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Endocannabinoids and cannabinoid CB1 receptors are known to play a generalized role in energy homeo-
stasis. However, clinical trials with the first generation of CB1 blockers, now discontinued due to psychiatric
side effects, were originally designed to reduce food intake and body weight rather than the metabolic risk
factors associated with obesity. In this review, we discuss how, in addition to promoting energy intake,
endocannabinoids control lipid and glucose metabolism in several peripheral organs, particularly the liver
and adipose tissue. Direct actions in skeletal muscle and pancreas are also emerging. This knowledge
may help in the design of future therapies for the metabolic syndrome.
An ‘‘Expanded’’ View of the Endocannabinoid System
In the nearly 50 years since the identification of the principal

active component of Cannabis sativa, the cannabinoid D9-tetra-

hydrocannabinol (D9-THC) (Gaoni and Mechoulam, 1964), great

strides have been made in identifying and understanding the

endogenous mediators, i.e., the endocannanabinoids, that this

natural product biologically mimics. The most-studied endocan-

nabinoids,N-arachidonoylethanolamide (anandamide; AEA) and

2-arachidonoylglycerol (2-AG), members of the fatty acid amide

(FAA) and monoacylglycerol (MAG) families of neutral lipids,

respectively, are produced, often with their congeners, from

cell membrane phospholipids after cell stimulation and are

immediately released to target the same cannabinoid receptors

(CB1 and CB2) as D9-THC (Di Marzo, 2008b). The endocannabi-

noid system (ECS) as a whole refers to endocannabinoids and

the proteins that regulate their production and degradation, as

well as to the receptors through which they signal.

ECS ‘‘tone’’ within a biological system is mostly the result of

the regulation of endocannabinoid levels as modulated by

different, often concurring, enzymatic cascades, which are

nearly ubiquitously expressed. Several pathways have been

proposed to mediate AEA formation, such as, for example, the

hydrolysis of N-acylphosphatidylethanolamine (NAPE) by

NAPE-selective phospholipase D or the combinatorial action of

a,b-hydrolase domain-containing 4 and glycerophosphodiester-

ase 1 on NAPE precursors (Muccioli, 2010). The production of 2-

AG results from the sequential hydrolysis of sn-2-arachidonic

acid (AA)-containing diacylglycerol (DAG) membrane phospho-

lipids by phospholipase C (PLC) and diacylglycerol lipase

a (DAGLa) or b (DAGLb) (Muccioli, 2010). Degradation of AEA

and 2-AG proceeds through their hydrolysis primarily by fatty

acid amide hydrolase (FAAH) and monoacylglycerol lipase

(MAGL), respectively, resulting in the release of ethanolamine

or glycerol, respectively, along with AA (Muccioli, 2010), which,

when produced from 2-AG in the brain, may act as a precursor

of prostanoids (Nomura et al., 2011). Alternatively, both AEA

and 2-AG are subject to oxidative metabolism mediated

by prostaglandin-endoperoxide synthase 2/cyclooxygenase 2

(PTGS2/COX-2) resulting in the eventual formation of various
biologically active prostaglandin-ethanolamides and prosta-

glandin-glycerol esters, respectively (Kozak et al., 2004).

The canonical receptors for AEA and 2-AG are the mostly Gi/o-

protein-coupled CB1 and CB2 receptors. Their activation by

AEA and 2-AG results in a host of biochemical responses that

are often cell-type specific, including the inhibition of various

voltage-gated Ca2+ channels and adenylate cyclase activity re-

sulting in lower cAMP levels and the activation of K+ channels,

phospholipases, and mitogen-activated protein kinase (MAPK)

pathways. CB1 is highly expressed throughout the central

nervous system in neurons that regulate feeding, energy expen-

diture, and reward, as well as in peripheral organs that are critical

for metabolic homeostasis. While there is some evidence that

CB2 is also expressed neuronally, this receptor is mainly found

within cells of the immune system, in line with its role as a major

modulator of immune function (Howlett, 1995; Pertwee and

Ross, 2002).

AEA and 2-AG also target noncannabinoid receptors. AEA

activation of the transient receptor potential vanilloid 1 (TRPV1)

channel, responsible for the sensation of heat produced by

spicy peppers, increases intracellular Ca2+ levels and produces

several biological effects that sometimes oppose those pro-

duced by CB1 and CB2 activation (Di Marzo and De Petrocellis,

2010). At higher concentrations, AEA is also able to act within

the nucleus by binding to the peroxisome proliferator-activated

receptorg (PPARg) and activating transcription (Bouaboula

et al., 2005; Gasperi et al., 2007; Karaliota et al., 2009), although

there is still little evidence for such mechanism to occur in vivo.

Our understanding of yet other ‘‘endocannabinoid receptors’’

proposed so far is limited, and in some cases controversial,

requiring further investigation. On the other hand, it is now clear

that AEA and 2-AG congeners, i.e., several FAAs and MAGs,

respectively, are biosynthesized and/or degraded by the same

enzymes as the two endocannabinoids but interact with non-

CB1, non-CB2 receptors. The best established examples are

N-oleoylethanolamine (OEA) and N-palmitoylethanolamine

(PEA), which activate both PPARa and TRPV1, and 2-oleoylgly-

cerol, a potent agonist at the orphan receptor GPR119, the

activation of which in the small intestine stimulates the release
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of the incretin, glucagon-like peptide-1 (GLP-1) (Lan et al., 2012;

Hansen et al., 2012). The ‘‘promiscuity’’ of endocannabinoids,

the ‘‘redundancy’’ of their metabolic pathways, and their being

produced or degraded together with, or their giving rise to,

other bioactive lipid mediators expands and complicates the

interpretation of their role in metabolic control, posing new

exciting challenges and opportunities for the development of

endocannabinoid-based therapies against metabolic disorders.

Control of Metabolism by the Central/Neuronal
Endocannabinoid System and Its Dependence on the
Nutritional Status andCaloric andHedonic Value of Food
Within the central nervous system, endocannabinoids function,

in general, in a retrograde manner, being produced by postsyn-

aptic cells and acting on CB1 in presynaptic terminals to inhibit

excitatory or inhibitory neurotransmitter release (Ohno-Shosaku

et al., 2012). Endocannabinoid release occurs immediately

after biosynthesis from postsynaptic phospholipids, with no

intermediate storage in vesicles like for other neuromodulators.

Thus, endocannabinoids are ideal mediators for responding in

real-time to the ever-changing feeding state of an organism.

They regulate appetite and food intake in a local manner by

modulating, via activation of CB1 receptors, the activity of hypo-

thalamic neurons and, subsequently, the release of orexigenic

and anorexigenic neuropeptides, as well as the function of

mesolimbic and brainstem neurons, by translating input infor-

mation from the periphery to these neurons, thereby partici-

pating in both the homeostatic (i.e., based on energy balance)

and hedonic (i.e., based on the incentive value of food) aspects

of food intake (Broberger, 2005; Di Marzo et al., 2009b).

It is now well accepted that CB1 activation by D9-THC or

synthetic CB1 agonists stimulates feeding. Injection of AEA or

2-AG in the hypothalamus and nucleus accumbens elicits

increased feeding also in satiated rodents via CB1 activation

(Jamshidi and Taylor, 2001; Kirkham et al., 2002). On the other

hand, endocannabinoid levels increase significantly within the

hypothalamus and accumbens in response to fasting, returning

to normal after refeeding, without changing in brain areas not

involved in feeding (Kirkham et al., 2002). This regulation is medi-

ated, at least in part, through the action of feeding-regulated

hormones, in particular, anorexigenic leptin and orexigenic

ghrelin or glucocorticoids, which decrease and increase endo-

cannabinoid levels within the hypothalamus, respectively, and

become deregulated during obesity, thus resulting in elevated

hypothalamic endocannabinoid tone (Di Marzo et al., 2001;

Malcher-Lopes et al., 2006; Kola et al., 2008). Activation of the

ECS also affects the reward and reinforcement circuits in the

mesolimbic system, especially the nucleus accumbens and

ventral tegmental area, where the ECS is highly expressed and

interacts with both dopaminergic and opioidergic pathways,

resulting in a preference for highly palatable food (Melis et al.,

2007; Verty et al., 2004). For example, D9-THC increases

sucrose-induced hedonic activity and dopamine release into

the nucleus accumbens (De Luca et al., 2012), whereas CB1

antagonism reduces the increase of extracellular dopamine

release induced in this nucleus by a novel highly palatable food

(Melis et al., 2007). Furthermore, CB1 and m-opioid blockade

synergize at reducing food intake and body weight in rodents

(Lockie et al., 2011; Tallett et al., 2009) (Figure 1).
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Indeed, both pharmacological and genetic inhibition of CB1

results in hypophagia (Colombo et al., 1998; Di Marzo et al.,

2001). In a recent study, virally mediated knockdown of CB1

within the mouse hypothalamus by 60% had no effects on basal

food consumption, although the animals were less responsive to

the hypophagic activity of the CB1 inverse agonist rimonabant,

and insensitive to the anorexigenic actions of leptin, suggesting

that this hormone relies entirely on its inhibition of CB1 tone to

produce its effects in this brain area (Cardinal et al., 2012). Impor-

tantly, the orexigenic effect of ghrelin is also lost in rodents in

which CB1 receptors are pharmacologically or genetically inac-

tivated (Kola et al., 2008). It is not known, however, whether the

effects of leptin and ghrelin on the hedonic neural correlates of

food intake at the level of the mesolimbic nuclei are also exerted

via modulation of ECS signaling. Interestingly, in healthy volun-

teers, consumption of favorite food, as compared to normal

food, is accompanied by elevated plasma 2-AG levels which

correlate positively with plasma ghrelin levels (Monteleone

et al., 2012). It is not known whether this phenomenon reflects

a direct or indirect stimulatory action by palatable-food-

enhanced ghrelin signaling on endocannabinoid levels in the

brain or peripheral tissues or, rather, the change in small intestine

endocannabinoid levels after mouth exposure to fat, as shown in

a recent study in rats (DiPatrizio et al., 2011). The latter seems

less likely, considering that elevation of plasma 2-AG levels

was observed also in anticipation of the favorite food, and not

only after its consumption.

Perhaps surprisingly, CB1 activation can also produce hypo-

phagic actions, depending on the type of axon terminals, i.e.,

excitatory versus inhibitory, where it occurs. In an elegant

study using selective CB1 deletion in either glutamatergic

or GABAergic forebrain neurons, exogenous D9-THC, as well

as endocannabinoid level elevation induced by fasting or expo-

sure to palatable food, produced hyperphagic or hypophagic

effects depending on the restriction of their action to CB1 on glu-

tamatergic or GABAergic terminals, respectively (Bellocchio

et al., 2010). In the lateral hypothalamus, however, CB1 activa-

tion results in retrograde inhibition of GABA or glutamate release

from inputs onto melanin-concentrating hormone (MCH) or

orexin-1 releasing neurons, thereby resulting in disinhibition or

inhibition of stimulation, respectively, of two orexigenic signals

and, potentially, in orexigenic or anorexic effects (Figure 1). On

the other hand, presynaptic CB1 activation also inhibits gluta-

mate release to parvocellular neurons, resulting in the inhibition

of the release into the paraventricular nucleus of the anorectic

corticotropin-releasing hormone (CRH) (Jo et al., 2005; Kola

et al., 2008; Malcher-Lopes et al., 2006). Since global and condi-

tional glutamatergic CB1�/� mice exhibit the same hypophagic

phenotype after fasting or exposure to palatable foods (Belloc-

chio et al., 2010), one must surmise that the effect of CB1 inhibi-

tion of glutamatergic signaling overall predominates over that of

GABAergic signaling when one needs to explain the hyperphagic

effects of D9-THC and the hypophagic effects of CB1 inverse

agonists in wild-type mice. However, it should be remembered

that the hypothalamus can be rapidly ‘‘rewired,’’ in terms of

what and how many neurons are regulated by excitatory versus

inhibitory inputs, in fasted versus ad-lib-fed or in lean versus

obese animals, often as a consequence of changes in leptin or

glucocorticoid signaling (Crosby et al., 2011; Pinto et al., 2004).



Figure 1. Endocannabinoid- and CB1-Mediated Control of Central Functions Affecting Food Intake and Metabolism
2-AG, 2-arachidonoylglycerol; BAT, brown adipose tissue; CRH, corticotrophin-releasing hormone; EC, endocannabinoid; glut., glutamate; MCH, melanin-
concentrating hormone.
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Thus, in orexin-A neurons of the lateral hypothalamus from lep-

tin-deficient or leptin-resistant obese mice, CB1-expressing

presynaptic inputs change from predominantly excitatory to

inhibitory, resulting in elevated retrograde disinhibition, rather

than inhibition of activation, and increased orexin-A release in

target areas, which might contribute to hyperphagia in obesity

(L. Cristino and V.D., unpublished data) (Figure 1).

Under conditions of diet-induced obesity (DIO) in mice, endo-

cannabinoid levels are upregulated within the hippocampus,

which is an important substrate of hedonic eating, indicating

that highly palatable foods might be more satisfying under

these conditions, resulting in a vicious circle leading to obesity
(Massa et al., 2010). Also in the hypothalamus, 2-AG is tran-

siently or permanently upregulated after acute or prolonged

consumption, respectively, of a high-fat diet (HFD) and seems

to determine, via CB1 receptors, the preference for such diet

over a normal chow (Bisogno et al., 2012; Higuchi et al., 2011).

Hypothalamic 2-AG level elevation, which accompanies

impaired leptin signaling (Di Marzo et al., 2001), might also

participate in peripheral metabolic dysfunctions, such as excess

white adipose tissue (WAT) accumulation and hepatic glucose

production, by causing insulin resistance in the mediobasal

hypothalamus, as suggested by studies in rats either treated

with intracerebroventricular infusion of a CB1 agonist or given
Cell Metabolism 17, April 2, 2013 ª2013 Elsevier Inc. 477



Figure 2. Endocannabinoid Function in the Adipose Tissue
AEA, anandamide; BAT, brown adipose tissue; EC, endocannabinoid; FA, fatty acid; FAS, fatty acid synthase; LPL, lipoprotein lipase; PPARg, peroxisome
proliferator-activated receptor-g; TG, triglyceride.
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a HFD for 3 days (O’Hare et al., 2011; Scherer et al., 2012).

Accordingly, selective deletion of CB1 receptors in central

neurons confers resistance to HFD-induced obesity (Pang

et al., 2011), whereas CB1 deletion in both central and sympa-

thetic neurons results in increased thermogenesis (Quarta

et al., 2010). These data emphasize the key role of central-

neuronal CB1 receptors in the control of both central and

peripheral energy homeostasis. However, since central mecha-

nisms of metabolic control can be both up- and downstream

to peripheral ones, these findings in conditional CB1 knockout

mice do not rule out a role for peripheral, nonneuronal CB1

receptors in the metabolic syndrome (Figure 1).

Control of Metabolism by the Peripheral
and Nonneuronal Endocannabinoid System:
Well-Established Mechanisms
White and Brown Adipocyte Endocannabinoids:

Lipolysis, Lipogenesis, Inflammation,

and Thermogenesis

The WAT is the main energy repository organ of the human body

through its capability of accumulating triglycerides. The WAT

must be able to respond to the energetic status of the organism
478 Cell Metabolism 17, April 2, 2013 ª2013 Elsevier Inc.
relatively quickly, by expanding in size not only through the accu-

mulation of lipid stores but also via the recruitment of new adipo-

cytes or by mobilizing lipid stores through increased metabolic

flexibility (i.e., enhanced mitochondrial function and biogenesis)

(Ahmadian et al., 2010). This ability results in the marked differ-

ences observed in the amount of WAT between individuals,

which is not observed for other organ systems. In addition, the

WAT is an endocrine organ that releases adipokines, like leptin

and adiponectin, which are per se able to modulate energy

homeostasis.

The presence of CB1 in mature white adipocytes, but not in

preadipocytes, was demonstrated in both human primary cells

and rodent primary cells and cell lines (Cota et al., 2003; Bensaid

et al., 2003; Roche et al., 2006). These cells also express

enzymes for the production and degradation of endocannabi-

noids (Blüher et al., 2006; Matias et al., 2006). Several studies

have highlighted the function of CB1 receptors for 2-AG and

AEA in the regulation of adipogenesis and lipogenesis. The bio-

logical actions reported thus far for CB1 activation in white

adipocytes in vitro are all in the direction of maximizing fatty

acid (FA) de novo biosynthesis and triglyceride (TG) accumula-

tion andminimizing lipolysis (Figure 2). They include (1) activation
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of glucose uptake, fatty acid synthase (FAS), and lipoprotein

lipase (necessary for de novo FA biosynthesis and TG accumu-

lation, respectively); (2) inhibition of cAMP release, adenosine

monophosphate-activated protein kinase (AMPK), and mito-

chondrial biogenesis (and, as a consequence, of lipolysis and

FA oxidation); (3) stimulation of PPARg expression and adipo-

genesis; and (4) inhibition of adiponectin production in hyper-

trophic adipocytes (Di Marzo, 2008a; Silvestri et al., 2011;

Vettor and Pagano, 2009). Opposite effects are, instead, usually

observed after treatment of cultured adipocytes with CB1

receptor inverse agonists, which also reduce proinflammatory

markers (Ge et al., 2012) in endocannabinoid-overproducing

hypertrophic adipocytes. In fact, there is evidence that endocan-

nabinoid production in white adipocytes is under the negative

control of insulin (via stimulation of Faah expression) (D’Eon

et al., 2008), PPARg, and leptin (Matias et al., 2006), whereas

CB1 expression is downregulated by PPARd, after exercise in

rats (Yan et al., 2007), and by PPARg (Pagano et al., 2007).

Importantly, leptin also inhibits WAT endocannabinoid levels

through its action in the mediobasal hypothalamus (Buettner

et al., 2008). These mechanisms may act as negative feedback

to control endocannabinoid tone but become deranged after

conditions leading to obesity, such as prolonged HFD and lack

of exercise, thus subsequently contributing to further fat accu-

mulation and macrophage infiltration in the WAT via excess

CB1 activity. On the other hand, endocannabinoid/CB1 tone

stimulates leptin signaling, since blockade of CB1 receptors

with JD5037, a peripherally restricted CB1 inverse agonist,

reverses hyperleptinemia in DIO mice by decreasing leptin

expression and secretion by adipocytes (via both prejunctional

and postjunctional mechanisms) and increasing leptin clearance

by the kidney. This accounts for the unexpected reduction by

JD5037 of food intake in fed animals, but not for its delay of

meal initiation in fasted animals (Tam et al., 2012), which are

expected to have low levels of leptin.

Although the picture seems to be quite clear in vitro, data

obtained in vivo mostly with CB1 agonists or inverse agonists

have provided contrasting results as to the actual contribution

of adipocyte CB1 receptors to the control of energy metabolism.

Thus, controversy exists as to whether these receptors control

WAT lipogenesis and/or lipolysis only at the prejunctional (Mølhøj

et al., 2010) or also at the postjunctional (Jourdan et al., 2010)

level. Initial results with conditional and adipocyte-specific

CB1�/� mice (Mancini et al., 2010) indicate that CB1 receptors

in these cells do mediate at least part of the WAT accumulation

and insulin resistance due to a prolonged HFD. Furthermore,

recent evidence obtained in baboons through the use of radiola-

beled FAs and TGs confirms the importance of the WAT in

weight-loss-independent lipogenic and insulin-sensitizing

actions of rimonabant (Vaidyanathan et al., 2012).

Functional CB1 receptors have been found also in brown

adipocytes (Perwitz et al., 2006; Starowicz et al., 2008).

However, most of the available data, obtained through the

use of pharmacological and genetic tools inactivating CB1

receptors, point to inhibition of sympathetic inputs onto the

brown adipose tissue (BAT) and decreased thermogenesis as

one of the most important mechanisms through which CB1

receptor activation reduces energy expenditure by BAT and

causes WAT accumulation in DIO mice (Bajzer et al., 2011;
Quarta et al., 2010). The relevance of this to human obesity is

yet unexplored.

Plasma Endocannabinoid Levels as Biomarkers of WAT

Distribution and Insulin Resistance in Obesity

Whatever the role of white adipocyte CB1 receptors, WAT AEA

and 2-AG levels are usually deregulated in animal and human

obesity. In particular, (1) in the visceral (i.e., intra-abdominal)

WAT, the levels of both endocannabinoids and 2-AG are higher

in DIO mice and in obese human subjects, respectively (D’Eon

et al., 2008; Matias et al., 2006); (2) in the subcutaneous WAT,

2-AG and/or AEA levels are reduced in obese rodents (Izzo

et al., 2009; Starowicz et al., 2008) and 2-AG levels are reduced

in obese/T2D subjects and increased by weight loss (Annuzzi

et al., 2010; Bennetzen et al., 2011); and (3) the amount of

visceral, but not subcutaneous, WAT of obese human subjects

is directly correlated with the plasma levels of 2-AG (Blüher

et al., 2006; Côté et al., 2007). Thus, it is tempting to speculate

that, when present, high circulating 2-AG levels in obese

subjects reflect, in part, the upregulation of this endocannabi-

noid in visceral, but not subcutaneous, WAT. Accordingly,

long-term weight loss and waist circumference reduction in

intra-abdominally obese men was accompanied by a strong

decrease in the plasma concentrations of 2-AG, directly corre-

lated with decreased visceral adiposity, plasma TG levels, and

insulin resistance (DiMarzo et al., 2009a). Given the very different

metabolic roles of the two major types of WAT depots and the

aforementioned prolipogenic action of CB1, deregulation of

peripheral 2-AG levels might not only be the consequence but

also one of the causes of increased visceral, at the expense of

subcutaneous, WAT, and hence of insulin resistance. On the

other hand, the circulating levels of AEA might reflect its con-

centrations in the subcutaneous WAT, particularly under condi-

tions of strongly impaired insulin signaling, since overweight/

obese type 2 diabetes (T2D) patients exhibit increased plasma

AEA and 2-AG levels (Matias et al., 2006) but increased concen-

trations of only AEA in the subcutaneous WAT (Annuzzi et al.,

2010). These data suggest that alterations of endocannabinoid

levels in human obesity might occur in both a gender- and

WAT-depot-specific and an insulin-dependent manner. Indeed,

a recent study showed higher plasma 2-AG concentrations in

men and AEA levels being correlated with adiposity and meta-

bolic parameters in women (Fanelli et al., 2012). Genetic factors

also play a role since the 385 C/A (P129T) mutation that causes

FAAH to be less stable to degradation is associated with a high

body mass index (BMI) and increased AEA levels, even when

the latter were corrected for BMI (Sipe et al., 2010), and with a

better initial percentage of excess weight loss 9 and 12 months

after biliopancreatic diversion (de Luis et al., 2010).

Theoretically, stimulation of FAAH expression by insulin,

observed in the subcutaneous tissue of lean but not obese

patients (Murdolo et al., 2007), should control AEA, but not 2-

AG, levels. It might thus explain not only the finding of decreased

AEA but not 2-AG plasma levels in normoglycemic, and much

less so in T2D, subjects after hyperinsulinemic/euglycemic

clamps (Di Marzo et al., 2009c) and the postprandial decrease

in AEA but not 2-AG plasma levels in normoweight but not

obese subjects (Gatta-Cherifi et al., 2012; Matias et al., 2006),

but also the observation of increased AEA but not 2-AG levels

in the subcutaneous WAT of obese T2D subjects (Annuzzi
Cell Metabolism 17, April 2, 2013 ª2013 Elsevier Inc. 479
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et al., 2010). Accordingly, increased plasma AEA levels in obese

women are negatively correlated with FAAH messenger RNA

(mRNA) expression in subcutaneous WAT (Engeli et al., 2005).

Interestingly, it was recently shown that FAAH, but not MAGL,

activity is increased in isolated adipocytes from non-insulin-

resistant obese individuals in a way directly correlated with

BMI (Cable et al., 2011), thus confirming the important role of

insulin sensitivity, rather than BMI, in controlling WAT and

circulating AEA levels via the upregulation of this enzyme. How-

ever, FAAH deregulation might also affect 2-AG levels, since

increased plasma 2-AG levels correlate with decreased FAAH

mRNA in visceral WAT of obese patients (Blüher et al., 2006).

In summary, although this possibility needs to be confirmed

by studies employing cohorts of patients larger than those

analyzed thus far, and via standardized methods dealing with

the variability of and establishing reference levels for plasma

endocannabinoids, the latter might in the future be considered

as biomarkers of intra-abdominal versus subcutaneous WAT

accumulation, in the case of 2-AG, and insulin-resistance in

subcutaneous WAT, in the case of AEA. Prospective studies in

which longitudinal analyses of multiple parameters of intra-

abdominal obesity and their response to treatment are still

required to assess whether plasma 2-AG levels might be used

as predictive of responsiveness to therapeutic agents that

counteract CB1 activity or as efficacy indicators of lifestyle or

other pharmacological interventions aimed at specifically

reducing this typical sign of the metabolic syndrome.

Hepatocyte Endocannabinoids: Glucose and Lipid

Metabolism and Hepatic Insulin Resistance

The liver plays key roles in regulating total body energy homeo-

stasis, and its ability to do so is greatly affected by the

occurrence of pathological conditions such as alcoholic or

nonalcoholic fatty liver disease (NAFLD), which contribute to

hepatic insulin resistance and end-stage liver disease-related

mortality (Parekh and Anania, 2007). TG accumulation in hepato-

cytes results from the incorporation of plasma free fatty acids

and de novo fat synthesis (Postic and Girard, 2008b). It is now

well accepted that the hepatocytes express CB1 receptors

and produce endocannabinoids (Kunos and Tam, 2011). During

conditions that induce hepatosteatosis, be it diets rich in fat or

alcohol, the liver expression of CB1 and the levels of 2-AG

and/or AEA are increased significantly in rodents (Jeong et al.,

2008; Jourdan et al., 2010; Osei-Hyiaman et al., 2005), whereas

hepatic CB1 is upregulated in patients with hepatosteatosis

(Liu et al., 2012; Mendez-Sanchez et al., 2007). This increased

ECS tone is due in part to the activation of a feed-forward

loop, as CB1 upregulation by both high fat and alcohol is CB1

dependent (Jourdan et al., 2010; Mukhopadhyay et al., 2010)

and AEA increases CB1 expression in organotypic liver slices,

whereas rimonabant decreases it (Jourdan et al., 2012).

Additionally, hepatic CB2 mRNA is induced in obese mice, and

CB2 agonism increases HFD-induced hepatosteatosis (Deveaux

et al., 2009). CB1 and CB2 agonists increase the degree of

steatosis of oleic acid-treated immortalized human hepatocytes,

and CB2 agonism increases CB1 receptor expression (De Got-

tardi et al., 2010). Thus, CB2 receptors might also participate

in the deregulation of hepatic function.

The hepatic ECSmight contribute to fatty liver through disrup-

tion of hepatic lipogenic and lipolytic pathways and insulin
480 Cell Metabolism 17, April 2, 2013 ª2013 Elsevier Inc.
signaling (Gary-Bobo et al., 2007; Jeong et al., 2008; Jourdan

et al., 2010; Osei-Hyiaman et al., 2005; Osei-Hyiaman et al.,

2008) (Figure 3A). The key lipogenic transcription factor sterol

regulatory element binding transcription factor 1 (SREBF1) is up-

regulated by CB1, resulting in the enhanced expression of

acetyl-Coenzyme A (CoA) carboxylase-a (Acaca, aka Acc1)

and Fas, key enzymes in the regulation of lipogenesis. CB1

blockade causes downregulation of these enzymes (Jeong

et al., 2008; Osei-Hyiaman et al., 2005; Tam et al., 2010).

Conversely, AEA stimulates lipogenic genes in liver slices, in

a manner reversed by rimonabant (Jourdan et al., 2012). In

mice, acute pharmacological upregulation of 2-AG levels via

a single dose of an inhibitor of 2-AG hydrolysis results in a signif-

icant increase in hepatic triglyceride levels, as well as insulin

resistance, and a microarray cluster analysis identified the

functional category of lipid, fatty acid, and steroid metabolism

genes, including many SREBF1 targets, as being regulated in

a CB1-dependent manner (Ruby et al., 2011).

AMPK is a key metabolic regulator, and in the liver it controls

the expression and activity of several lipogenic factors, including

SREBF1 (Viollet et al., 2009). CB1 activation by D9-THC in rats,

and ACEA in mice on a HFD, decreases liver AMPK activity

(Kola et al., 2005; Tedescoet al., 2010),whereasCB1antagonism

increases it in organotypic liver slices (Jourdan et al., 2012). CB1

blockade by rimonabant decreases lipogenesis through AMPK

via the cAMP-dependent protein kinase A (PKA)-liver kinase B1

(LKB1) axis and downstream of Gai/o inhibition. AMPK in turn

inactivates the liver X receptor a (LXRa), which is responsible

for Srebf1 expression (Wu et al., 2011). Presumably, activation

of CB1 and Gai/o works through the same pathway but with the

opposite effects. AMPKalso increasesmitochondrialb-oxidation

of fatty acids as a result of reduced malonyl CoA levels, leading

to carnitine palmitoyltransferase 1a (Cpt1a) activation and fatty

acid shuttling into mitochondria (Viollet et al., 2009). Accordingly,

rimonabant decreasesmalonyl CoA in the liver of mice on a high-

sugar and high-fat diet (Jourdan et al., 2010) and increases liver

mitochondrial oxygen consumption and lipid b-oxidation in

mice and liver slices (Flamment et al., 2009; Jourdan et al.,

2012), whereas CB1 agonism decreases Cpt1a activity to

increase liver lipogenesis (Osei-Hyiaman et al., 2008). Addition-

ally, global or liver-specific CB1 knockout results in increased

hepatic AMPK activation and Cpt1a levels and activity (Jeong

et al., 2008; Osei-Hyiaman et al., 2008). CB1-mediated AMPK

inhibition not only inhibits mitochondrial activity but also leads

to decreased mitochondrial biogenesis in the liver of mice on

a HFD (Tedesco et al., 2010). The ECS might impinge upon

AMPK also indirectly via inhibition of adiponectin production

(Kim et al., 2012a), since adiponectin stimulates hepatic AMPK

activation and fatty acid entry intomitochondrial b-oxidation (Ya-

mauchi et al., 2002) (Figure 3A).

Fatty liver caused by HFD is also associated with insulin resis-

tance, characterized by the elevation of hepatic glucose produc-

tion, plasma hyperglycemia, and hyperinsulinemia (Parekh and

Anania, 2007; Postic and Girard, 2008a). Given the effects of

the ECS on hepatosteatosis, it is therefore not surprising that

CB1 activation in humans and rats is associated with decreased

glucose tolerance (Bermúdez-Siva et al., 2006). Therefore, the

amelioration of liver steatosis observed with CB1 antagonism

or knockout is similarly associated with an improvement in



Figure 3. Endocannabinoid Role in Lipid
and Glucose Metabolism in the Liver
Endocannabinoid control of hepatocyte (A)
triglyceride levels and (B) insulin sensitivity and
glucose production. In (B), note how hepatocyte
CB1 activation has been proposed to inhibit insulin
signaling by two mechanisms, i.e., upregulation
of inhibitory phosphorylation of insulin receptor
substrate (IRS) and stimulation of inhibitory
dephosphorylation of insulin-activated protein
kinase b (AKT2) via the upregulation of the S/T
phosphatase PH domain and leucine-rich repeat
protein phosphatase 1 (PHLPP11) downstream of
a pathway dependent on heat shock protein 5
(HSPA5), PRKR-like endoplasmic reticulum kinase
(PERK) and eukaryotic translation initiation factor
2 subunit 1 alpha (eIF2a) and subsequent endo-
plasmic reticulum (ER) stress (Liu et al., 2012).
CB1-activated ER stress is also implicated in the
upregulation of the liver-specific transcription
factor cAMP-responsive element-binding protein
H (CREBH), which increases gluconeogenic gene
expression and glucose production via Lipin1
and potential feed-forward onto endocannabinoid
(EC) biosynthesis (Chanda et al., 2011). ACACA,
acetyl-Coenzyme A carboxylase-a; CPT1a,
carnitine palmitoyltransferase 1a; CREBH, cAMP-
responsive element-binding protein H; DAG,
diacyl glycerol; FA, fatty acid; FAS, fatty acid
synthase; HFD, high-fat diet; HSC, hepatic stellate
cell; IDE, insulin-degrading enzyme; IR, insulin
receptor; LKB1, liver kinase B1; LXRa, liver X
receptor a; PKA, cAMP-dependent protein kinase
A; PKCε, protein kinase Cε; RAR, retinoic acid
receptor; SREBF1, sterol regulatory element
binding factor 1.
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insulin and glucose sensitivity (Gary-Bobo et al., 2007; Liu et al.,

2012; Osei-Hyiaman et al., 2008; Ravinet Trillou et al., 2004).

Mice with hepatocyte-specific knockout of CB1 are not pro-

tected from increased weight and total adiposity in response to

DIO but are resistant to the development of hepatosteatosis

and insulin insensitivity (Liu et al., 2012; Osei-Hyiaman et al.,

2008). However, acute upregulation of 2-AG levels results in

decreased glucose tolerance after only a few hours (Ruby

et al., 2011), and more-recent studies have highlighted direct

(i.e., fatty-liver-independent) effects of hepatic CB1 receptors

on insulin sensitivity in obesity. Mice in which CB1 expression

was reintroduced on a CB1 global knockout at levels similar to

those induced by DIO (denoted as htgCB1�/� [hepatocyte

transgenic CB1�/�] mice) provided important insights into the

molecular mechanism involved in this latter phenomenon (Liu

et al., 2012). The htgCB1�/� mice exhibit much higher basal

circulating glucose and insulin levels, and while they remain

lean when maintained on a HFD, exactly like CB1�/� mice,

they develop strong hepatic and systemic insulin resistance,
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opposite to mice with hepatocyte-

specific CB1 knockout, which become

obese but remain insulin-sensitive, sup-

porting the notion that hepatic CB1

reduces insulin sensitivity without affect-

ing body weight (Liu et al., 2012; Osei-

Hyiaman et al., 2008). Increased insulin

levels in htgCB1�/� mice are associated

with lower insulin-degrading enzyme
(IDE) expression in the liver, which is also observed in wild-

type mice with DIO, showing that hepatic CB1 is involved in

regulating insulin clearance. Further, the study indicated that

hepatic CB1 inhibits insulin signaling by upregulation of inhi-

bitory phosphorylation of insulin receptor substrate (IRS) and

stimulation of inhibitory dephosphorylation of insulin-activated

protein kinase b (PKBb/AKT2) via an endoplasmic reticulum

(ER) stress-dependent pathway (Liu et al., 2012) (Figure 3B).

The htgCB1�/� mice also exhibited increased glycogen phos-

phorylase-a activity, indicating that the increased hepatic

glucose production observed was due to an increase in glyco-

genolysis. Interestingly, ER stress seems to also be implicated

in the upregulation of gluconeogenic gene expression and

glucose production by 2-AG in primary human hepatocytes,

which occurs via CB1-mediated upregulation of the ER stress

liver-specific transcription factor cAMP-responsive element

binding protein 3-like 3 (Crebh) (Chanda et al., 2011). Thus,

CB1 causes hepatocyte ER stress during obesity, perhaps also

through AMPK (Dong et al., 2010), and this effect is critical to
17, April 2, 2013 ª2013 Elsevier Inc. 481
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its modulation of insulin signaling. Treatment of hepatocytes with

2-AG also induces, via CREBH activation, the expression of

Lipin1, a phosphatidic acid phosphatase, and the subsequent

release of DAG and phosphorylation of protein kinase C-ε, with

inhibition of hepatic insulin receptor signaling. Knockdown of

CREBH or CB1 antagonism attenuates 2-AG-mediated induc-

tion of Lipin1 gene expression, decreases DAG production in

mouse liver, and restores insulin receptor signaling (Chanda

et al., 2011). Given the role of DAG in the biosynthesis of 2-AG,

this mechanism might generate an ECS-mediated feed-forward

loop leading to hepatic insulin resistance (Figure 3B).

Control of Metabolism by the Peripheral
and Nonneuronal Endocannabinoid System:
Emerging Mechanisms
Muscle Endocannabinoids: Insulin Sensitivity

and Beyond

Muscle is a key tissue in the regulation of energy homeostasis,

not only during periods of high activity, requiring large amounts

of energy, but also during rest or basal activity, making it a major

site of fatty acid b-oxidation and sink for glucose and thus a prin-

cipal site of insulin-induced glucose mobilization (Abdul-Ghani

and DeFronzo, 2010). It is now well accepted that muscle cells

produce endocannabinoids and express a large number of the

components of the ECS, including its synthesizing and degrad-

ing enzymes and its receptors (Cavuoto et al., 2007a, 2007b;

Crespillo et al., 2011; Eckardt et al., 2009; Esposito et al.,

2008; Lipina et al., 2010). There exist, however, discrepancies

within the literature as to whether the muscle ECS becomes de-

regulated under conditions of obesity and/or insulin resistance.

In primary skeletal muscle myotubes of lean and obese subjects,

CB1 gene expression remains unchanged (Cavuoto et al.,

2007a). In rats fed a HFD, abdominal wall skeletal muscle gene

expression of CB2 and Magl is decreased and increased,

respectively (Crespillo et al., 2011). In genetically obese Zucker

rats, CB1 mRNA levels in soleus are decreased (Lindborg

et al., 2010), whereas AEA levels are increased (V.D., unpub-

lished data). However, CB1 expression in soleus muscle from

mice on a HFD is increased (Pagotto et al., 2006). These data

make it difficult to predict the possible effects of obesity on over-

all endocannabinoid tone in muscle and indicate that ECS

response to the metabolic state of the organism might have

muscle-subtype- or genetic-specific differences. In the soleus

muscle from mice on a HFD for 14 weeks, 2-AG, but not AEA,

levels were significantly elevated at the beginning of the study

and near the end, when the animals had obesity and hypergly-

caemia, but not in the middle (Matias et al., 2008b). This sug-

gests that muscle endocannabinoid production is modulated

by HFD and that compensatory mechanisms might overcome

these changes initially but not once the organism has become

obese and insulin resistant.

Pharmacological inhibition of CB1 activity in obese humans

or in genetically or diet-induced obese rodents results in

increased energy expenditure/oxygen consumption, which

was not explainable by increased physical activity but rather

associated with elevated FA oxidation (Addy et al., 2008; Herling

et al., 2008; Kunz et al., 2008; Liu et al., 2005). Accordingly,

studies on isolated myotubes indicate that the ECS has a nega-

tive impact on muscle oxidative pathways. AMPKa1 is a positive
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modulator of glucose and fatty acid oxidation and mitochondrial

biogenesis, and while in myotubes from lean and obese donors

AEA only produces a small increase in its levels, CB1 inhibition

by AM251 significantly increases AMPKa1 (similar to results

obtained in liver) (Cavuoto et al., 2007a; Jourdan et al., 2012).

In ‘‘lean’’ myotubes, however, AEA does increase the expression

of pyruvate dehydrogenase kinase isoenzyme 4 (PDK4), an

inhibitor of the pyruvate dehydrogenase complex that links

glycolysis to the citric acid cycle and thus a negative regulator

of mitochondrial glucose oxidative metabolism that is downre-

gulated by insulin (Majer et al., 1998), whereas CB1 antagonism

decreased the expression of this enzyme (Cavuoto et al., 2007a).

These data, taken together with CB1 reduction of muscle mito-

chondrial biogenesis (Tedesco et al., 2010), imply that overac-

tivity of the ECS in this tissue might drive defective skeletal

muscle oxidative metabolism through impaired mitochondrial

oxidative phosphorylation (Abdul-Ghani and DeFronzo, 2010).

Chronic treatment of ob/ob mice and lean or obese Zucker

rats with rimonabant resulted in increased glucose uptake in

the soleus muscle (Lindborg et al., 2011; Liu et al., 2005).

Conversely, systemic (intravenous), but not central (intracere-

broventricular), administration of a single dose of the CB1/CB2

agonist, HU210, resulted in the CB1-dependent reduction of

whole-body glucose clearance and glucose transport into

muscle but not adipose tissue (Song et al., 2011), indicating

that HU210 may act directly on muscle CB1 receptors. Indeed,

in soleus muscle, explant cultures from lean and insulin-resistant

obese Zucker rats, AEA and rimonabant significantly decreased

and increased both basal and insulin-dependent glucose import,

respectively (Lindborg et al., 2010). In this study, as in subse-

quent work (Lindborg et al., 2011), no effects were observed

on canonical insulin-independent or -dependent glucose trans-

port pathways. Yet other studies have reported that, instead,

CB1 impinges on muscle insulin signaling. In vivo, acute

treatment of mice with HU210 resulted in decreased insulin-

dependent AKT phosphorylation in hind leg muscle (Song

et al., 2011). These results are consistent with in vitro data in

L6 rat myotubes in which rimonabant or CB1 knockdown

increased glucose uptake, with the former being accompanied

by increased expression of phosphatidylinositol 3-kinase

(PI3K) catalytic and regulatory subunits and subsequently by

AKT and mitochondrial pyruvate dehydrogenase lipoamide

kinase isozyme 1 (PDK1) and protein kinase cz (PKCz) activation

(Esposito et al., 2008). Further, in an in vitro study that points to

an endogenous role for ECS-mediated regulation of insulin

sensitivity in mice, it was found that adipocyte-conditioned

media (24 hr treatment) or AEA (24 or 1 hr treatment) inhibited

insulin-dependent glucose uptake and AKT activation in skeletal

muscle cells in a CB1-dependent manner (Eckardt et al., 2009).

Conversely, in another study still in L6 myotubes, while 24 hr

treatment with ACEA had no effect on insulin-dependent AKT

activation, rimonabant sensitized AKT to insulin-dependent

activation and increased phosphorylation of its targets, forkhead

box O3A (Foxo3a) and glycogen synthase kinase 3 a/b (GSK3a/

b) (Lipina et al., 2010). Despite some inconsistencies, altogether

these data indicate that the ECS negatively regulates the

P13K-AKT and P13K-PDK-PKCz pathways downstream of

insulin, which are required for glucose transporter 1/4 (GLUT1/

4) translocation and glucose uptake. However, and surprisingly,
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in none of the studies above was GLUT1/4 expression found to

be altered, indicating that the ECS may posttranslationally regu-

late these proteins.

It should be noted that, in addition to the above actions, the

ECS modifies other insulin signaling effectors as well. For

instance, high AEA levels caused inhibitory insulin receptor

substrate 1 (IRS1) phosphorylation (Eckardt et al., 2009). Further,

the ECS modulates the MAPK arm of the insulin pathway that

regulates gene expression and cell proliferation, as rimonabant

stimulated, and the CB1 agonist ACEA inhibited, insulin-depen-

dent extracellular signal-regulated kinase 1/2 (ERK1/2) activa-

tion (Lipina et al., 2010). Finally, at high concentrations, AEA

activated p38 (in a sustained manner) and ERK1/2 (transiently)

in primary human skeletal muscle cells (Eckardt et al., 2009),

an effect that might be due to activation of non-CB1 receptors

and underlie some of the beneficial effects of intensive exercise,

given the stimulatory effect of the latter on plasma AEA levels

(for a review, see Heyman et al., 2012).

Pancreatic Endocannabinoids: Direct Effects on Insulin

Secretion or b Cell Health?

The understanding of the role of the endocannabinoid system

in b cells has been hindered by controversy regarding the pres-

ence of CB1 and CB2 receptors in these cells. However, most

researchers agree that b cells do express the former receptor,

although it is not clear yet whether CB1 activation controls only

insulin signaling (and hence b cell health), as in hepatocytes

and myotubes, or also insulin release. Furthermore, as in the

case of adipocytes, the contribution of b cell CB1 receptors to

the control of energy homeostasis has found so far support

only from in vitro studies. Current data suggest that, although

counterintuitive given the reduction of glucose tolerance

observed after acute or chronic systemic administration of

CB1 agonists (Bermúdez-Siva et al., 2006; Liu et al., 2012),

in vitro stimulation of these receptors in b cells enhances, rather

than reduces, either basal or glucose-stimulated (or both) insulin

release (Bermúdez-Silva et al., 2008; Li et al., 2010; Matias et al.,

2006). Accordingly, when using pancreatic Langerhan’s islet

preparations from lean and Zucker diabetic fatty rats, the latter

of which likely exhibit elevated endocannabinoid levels (Izzo

et al., 2009) much in the same way those from DIO mice do

(Starowicz et al., 2008), Getty-Kaushik and colleagues (2009)

found that CB1 blockade with rimonabant decreases basal

insulin hypersecretion (Getty-Kaushik et al., 2009). Rimonabant

also decreased nonstimulated insulin hypersecretion in islets

from lean rats that had been treated with high glucose for

24 hr, a condition similar to that found to enhance basal endo-

cannabinoid levels in a rat b cell line (Matias et al., 2006). On

the other hand, rimonabant did not affect glucose-stimulated

insulin secretion by islets from obese rats or glucose-treated

islets from lean rats, whereas it did in untreated islets from lean

rats. Thus, CB1 antagonism in islets reduces insulin secretion

only when this is elevated above normal levels by diet or obesity,

possibly because of higher endocannabinoid tone during these

conditions. Especially if it also contributes to insulin resistance

in the liver or skeletal muscle (see above), endocannabinoid

overactivation of CB1 receptors in b cells during obesity, and

the subsequent hypersecretion of insulin, might first represent

an attempt at compensation for insulin resistance and, later, in

the continued presence of insulin signaling impairment,
contribute to b cell stress and damage. This might explain why

another CB1 receptor inverse agonist, ibipinabant, attenuated

b cell loss in Zucker diabetic fatty rats independently of its effects

on body weight (Rohrbach et al., 2012).

Recently, another mechanism has been put forward that

might explain why CB1 receptor blockade ameliorates b cell

damage in obesity. It was shown that CB1 activation inhibits

insulin signaling in b cells by preventing insulin-stimulated insulin

receptor (IR) autophosphorylation in a Gai-dependent manner,

whereas pharmacologic blockade of CB1 results in enhanced

IR signaling through the AKT2 pathway in b cells and leads to

increased b cell proliferation and mass both in vitro and in vivo

in diabetic db/db mice (Kim et al., 2011). From the molecular

point of view, the mechanism by which CB1 inhibits IR signaling

seems to be quite novel. In fact, the same authors reported in

a subsequent study (Kim et al., 2012b) that CB1 forms a hetero-

meric complex with the IR and Gai, leading to inhibition of the

kinase activity of the IR by directly binding to the activation

loop in the tyrosine kinase domain of this protein. IR impairment

then leads to reduced phosphorylation of the proapoptotic

protein Bad and subsequent stimulation of its apoptotic activity,

thereby causing b cell death. Therefore, pharmacological

blockade of CB1 receptors might represent a therapeutic oppor-

tunity for diabetes, independent of its other actions on body

weight, WAT inflammation, and hepatic and muscle insulin

resistance.

Endocannabinoid Congeners and Metabolites and Their
Emerging Role in Metabolic Control
As mentioned above, both AEA and 2-AG are biosynthesized

in tissues together with congeners, the N-acyl-ethanolamines,

and MAGs, which may stimulate metabolically active non-CB1,

non-CB2 receptors, and are inactivated by FAAH and MAGL,

respectively. PEA and, particularly, OEA activation of PPARa,

unlike CB1, may lead to food-intake inhibition, lipolysis in the

liver and adipose tissue, and induction of satiety via small intes-

tine-mediated mechanisms (Schwartz et al., 2008). Also, activa-

tion of TRPV1, a potential target for OEA, PEA, and AEA (Di

Marzo and De Petrocellis, 2010), stimulates lipolysis and

improves mitochondrial activity in the skeletal muscle (Luo

et al., 2012), two effects that are again the opposite of those ex-

erted by CB1 activation (Tedesco et al., 2010). On the other

hand, MAGs such as 2-oleoyl- and 2-linoleoyl-glycerol activate

GPR119 in the small intestine, with subsequent stimulation of

GLP-1 release and inhibitory and stimulatory effects of food

intake and insulin secretion, respectively (Lan et al., 2012; Han-

sen et al., 2012). Although the role of endocannabinoid conge-

ners in energy homeostasis and its pathological perturbations

has not yet been fully investigated, stimuli leading to endocanna-

binoid biosynthesis and inactivation may also cause alterations

in the tissue levels of these other mediators, the action of which

might reinforce or, more likely, oppose that of CB1 receptor

activation. Furthermore, given the important impact of the

diet on the FA composition of phospholipid classes acting as

ultimate biosynthetic precursors for endocannabinoids and

their congeners, it’s intriguing to speculate that the role of this

‘‘endocannabinoidome’’ in energy homeostasis, as well as in

the etiopathology of metabolic disorders, might also depend

on dietary factors, which, however, might or might not affect in
Cell Metabolism 17, April 2, 2013 ª2013 Elsevier Inc. 483
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the same way lipid signaling pathways leading to positive (i.e.,

endocannabinoids, which are ultimately derived from AA and

hence linoleic acid) and negative (i.e., palmitic-, oleic-, or lino-

leic-acid-containing N-acylethanolamines and MAGs) energy

balance. In this sense, it is interesting to observe how a diet

rich in linoleic acid was recently suggested to lead to obesity in

mice in part by engendering excess peripheral endocannabinoid

levels (Alvheim et al., 2012).

The co-occurrence in tissues of lipid mediators with similar

biosynthetic and inactivating pathways but opposing metabolic

actions may complicate the correct interpretation of data ob-

tained in genetically modified mice in which such pathways

have been inactivated. An example of this situation is the recently

described phenotype of mice in whichMagl was overexpressed

in the small intestine (Chon et al., 2012), where activation of CB1

inhibits satiety. These mice are characterized by reduced energy

expenditure and propensity to obesity after a HFD, a behavior

opposite of what would be expected from a chronic reduction

of 2-AG levels and also of that observed when the enzyme is

overexpressed in forebrain neurons (Jung et al., 2012). However,

if one remembers that MAGL overexpression in the small intes-

tine may also lead to reduced activation of GPR119 in entero-

crine L-cells by MAGs other than 2-AG, and subsequently to

reduced release of GLP-1, one may well expect obesity in

these mice. Likewise, it is possible that Magl-null mice do not

exhibit the expected propensity to obesity and, in fact, show

attenuated diet-induced insulin resistance (Taschler et al.,

2011) because the action of elevated MAGs in metabolically

active peripheral tissues expressing GPR119 receptors predom-

inates on CB1 activation by upregulated 2-AG. However, as

expected, Faah-null mice on a HFD exhibit stronger WAT accu-

mulation, high plasma TG levels, and glucose intolerance as

compared to wild-type mice (Touriño et al., 2010), despite the

fact that they contain higher levels not only of the orexigenic

and lipogenic mediator, AEA, but also of the anorexigenic and

lipolytic mediator, OEA. Thus, one may speculate that concom-

itant activation of PPARa and TRPV1 by OEA (and PEA) in these

mice is not sufficient to override the effect of CB1 overactivation

by AEA.

Recently, we have also investigated the potential role in WAT

biology of another proposed route of endocannabinoid catabo-

lism, i.e., that catalyzed by COX-2 and leading to prostaglandin

analogs of AEA and 2-AG (Kozak et al., 2002). We found that

the former metabolites, also known as prostamides, and in

particular prostamide F2a, are produced in preadipocytes at

the expense of AEA and exert antiadipogenic actions in these

cells by activating a non-FP (prostaglandin F receptor), non-

CB1 receptor (C.S., N. Poloso, D. Woodward, and V.D., unpub-

lished data). We proposed that preadipocyte prostamide

signaling represents a negative paracrine feedback mechanism

to switch from an adipogenic (i.e., AEA) to an antiadipogenic

pathway, which would be inhibited under conditions requiring

the presence of new adipocytes, such as after a short period

of HFD. However, during obesity, which is accompanied by

COX-2 (Hsieh et al., 2010) and AEA level upregulation, FAAH

downregulation, and inflammation in the WAT, the formation of

prostamide F2a might be enhanced, thus increasing the number

of hypertrophic adipocytes at the expense of new small adipo-

cytes and further favoring WAT inflammation.
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New Therapies for Correction of Endocannabinoid
Dysregulation in Metabolic Disorders
To date, themajority of efforts to deal with upregulated ECS tone

under conditions of excessive adiposity and metabolic deregu-

lation have dealt with pharmacological antagonism of the CB1

receptor, exemplified by the development of the systemically

penetrant CB1 inverse agonist, antiobesity drug rimonabant.

However, the potential consequences associated with this

drug’s central side effects have resulted in the abandonment

of pursuits to produce similar compounds. The development of

neutral antagonists and peripherally restricted inverse agonists

at CB1 receptors is being actively pursued (for a review, see

Silvestri and Di Marzo, 2012) and has already provided very

promising results at the preclinical level, particularly in terms of

their reversal of insulin and leptin resistance and also of unex-

pected differences in the appetitive and metabolic profile of

one such class of compounds versus the other (Tam et al.,

2010, 2012) (Table 1). Given that at least part of the increased

pathological tone of the ECS can be attributed to increased

endocannabinoid biosynthesis, the regulation of this process

also presents a seemingly viable strategy to regulate the

ECS. Evidence of the efficacy of this strategy has been provided

by the manipulation of 2-AG levels in two different ways.

Systemic administration of DAGL inhibitors decreased 2-AG

biosynthesis and inhibited palatable or HFD intake (Bisogno

et al., 2009; Bisogno et al., 2012), whereas the overexpression

of Magl specifically within forebrain neurons in mice resulted

in increased energy expenditure and decreased weight gain on

a HFD (Jung et al., 2012).

It is now accepted that dietary intake of the n-3 polyunsatu-

rated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and

docosahexaenoic acid (DHA) reduce the levels of AA-esterified

phospholipids (Kinsella, 1990), which include the sn-2- and

sn-1-AA-containing phospholipids acting as ultimate precursors

for 2-AG and AEA, respectively (Di Marzo, 2008b). Treatment

of mouse adipocytes with AA increases 2-AG levels, whereas

DHA or EHA decrease AEA and 2-AG levels with concomitant

reduction of AA-esterified phospholipids (Matias et al., 2008a).

Thus, dietary n-3 PUFAs may be able to correct an overactive

ECS bymodulating endocannabinoid precursor levels (Di Marzo,

2008b; Kinsella, 1990; Piscitelli et al., 2011). In fact, a linoleic-

acid-enriched diet elevated peripheral AEA and 2-AG levels

along with inducing obesity, unless high levels of DHA and

EPA were included in the diet (Alvheim et al., 2012). Several

in vivo studies with dietary n-3-PUFA-rich fish or krill oils have

shown that such treatments reduce peripheral endocannabinoid

levels without weight loss in rodents and humans, and in rats

this effect occurs concomitantly to reduced ectopic fat in the

liver and heart (Banni et al., 2011; Batetta et al., 2009; Di Marzo

et al., 2010; Piscitelli et al., 2011). More recently, it was shown

that dietary phospholipids enriched in EPA and DHA are superior

to the corresponding TGs at ameliorating the metabolic profiles

of obese mice, including significant reductions in hepatosteato-

sis, circulating insulin levels, and WAT hypertrophy (Rossmeisl

et al., 2012). However, although generally less effective at

modulating brain endocannabinoid tone in adult mice, changes

in dietary n-3 PUFA must be considered with caution in

newborns as it can cause deep and long-lasting alterations in

brain phospholipid composition and function (Lafourcade



Table 1. Therapeutic Strategies against Obesity and the Metabolic Syndrome that Are Based on or Affect Endocannabinoid Deregulation

Therapy

Inhibitory Effect

on EC Tone

Reduction of

Food Intake

Reduction of

Body Weight

Reduction of

Glucose

Intolerance and

Insulin Resistancea

Reduction of

Plasma

Triglycerides

Reduction of

Visceral

Adipose

Tissueb
Reduction of

Liver Fat

Central Side

Effects References

CB1 inverse

agonists

In all tissues where EC

levels are higher and/or

CB1 is constitutively

coupled to G protein

Yes, transient Yes Yes Yes Yes Yes Yes (Addy et al., 2008;

Bajzer et al., 2011;

Colombo et al., 1998;

Gary-Bobo et al., 2007;

Jourdan et al., 2010;

Kim et al., 2012a;

Mølhøj et al., 2010;

Rohrbach et al., 2012,

Vaidyanathan et al., 2012)

CB1 neutral

antagonists

In all tissues where

EC levels are higher

Yes Yes Yes Yes Not yet assessed Not yet

assessed

Not yet fully

assessed

(Silvestri and Di Marzo,

2012)

Peripherally

restricted CB1

blockers

In all peripheral

tissues where EC

levels are higher

and/or CB1 is

constitutively

coupled to G protein

Yes, through

resensitization to

leptin, observed

with a CB1

inverse agonists

Yes Yes Yes Not yet assessed Yes No (Silvestri and Di

Marzo, 2012;

Tam et al., 2010, 2012)

DAGL

inhibitors

In all tissues where

EC levels are higher

Yes Yes Not yet

assessed

Not yet

assessed

Not yet assessed Not yet

assessed

Not yet

assessed

(Bisogno et al., 2009,

2012)

Dietary n-3

PUFAs

In all peripheral

tissues where EC

levels are higher

No No Yes Yes Not yet assessed Yes No (Banni et al., 2011;

Batetta et al., 2009;

Di Marzo et al., 2010;

Matias et al., 2008a,

Piscitelli et al., 2011;

Rossmeisl et al., 2012)

Lifestyle

(exercise +

caloric

restriction)

Plasma EC

levels

– Yes Yes Yes Yes Yes No (Bennetzen et al., 2011;

Di Marzo, et al., 2009a;

Heyman et al., 2012)

EC, endocannabinoid; n-3 PUFAs, n-3 polyunsaturated fatty acids (i.e., docosahexaenoic and eicosapentaenoic acids).
aFasting glucose or insulin, oral glucose tolerance test.
bAs assessed by waist circumference or computer tomography scans in humans.
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et al., 2011; D’Asti et al., 2010). Furthermore, since dietary EPA

and DHA may reduce not only endocannabinoid levels but also

those of other AA-derived metabolites, while increasing the

tissue concentrations of n-3-PUFA-containing ethanolamides

and glycerol esters potentially acting at noncannabinoid recep-

tors (Brown et al., 2013), one will need to evaluate also the

distinct role of each of these metabolites in n-3-PUFA-induced

metabolic benefits. At any rate, the use of EPA andDHA as nega-

tive regulators of peripheral endocannabinoid upregulation

merits further study and the development of specific clinical trials

as it may provide a more easily applied regime for the prevention

and treatment of the metabolic syndrome.

Concluding Remarks: The Dawn of a New Beginning?
Research in the last decade has considerably increased our

knowledge of the complexities and peculiarities of the ECS

and what is emerging as its crucial intermediary role between

circulating hormones and locally acting neurotransmitters or

neuropeptides in nearly all aspects of energy homeostasis

control. We are now starting to gather that this function is not

just played by the usual suspects, i.e., AEA and 2-AG, or CB1

receptors. Indeed, CB2 receptors, which were initially consid-

ered to be devoid of a metabolic role, are now emerging as

potential players not only, as it could be expected from their

high expression in immune cells, in the inflammatory aspects

of obesity and T2D (Pacher and Mechoulam, 2011), but perhaps

also in the physiological control of hepatic lipogenesis and

glucose tolerance at both peripheral (Agudo et al., 2010;

De Gottardi et al., 2010; Deveaux et al., 2009) and, possibly,

central (Romero-Zerbo et al., 2012) levels. However, as

compared to the great wealth of descriptive and mechanistic

information available on the function and dysfunction of CB1 in

metabolism, much work is still required to fully understand the

exact role of CB2, or of PPARs and TRPV1, in endocannabinoid

control of metabolism, or to conclude that the several endo-

cannabinoid-related mediators identified to date, through their

putative or established molecular targets, do contribute to this

already variegated scenario. Also thanks to the precocious

(and, for now, discontinued) clinical development of inverse

agonists as drugs against obesity first and T2D later, we do

know, however, that rodent data on the role of CB1 in metabolic

control can be translated to humans. Furthermore, the deregu-

lated peripheral ECS, of which plasma endocannabinoid levels

are probably a reflection, might be not only a secondary

biomarker but also a key causative factor of metabolic disorders.

Despite the fact that the strong connections between brain and

periphery in the control of body weight cannot always be teased

out experimentally with tissue-specific CB1 knockout mice,

there is sufficient evidence to suggest that the metabolic effects

of drugs counteracting CB1 activity is not only secondary to

weight loss. Clinical trials with peripherally restricted pharmaco-

logical tools or, maybe even better, yet-to-be-devised organ-

selective drugs (e.g., prodrugs exploiting the relative abundance

of certain enzymes in the liver) must confirm this hypothesis and

tell us whether it can be used to develop new and safe therapies

against dyslipidemia, insulin resistance, and b cell damage. New

endocannabinoid-based interventions are emerging, and,

despite the disappointment caused by the failure of first-gener-

ation CB1 receptor blockers, optimism still exists regarding the
486 Cell Metabolism 17, April 2, 2013 ª2013 Elsevier Inc.
future development of such therapies against the metabolic

syndrome.
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Tschöp, M.H., Krawczewski-Carhuatanta, K.A., Cota, D., and Obici, S.
(2011). Cannabinoid receptor 1 (CB1) antagonism enhances glucose utilisation
and activates brown adipose tissue in diet-induced obese mice. Diabetologia
54, 3121–3131.

Banni, S., Carta, G., Murru, E., Cordeddu, L., Giordano, E., Sirigu, A.R., Berge,
K., Vik, H., Maki, K.C., Di Marzo, V., and Griinari, M. (2011). Krill oil significantly
decreases 2-arachidonoylglycerol plasma levels in obese subjects. Nutr.
Metab. (Lond) 8, 7.

Batetta, B., Griinari, M., Carta, G., Murru, E., Ligresti, A., Cordeddu, L., Gior-
dano, E., Sanna, F., Bisogno, T., Uda, S., et al. (2009). Endocannabinoids
may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflam-
matory mediators in obese Zucker rats. J. Nutr. 139, 1495–1501.

Bellocchio, L., Lafenêtre, P., Cannich, A., Cota, D., Puente, N., Grandes, P.,
Chaouloff, F., Piazza, P.V., and Marsicano, G. (2010). Bimodal control of
stimulated food intake by the endocannabinoid system. Nat. Neurosci. 13,
281–283.

Bennetzen, M.F., Wellner, N., Ahmed, S.S., Ahmed, S.M., Diep, T.A., Hansen,
H.S., Richelsen, B., and Pedersen, S.B. (2011). Investigations of the human
endocannabinoid system in two subcutaneous adipose tissue depots in lean
subjects and in obese subjects before and after weight loss. Int J Obes
(Lond) 35, 1377–1384.

Bensaid, M., Gary-Bobo, M., Esclangon, A., Maffrand, J.P., Le Fur, G., Oury-
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Horiguchi, N., Harvey-White, J., Marsicano, G., Lutz, B., et al. (2008). Paracrine
activation of hepatic CB1 receptors by stellate cell-derived endocannabinoids
mediates alcoholic fatty liver. Cell Metab. 7, 227–235.
488 Cell Metabolism 17, April 2, 2013 ª2013 Elsevier Inc.
Jo, Y.H., Chen, Y.J., Chua, S.C., Jr., Talmage, D.A., and Role, L.W. (2005).
Integration of endocannabinoid and leptin signaling in an appetite-related
neural circuit. Neuron 48, 1055–1066.

Jourdan, T., Djaouti, L., Demizieux, L., Gresti, J., Vergès, B., and Degrace, P.
(2010). CB1 antagonism exerts specific molecular effects on visceral
and subcutaneous fat and reverses liver steatosis in diet-induced obese
mice. Diabetes 59, 926–934.

Jourdan, T., Demizieux, L., Gresti, J., Djaouti, L., Gaba, L., Vergès, B., and
Degrace, P. (2012). Antagonism of peripheral hepatic cannabinoid receptor-
1 improves liver lipid metabolism in mice: evidence from cultured explants.
Hepatology 55, 790–799.

Jung, K.M., Clapper, J.R., Fu, J., D’Agostino, G., Guijarro, A., Thongkham, D.,
Avanesian, A., Astarita, G., DiPatrizio, N.V., Frontini, A., et al. (2012). 2-arach-
idonoylglycerol signaling in forebrain regulates systemic energy metabolism.
Cell Metab. 15, 299–310.

Karaliota, S., Siafaka-Kapadai, A., Gontinou, C., Psarra, K., and Mavri-
Vavayanni, M. (2009). Anandamide increases the differentiation of rat
adipocytes and causes PPARgamma and CB1 receptor upregulation. Obesity
(Silver Spring) 17, 1830–1838.

Kim, W., Doyle, M.E., Liu, Z., Lao, Q., Shin, Y.K., Carlson, O.D., Kim, H.S.,
Thomas, S., Napora, J.K., Lee, E.K., et al. (2011). Cannabinoids inhibit insulin
receptor signaling in pancreatic b-cells. Diabetes 60, 1198–1209.

Kim, S.P., Woolcott, O.O., Hsu, I.R., Stefanoski, D., Harrison, L.N., Zheng, D.,
Lottati, M., Kolka, C., Catalano, K.J., Chiu, J.D., et al. (2012a). CB(1) antago-
nism restores hepatic insulin sensitivity without normalization of adiposity in
diet-induced obese dogs. Am. J. Physiol. Endocrinol. Metab. 302, E1261–
E1268.

Kim, W., Lao, Q., Shin, Y.K., Carlson, O.D., Lee, E.K., Gorospe, M., Kulkarni,
R.N., and Egan, J.M. (2012b). Cannabinoids induce pancreatic b-cell death
by directly inhibiting insulin receptor activation. Sci. Signal. 5, ra23.

Kinsella, J.E. (1990). Lipids, membrane receptors, and enzymes: effects of die-
tary fatty acids. JPEN J. Parenter. Enteral Nutr. 14(5, Suppl), 200S–217S.

Kirkham, T.C., Williams, C.M., Fezza, F., and Di Marzo, V. (2002). Endocanna-
binoid levels in rat limbic forebrain and hypothalamus in relation to fasting,
feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br. J.
Pharmacol. 136, 550–557.

Kola, B., Hubina, E., Tucci, S.A., Kirkham, T.C., Garcia, E.A., Mitchell, S.E.,
Williams, L.M., Hawley, S.A., Hardie, D.G., Grossman, A.B., and Korbonits,
M. (2005). Cannabinoids and ghrelin have both central and peripheral meta-
bolic and cardiac effects via AMP-activated protein kinase. J. Biol. Chem.
280, 25196–25201.

Kola, B., Farkas, I., Christ-Crain, M., Wittmann, G., Lolli, F., Amin, F., Harvey-
White, J., Liposits, Z., Kunos, G., Grossman, A.B., et al. (2008). The orexigenic
effect of ghrelin is mediated through central activation of the endogenous
cannabinoid system. PLoS ONE 3, e1797.

Kozak, K.R., Crews, B.C., Morrow, J.D., Wang, L.H., Ma, Y.H., Weinander, R.,
Jakobsson, P.J., and Marnett, L.J. (2002). Metabolism of the endocannabi-
noids, 2-arachidonylglycerol and anandamide, into prostaglandin, throm-
boxane, and prostacyclin glycerol esters and ethanolamides. J. Biol. Chem.
277, 44877–44885.

Kozak, K.R., Prusakiewicz, J.J., and Marnett, L.J. (2004). Oxidative metabo-
lism of endocannabinoids by COX-2. Curr. Pharm. Des. 10, 659–667.

Kunos, G., and Tam, J. (2011). The case for peripheral CB1 receptor blockade
in the treatment of visceral obesity and its cardiometabolic complications.
Br. J. Pharmacol. 163, 1423–1431.

Kunz, I., Meier, M.K., Bourson, A., Fisseha,M., and Schilling, W. (2008). Effects
of rimonabant, a cannabinoid CB1 receptor ligand, on energy expenditure in
lean rats. Int J Obes (Lond) 32, 863–870.

Lafourcade, M., Larrieu, T., Mato, S., Duffaud, A., Sepers, M., Matias, I., De
Smedt-Peyrusse, V., Labrousse, V.F., Bretillon, L., Matute, C., et al. (2011).
Nutritional omega-3 deficiency abolishes endocannabinoid-mediated
neuronal functions. Nat Neurosci. 14, 345–350.

Lan, H., Lin, H.V., Wang, C.F., Wright, M.J., Xu, S., Kang, L., Juhl, K., Hedrick,
J.A., and Kowalski, T.J. (2012). Agonists at GPR119 mediate secretion of
GLP-1 from mouse enteroendocrine cells through glucose-independent
pathways. Br. J. Pharmacol. 165, 2799–2807.



Cell Metabolism

Review
Li, C., Jones, P.M., and Persaud, S.J. (2010). Cannabinoid receptors are
coupled to stimulation of insulin secretion from mouse MIN6 beta-cells. Cell.
Physiol. Biochem. 26, 187–196.

Lindborg, K.A., Teachey, M.K., Jacob, S., and Henriksen, E.J. (2010). Effects
of in vitro antagonism of endocannabinoid-1 receptors on the glucose
transport system in normal and insulin-resistant rat skeletal muscle. Diabetes
Obes. Metab. 12, 722–730.

Lindborg, K.A., Jacob, S., and Henriksen, E.J. (2011). Effects of Chronic
Antagonism of Endocannabinoid-1 Receptors on Glucose Tolerance and
Insulin Action in Skeletal Muscles of Lean and Obese Zucker Rats. Cardiorenal
Med 1, 31–44.

Lipina, C., Stretton, C., Hastings, S., Hundal, J.S., Mackie, K., Irving, A.J., and
Hundal, H.S. (2010). Regulation of MAP kinase-directed mitogenic and protein
kinase B-mediated signaling by cannabinoid receptor type 1 in skeletal muscle
cells. Diabetes 59, 375–385.

Liu, Y.L., Connoley, I.P., Wilson, C.A., and Stock, M.J. (2005). Effects of the
cannabinoid CB1 receptor antagonist SR141716 on oxygen consumption
and soleus muscle glucose uptake in Lep(ob)/Lep(ob) mice. Int J Obes
(Lond) 29, 183–187.

Liu, J., Zhou, L., Xiong, K., Godlewski, G., Mukhopadhyay, B., Tam, J., Yin, S.,
Gao, P., Shan, X., Pickel, J., et al. (2012). Hepatic cannabinoid receptor-1
mediates diet-induced insulin resistance via inhibition of insulin signaling
and clearance in mice. Gastroenterology 142, 1218–1228, e1.

Lockie, S.H., Czyzyk, T.A., Chaudhary, N., Perez-Tilve, D., Woods, S.C., Old-
field, B.J., Statnick, M.A., and Tschöp, M.H. (2011). CNS opioid signaling
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