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SUMMARY 

In this paper, mP will denote a projective we of dimension m, and (mtn)P will 
denote a doubly-projective space of dimension m+n, namely the space of all pairs 
of points (xly), where x varies in mP and y in “P. Just so, (m.n+)P will denote a 
triply-projective space of dimension m+n+8, and so on. 

A veriety V of dimension d in mP has just one degree g, namely the number 
of points of intersection of V with d generic linear hyperplanes (w)= 0, where (m) 
means &x6. On the other hand, a variety I” of dimension d in (“*n)P has several 
degrees gcr,a (a+b=d), defined as follows: g&b is the number of points of intersection 
of I” with a hyperplsnes (m) = 0 and b hyperplanes (vy) = 0. 

Let x0, . . . . xm, yO, . . . . yn be the homogeneous coordirmtes of a point in m+n+lP. 
It sometimes happens that the equations of e variety V in m+*+lP are not only 
homogeneous in all variables x and y together, but even homogeneous in the x’s 
and in the y’s. In this case the ssme set of equations also deflnee s, variety I” in 
the doubly-projective space (m+n)P. If d is the dimension of V’, the dimension of 
V is d+ 1, for to every point (xly) of I” corresponds 8 whole straight line of points 
(xa, YB) in v. 

In some cams it is easier to determine the degrees g&b of v’ than to determine 
the degree g of I’. For this resson, it is desirable to have a rule that enables us to 
calculate g from the g.,b’s. Such e rule will be proved here. It says: 

The degree g &? the Bum of aU g&b with a+b=d. 
In the case of multiply-projective spaces (m,n. ... )P the same rule holds: g is the 

sum of the go,& .,. with a+b+...=d. 
Examples of applications of this rule will be given at the end. 

UYfYLES AND THEE INTERSECTIONS IN MULTIPLY-PROJECTIVE SPAUES 

For the sake of convenience, the ground field will be assumed to be 
the field of complex numbers. This assumption enables us to consider 
(m.n)I’ as a topological manifold and to apply the methods of homology 
theory to algebraic cycles in ( m*n)P. The algebraic intersection of two or 
more cycles is just the topological intersection cycle ; topological inter- 
section multiplicities of algebraic cycles are always positive and equal to 
the algebraic multiplicities 1). 

1) B. L. van der Waerden : Topologische Begrkdung des Kalkfils der slgebraischen 
Geometrie. Math. Arm. 102, 337-362 (1929). 
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The space (m+n)P is a topological product space mP x nP. According to 
Ktinneth 2), a homology basis for the product space can be obtained by 
multiplying the homology bases of the factor spaces. More precisely: if 
the cycles Ai, . . . . A, form a homology basis for cycles of all dimensions 
in “P, and &, . . . . Bt for nP, then the cycles At x Bk form a basis for 
(m,n)P. “Homology” is here meant as “Homology with division allowed” 
in the sense of Poincare. 

I shall use the very convenient notation of Schubert 3). Let p denote 
any linear subspace (UX) = 0, and p any linear subspace (vy) = 0 in (m**)P. 
By ps Schubert denotes the intersection of any two subspaces (ux) =0 
and (u’z) = 0, by ~3 the intersection of any three such subspaces, provided 
the intersection has the right dimension m+n-- 3, which can always be 
achieved by shifting the subspaces. And so on. 

Two cycles A and B of the same dimension d are called “equal”, and 
Schubert writes A = B, if the intersections A. C and B . C with any algebraic 
cycle of complementary dimension nz+n-d consist of the same number 
of points. This is always the case if the cycles A and B are homologous. 

It is well known that a homology basis for the cycles of all dimensions 
in mP is formed by the cycles 

where po is the whole space mP. Just so, a basis of nP is formed by 

!l”, !I1 , **-> P* 

Hence, according to Kiinneth, a basis for (m,n)P is formed by the cycles 

pa@ (t-4=0, 1, . . . . m; b=O, 1, . . . . 78). 

This implies: Every cycle 2 of dimension d is equal (in the sense of 
Schubert) to a sum 

z= 2 r)m-aqn-bg,,b. 
a+b-d 

If one multiplies both sides of (1) by pqb one obtains 

(2) Z*pa~b=~mqnga,b. 

On the right, pmpn is a cycle consisting of just one point of (m.n)P. 
On the left, we have the intersection of Z with a hyperplanes (uc)=O 
and b hyperplanes (vy)=O. So (2) means that the degrees of Z are just 
the COeffiCientS ga,b. 

The easiest derivation of formula (1) seems to be the topological deri- 
vation just given. However, (1) is also true in the case of an arbitrary 

2) H. Kiinneth: tuber die Bettischen Zahlen einer ProduktmamCgfaltigkeit. 
Math. Ann. 90, 66-86 (1923). See also Math. Ann. 91, 126 (1924). 

8) H. Schubert: K&ii1 der Abz&hlenden Geometric. 
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ground field. This was proved by Grothendieck 4). More generally, 
Grothendieck showed how to derive the intersection ring of cycles on 
any bundle of projective spaces over a smooth variety X from the inter- 
section ring of cycles on X (modulo rational equivalence). 

If one multiplies (1) by an arbitrary cycle W of dimension m+n-d, 
one obtains 

(3) 8. W=prnqn 1 ga,b hm-a,n-b, 
o-l-b-d 

where Fue,f are the degrees of W. Formula (3) is the generalization of 
Bezout’s theorem to doubly-projective spaces. 

It is easy to generalize (l), (2), (3) to multiply-projective spaces. For 
the space (m,n,@P formula (1) reads 

(4) Z= a+b$ d prnda qneb rsec ga,b,c. 

The proof is obvious: (m.n~a)P is just the topological product of (m,n)P 
and 8P, so Kiinneth’s theorem can be applied once more. 

THE VARIETIES V' AND V 

Let V’ be an irreducible variety of dimension d in (m.@P. Every point 
(zly) of v’ determines a straight line in m+n+lP formed by the points 
(x01, yb) having coordinates 

(X06 -*-, Xrn& YOfi, - - e, Yn/%. 

The union of these lines is an irreducible variety V of dimension d + 1 
in m+n+lP. A generic point of V can be obtained by starting with a generic 
point @Ia) of V’ and forming 

with indeterminates .s and t. 
There is a rational mapping n which maps m+n+lP on to (ml@P, and 

V on to V’. The image of a point (x, y) is unique for all points (2, y) 
of m+n+lP except those for which x=0 or y= 0. These exceptional points 
form two linear subspaces nP and mP in m+n+lP. For all other points 
the mapping 7c is defined by 

If one wants to apply this mapping 2-c to any variety U in m+n+lP 
which does not lie in %P or mP, a good method is: Apply the mapping 
to a generic point Q of U, thus obtaining a generic point nQ of nU. All 
points of nU are spezializations of the generic point nQ. In this way, 

4) A. Grothendieck: Sur propri&& fondamentales en th6orie des intersections. 
S&ninaire Chevalley, deuxihme am&e, S&x. Math. Paris (1958). Mr. 5. L. Kleiman, 
M.I.T. Cambridge (Mass.), has drawn my attention to this paper. 
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all difficulties arising from special points of U lying in *P or mP are 
avoided. If U has dimension d, the map nU may have dimension d 
or a-i. 

Now let us return to our main problem: to find the degree of V, if the 
degrees ga,b of V’ are given. 

THE DEQREE OF V 

To fix the ideas, let us suppose that V baa codimension 2, i.e. that 
its dimension is m+n - 1. In this case, the degree g is de&red as the 
number of points of intersection with a generic plane U in m+*+lP. The 
plane may be defined by three generic points A, B, C, whose coordinates 
we shall call 

A: (a,,, . . . . a,, &,, . . . . da) or just (a, d) 
B: (bs, . . . . bnr, Ed, . . . . e,) or just (b, e) 
c: (cg ,..., Gn,fO, . . . . fn) or just (c,f). 

Now a generic point of the plane U may be obtained thus: 

(6) x=aa+bj3+cy 

(6) y=da+eg+fy 

with indeterminates 01, b, y. The image of this generic point in the mapping 
x is given by exactly the same formulae (6) and (6). All points of the 
image W = XU are obtained by giving special values to the indeterminates 
01, B, y* 

Our aim was: to determine the number of points of intersection of V 
and U. Since U is a generic plane, these points do not lie in nP or mP, 
so we may apply the mapping IC, thus obtaining points of intersection 
of V’ and nU = W. Conversely, to every point of intersection of V’ and 
W corresponds just one point of intersection of V and U. In such a 
point R, the tangential spaces to V and U have only the point R in 
common, because U is a generic plane in m+n+lP. The mapping S-C diminishes 
the dimension of V by one unit, but it preserves the property of the 
tangential spaces to have only one point in common. Hence the point 
nR has multiplicity 1 in the intersection of V’ and W, and this holds 
for all points of intersection. Hence the cycle V’ - W consists of just g 
points, each counted once. 

The rest is easy. According to formula (3), applied to the intersection 
V’- W, we have 

(7) g= a+? d ga,b hm-a,n-b 

which means in our case (d=m++2) 

(8) g =gm-a,n hz,o+gnr-I,,,-I h,l+gm,n-2 5.2 
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where the &,f are the degrees of W. Now it turns out that these degrees 
are all equal to 1. Let us calculate, for instance, the degree hi.1, i.e. the 
number of points of intersection of W with two linear hyperplanes 

(ux)=O and (vy)=O. 

For z and y we may substitute the parametric representations (5) and 
(6), from which we get 

Thus we obtain two linear equations for OL, /?, y, which have just one 
solution. Hence 

h,1= 1 

and just so, if nz> 2 
h,o= 1 

and if n>2 
ho,2= 1. 

Thus one obtains from (8) 

and just so in the general case from (7) 

(9) g= z: ih,b 
o+b-d 

Of course, on the right side of (9), only terms ga,b satisfying the con- 
ditions 

O<agm 
Ogb<n 

are to be retained. 
Exactly the same proof holds in the still more general case of a multiply 

projective space (men,... )I’. The degree of the variety V is always equal 
to the sum of those degrees ga,b ,..., for which the sum a+ b + . . . is d. 

ANOTHER PROOF OF (9) 

The proof of (9) just given was based on the theorem of Kiinneth. 
I shall now give an elementary proof by complete induction with respect 
to the dimension d of V’. 

We may suppose V and V’ to be absolutely irreducible. Hence, if d 
is zero, V’ consists of just one point, and I’ of just one line. In this case 
the formula (9) is trivial : 

g=g1,1= 1. 
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Now let us suppose that (9) is true for varieties U’ of dimension d - 1. 
We have to prove (9) for varieties V’ of dimension d. 

Let vo, . ..) va be indeterminates, and let F(v) be the field obtained from 
the ground field F by the adjunction of WO, . .., v,. The intersection of V 
(dimension d + 1 in m+n+lP) with the hyperplane 

(10) (vy)=z)oyo+ . . . +v,y,,=o 

is a cycle 2 of dimension d. The cycle 2 consists of a variable part U, 
which is an irreducible variety over F(v) counted only once I), and 
possibly a fixed part C not depending on the V$ and lying in the linear 
subspace mP defined by the equations 

(11) yo=o, . ..) yn=o. 

So we have 

(12) z=u+c. 

Applying to U the mapping z, one obtains a variety U’ of dimension 
d - 1, the intersection of V’ with the hyperplane (vy) = 0 in (m.n)P. This 
time, the intersection contains no fixed part, because the equations (11) 
have no solution in (m*n)P. So the intersection cycle of V’ with (vy)=O 
is just U’, counted only once. 

To U’ and U we may apply the induction hypothesis. It follows that 
the degree of U is the sum of the degrees Aa,bi of U’. Now we have, 
trivially, 

h(a, b - 1) =g(a, b) 
for all b > 0. Hence: 

The degree of U is equal to the sum of the g(a, b) with a + b = d and b > 0. 
The degree of V is of course equal to the degree of its hyperplane section 

Z= U+ C. It remains to determine the degree of the cycle C. I shall 
prove that this degree is just gd,O. 

Let us consider the intersection of V with the d + 1 hyperplanes (13) 
and (14): 

(13) (u1z)=O, . . . . (U&)=0 

(14) (VYl) = 0, 

the coefficients ur and ok in (13) and (14) being independent indeterminates. 
We shall start with V and form intersections stepwise, taking into account 

1) By Bertini’s theorem. See e.g. my EinfChnmg in die algebrsische Geome- 
trie, 8 47. 
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one hyperplane after another, each time throwing away those parts of 
the intersection that lie in nP(x= 0), because these are unimportant for 
our purpose. First we shall take the hyperplanes in the order ~1, ,.., ~6, e, 
and next in the order V, ~1, . .., ua. It is well known that the final multi- 
plicities of the points of intersection are independent of the order of the 
steps. 

Let us first consider the intersection of V with the hyperplanes (13). 
In (m.n)P the corresponding intersection is that of I” with the hyperplanes 
(13). It consists of gd,O points, each counted once. To these points corre- 
spond the same number of straight lines Lt, each counted once. The 
remainder of the intersection of V with (13) lies in the subspace nP and 
may be neglected. 

Each of the gd,s straight lines Lt has just one point Pt in common with 
mP (y = 0). This point satisfies the equation (vy) = 0, hence it is the point 
of intersection of the line Lg with the hyperplane (14). Hence that part 
of the intersection of V with (13) and (14) which does not lie in *P is 
the zero-dimensional cycle 2 Pt consisting of gd,O points. Some of these 
points may coincide, but the degree of the cycle is exactly gd,O. The total 
intersection of I’ with (13) and (14) consists of the points Pi in mP and 
a remainder in nP. 

Now we take the other order : first (14) and next (13). The intersection 
of V with (14) is the d-dimensional cycle 2 = U + C. So we have to intersect 
U with (13) and C with (13) and to add the results. We have to consider 
only those points of intersection that lie in mP. Now U does not lie in mP, 
hence the meet of U and mP has at most dimension d - 1, and the hyper- 
planes (13) do not contain any point of this meet. So we are left with 
the intersection of the cycle C in mP with the d hyperplanes (13). The 
degree of this intersection is just the degree of C. 

Comparing the two results, we obtain the desired equation 

deg (C) = g&,0. 
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Thus we have 
g= deg (U)+ deg (C) 

which is what we wanted to prove. 

APPLICATIONS 

If the matrix elements of an m xn matrix are interpreted either as 
coordinates in an afthe space mnA or as homogeneous coordinates in a 
projective space mn-lP, one may ask 6): 

Whut is the degree of the variety V fomzed by the m x n matrices of rank 
r ad most? 

To fix the ideas, let us consider the case m=n= 4, r = 2. The four 
columns of a 4 x 4 matrix may be interpreted as homogeneous coordinates 
of four points in SP. If the rank is 2 at most there are at most 2 linearly 
independent points among the four, in other words, the four points are 
in a straight line. Hence the variety V’ in @JJs@P consists of all those 
sequences of four points p, 4, r, 8 in 3P that are collinear. The dimension 
of this variety V’ is 3 + 3+ 1 + 1 = 8, since two of the four points may 
be chosen arbitrarily, while the remaining two have one degree of freedom 
each. 

In order to determine the degree g of V, we first have to determine 
the degrees g&b,c,d of V’ (a+b+c+d = 8) and next to form their sum. 
We have 3 types of degrees ga,b,c,& namely 

gs,s,i,l and permutations, 
gs,c,c,i and permutations, 
92.2,2,2* 

The calculation of gs,s,r,r is easy. We have 3 linear conditions @n)=O, 
which determine the Grst point p completely, and 3 conditions (~a)=0 
which determine q completely. Now the line pq is known, and one con- 
dition for each of the points r and s suffices to determine these two points. 
Hence gs,s,l,l= 1. 

Just so, one sees that gs,z,z,i = 1. Three conditions determine p, and 
for q and r we have two conditions each, which means that q and r must 
lie on two given straight lines in generic positions. There is just one 
straight line through p that meets the two given lines. One linear con- 
dition for r suffices to determine the fourth point r. 

To Cnd g2,2,2,2 we have to find the number of straight lines that meet 

6) This question was raised by V. Straasen during a walk in 1976. 
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four given straight lines. It is well known that this number is 2, provided 
the four lines are in generic positions. 

So we have 

gs,s,i,i= 1, six permutations, sum 6 
gs,s,2,1= 1, twelve permutations, sum 12 
g2,2.2,2= 2, only one permutation, sum 2 
Total g=6+12+2=20. 

This solves our problem. In the more general case of 4 x n matrices 
of rank 2 at most one finds by the same method 

g3 9 3 , 11...= * . 1, permutations, sum 

g3.2,2,1....= 1, 3 permutations, sum 

92221 9 , , 1... =2, permutations, sum 

Total g=(;)+3(;)+2(;)= n=$) 

Other results, which may be obtained by the same method, are: 

m x n matrices (m <n), rank m - 1 at most : 

g= n ( ) m-l ’ 

m x n matrices, rank 1 at most : 

The latter result can also be verifled by a simpler method: An m x n 
matrix of rank 1 can be obtained as a product of a single column and 
a single row: 

&k = hk. 

If the &k are considered as homogeneous coordinates in mn-lP, one 
obtains a variety V of dimension m + n - 2 in mn-lP. If we impose (m + n - 2) 
linear conditions on the a&, we obtain (m +n- 2) bilinear conditions for 
the br and ck. The pairs of points (b, c) form a doubly-projective space 
(m-lpn-l)P. A bilinear condition for b and c determines a hypersurface B 
of degrees 1,l in ( m-l+-l)P. According to formula (l), we have the Schubert 
equality 

B=p+q. 
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The intersection of (m+n - 2) such bilinear hypersurfaces is 

The number of points of this O-dimensional cycle is 

in accordance with our earlier result. 
In the most general case, when m, n and r are arbitrary, the same 

method can be applied. The problem of determining the degrees g&b,... 
of V’ is seen to be equivalent to a well-known problem of enumerative 
geometry : 

How many subspac~ *-lP of m-lP meet a certain number of given sub- 
space8 in gene&3 position.8 

m-I-ap, m-I-bp, . . . ? 

This problem can be solved in any particular case by the methods 
explained in Volume 2, page 309-367 (Chapter XIV) of Hodge and Pedoe: 
Methods of Algebraic Geometry (Cambridge Univ. Press 1952). The main 
tool is “Pieri’s Formula” (4), p. 364, which was tist proved by W. V. D. 
Hodge. 
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