
P E R G A M O N  Applied Mathematics Letters 13 (2000) 45-48 

Applied 
Mathematics 
Letters 

www.elsevier.nl/locate/aml 

Lax Pairs  and B~icklund Trans format ions  
for a Coup led  R a m a n i  Equat ion  

and its Re la t ed  S y s t e m  

X I N G - B I A O  H U  AND D A o - L I u  W A N G  
State Key Laboratory of Scientific and Engineering Computing 

Institute of Computational Mathematics and Scientific Engineering Computing 
Academia Sinica, P.O. Box 2719, Beijing 100080, P.R. China 

H O N - W A H  T A M  
Department of Computer Science, Hong Kong Baptist University 

Kowloon Tong, Hong Kong, P.R. China 

(Received September 1999; accepted October 1999) 

Communicated by B. F. Fuchssteiner 

A b s t r a c t - - A  coupled Raxnani equation and its related system axe proposed. By dependent vari- 
able transformation, they are transformed into bilinear equations. Lax pairs and B/icklund transfor- 
mations axe presented for these two systems. Soliton solutions and rational solutions to the systems 
could be obtained. (~) 2000 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - S o l i t o n s ,  Integrable systems, Lax pairs, B/~cklund transformations. 

It  is known tha t  m a n y  integrable models have played an impor tan t  role in applied sciences. No 

doubt ,  it is one of  central  topics in soliton theory  to search for as many  integrable sys tems as 

possible. An  effective way of seeking new integrable systems is to find integrable extensions of  

the  known integrable systems. For example, for the celebrated K d V  equat ion 

u t ÷ 6uux ÷ Uxxx = O, 

several coupled K d V  equat ions have been found (see, e.g., [1-7]). 

In  this letter, we will consider an integrable extension of the  following less s tudied Raman i  

equat ion:  

~xx~xx + 15u~uxx~ + 1 5 u ~ u ~  + a5~2xU~x -- 5(~x~xt + 3 u ~ u t  + 3u~,) - 5 ~ t ~  = 0 .  ( 1 )  
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Equation (1) was first given by Ramani in [8]. We now propose the following coupled Ramani 
equation: 

uxxxxxx + 15UxxUxxx + 15UxUxxxx + 45U2xUxx 
(2) 

-5 (uxxx t  + 3uxxut + 3uxuxt)  - 5utt + 18wx = 0, 

wt - W ~ x  - 3w~ux - 3 w u ~  = 0. (3) 

We will show that  system (2),(3) is integrable in the sense of having a Bgcklund transformation 
and Lax pair. For this purpose, we set 

X 

Then (2),(3) can be transformed into the following bilinear equations: 

(D  6 - 5D3xDt - 5Dr 2) f . f + 18D~g . f = 0, (4) 

(Dr - 9 3 ) g .  f = O, (5) 

where the bilinear operators are defined as follows [9-12]: 

m k ( 0  o ) m ( o  O )  k t )b ( z , t ) i z '=z , t '= t .  
D z D t a . b = -  O-z O-z' -~t ~ '  a(z,  ' ' 

Furthermore, by introducing an auxiliary variable z and letting g = fz ,  (4) and (5) become the 
following bilinear equations for a single field f :  

(D 6 - 5D3Dt  - 502t + 9DxDz)  f - f  = 0, (6) 

Dz (Dr - Dz 3) f .  f = 0. (7) 

It is remarked that  the technique of introducing auxiliary variables and dependent variable trans- 
formations and then transforming the original systems into bilinear equations is typical in Hirota's 
bilinear formalism. For example, in [13] Satsuma and Hirota transformed the following Hirota- 
Satsuma system 

into the bilinear form 

1 
ut = ~ u ~ :  + 3 ~ x  + 3 (_¢2 + ~)~, 

¢t = - l ¢ x ~  - 3u¢~,  

1 
wt = --~wzxx - 3UWx, 

z 

1 3 
D y ( D , + - ~ D z )  f " f =O, 

l f y  ~ -  l fy~ 
u = ( l n f ) x ~ ,  ¢ -  2 f '  2 f 

by the dependent variable transformation 
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By application of the exchange formalism, one can construct the following B/icklund transforma- 

tion for (6) and (7): 

(D 3 - Dt + A) f ' .  f = 0, 

( - D  5 + 5AD 2 - 5D2zDt + 6D~) f ' .  f = 0, 

D z D ~ f ' .  f = # n ~ f ' .  f ,  

(s) 
(9) 

(to) 

where A and # are arbi trary constants. By using BT (8)-(10), we can construct multiple soliton 
solutions and a series of rational solutions for (6) and (7). For example, we have 

(O, tt2) ~ f12 

1 + e ' ~ (  ~ 

(0, ~3)-~---'--"'--~ f13 

- ~ ( 0 ,  g3) 

f123 

where 

and 

f u p5 _ p~ _ e m e vj Pl 
----- p5 + p~ + Pl +Pj- pj en~+nJ' j = 2, 3, 

f123 ~-~ ]95 -- p5 p5 __ p5 p25 __ p5 p5 __ p5 
p5 + p5 + ; ~ - ' ~ 2  + pS + p5 + P25 +p35 

5 5 5 5 
P3 -- Pl n2 Pl -- P2 .n3 Pl - P2 en~ +n2 P3 - P~ en~+na + ~ e  + - -  
e l  - ~'3 p5 + p5 ~ Pl q- P2 Pl q- P3 

P2 - P3 en2+na + (P3 - pl)(pt  - p2)(p2 z P3)enl+n2+n ~ 
P2 +P3 (Pl-~3)(-~I  + P2)(P2 +P3) 

3 5 0 are 2-soliton and 3-soliton solutions of (6) and (7), respectively, with ~i = p i x+p i  t+pi  z + ~ i ,  lzi = 
p~5 and pi, T ° constants. We also have 

z +  1 - ~ x s + l  2(°,°)1 z 1 2 5 l z t 3  x+2__~_6ztx7 120 ~ x  t----*~z + z2tx  2 + ~ z  x + zt2x4 + 3 

1 zxlO -~ L t  5 124Z3 + 11 -3 6 13 t2x9 ! _ _  t 12 1 xl.5 
+ 1814400 15 2 - ~  X + ~ + + - -  -- 1360800 X 653184000 ' 

Here we have symbolically represented (8)-(10) by f (~ '~)f ' .  
Next, we will derive a Lax pair for (2),(3). Set f '  = ~ f ,  u = 2( lnf)~,  w = ( f z / f ) ~ .  Then 

from the bilinear BT (8)-(10) and by some calculations, we can obtain the following Lax pair 
for (2),(3): 

Ct = Cxxx + 3Uxg;x + ; ~ ,  

~zzzzzz  + 5uz~zxxz  + lOuzzCzzz  + uzzz  + ~ut  + 5u~ Czz 

(1o 
+ --ff-ux~x + lOu, :u~ + -~u~t ¢~ + 2w~  - ~ = O, 

(11) 

(12) 

which can be checked directly by using Mathematica [14]. 
Finally, we will derive another integrable system from the bilinear equations (6) and (7). We 

now exchange the roles played by t and z, i.e., we view t as an auxiliary variable and z a time 



48 S.-T. Tu et al. 

variable; and set u = 2(lnf)~,  v = ( f t / f ) x .  In this case, we have from (6),(7) that  

25 10 
Uz~ - u x ~ x ~  - __-~UxxxU= - 5 u , u = =  - 5 u ~ u =  - -~Ux~x 'U~ 

10 10 
- l O u x x U x x z  - lOuxuzUxx - --~VUx~ - -~V~Uz = O, 

1 
v~ = ~ ( U = ~ z  + 3U~xU~ + 3 u x u = ) .  

(13) 

(14) 

Since,(13),(14) share the same bilinear form (6),(7) with (2),(3), we can also construct the soliton 
solutions and rational solutions for system (13),(14). In the following, we will give a Lax pair 
for (13),(14). In fact, set f '  = C f,  u = 2(ln f)x,  v = ( f t / f ) x .  Then from the bilinear BT (8)-(10) 
and by some calculations, we can obtain the following Lax pair for (13),(14): 

-2U xx+5U2x+ ¢= 

(10 10) 
+ T u z x x z + l O u z u x x + T v ~  ~ b ~ + u z ~ - # ¢ x = O ,  

(10  1 0 )  
Cz=¢xxxxx+5U ¢xxx+5, xx¢ x+ TUxxx+5  +-gv Cz. 

(15) 

(16) 
We have also checked that  (15) and (16) do constitute a Lax pair for (13),(14) directly by using 
Mathematica. 

To summarize, a coupled Ramani equation and a related system are proposed. By dependent 
v a r i a b l e  t r a n s f o r m a t i o n ,  t h e i r  b i l i nea r  e q u a t i o n s  are  g iven.  L a x  pa i rs  a n d  B g c k l u n d  t r a n s f o r m a -  

t i ons  a re  p r e s e n t e d  for t h e m .  So l i t on  so lu t ions  a n d  r a t i o n a l  so lu t i ons  cou ld  be  o b t a i n e d .  
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