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SUMMARY 
An Abel-Tauber theorem is proved and applied to multiplicative arithmetic functions. 

1. INTRODUCTION 

We prove an Abel-Tauber theorem that complements a well known result. It 
is shown that this provides simple proofs for some results by de Bruijn en van 
Lint [2] on multiplicative arithmetic functions. The theorem also provides an 
easy proof of an earlier result by Wirsing [12] on multiplicative arithmetic 
functions. 

2. ABEL-TAUBER THEOREM 
THEOREM 1. Suppose L is a measurable function, slowly varying at 03, and U 
is such that its Laplace-Stieltjes transform o(J) = A jr e-“*U(x) dx exists for all 
2 > 0, We also require that U(O+) = 0 and that U is locally bounded, 

a. If for all x>O 

then 
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b. If U is non-decreasing and for all A >O 

(3) lim ~cnf) - ~(‘) = 0 
Cl0 L(l/f) ’ 

then (2) holds. 

REMARK. It is clear that (1) & (2) imply (3) and that (2) & (3) imply (1). 

REMARK. Theorem 1 is an analogue of the main theorem of [7]. It is a general- 
isation of theorem 2 of Feller [4] which in turn contains theorem 3b, Ch. 5 in 
Widder (lo] as a special case (note that the condition of slow variation of U in 
Feller’s article is unnecessary). We shall make the connection with Feller’s 
theorem after the proof. 

For the proof of theorem 1 we need two lemmas. 

LEMMA 1. Suppose L is a slowly varying function and V: lR+ +lR+ is locally 
bounded. If for some /?>O 

*im v(t)=0 
1-0 fbL(f) ’ 

then locally uniformly in XE [0, 00) 

(4) - lim v(fx) = 0 
I-‘- f@L(f) * 

PROOF. Take any two sequences X,,+XE [0, ao) and &+a~. If { f~} is bounded 
the result holds since @(t,)+oo. If l&,x”} is unbounded we take w.1.o.g. a 
subsequence with &x” --.Then ~(~~~)l,-‘~-‘(t,)=[v(tx,)((f~~~L(f~~))-’l 
($L(f&/L(f,J}+O since the first factor tends to zero and the other one is 
bounded. 

LEMMA 2. Suppose L and V are as in Lemma 1 and moreover that the 
Laplace-Stieltjes transform p(A) = 11; eehV(x) dx exists for all A >O. Let a be 
a non-negative parameter. 

a. If 

(5) - ]im ‘(‘) =() 
I-- PL(f) 

then 

(6) lim ~(l’f)=O 
’ ‘-+m fUL(f) 

b. Conversely, if Vis non-decreasing, V(O+)=O and (6) holds then (5) is true. 



PROOF. a) For OCEC 1 

du+ 7 e-u 
I 

V(ut) ua z dum 
(ut)aL(ut) 

The first term tends to zero by Lemma 1 and for sufficiently large t the second 
term is bounded by 

which by e.g. the representation of L tends to &jf e-“ua du as t-+-. 

b) Define 
VW) W,(x):=- 
PL(t) * 

According to (6) lirnl+, @,(A)=0 for 1>0+ It follows from the extended 
continuity theorem for Laplace transforms (Feller [S]) that lim,-+, IV&) = 0 for 
x>O i.e. (5) holds. 

PROOFOFTHEOREM 1. It is well known (cf. e.g. [3]) that (1) is equivalent to 

(7) FJJ 
U(x)-x-‘j; U(t) dt+ . 

L(x) 

Define V(x) =xU(x) - E U(t) dt. Note that x-l V(x) is locally bounded on x> 0 
and that conversely U(x) =x-I V(x) + ji t-*V(t) dt (cf. de Haan [8]). 

a. Writing U in terms of V as above we get 

u(t) - o<t-‘) V(f) 
w 

=-- .&V(‘S)&+ i !+?%!&+ 
t L(t) 0 ts L(t) 

The second term tends to zero by Lemma 2 (for a = 0) and the remaining terms 
by similar arguments. 

b. Now V is positive and non-decreasing, so P is non-increasing and 

0(2-‘t-‘)-O(t-‘)= i P(st-1) dsr2-lQt-‘) 
LW 2-I t L(t) t L(t) . 

Hence (3) implies (6); this in turn implies (5) with a = 1, which is (7) and we have 
already seen that (7) is equivalent to (1). 

REMARK. Feller’s [4] result is obtained if we take L constant and use the fact 
that (1) and (7) are equivalent. 

Comparing theorem 1 of [7] and the present theorem 1 we see that the latter 
holds with the righthand sides of (l), (2) and (3) replaced by (respectively) 

189 



c log x (c20), -cy (Euler’s constant) and -c log A. It is clear from (7) that (1) 
implies 

with Z(x) =x-l E U(t) dt. This suggests that under certain conditions in the 
above we may replace U by Z. 

LEMMA 3. a. If Z satisfies (8), then 

b. If 0 satisfies (3) and Z is monotone, then (8) holds. 

PROOF. Analogous to part of the proof of theorem 1 in Geluk [6]. Z satisfies 
(8) if and only if the function 

H(x):= j tdZ(t)= j U(t)dt- jj U(s)ds: 
0 0 00 

is o(x L(x)) for x+ 03. Now 

H(M) = to(M) -t 2(1/t). 

If Z satisfies (8), then by lemma 2 fl(l/t)= o(t L(t)); by theorem 1 then 
Z( 1 A) - Z(t) = o@(t)) hence (9) holds. 

Conversely suppose Z is monotone and 0 satisfies (3). From (3) it follows 
that 

t 0(1/t) - i ~(1,‘s) ds= o(t L(t)) v-+ -1 
0 

by using the result from (3) as in (7). 
Now j; @l/s) ds=t 2(1/t) hence I?(l/t)=o(t L(t)) and by Lemma 2 

H(x) = o(x t(x)) i.e. 2 satisfies (8). 
We connect the results of Lemma 3 and theorem 1 in the following Lemma. 

LEMMA 4. If (8) holds and U is non-decreasing, then (I) is true. 

PROOF. It is easily verified that 

x-l i U(t) dt = j t-*V(t) dt (where V(x) = i t dO(t) as before) 
0 0 0 

so that for x> 1 

(tx)-’ 1: U(s) h-t-’ If, u(S) dS= j J’(tSJ dS, v(t) . 
uo 1 tL(t)FtL(t) 

Hence (7) is true which is equivalent to (1). 
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REMARK. A result like that of lemma 4 can be proved in a similar way in the 
situation mentioned above where the limits are non zero. 

3. ARITHMETIC FUNCTIONS 

Next we show how the above results can be used to get results on the 
asymptotic behaviour of multiplicative arithmetic functions. The first part of 
the following result (with slightly different conditions and a different proof) is 
well known (see de Bruijn and van Lint [2]). 

THEOREM 2. Suppose A is a real-valued multiplicative arithmetic function (i.e. 
1(mn) = A( for (m, n) = 1) with A(n) ~0 for n ~1, 

(10) ; w2<=J 

where p runs through the primes, and 

(11) c W)-. 
p,kr2 

If for x>O 

IW c A(p) = (b + o(l)) log x (t-=1 
d<p5P 

with b ~0, then 

(13) c 44 = &-Z]) + o(l) nsx >[ 
jJ e-A@)(l +n(&+J@)+ .,.) e&‘*” p 1 

where y is Euler’s constant. 

Moreover 

(14) (x-4 

If for x>O 

(19 d<FLtP w - w 1% x (t-4 

with L(f)-+=, then 

(16) log Jti 4N= ,ZI,$ 4P)+(l -YMw+oMl~~)) 

where x+ga, ~10 and xs-L(l/s). 

PROOF. First we prove (13). 

Since Ce’Cp5etx A(p) = (b + o( 1)) log x (t+ 00) we get 

(17) c U)- ; $= HJ+o(l) (x-+ 00). 
P-J 
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For b >O this result is well known (see [6]); in case b = 0 it follows by application 
of theorem 1 with L = 1. 

Next we define the function g(p,s) = C F= t (r2($)/& where sr0 and p 

denotes a prime. 

Then we have for s>O 

log ; ?=I,, fl(1 +w+$$+...)= c log (1 +g(p,s)) 
P P P 

the convergence of the last series being implied by (11) and (12) as follows. First 
we have g(p,s)+O (P+cQ) for s>O since 

and this tends to zero if p-00 by (11). Moreover we have A(&‘pr+O @CD) 
since A@) is bounded. Now log( 1 + g@, s)) - g@, s) (p+ 00) and 

by (11) and (12). It now follows that 

where 

Now (18) implies regular variation at zero with exponent -b of C n (A(n)/@ 
since exp CP (l(p)/p? is regularly varying at zero with exponent -b by (12) and 
(17). Application of a well known theorem of Karamata (see [9] theorem 2.3) 
now yields 

(19) 1% X8 m) -log ; n’,X @hogT(b+l) (x3 00). 

Combination of the results (17), (18) with s= l/xand (19) gives expression (13). 
Similarly we find 

log n (1 +A@)+1@2)+ . ..)= c log(l +g(p,O))= 
PSX PSX 

= c @)+c+o(l) (x-00) 
PSX 

and (14) follows. 
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In order to prove (16) we proceed similarly: (17) is replaced by 

The proof of (18) is unchanged, 
In this case the regular variation of ?&s) := C n (A(n)/@) at zero is replaced by 

which is a consequence of (15), (18) and (20). 

Now application of theorem 1 in [l] gives 

WO 

(22) 

1% “pn) - 1% ; 7 
-1 

L(l/s) 

where s 10 and t-+ 00 are related by st - L( 1 /s). 

Combination of (18), (20) and (22) now gives (16). 

REMARK. The function L in (15) is necessarily slowly varying. See [8], 
th. 1.4.1. Next we apply the above results to prove the following theorem 
(compare Wirsing [ll] and [123). 

THEOREM 3. If f(n) r0 (n = 1,2, . ..) is a multiplicative arithmetic function 
satisfying 

(23) =(T+o(l)) log x (x-+00) with rr0 
psw P 

(24) t 

then 

(25) c E!!l= 
“5X n ( 

e-YT 
T(r+ 1) 

+@l)) IJ [e-fwo +Jy +y + . ..)]ew@)~~ 

where y is Euler’s constant. 

PROOF. We define 

A(x):= c m)~p=(r+o(l)) log x (x-’ 00). 
p<X 

Then 

c fLa)-j l -d4(f)=T+o(l)+j lCu) - cfu where Iim t(u) = r. 
Pl* P I log t 1 M log u u-f- 
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This gives 

c f@)=j- dv+r+o(l) , pse’ p 0 v 

hence condition (12) in theorem 2 is satisfied (with A(p) =f(p)/p). 
It is possible to give the behaviour of 1 .&i(n)/n in case CPSw (j’@) log&) 

tends to infinity more quickly: 

THEOREM 4. Under the assumptions of theorem 3 with (23) replaced by 

635) 
c f@m%P = L(fog x)log X (x-4 psw P 

with L(x)+00 slowly varying we have 

(27) log c f(n)= c f@).(,-y+o(l))L(l/s) 
nl~ n p&J/s p 

with x-00, ~10 and xs-L(l/s). 
In order to get the asymptotic behaviour of l/x C nsxf(n) in the theorems 3 

and 4 one needs extra assumptions. It seems difficult to get the behaviour of 
1 /x C n 5xf(n) using Tauberian arguments. 
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