. Consider a path connected space X and set $T_{n}(X):=X^{J_{n}}$. There is an obvious map (fibration) $e_{n}: T_{n}(X) \rightarrow X^{n}$, $e_{n}(f)=\left(f\left(1_{1}\right), \ldots, f\left(1_{n}\right)\right)$ where 1_{i} is the unit in $[0,1]_{i}$, and we define $\mathrm{TC}_{n}(X)$ to be the Schwarz genus of e_{n}.

Remarks 3.2. 1. The above definition makes also sense for $\mathrm{TC}_{1}(X)$, but it was always equal to 1 . The notation is more elegant if we take $\mathrm{TC}_{n}(X), n>1$.
2. It is easy to see that $\mathrm{TC}_{n}(X) \geqslant \mathrm{TC}_{n}(Y)$ if X dominates Y. So, TC_{n} is a homotopy invariant.
3. It is also worth noting that the fibration e_{n} can be described as follows: Take the diagonal map $d_{n}: X \rightarrow X^{n}$ and regard e_{n} as its fibrational substitute à la Serre. Hence, in fact, the higher topological complexity $\mathrm{TC}_{n}(X)$ is the Schwarz genus of the diagonal map $d_{n}: X \rightarrow X^{n}$. Note also that the (homotopy) fiber of e_{n} is $(\Omega X)^{n-1}$ where ΩX denotes the loop space of X.
4. The fibration e_{n} is homotopy equivalent to the following fibration e_{n}^{\prime}. Define $S_{n}(X) \subset X^{I} \times X^{n}$ as

$$
S_{n}(X)=\left\{\left(\alpha, x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \operatorname{Im}(\alpha: I \rightarrow X, i=1, \ldots, n)\right\}
$$

and define $e_{n}^{\prime}: S_{n}(X) \rightarrow X^{n}$ as $e_{n}^{\prime}\left(\alpha, x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)$. To prove that e_{n}^{\prime} is a fibrational substitute of d_{n}, consider the homotopy equivalence $h: X \rightarrow S_{n}(X), h(x)=\left(\varepsilon_{x}, x, \ldots, x\right)$ where ε_{x} is the constant path at x. Note that $e_{n}^{\prime} h=d_{n}: X \rightarrow X^{n}$, and thus e_{n}^{\prime} is the fibrational substitute of d_{n}.
5. The fibration e_{n} is homotopy equivalent to the fibration

$$
e_{n}^{\prime \prime}: X^{I} \rightarrow X^{n}, \quad e_{n}^{\prime \prime}(\alpha)=\left(\alpha(0), \alpha\left(\frac{1}{n-1}\right), \ldots, \alpha\left(\frac{k}{n-1}\right), \ldots, \alpha(1)\right)
$$

where $\alpha: I \rightarrow X$. Indeed, consider the homotopy equivalence $h: X \rightarrow X^{I}, h(x)=\varepsilon_{x}$, and note that $e_{n}^{\prime \prime} h=d_{n}$.
6. It is easy to see (especially in view of the previous item) that $\mathrm{TC}_{2}(X)$ coincides with the topological complexity $\mathrm{TC}(X)$. Indeed, $\mathrm{TC}_{2}(X)$ is the Schwarz genus of $e_{2}^{\prime \prime}$, while $\mathrm{TC}(X)$ is the Schwarz genus of (3.1). Furthermore, given a path $\alpha \in X^{I}=P X, \alpha: I \rightarrow X$, the map $e_{2}^{\prime \prime}: X^{I} \rightarrow X^{2}$ assigns the pair $(\alpha(0), \alpha(1)) \in X \times X$ to α. Hence, $e_{2}^{\prime \prime}$ is the same as the fibration (3.1), and thus has the same Schwarz genus.
7. Mark Grant pointed out to me that, as with $\mathrm{TC}_{2}(X)$, the invariant $\mathrm{TC}_{n}(X)$ is related to robotics. In detail, $\mathrm{TC}_{2}(X)$ is related to motion planning algorithm when a robot moves from a point to another point, see [4], while $\mathrm{TC}_{n}(X)$ is related to motion planning problem whose input is not only an initial and final point but also an additional $n-2$ intermediate points.

Proposition 3.3. $\mathrm{TC}_{n}(X) \leqslant \mathrm{TC}_{n+1}(X)$.
Proof. Let $d_{k}: X \rightarrow X^{k}$ denote the diagonal, $d_{k}(x)=(x, \ldots, x)$. Note that $\mathrm{TC}_{k}(X)$ is the Schwarz genus of the map d_{k}. Define

$$
\varphi: X^{n} \rightarrow X^{n+1}, \quad \varphi\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\left(x_{1}, \ldots, x_{n-1}, x_{n}, x_{n}\right) .
$$

Then $d_{n+1}=\varphi d_{n}$, and hence the Schwarz genus of d_{n+1} is greater than or equal to the Schwarz genus of d_{n} by Proposition 2.1.

To compute TC_{n}, we can apply known methods of calculation of the Schwarz genus. For example, the Schwarz genus of a fibration over B does not exceed $1+\operatorname{cat} B$. So,

$$
\begin{equation*}
\mathrm{TC}_{n}(X) \leqslant 1+\operatorname{cat}\left(X^{n}\right) \leqslant n \text { cat } X+1 \tag{3.2}
\end{equation*}
$$

Furthermore, we have the following claim [11, Theorem 4].
Proposition 3.4. Let $d_{n}: X \rightarrow X^{n}$ be the diagonal. If there exist $u_{i} \in H^{*}\left(X^{n} ; A_{i}\right), i=1, \ldots, m$, so that $d_{n}^{*} u_{i}=0$ and

$$
u_{1} \smile \cdots \smile u_{m} \neq 0 \in H^{*}\left(X^{n} ; A_{1} \otimes \cdots \otimes A_{m}\right)
$$

then $\mathrm{TC}_{n}(X) \geqslant m+1$.

Here, generally, we consider cohomology with local coefficients.

Proposition 3.5. If X is a connected finite $C W$-space that is not contractible, then $\mathrm{TC}_{n}(X) \geqslant n$.
Proof. If X is $(k-1)$-connected with $k>1$ then $H^{k}(X ; \mathbb{F}) \neq 0$ for some field \mathbb{F}. Take a non-zero $v \in H^{k}(X ; \mathbb{F})$ and put $v_{i}=p_{i}^{*} v$ where $p_{i}: X^{n} \rightarrow X$ is the projection onto the i th factor. Then $u_{i}:=v_{i}-v_{n} \in \operatorname{Ker} d_{n}^{*}$ for $i=1, \ldots, n-1$ and $u_{1} \smile \cdots \smile u_{n-1} \neq 0$, and so $\mathrm{TC}_{n}(X) \geqslant n$ by Proposition 3.4.

Now, assume that X is not simply connected. Then there exists a non-zero cohomology class $v \in H^{1}(X ; A)$ (generally, with local coefficients). Now argue as in the previous paragraph.

To find a non-zero 1 -dimensional element v as above, we can do the following. Let $\pi=\pi_{1}(X)$ and $\mathbb{Z}[\pi]$ denote the group ring of π. Let I be the augmentation ideal in $\mathbb{Z}[\pi]$. Then the exact sequence $0 \rightarrow I \rightarrow \mathbb{Z}[\pi] \rightarrow \mathbb{Z} \rightarrow 0$ of $\mathbb{Z}[\pi]$ modules yields the long cohomology exact sequence

$$
H^{0}(X ; \mathbb{Z}[\pi]) \longrightarrow H^{0}(X ; \mathbb{Z}) \xrightarrow{\delta} H^{1}(X ; I) \longrightarrow \cdots
$$

It turns out to be that the so-called Berstein class $\delta(1) \in H^{1}(X ; I)$ is non-zero whenever $\pi \neq 0$ [1,2]. Thus, we can put $v=\delta(1)$.

4. An example: $\mathrm{TC}_{n}\left(\boldsymbol{S}^{\boldsymbol{k}}\right)$

Farber [4, Theorem 8] proved that $\mathrm{TC}\left(S^{k}\right)=2$ for k odd and $\mathrm{TC}\left(S^{k}\right)=3$ for k even. We extend this result (and method) and show that $\mathrm{TC}_{n}\left(S^{k}\right)=n$ for k odd and $\mathrm{TC}_{n}\left(S^{k}\right)=n+1$ for k even. Fix $n>2$ and $k>0$.

For k even, take a generator $u \in H^{k}\left(S^{k}\right)=\mathbb{Z}$ and denote by u_{i} its image in the copy S_{i}^{k} of $S^{k}, i=1, \ldots, n$. In the class $H^{k}\left(\left(S^{k}\right)^{n}\right)$, consider the element

$$
v=\left(\sum_{i=1}^{n-1} 1 \otimes \cdots \otimes 1 \otimes u_{i} \otimes 1 \otimes \cdots \otimes 1\right)-1 \otimes \cdots \otimes 1 \otimes(n-1) u_{n}
$$

Then $v^{n}=(1-n) n!\left(u_{1} \otimes \cdots \otimes u_{n}\right)$ since k is even, and so $v^{n} \neq 0$. On the other hand, $d_{n}^{*} v=0$. Thus, $\mathrm{TC}_{n}\left(S^{k}\right)=n+1$ by (3.2) and Proposition 3.4.

Now we prove that $\mathrm{TC}_{n}\left(S^{k}\right)=n$ for k odd. Consider a unit tangent vector field V on $S^{k}, V=\left\{V_{x} \mid x \in S^{k}\right\}$. Given $x, y \in S^{k}$ such that y is the antipode of x, denote by $[x, y]$ the path $[0,1]$ determined by the geodesic semicircle joining x to y and such that the V_{x} is the direction of the semicircle at x.

Furthermore, if x and y are not antipodes, denote by $[x, y]$ the path $[0,1]$ determined by the shortest geodesic from x to y.

Define an injective (non-continuous) function

$$
\begin{aligned}
& \varphi:\left(S^{k}\right)^{n} \longrightarrow T_{n}\left(S^{k}\right) \\
& \varphi\left(x_{1}, \ldots, x_{n}\right)=\left\{\left[x_{1}, x_{1}\right], \ldots,\left[x_{1}, x_{n}\right]\right\}
\end{aligned}
$$

For each $j=0, \ldots, n-1$ consider the submanifold (with boundary) U_{j} in $\left(S^{k}\right)^{n}$ such that each n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ in U_{j} has exactly j antipodes to x_{1}. Then $\left.\varphi\right|_{U_{j}}: U_{j} \rightarrow T_{n}\left(S^{k}\right)$ is a continuous section of e_{n}, and $\bigcup_{i=0}^{n-1} U_{i}=\left(S^{k}\right)^{n}$. Furthermore, each $U_{i}, i=0, \ldots, n-1$, is an ENR, and so $\mathrm{TC}_{n}\left(S^{k}\right) \leqslant n$ by Proposition 2.2. Thus, $\mathrm{TC}_{n}\left(S^{k}\right)=n$ by Proposition 3.5.

5. Sequences $\left\{\mathrm{TC}_{\boldsymbol{n}}(\boldsymbol{X})\right\}$

Of course, it is useful and interesting to compute invariants $\mathrm{TC}_{n}(X)$ for different spaces.
However, there is a general problem: to describe all possible (non-decreasing) sequences that can be realized as $\left\{\mathrm{TC}_{n}(X)\right\}_{n=1}^{\infty}$ with some fixed X.

As a first step, note that the inequality $\mathrm{TC}(X) \geqslant 1+$ cat X [6, Proposition 4.19] together with (3.2) implies that

$$
\begin{equation*}
\mathrm{TC}_{n}(X) \leqslant n \mathrm{TC}_{2}(X)-n+1 . \tag{5.1}
\end{equation*}
$$

So, any sequence $\left\{\mathrm{TC}_{n}(X)\right\}$ has linear growth.
Given $a \in \mathbb{N}$, we can also consider two functions

$$
f_{a}(n)=\max _{X}\left\{\mathrm{TC}_{n}(X) \mid \mathrm{TC}(X)=a\right\}
$$

and

$$
g_{a}(n)=\min _{X}\left\{\mathrm{TC}_{n}(X) \mid \mathrm{TC}(X)=a\right\}
$$

So,

$$
\begin{equation*}
n \leqslant g_{a}(n) \leqslant f_{a}(n) \leqslant n a-n+1 \tag{5.2}
\end{equation*}
$$

We can ask about the evaluation of the functions f_{a} and g_{a}. (This question was inspired by a discussion with M. Grant.)
Now we show that $g_{3}(n)<f_{3}(n)$ for $n>2$.
We have $\operatorname{TC}\left(S^{2}\right)=3=\mathrm{TC}\left(T^{2}\right)$ (here T^{2} is the 2-torus, the last equality can be found in [4, Theorem 13]).
Proposition 5.1. $\mathrm{TC}_{n}\left(T^{2}\right) \geqslant 2 n-1$.
Proof. Let x, y be the canonical generators of $H^{1}\left(T^{2}\right)$. Put $x_{i}=p_{i}^{*} x$ where $p_{i}:\left(T^{2}\right)^{n} \rightarrow T^{2}$ is the projection on i th factor. Similarly, put $y_{i}=p_{i}^{*} y$. Then $d_{n}^{*}\left(x_{2}-x_{i}\right)=0=d_{n}^{*}\left(y_{2}-y_{i}\right)$ for $i=2, \ldots, n$. On the other hand, the product

$$
\left(x_{2}-x_{1}\right) \smile \cdots \smile\left(x_{n}-x_{1}\right) \smile\left(y_{2}-y_{1}\right) \smile \cdots \smile\left(y_{n}-y_{1}\right)
$$

is non-zero. Indeed, it maps to $x_{2} \smile \cdots \smile x_{n} \smile y_{2} \smile \cdots \smile y_{n} \neq 0$ under the inclusion $\left(T^{2}\right)^{(n-1)} \rightarrow\left(T^{2}\right)^{n}$ on the last $n-1$ copies of T^{2}.

Now the claim follows from Proposition 3.4.
Thus, for $n>2$ we have

$$
g_{3}(n) \leqslant \mathrm{TC}_{n}\left(S^{2}\right)=n+1<2 n-1 \leqslant \mathrm{TC}_{n}\left(T^{2}\right) \leqslant f_{3}(n)
$$

So, we see that the sequence $\left\{\mathrm{TC}_{n}(X)\right\}$ contains more information on (the complexity of) a space X than just the number TC (X).

6. Symmetric topological complexity

Farber [5, Section 31] considered a symmetric version $\mathrm{TC}^{S}(X)$ of the topological complexity. More detailed information about this invariant can be found in the papers by Farber and Grant [7] and González and Landweber [8]. We define its higher analogs $\mathrm{TC}_{n}^{S}(X)$ as follows: Let $\Delta=\Delta_{X}^{n} \subset X^{n}$ be the discriminant,

$$
\Delta=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i}=x_{j} \text { for some pair }(i, j) \text { with } i \neq j\right\}
$$

The space $X^{n} \backslash \Delta$ consists of ordered configurations of n distinct points in X and is frequently denoted by $F(X, n)$. Let $v_{n}: Y \rightarrow F(X, n)$ be the restriction of the fibration e_{n}. Then the symmetric group Σ_{n} acts on Y by permuting paths and on $F(X, n)$ by permuting coordinates. These actions are free and the map v_{n} is equivariant. So, the map v_{n} yields a map (fibration) $e v_{n}$ of the corresponding orbit spaces, and we define $\mathrm{TC}_{n}^{S}(X)$ as $\mathrm{TC}_{n}^{S}(X)=1+\mathfrak{g e n u s}\left(e v_{n}\right)$. Note that, for the symmetric complexity we have $\mathrm{TC}^{S}(X)=\mathrm{TC}_{2}^{S}(X)$.

It is worth mentioning that in case $X=\mathbb{R}^{2}$ the space $F(X, n) / \Sigma_{n}$ is the classifying space for the n-braid group β_{n}. So, the symmetric topological complexity TC_{n}^{S} turns out to be related to the topological complexity of algorithms considered by Smale [10] and Vassiliev [12].

Acknowledgements

I am grateful to Mark Grant, Jesús González and Peter Landweber who have read the previous versions of the paper and made several useful and helpful comments. I would also like to thank the anonymous referee for his/her advantage notices.

References

[1] I. Berstein, On the Lusternik-Schnirelmann category of Grassmannians, Math. Proc. Cambridge Philos. Soc. 79 (1) (1976) 129-134.
[2] A. Dranishnikov, Yu. Rudyak, On the Berstein-Schwarz theorem in dimension 2, Math. Proc. Cambridge Philos. Soc. 146 (2) (2009) $407-413$.
[3] A. Dold, Lectures on Algebraic Topology, reprint of the 1972 edition, Classics Math., Springer-Verlag, Berlin, 1995.
[4] M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003) 211-221.
[5] M. Farber, Topology of robot motion planning, in: Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, in: NATO Sci. Ser. II Math. Phys. Chem., vol. 217, Springer, Dordrecht, 2006, pp. 185-230.
[6] M. Farber, Invitation to Topological Robotics, Zur. Lect. Adv. Math., Eur. Math. Soc., Zürich, 2008.
[7] M. Farber, M. Grant, Symmetric motion planning, in: Topology and Robotics, in: Contemp. Math., vol. 438, Amer. Math. Soc., Providence, RI, 2007, pp. 85-104.
[8] J. González, P. Landweber, Symmetric topological complexity of projective and lens spaces, Algebr. Geom. Topol. 9 (1) (2009) 473-494.
[9] J.-P. Serre, Homologie singulère des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951) 425-505.
[10] S. Smale, On the topology of algorithms. I, J. Complexity 3 (2) (1987) 81-89.
[11] A. Švarc, The genus of a fiber space, Amer. Math. Soc. Transl. Ser. 255 (1966) 49-140.
[12] V. Vassiliev, Cohomology of braid groups and complexity of algorithms, Funct. Anal. Appl. 22 (1988) 15-24.

[^0]: E-mail address: rudyak@ufl.edu.
 0166-8641/\$ - see front matter © 2009 Elsevier B.V. All rights reserved.

