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Abstract—A coupled Ramani equation and its related system are proposed. By dependent vari-
able transformation, they are transformed into bilinear equations. Lax pairs and Backlund transfor-
mations are presented for these two systems. Soliton solutions and rational solutions to the systems
could be obtained. € 2000 Elsevier Science Ltd. All rights reserved.
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It is known that many integrable models have played an important role in applied sciences. No
doubt, it is one of central topics in soliton theory to search for as many integrable systems as
possible. An effective way of seeking new integrable systems is to find integrable extensions of
the known integrable systems. For example, for the celebrated KdV equation

Uy + 6uUy + Uypyy = 0,
several coupled KdV equations have been found (see, e.g., [1-7]).
In this letter, we will consider an integrable extension of the following less studied Ramani

equation:

Uggrzze + 1DUggUszs + 15UpUgagy + 45”3“1‘1 - 5(uzmzt + 3ug us + 3uwuxt) — buy = 0. (1)
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Equation (1) was first given by Ramani in [8]. We now propose the following coupled Ramani
equation:

2
Urzezzr T 19UzeUzzr + 15U UZz2r + 45“:;;“:1:3:

2
_5(uz:m:t + 3ux;cut + 3uxuzt) - 5utt + lswz = 01 ( )

Wi — Warpy — SWxlUy — SWUzy = 0. (3)

We will show that system (2),(3) is integrable in the sense of having a Bécklund transformation
and Lax pair. For this purpose, we set

uw=2(Inf)s, w= (%)

Then (2),(3) can be transformed into the following bilinear equations:

(D —5D3D, ~5D?) f- f +18D,g- f = 0, (4)
(Dt—Dg)g‘f:(L (5)

where the bilinear operators are defined as follows [9-12]:

o a\N"[/a 9\
DPDfa-b= (& - 5?) (55 - %> a(2,)b(2', ') |21 =z 7=t

Furthermore, by introducing an auxiliary variable z and letting g = f,, (4) and (5) become the
following bilinear equations for a single field f:

(DS - 5D3D, — 5D} + 9D, D,) f
D. (D~ D3) f

-f=0, (6)
f=o. (7)
It is remarked that the technique of introducing auxiliary variables and dependent variable trans-
formations and then transforming the original systems into bilinear equations is typical in Hirota’s
bilinear formalism. For example, in [13] Satsuma and Hirota transformed the following Hirota-
Satsuma system

1
Up = ~Ugge + Uty + 3 (=@ + w),

4
1
¢t = "§¢zxw - 3u¢7037
1
Wy = “szxx — Juwy,
into the bilinear form
1 3
(Dth - ZD;I - ZDZ> f-r=0,

Dy(Dt—f-%D;QZ)f.f:O,

by the dependent variable transformation

DO =

u:(lnf)zxa ¢:§—a w =



Lax Pairs and Backlund Transformations 47

By application of the exchange formalism, one can construct the following Backlund transforma-
tion for (6) and (7):

(D3~D:+X) f'-f=0, (8)
(~D3 +5AD% ~5D2D, + 6D,) f'- f =0, (9)
Dz‘szl'f:/J‘sz"fu (10)

where A and u are arbitrary constants. By using BT (8)—(10), we can construct multiple soliton
solutions and a series of rational solutions for (6) and (7). For example, we have

(07 /'L2) f12 (0, [,I,3)
1+e™ f123

(0, pu3) fi3 (0, p2)
where s .

b1 —D; . P11 =D g, . .

Jij = —eM el ———Hemtni  j=23
Topi 4 p1 +p;
and
hm:@—ﬁ pi-r3 p3-n3  p3-m8

pi+py Pi+p3 PS+p p3+p3
5 5 5 5
pB_plenz pl_p2en3,_p1_p2em+172_wem'i-ns

P} + 13 P} +13 D1+ D1+ D3
_P2 — D3 g2 tna + (p3 - pl)(pl - p?)(pQ - p3)en1+n2+1;3
P2+ D3 (p1 + p3)(p1 + p2)(p2 + p3)

are 2-soliton and 3-soliton solutions of (6) and (7), respectively, with 7, = p;z+pit+pdz+n2, 1 =
p® and p;,n? constants. We also have

1 5, 15001 3 1,5 5 1 95, 1 o4, 1 3 7
L Bt PG R — ot Zat
z+120x +2x ——>32 +2ztz +120z:c +24z 3:+3z m+2520zta:
1 10 2 5 1 4_3 11 3.6 2.9 1 12 1 15
— . ¢ ¢ ¢ 5
t 812400 Tt YT Toten’ © T isiaan’ ¢ T 1360800°° T 6531840007
(M)

Here we have symbolically represented (8)—(10) by f—= f'.

Next, we will derive a Lax pair for (2),(3). Set f' = ¥f, u = 2(lnf)y, w = (f./f)z- Then
from the bilinear BT (8)—(10) and by some calculations, we can obtain the following Lax pair
for (2),(3):

Py = '(/)$a:z + 3ug Py + Aw’ ' (11)
25 5 )
"pmxzzmz + 5u:t'¢]zzxz =+ 10uzxw:tz:c + ‘g‘uxzac + gut + 5”;5 wzx

10 5 (12)
+ (—?)‘fozmz + 10Uz Uz + guxt) Yy + 20WY — p, =0,

which can be checked directly by using Mathematica [14].
Finally, we will derive another integrable system from the bilinear equations (6) and (7). We
now exchange the roles played by ¢ and z, i.e., we view t as an auxiliary variable and z a time
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variable; and set u = 2(In f),, v = (ft/f)sz. In this case, we have from (6),(7) that

25

Uzz — Ugzzrzz — Tg‘umzwuzz — DUgUgrzr — 5“3“:52 - g’u‘rzzxuz
10 10 (13)
—10ugptUze, — 10Uz U Upy — ?vuzz - E—vzuz =0,
1
Uy = §(umu + Byl + 3Uglzs). (14)

Since (13),(14) share the same bilinear form (6),(7) with (2),(3), we can also construct the soliton
solutions and rational solutions for system (13),(14). In the following, we will give a Lax pair
for (13),(14). In fact, set f' = ¥ f, u=2(In f)z, v = (f¢/f)z- Then from the bilinear BT (8)-(10)
and by some calculations, we can obtain the following Lax pair for (13),(14):

25 10
Yegrzze + SUgVrrze + 10Uz Weee + <_3"er1: + 5“3; + ‘3_U> wzw
10 10 (15)
+ (_g'uzzzx + 10uzuz, + ?Uz) Yo + U — pip, =0,
10 5 10
Y, = Ypzrez + UgWery + DUzzWez + —3_uzmx + Suy + ?U Ve (16)

We have also checked that {15) and (16) do constitute a Lax pair for (13),(14) directly by using
Mathematica.

To summarize, a coupled Ramani equation and a related system are proposed. By dependent
variable transformation, their bilinear equations are given. Lax pairs and Backlund transforma-
tions are presented for them. Soliton solutions and rational solutions could be obtained.
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