MATHEMATICS

B. L. VAN DER WAEBDEN

On varieties in multiple-projective spaces

Dedicated to N. G. de Bruijn on his sixtieth birthday

Communicated at the meeting of April 30, 1977

Wiesliacher 5, 8053 Zurich, Switzerland

SUMMARY

In this paper, ${ }^{m} P$ will denote a projective space of dimension m, and (m, n) P will denote a doubly-projective space of dimension $m+n$, namely the space of all pairs of points $(x \mid y)$, where x varies in ${ }^{m} P$ and y in ${ }^{n} P$. Just so, $(m, n, s) P$ will denote a triply-projective space of dimension $m+n+s$, and so on.
A variety V of dimension d in ${ }^{m} P$ has just one degree g, namely the number of points of intersection of V with d generic linear hyperplanes ($u x$) $=0$, where ($u x$) means $\sum u_{s} x_{i}$. On the other hand, a variety V^{\prime} of dimension d in ($\left.{ }^{(m, n}\right) P$ has several degrees $g_{a, b}(a+b=d)$, defined as follows: $g_{a, b}$ is the number of points of intersection of V^{\prime} with a hyperplanes $(u x)=0$ and b hyperplanes $(v y)=0$.
Let $x_{0}, \ldots, x_{m}, y_{0}, \ldots, y_{n}$ be the homogeneous coordinates of a point in ${ }^{m+n+1} P$. It sometimes happens that the equations of a variety V in $m+n+1 P$ are not only homogeneous in all variables x and y together, but even homogeneous in the x 's and in the y 's. In this case the same set of equations also defines a variety V^{\prime} in the doubly-projective space ${ }^{(m+n)} P$. If d is the dimension of V^{\prime}, the dimension of V is $d+1$, for to every point $(x \mid y)$ of V^{\prime} corresponds a_{0} whole straight line of points ($x \alpha, y \beta$) in V.
In some cases it is easier to determine the degrees $g_{a, b}$ of V^{\prime} than to determine the degree g of V. For this reason, it is desirable to have a rule that enables us to calculate g from the $g_{a, b}$'s. Such a rule will be proved here. It says:

The degree g is the sum of all $g_{a, b}$ with $a+b=d$.
In the case of multiply-projective spaces (m, n, \cdots) P the same rule holds: g is the sum of the $g_{a, b}, \ldots$ with $a+b+\ldots=d$.

Examples of applications of this rule will be given at the end.

OYOLES AND THEIR INTERSECTIONS IN MULTIPLY-PROJECTIVE SPAOES

For the sake of convenience, the ground field will be assumed to be the field of complex numbers. This assumption enables us to consider ${ }^{(m, n) P}$ as a topological manifold and to apply the methods of homology theory to algebraic cycles in $(m, n) P$. The algebraic intersection of two or more cycles is just the topological intersection cycle; topological intersection multiplicities of algebraic cycles are always positive and equal to the algebraic multiplicities ${ }^{1}$).

[^0]The space ${ }^{(m+n) P}$ is a topological product space ${ }^{m} P \times{ }^{n} P$. According to Künneth ${ }^{2}$), a homology basis for the product space can be obtained by multiplying the homology bases of the factor spaces. More precisely: if the cycles A_{1}, \ldots, A_{8} form a homology basis for cycles of all dimensions in ${ }^{m} P$, and B_{1}, \ldots, B_{t} for ${ }^{n} P$, then the cycles $A_{i} \times B_{k}$ form a basis for (m, n) P. "Homology" is here meant as "Homology with division allowed" in the sense of Poincaré.

I shall use the very convenient notation of Schubert ${ }^{3}$). Let p denote any linear subspace $(u x)=0$, and q any linear subspace $(v y)=0$ in (m, n) P. By p^{2} Schubert denotes the intersection of any two subspaces $(u x)=0$ and ($\left.u^{\prime} x\right)=0$, by p^{3} the intersection of any three such subspaces, provided the intersection has the right dimension $m+n-3$, which can always be achieved by shifting the subspaces. And so on.

Two cycles A and B of the same dimension d are called "equal", and Schubert writes $A=B$, if the intersections $A \cdot C$ and $B \cdot C$ with any algebraic cycle of complementary dimension $m+n-d$ consist of the same number of points. This is always the case if the cycles A and B are homologous.

It is well known that a homology basis for the cycles of all dimensions in ${ }^{m} P$ is formed by the cycles

$$
p^{0}, p^{1}, p^{2}, \ldots, p^{m}
$$

where p^{0} is the whole space ${ }^{m} P$. Just so, a basis of $n P$ is formed by

$$
q^{0}, q^{1}, \ldots, q^{n}
$$

Hence, according to Künneth, a basis for $(m, n) P$ is formed by the cycles

$$
p^{a} q^{b}(a=0,1, \ldots, m ; b=0,1, \ldots, n)
$$

This implies: Every cycle Z of dimension d is equal (in the sense of Schubert) to a sum

$$
\begin{equation*}
Z=\sum_{a+b-d} p^{m-a} q^{n-b} g_{a, b} \tag{1}
\end{equation*}
$$

If one multiplies both sides of (1) by $p^{a} q^{b}$ one obtains

$$
\begin{equation*}
Z \cdot p^{a} q^{b}=p^{m} q^{n} g_{a, b} . \tag{2}
\end{equation*}
$$

On the right, $p^{m} q^{n}$ is a cycle consisting of just one point of $(m, n) P$. On the left, we have the intersection of Z with a hyperplanes ($u x$) $=0$ and b hyperplanes (vy) $=0$. So (2) means that the degrees of Z are just the coefficients $g_{a, b}$.

The easiest derivation of formula (1) seems to be the topological derivation just given. However, (1) is also true in the case of an arbitrary

[^1]ground field. This was proved by Grothendieck ${ }^{4}$). More generally, Grothendieck showed how to derive the intersection ring of cycles on any bundle of projective spaces over a smooth variety X from the intersection ring of cycles on X (modulo rational equivalence).

If one multiplies (1) by an arbitrary cycle W of dimension $m+n-d$, one obtains

$$
\begin{equation*}
Z \cdot W=p^{m} q^{n} \sum_{a+b=d} g_{a, b} h_{m-a, n-b} \tag{3}
\end{equation*}
$$

where $h_{e, f}$ are the degrees of W. Formula (3) is the generalization of Bézout's theorem to doubly-projective spaces.

It is easy to generalize (1), (2), (3) to multiply-projective spaces. For the space (m, n, s) P formula (1) reads

$$
\begin{equation*}
Z=\sum_{a+b+c=d} p^{m-a} q^{n-b} r^{s-c} g_{a, b, c} \tag{4}
\end{equation*}
$$

The proof is obvious: ${ }^{(m, n, s)} P$ is just the topological product of $(m, n) P$ and ${ }^{s} P$, so Künneth's theorem can be applied once more.
the varieties v^{\prime} and v
Let V^{\prime} be an irreducible variety of dimension d in ${ }^{(m, n)} P$. Every point $(x \mid y)$ of V^{\prime} determines a straight line in ${ }^{m+n+1} P$ formed by the points ($x \alpha, y \beta$) having coordinates

$$
\left(x_{0} \alpha, \ldots, x_{m} \alpha, y_{0} \beta, \ldots, y_{n} \beta\right)
$$

The union of these lines is an irreducible variety V of dimension $d+1$ in ${ }^{m+n+1} P$. A generic point of V can be obtained by starting with a generic point $(\xi \mid \eta)$ of ∇^{\prime} and forming

$$
\left(\xi_{0} s, \ldots, \xi_{m} s, \eta_{0} t, \ldots, \eta_{n} t\right)
$$

with indeterminates s and t.
There is a rational mapping π which maps ${ }^{m+n+1} P$ on to ${ }^{(m, n)} P$, and V on to V^{\prime}. The image of a point (x, y) is unique for all points (x, y) of ${ }^{m+n+1} P$ except those for which $x=0$ or $y=0$. These exceptional points form two linear subspaces $n P$ and $m P$ in ${ }^{m+n+1} P$. For all other points the mapping π is defined by

$$
(x, y) \rightarrow(x \mid y)
$$

If one wants to apply this mapping π to any variety U in ${ }^{m+n+1} P$ which does not lie in $n P$ or ${ }^{m} P$, a good method is: Apply the mapping to a generic point Q of U, thus obtaining a generic point πQ of πU. All points of πU are spezializations of the generic point πQ. In this way,

[^2]all difficulties arising from special points of U lying in ${ }^{n} P$ or m are avoided. If U has dimension d, the map πU may have dimension d or $d-1$.

Now let us return to our main problem: to find the degree of V, if the degrees $g_{a, b}$ of V^{\prime} are given.

THE DEGREE OF V

To fix the ideas, let us suppose that V has codimension 2, i.e. that its dimension is $m+n-1$. In this case, the degree g is defined as the number of points of intersection with a generic plane U in ${ }^{m+n+1} P$. The plane may be defined by three generic points A, B, C, whose coordinates we shall call

$$
\begin{aligned}
& A:\left(a_{0}, \ldots, a_{m}, d_{0}, \ldots, d_{n}\right) \text { or just }(a, d) \\
& B:\left(b_{0}, \ldots, b_{m}, e_{0}, \ldots, e_{n}\right) \text { or just }(b, e) \\
& C:\left(c_{0}, \ldots, c_{m}, f_{0}, \ldots, f_{n}\right) \text { or just }(c, f) .
\end{aligned}
$$

Now a generic point of the plane U may be obtained thus:

$$
\begin{align*}
& x=a \alpha+b \beta+c \gamma \tag{5}\\
& y=d \alpha+e \beta+f \gamma \tag{6}
\end{align*}
$$

with indeterminates α, β, γ. The image of this generic point in the mapping π is given by exactly the same formulae (5) and (6). All points of the image $W=\pi U$ are obtained by giving special values to the indeterminates α, β, γ.

Our aim was: to determine the number of points of intersection of ∇ and U. Since U is a generic plane, these points do not lie in ${ }^{n} P$ or ${ }^{m} P$, so we may apply the mapping π, thus obtaining points of intersection of V^{\prime} and $\pi U=W$. Conversely, to every point of intersection of V^{\prime} and W corresponds just one point of intersection of V and U. In such a point R, the tangential spaces to V and U have only the point R in common, because U is a generic plane in ${ }^{m+n+1} P$. The mapping π diminishes the dimension of V by one unit, but it preserves the property of the tangential spaces to have only one point in common. Hence the point πR has multiplicity 1 in the intersection of V^{\prime} and W, and this holds for all points of intersection. Hence the cycle $V^{\prime} \cdot W$ consists of just g points, each counted once.

The rest is easy. According to formula (3), applied to the intersection $V^{\prime} \cdot W$, we have

$$
\begin{equation*}
g=\sum_{a+b=d} g_{a, b} h_{m-a, n-b} \tag{7}
\end{equation*}
$$

which means in our case ($d=m+n-2$)

$$
\begin{equation*}
g=g_{m-2, n} h_{2,0}+g_{m-1, n-1} h_{1,1}+g_{m, n-2} h_{0,2} \tag{8}
\end{equation*}
$$

where the $h_{e, f}$ are the degrees of W. Now it turns out that these degrees are all equal to 1 . Let us calculate, for instance, the degree $h_{1,1}$, i.e. the number of points of intersection of W with two linear hyperplanes

$$
(u x)=0 \text { and }(v y)=0 .
$$

For x and y we may substitute the parametric representations (5) and (6), from which we get

$$
\begin{gathered}
(u x)=(u a) \alpha+(u b) \beta+(u c) \gamma, \\
(v y)=(v d) \alpha+(v e) \beta+(v f) \gamma .
\end{gathered}
$$

Thus we obtain two linear equations for α, β, γ, which have just one solution. Hence

$$
h_{1,1}=1
$$

and just so, if $m \geqslant 2$

$$
h_{2,0}=1
$$

and if $n \geqslant 2$

$$
h_{0,2}=1
$$

Thus one obtains from (8)

$$
g=g_{m-2, n}+g_{m-1, n-1}+g_{m, n-2}
$$

and just so in the general case from (7)

$$
\begin{equation*}
g=\sum_{a+b=d} g_{a, b} \tag{9}
\end{equation*}
$$

Of course, on the right side of (9), only terms $g_{a, b}$ satisfying the conditions

$$
\begin{aligned}
& 0 \leqslant a \leqslant m \\
& 0 \leqslant b \leqslant n
\end{aligned}
$$

are to be retained.
Exactly the same proof holds in the still more general case of a multiply projective space $(m, n, \ldots) P$. The degree of the variety V is always equal to the sum of those degrees $g_{a, b, \ldots}$, for which the sum $a+b+\ldots$ is d.

ANOTHER PROOF OF (9)
The proof of (9) just given was based on the theorem of Künneth. I shall now give an elementary proof by complete induction with respect, to the dimension d of V^{\prime}.

We may suppose V and V^{\prime} to be absolutely irreducible. Hence, if d is zero, V^{\prime} consists of just one point, and V of just one line. In this case the formula (9) is trivial:

$$
g=g_{1,1}=1
$$

Now let us suppose that (9) is true for varieties U^{\prime} of dimension $d-1$. We have to prove (9) for varieties V^{\prime} of dimension d.
Let v_{0}, \ldots, v_{n} be indeterminates, and let $F(v)$ be the field obtained from the ground field F by the adjunction of v_{0}, \ldots, v_{n}. The intersection of V (dimension $d+1$ in ${ }^{m+n+1} P$) with the hyperplane

$$
\begin{equation*}
(v y)=v_{0} y_{0}+\ldots+v_{n} y_{n}=0 \tag{10}
\end{equation*}
$$

is a cycle Z of dimension d. The cycle Z consists of a variable part U, which is an irreducible variety over $F(v)$ counted only once ${ }^{1}$), and possibly a fixed part C not depending on the v_{i} and lying in the linear subspace $m P$ defined by the equations

$$
\begin{equation*}
y_{0}=0, \ldots, y_{n}=0 . \tag{11}
\end{equation*}
$$

So we have

$$
\begin{equation*}
Z=U+C . \tag{12}
\end{equation*}
$$

Applying to U the mapping π, one obtains a variety U^{\prime} of dimension $d-1$, the intersection of V^{\prime} with the hyperplane $(v y)=0$ in $(m, n) P$. This time, the intersection contains no fixed part, because the equations (11) have no solution in ${ }^{(m, n)} P$. So the intersection cycle of V^{\prime} with $(v y)=0$ is just U^{\prime}, counted only once.

To U^{\prime} and U we may apply the induction hypothesis. It follows that the degree of U is the sum of the degrees $h_{a, b-1}$ of U^{\prime}. Now we have, trivially,

$$
h(a, b-1)=g(a, b)
$$

for all $b>0$. Hence:
The degree of U is equal to the sum of the $g(a, b)$ with $a+b=d$ and $b>0$.
The degree of V is of course equal to the degree of its hyperplane section $Z=U+C$. It remains to determine the degree of the cycle C. I shall prove that this degree is just $g_{d, 0}$.
Let us consider the intersection of V with the $d+1$ hyperplanes (13) and (14):

$$
\begin{gather*}
\left(u_{1} x\right)=0, \ldots,\left(u_{d} x\right)=0 \tag{13}\\
(v y)=0, \tag{14}
\end{gather*}
$$

the coefficients u_{τ} and v_{k} in (13) and (14) being independent indeterminates. We shall start with V and form intersections stepwise, taking into account

[^3]one hyperplane after another, each time throwing away those parts of the intersection that lie in $n P(x=0)$, because these are unimportant for our purpose. First we shall take the hyperplanes in the order u_{1}, \ldots, u_{d}, v and next in the order v, u_{1}, \ldots, u_{d}. It is well known that the final multiplicities of the points of intersection are independent of the order of the steps.

Let us first consider the intersection of V with the hyperplanes (13). In $(m, n) P$ the corresponding intersection is that of V^{\prime} with the hyperplanes (13). It consists of $g_{d, 0}$ points, each counted once. To these points correspond the same number of straight lines L_{i}, each counted once. The remainder of the intersection of V with (13) lies in the subspace ${ }^{n} P$ and may be neglected.

Each of the $g_{d, 0}$ straight lines L_{i} has just one point P_{i} in common with ${ }_{m} P(y=0)$. This point satisfies the equation $(v y)=0$, hence it is the point of intersection of the line L_{i} with the hyperplane (14). Hence that part of the intersection of V with (13) and (14) which does not lie in $n P$ is the zero-dimensional cycle $\sum P_{i}$ consisting of $g_{d, 0}$ points. Some of these points may coincide, but the degree of the cycle is exactly $g_{d, 0}$. The total intersection of V with (13) and (14) consists of the points P_{i} in m and a remainder in ${ }^{n} P$.

Now we take the other order: first (14) and next (13). The intersection of V with (14) is the d-dimensional cycle $Z=U+C$. So we have to intersect U with (13) and C with (13) and to add the results. We have to consider only those points of intersection that lie in ${ }^{m} P$. Now U does not lie in ${ }^{m} P$, hence the meet of U and $m P$ has at most dimension $d-1$, and the hyperplanes (13) do not contain any point of this meet. So we are left with the intersection of the cycle C in ${ }^{m} P$ with the d hyperplanes (13). The degree of this intersection is just the degree of C.

Comparing the two results, we obtain the desired equation

$$
\operatorname{deg}(C)=g_{d, 0}
$$

Thus we have

$$
\begin{aligned}
g & =\operatorname{deg}(U)+\operatorname{deg}(C) \\
& =\sum_{b>0} g_{a, b}+g_{d, 0} \\
& =\sum_{a+b-d} g_{a, b},
\end{aligned}
$$

which is what we wanted to prove.

APPLICATIONS

If the matrix elements of an $m \times n$ matrix are interpreted either as coordinates in an affine space ${ }^{m n} A$ or as homogeneous coordinates in a projective space ${ }^{m n-1} P$, one may ask ${ }^{5}$):

What is the degree of the variety V formed by the $m \times n$ matrices of rank r at most?

To fix the ideas, let us consider the case $m=n=4, r=2$. The four columns of a 4×4 matrix may be interpreted as homogeneous coordinates of four points in ${ }^{3} P$. If the rank is 2 at most there are at most 2 linearly independent points among the four, in other words, the four points are in a straight line. Hence the variety V^{\prime} in ${ }^{(3,3,3,3)} P$ consists of all those sequences of four points p, q, r, s in ${ }^{3} P$ that are collinear. The dimension of this variety V^{\prime} is $3+3+1+1=8$, since two of the four points may be chosen arbitrarily, while the remaining two have one degree of freedom each.

In order to determine the degree g of V, we first have to determine the degrees $g_{a, b, c, d}$ of $V^{\prime}(a+b+c+d=8)$ and next to form their sum. We have 3 types of degrees $g_{a, b, c, d}$, namely
$g_{3,3,1,1}$ and permutations,
$g_{3,2,2,1}$ and permutations,
$g_{2,2,2,2}$

The calculation of $g_{3,3,1,1}$ is easy. We have 3 linear conditions $(u p)=0$, which determine the first point p completely, and 3 conditions $(v q)=0$ which determine q completely. Now the line $p q$ is known, and one condition for each of the points r and s suffices to determine these two points. Hence $g_{3,3,1,1}=1$.

Just so, one sees that $g_{3,2,2,1}=1$. Three conditions determine p, and for q and r we have two conditions each, which means that q and r must lie on two given straight lines in generic positions. There is just one straight line through p that meets the two given lines. One linear condition for r suffices to determine the fourth point r.

To find $g_{2,2,2,2}$ we have to find the number of straight lines that meet

[^4]four given straight lines. It is well known that this number is 2, provided the four lines are in generic positions.

So we have

$$
\begin{aligned}
& g_{3,8,1,1}=1 \text {, six permutations, sum } 6 \\
& g_{3,2,2,1}=1 \text {, twelve permutations, sum } 12 \\
& g_{2,2,2,2}=2 \text {, only one permutation, sum } 2 \\
& \text { Total } g=6+12+2=20
\end{aligned}
$$

This solves our problem. In the more general case of $4 \times n$ matrices of rank 2 at most one finds by the same method

$$
\begin{aligned}
& g_{3,3,1,1, \ldots}=1, \quad\binom{n}{2} \text { permutations, sum }\binom{n}{2} \\
& g_{3,2,2,1, \ldots}=1,3\binom{n}{3} \text { permutations, sum } 3\binom{n}{3} \\
& g_{2,2,2,1, \ldots}=2, \quad\binom{n}{4} \text { permutations, sum } 2\binom{n}{4} \\
& \text { Total } g=\binom{n}{2}+3\binom{n}{3}+2\binom{n}{4}=\frac{n^{2}\left(n^{2}-1\right)}{12}
\end{aligned}
$$

Other results, which may be obtained by the same method, are:
$m \times n$ matrices ($m \leqslant n$), rank $m-1$ at most:

$$
g=\binom{n}{m-1}
$$

$m \times n$ matrices, rank 1 at most:

$$
g=\binom{m+n-2}{m-1}
$$

The latter result can also be verified by a simpler method: An $m \times n$ matrix of rank 1 can be obtained as a product of a single column and a single row:

$$
a_{i k}=b_{i} c_{k}
$$

If the $a_{i k}$ are considered as homogeneous coordinates in ${ }^{m n-1} P$, one obtains a variety V of dimension $m+n-2$ in $m n-1 P$. If we impose ($m+n-2$) linear conditions on the $a_{i k}$, we obtain ($m+n-2$) bilinear conditions for the b_{i} and c_{k}. The pairs of points (b, c) form a doubly-projective space ${ }^{(m-1, n-1)} P$. A bilinear condition for b and c determines a hypersurface B of degrees 1,1 in ${ }^{(m-1, n-1)} P$. According to formula (1), we have the Schubert equality

$$
B=p+q
$$

The intersection of ($m+n-2$) such bilinear hypersurfaces is

$$
B^{m+n-2}=(p+q)^{m+n-2}=\binom{m+n-2}{m-1} p^{m-1} q^{n-1}
$$

The number of points of this 0-dimensional cycle is

$$
g=\binom{m+n-2}{m-1}
$$

in accordance with our earlier result.
In the most general case, when m, n and r are arbitrary, the same method can be applied. The problem of determining the degrees $g_{a, b, \ldots}$ of V^{\prime} is seen to be equivalent to a well-known problem of enumerative geometry:

How many subspaces ${ }^{r-1} P$ of ${ }^{m-1} P$ meet a certain number of given subspaces in generic positions

$$
m-1-a P, m-1-b P, \ldots ?
$$

This problem can be solved in any particular case by the methods explained in Volume 2, page 309-367 (Chapter XIV) of Hodge and Pedoe: Methods of Algebraic Geometry (Cambridge Univ. Press 1952). The main tool is "Pieri's Formula" (4), p. 354, which was first proved by W. V. D. Hodge.

[^0]: ${ }^{1}$) B.L. van der Waerden: Topologische Begründung des Kalküls der algebraischen Geometrie. Math. Ann. 102, 337-362 (1929).

[^1]: ${ }^{2}$) H. Künneth: Über die Bettischen Zahlen einer Produktmannigfaltigkeit. Math. Ann. 90, 65-85 (1923). See also Math. Ann. 91, 125 (1924).
 ${ }^{\text {3 }}$) H. Schubert: Kalkül der Abzählenden Geometrie.

[^2]: ${ }^{4}$) A. Grothendieck: Sur propriétés fondamenteles en théorie des intersections. Séminaire Chevalley, deuxième année, Sécr. Math. Paris (1958). Mr. S. L. Kleiman, M.I.T. Cambridge (Mass.), has drawn my attention to this paper.

[^3]: ${ }^{1}$) By Bertini's theorem. See e.g. my Einführung in die algebraische Geometrie, § 47.

[^4]: ${ }^{5}$) This question was raised by V. Strassen during a walk in 1976.

