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Abstract

This note provides an insight to the diophantine properties of abelian surfaces with quate
multiplication over number fields. We study the fields of definition of the endomorphisms on the
abelian varieties and the images of the Galois representations ontheir Tate modules. We illustrat
our results with an explicit example.
 2004 Elsevier Inc. All rights reserved.
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1. Abelian surfaces with quaternionic multiplication

Fix Q an algebraic closure of the fieldQ of rational numbers and letK ⊂ Q be a
number field. LetA be an abelian surface defined overK. Due to Albert’s classification o
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involuting division algebras (cf. [11]), there is a limited number of possible structure
the algebra of endomorphisms EndQ(A) ⊗ Q of A.

We focus our attention on the quaternionic case. While the existing literature con
ing the theme mainly restrict to abelian surfaces with multiplication by a maximal o
in a division quaternion algebra, in this note we consider quaternionic multiplication
wider sense: we shall assume that End

Q
(A) ⊗ Q is an arbitrary indefinite quaternion a

gebraB overQ, including the split caseB = M2(Q), which is recurringly encountered
the modular setting. This allows the abelian surface to be isogenous to the product
isogenous elliptic curves without CM.

Moreover, we will letO = End
Q
(A) be an arbitrary order inB, although our main

results restrict to so called hereditary orders. We need to be careful on the exac
End

Q
(A) ⊂ B of endomorphisms ofA since we are interested on properties ofA that

heavily depend on its isomorphism class and badly behave up to isogeny.
Let thenB = ( a,b

Q
) = Q + Qi + Qj + Qij , ij = −j i, i2 = a, j2 = b with a, b ∈ Q∗,

be a quaternion algebra and let tr: B → Q andn : B → Q, denote the reduced trace a
norm, respectively. The algebraB is said to be indefinite if the archimedean place ofQ is
unramified:B ⊗ R � M2(R). Equivalently,B is indefinite if eithera > 0 orb > 0.

An orderO in B is a subring of rank 4 overZ. It is called amaximalorder ifO is not
properly contained in any other and it is anEichlerorder ifO =O1 ∩O2 is the intersection
of two maximal ordersO1, O2 in B. An orderO is hereditaryif all its one-sided module
are projective.

The (reduced) discriminant of an order is disc(O) = |det(tr(βiβ̄j ))|1/2 for anyZ-basis
{β1, β2, β3, β4} of O. The discriminant of a maximal order is square-free and, since
depends onB, it is simply denoted disc(B). We have thatp | disc(B) if and only if Bp =
B ⊗Qp is a division algebra overQp. If O is an Eichler order, then disc(O) = disc(B) ·N
for someN > 0 coprime to disc(B); N is called the level ofO. Hereditary orders ar
exactly the orders inB of square-free discriminant. It can be shown that an orderO ⊂ B is
hereditary if and only if it is an Eichler order of square-free level.

Under the indefiniteness assumption, all one-sided ideals of an hereditary ord
principal. Moreover, two hereditary ordersO, O′ in B are isomorphic if and only i
disc(O) = disc(O′). We refer the reader to [1,9,14,26] for more details on quaternio
gebras and orders.

Definition 1.1. LetO be an order in an indefinite quaternion algebraB overQ. An abelian
surface has quaternionic multiplication byO if there is an isomorphismι :O ∼−→ EndQ(A).
A field of definition for the pair(A, ι) is an extensionL/K such thatι : O ∼−→ EndL(A).

It is one of the aims of this paper to study

(1) The field extensionL/K given by the field of definitionL of the quaternionic multi-
plication on an abelian surfaceA/K.

(2) The filtration of intermediate endomorphism algebras EndE(A) ⊗ Q ⊆ B for K ⊆
E ⊆ L.
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The first question was studied in greater generality by Silverberg in [25] and
in [16]. When particularized to our situation we obtain the first interesting result on
direction.

Proposition 1.2 [16,25]. LetA/K be an abelian variety over a number fieldK and letO ⊆
End

Q
(A) be a subring of endomorphisms ofA. Then there is a unique minimal extensi

L/K such thatO ⊆ EndL(A).
The extensionL/K is normal and non-ramified at the prime ideals ofK of good or

semistable reduction ofA.

With respect to Proposition 1.2, let us remark that, if EndQ(A) is an order in a division
quaternion algebra, thenA/K has potential good reduction and therefore no places oK

of bad reduction ofA are semistable. This is a consequence of Grothendieck’s pot
good reduction theorem.

Further, Silverberg gave an upper bound for the degree[L : K] in terms of certain
combinatorial numbers. In the particular case of abelian surfaces with quaternionic
plication, [25, Proposition 4.3] predicts that[L : K] � 48. As our results will show, thes
bounds are not sharp (see Proposition 2.1 for arbitrary ordersO and Theorem 3.4 fo
hereditary orders).

Concerning the second question, the non-trivial sub-algebras ofB over Q are the
quadratic fieldsQ(

√
d) for d ∈ Z such that any prime numberp | D does not split in

Q(
√

d). Although there are infinitely many choices of them, main Theorem 3.4 sh
that, under the assumption onO to be hereditary, there are very restrictive conditions
Q(

√
d) to be realized as the algebra of endomorphisms ofA overK.

Below, for any positive integerN , we write M0(N) = {( a b
cN d

)
: a, b, c, d ∈ Z} for the

matrix Eichler order of levelN . When particularized to the Jacobian variety of a cu
C/K of genus 2, Theorem 3.4 asserts the following.

Theorem 1.3. LetC/K be a curve of genus2 defined over a number fieldK and letJ (C)

be its Jacobian variety.

(I) (Simple case)Assume thatJ (C) is absolutely simple and thatEndQ(J (C)) = O is an
hereditary order of discriminantD = disc(O) in a quaternion algebraB.
Let L/K be the minimal extension ofK over which all endomorphisms ofJ (C) are
defined. Then
(1) L/K is an abelian extension withG = Gal(L/K) � (1), C2 or D2 = C2 × C2,

whereC2 denotes the cyclic group of order two.
(2) If B �� (−D,m

Q
) for anym | D, thenL/K is at most a quadratic extension ofK. In

this case,EndK(A) � Q(
√−D).

(3) If B = (−D,m
Q

) for somem | D, thenEndK(A) is isomorphic to eitherO, an order

in Q(
√−D), Q(

√
m), or Q(

√
D/m), or Z. In each case, we respectively ha

Gal(L/K) � (1), C2 andD2.
(II) (Split case)Assume that there is an isomorphismψ/Q : J (C)

∼−→ E1 × E2 of J (C)

onto the product of two isogenous elliptic curvesE1, E2 without CM overQ. Letϕ :
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E1 → E2 be an isogeny of minimal degree between them and assume thatN = deg(ϕ)

is square-free. LetL = Q(ϕ,ψ) be the compositum of the minimal fields of defi
tion of ϕ andψ . Then, there are the following possibilities forG = Gal(L/K) and
EndK(A):
(1) G is trivial andEndK(A) = M0(N).
(2) G = C2 and End0

K(A) = Q(
√−N), Q × Q or Q(

√
m) for m > 1, m | N , such

that M2(Q) = (−N,m
Q

).

(3) G = C4 andEnd0
K(A) = Q(

√−1).
(4) G = D2 or D4 andEnd0

K(A) = Q.

A third aspect that we will regard concerning the arithmetic of abelian surfaces w
QM stems from the following result obtained independently by M. Jacobson and M.

Theorem 1.4 [8,12]. LetA/K be an abelian surface with quaternionic multiplication by
maximal orderO in a division quaternion algebra over an extensionL of K. Let {σ�} be
the compatible family of Galois representations given by the action ofGal(Q/K) on the
Tate modulesT�(A) of A and letH = Gal(Q/L). Thenσ�|H = ρ� ⊕ ρ� with

ρ� : H → AutO
(
T�(A)

) �O∗
�

andρ� is surjective for almost every prime.

We will obtain an explicit description of the action of the absolute Galois gr
GK = Gal(Q/K) on the Tate modules of abelian surfacesA with quaternionic multipli-
cation. This allows us to characterize the three possibilities for Gal(L/K) described in
Theorem 1.3(I), and we show how to effectively determine the field extensionL/K. More-
over, we explain how to explicitly bound the finite set ofexceptional primes, those where
the surjectivity conclusion in Jacobson–Ohta’s theorem fails, and illustrate it in a con
example with Gal(L/K) = C2. For all non-exceptional primes, we also describe the im
of the Galois representationσ� in GL4(Z�).

The paper is organized as follows. We devote next two sections to study the ac
GK on the ring of endomorphisms End

Q
(A) and the Néron–Severi NS(A

Q
) group ofA,

respectively. The combination of the description of both Galois representations e
ally yields the proof of our main Theorem 3.4 and, as an immediate consequence,
Theorem 1.3.

In Section 4 we study the action of Galois on the Tate modules in the case thaL/K

is a quadratic extension. Under this assumption, we show that the Galois represen
behave as in the case of a modular form with (a single) inner twist (cf. [17]). Follo
the results of Ribet, we provide sufficient conditions on a prime� for the image of Galois
ρ�(GL) to beas large as possible.

In Section 5, we consider a concrete example of a Jacobian surface of a
C/Q(

√−3) of genus 2 with maximal quaternionic multiplication borrowed from [
Firstly, we describe the image of the inertia subgroup at� for the residual mod� Ga-
lois representations and then, we give a result (Lemma 5.2) to distinguish the
Gal(L/K) = C2 and Gal(L/K) = D2 of Theorem 1.3(I). By these means, we show th
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in our example,L/K is a quadratic extension and explicitly determine the fieldL. Then,
we proceed to the determination, by successiveelimination of some special cases, of t
images of Galois, following the ideas of [17]. The main difference with the techniques
in [17] (described algorithmically in [6]) is that we are dealing with representations o
Galois group of a number fieldK �= Q.

2. The action of Gal(QQQ/K) on the endomorphism ring

In this section we use Chinburg–Friedman’s recent classification of the finite subg
of maximal arithmetic Kleinian groups [3] to describe the field of definition of the quate
nionic multiplication on an (unpolarized) abelian surface.

Let A/K be an abelian surface over a number fieldK with quaternionic multiplication
by an orderO in an indefinite quaternion algebraB overQ.

The absolute Galois groupGK = Gal(Q/K) of K acts in a natural way on the fu
ring of endomorphisms End

Q
(A) =O of A that we already identify withO and induces a

Galois representation

γ : GK −→ Aut(O).

The Skolem–Noether theorem [26] asserts that all automorphisms of a quatern
gebra are inner. Therefore Aut(B) � B∗/Q∗ and the group of automorphisms ofO is
NB∗(O)/Q∗ where NB∗(O) = {γ ∈ B∗, γ −1Oγ } is the normalizer group ofO. For
τ ∈ GK we will denote[γτ ] : B → B the automorphism ofB such thatβτ = γ −1

τ βγτ

for anyβ ∈ EndQ(A) =O.
If we let L/K be the minimal (and hence normal by Proposition 1.2) field extensio

K such that EndQ(A) = EndL(A) =O, we obtain an exact sequence of groups

1 → GL → GK → NB∗(O)/Q∗

and thus a monomorphism Gal(L/K) ↪→ NB∗(O)/Q∗.

Proposition 2.1. Let A/K be an abelian surface with quaternionic multiplication by
orderO, D = disc(O), and letL/K be the minimal extension ofK over which all endo-
morphisms ofA are defined. ThenL/K is either cyclic or dihedral withGal(L/K) � Cn

or Dn, n = 1,2, 3, 4, or 6.

(1) If Gal(L/K) � D2, thenB = ( d,m
Q

) for somed,m ∈ Z, d,m | D.
(2) If Gal(L/K) � C3, then any ramified primep | D, p �= 2,3, satisfiesp ≡ −1 (mod 3);

if Gal(L/K) � D3, then in additionB = (−3,m
Q

) with m | D.
(3) If Gal(L/K) � C4, then 2 | D and any odd ramified primep | D satisfiesp ≡

−1 (mod 4); if Gal(L/K) � D4, then in additionB = (−1,m
Q

) with m | D.
(4) If Gal(L/K) � C6, then3 | D and anyp | D, p �= 2,3, satisfiesp ≡ −1 (mod 3); if

Gal(L/K) � D6, then in additionB = (−3,m
Q

) with m | D.
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Proof. As we already observed, Gal(L/K) is a finite subgroup of NB∗(O)/Q∗. Let us
firstly note that, ifγ ∈ B∗ normalizes the orderO, thenn(γ ) ∈ Q∗ has oddp-adic valu-
ation at any non-ramified prime numberp � D. This holds because NGL2(Qp)(M2(Zp)) =
Q∗

pGL2(Zp).
In [3, §2], Chinburg and Friedman proved that the only possible finite subgrou

B∗/Q∗ are the cyclic groupsCn, the dihedral groupsDn andS4, A4, andA5.
By [3, Lemma 2.8], a necessary condition forB∗/Q∗ to contain eitherS4, A4, or A5 is

thatB = (−1,−1
Q

) and this can not be the case becauseB is indefinite.
Lemma 2.1 in [3] yields thatB∗/Q∗ contains a cyclic group of ordern > 2 if and only if

there existsζn ∈ B∗ satisfyingζ n
n = 1, ζ n/d

n �= 1 for any proper divisord of n. In this case,
any subgroupCn ⊆ B∗/k∗ is conjugated to〈[1 + ζn]〉. In our case,ζn ∈ B∗ generates a
quadratic field extensionQ(ζn)/Q and this is only possible forn = 3,4, and 6. In addition
sincen(1+ζn) = 1,2, and 3 respectively, the condition 1+ζn ∈ NB∗(O) implies that 2| D
for n = 4 and 3| D for n = 6.

It follows from [3, Lemma 2.2] that the conjugacy classes of subgroups of NB∗(O)/Q∗
of order two are in bijection with the set of divisorsm | D of D, m �= 1, such thatp does
not split in Q(

√
m) for any primep | D, together withm = 1 if B � M2(Q). This set is

always non-trivial because at least±D satisfy these conditions.
Finally, Chinburg and Friedman proved thatB∗/Q∗ contains a dihedral subgroupDn,

n � 2, if and only if it contains a cyclic groupCn [3, Lemma 2.3]. Ifn = 2, any subgroup
of B∗/Q∗ isomorphic toD2 = C2 × C2 is of the form〈[x], [y]〉 ⊂ B∗/Q∗ with x, y ∈ B∗,
x2 = d , y2 = m, xy = −yx for somed,m ∈ Q∗. It follows that NB∗(O)/Q∗ contains a
dihedral groupD2 if and only if B = ( d,m

Q
) for somed,m ∈ Z, d,m | D. Similarly, if

n = 3,4, or 6, NB∗(O)/Q∗ contains a dihedral subgroupDn if and only if B = ( d,m
Q

) with
d = −1 if n = 4,d = −3 if n = 3 or 6 andm ∈ Z, m | D. In this caseDn = 〈[1+ζn], [y]〉 ⊂
B∗/Q∗ for somey ∈ B∗, y2 = m. �

3. The action of Gal(QQQ/K) on the Néron–Severi group

Let A be an abelian variety defined over a number fieldK. For any field extensionL/K,
we letAL = A ×K L denote the same abelian varietyA with the base extended to SpecL.
Let Div(A) denote the group of Weil divisors ofA and let Pic(A) denote the group o
invertible sheaves onA overK.

Let Pic0(AQ) denote the subgroup of Pic(AQ) of invertible sheaves algebraical
equivalent to 0 and let Pic0(A) = Pic(A) ∩ Pic0(A

Q
). The Néron–Severi group NS(A)

of A is NS(A) = Pic(A)/Pic0(A). The algebraic class of an invertible sheaveL lies
in H 0(NS(A

Q
)) = H 0(Gal(Q/K),NS(A

Q
)) if and only if all its Galois conjugatesLτ ,

τ ∈ Gal(Q/K), are algebraically equivalent toL. We define the Picard number ofAK to
beρ(AK) = rankZ H 0(NS(AQ)); it is a finite number due to Néron’s basis theorem.

Let nowO be an hereditary order in a quaternion algebraB overQ. Assume thatA is
an abelian surface defined over a number fieldK together with an isomorphism of ring
ι :O ∼−→ End

Q
(A). The underlying complex torusAC = V/Λ is the quotient of a comple

vector spaceV of dimension 2 by a latticeΛ of rank 4 overZ. Upon fixing an isomorphism
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B ⊗ R ∼−→ M2(R) there is an action ofO ⊂ B ⊂ M2(R) on the latticeΛ that makes it a
left O-module. Since all left ideals ofO are principal and from the work of Shimura [23
it is well-known that there existsτ ∈H = {a + bi ∈ C, b > 0} such thatΛ =O

(
τ
1

)
.

In [20], the absolute Néron–Severi group NS(AC) � NS(AQ) was largely studied unde
the assumption onO to be hereditary: it was seen that the first Chern class allows
regard NS(AC) as a sub-lattice of the 3-dimensional vector spaceB0 = {µ ∈ B: tr(µ) = 0}
of pure quaternions ofB in a way that fundamental properties of line bundlesL onA such
as the degree deg(L) [20, Proposition 3.1], the behaviour under pull-backs by endom
phisms [20, Theorem 2.2] and the indexi(L) and the ampleness [20, Theorem 5.1] can
interpreted in terms of the arithmetic ofB. We summarize it in the following theorem.

Theorem 3.1 [20]. LetA/Q be an abelian surface withEndQ(A)
ι�O an hereditary order

of discriminantD in a quaternion algebra. Then there is an isomorphism of additive gro

c1 : NS(AQ) →O
0, L �→ c1(L)

such that

(1) deg(L) = D · n(c1(L)).
(2) For any endomorphismα ∈ O = EndQ(A), c1(α

∗(L)) = ᾱc1(L)α.
(3) A line bundleL ∈ NS(A

Q
) is a polarization if and only ifn(c1(L)) > 0 anddet(νL) >

0 whereνL ∈ GL2(R) is (any) matrix such thatν−1
L c1(L)νL ∈ Q∗( 0 1

−1 0

)
.

Here,O = {β ∈ B: tr(Oβ) ⊆ Z} denotes the codifferent ideal ofO in B. By O
0 we

mean the subgroupO ∩ B0 of pure quaternions ofO. For our purposes in this note, w
only need to know that it is a lattice inB0 and in particularρ(A

Q
) = 3.

Let us also remark that, by Eichler’s theory on optimal embeddings (cf., e.g., [1
there always existsµ ∈O such thatµ2 + D = 0 and, as a corollary of Theorem 3.1,AQ is
always principally polarizable. We refer the reader to [20] for more details.

We consider now the action of the Galois groupGK = Gal(Q/K) on NS(A
Q
) given

by L(D)τ = L(Dτ ) for any line bundleL on A represented by a Weil divisorD and
τ ∈ GK . From Theorem 3.1, any automorphism of NS(AQ) can be regarded as a linear a
tomorphism ofB0. Moreover, since the Galois action preserves the degree of line bu
and the first Chern class is a monomorphism of quadratic modulesc1 : (NS(A

Q
),deg) ↪→

(B0,D · n), we obtain a Galois representation

η :GK −→ Aut
(
NS(AQ),deg

) ⊂ Aut(B0,D · n), τ �→ ητ .

We have that

(1) For anyα ∈ O = EndQ(A), (α∗(L)τ ) = (ατ )∗(Lτ ).
(2) The indexi(L) only depends on theGK -orbit of L, that is, i(Lτ ) = i(L), for any

τ ∈ GK . In particularLτ is a polarization if and only ifL is.
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The following relates the Galois actions on EndQ(A) and on the Néron–Severi group
A/K by means of a reciprocity law.

Theorem 3.2. Let A/K be an abelian surface with QM by an hereditary orderO of dis-
criminantD in a quaternion algebraB.

Let γ : GK → Aut(EndQ(A)), τ �→ [γτ ] : O → O, β �→ γτ
−1βγτ , be the action o

Gal(Q/K) on the ring of endomorphisms ofA. Defineετ = sign(n(γτ )) = ±1. Then

c1
(
Lτ

) = ετ · γτ
−1c1(L)γτ

for any line bundleL ∈ NS
Q
(A) and anyτ ∈ GK .

Proof. Fix τ ∈ GK . We firstly claim thatητ : B0 → B0 is given byµ �→ ε̃γ̃ −1µγ̃ for
someε̃ = ±1, γ̃ ∈ B∗. Indeed, any linear endomorphism ofB0 extends uniquely to a
endomorphism ofB and End(B) � B ⊗ B with γ̃1 ⊗ γ̃2 : B → B, β �→ γ̃1βγ̃2. We must
have in addition that tr(γ̃1µγ̃2) = tr(γ̃2γ̃1µ) = 0 for anyµ ∈ B0. This automatically implies
that γ̃2γ̃1 ∈ Q.

Since the action ofGK on NSQ(A) conserves the degree of line bundles, we ded
from Theorem 3.1 thatn(ητ (µ)) = n(γ̃1µγ̃2) = n(γ̃1)n(µ)n(γ̃2) = n(µ) for any µ ∈ B0.
Hencen(γ̃2) = n(γ̃1)

−1 and thusγ̃ := γ̃2 = ε̃γ̃ −1
1 for some ε̃ = ±1. This proves the

claim.
We now show that̃γ = γτ ∈ B∗/Q∗ andε̃ = ετ . We know that(α∗(L)τ ) = (ατ )∗(Lτ )

for anyα ∈O. Taking Theorem 3.1 into account this implies thatητ (ᾱµα) = ¯[γτ ](α)ητ (µ)

[γτ ](α) and thusε̃γ̃ −1(ᾱµα)γ̃ = ε̃( ¯γτ
−1αγτ )γ̃ −1µγ̃ (γτ

−1αγτ ) for any α ∈ B, µ ∈ B0.
Choosingα = µ and bearing in mind thatγτ

−1 = γ̄τ n(γτ )
−1, this says that̃γ −1µγ̃ =

γτ
−1µ−1γτ γ̃

−1µγ̃ γτ
−1µγτ and thusµ(ωµω−1) = (ωµω−1)µ, where we writeω =

γτ γ̃
−1. The centralizer ofQ(µ) in B is Q(µ) itself and therefore(ωµω−1) ∈ Q(µ). But

tr(µ) = tr(ωµω−1) = 0,n(µ) = n(ωµω−1) and this implies thatµ = ±ωµω−1. Since
this must hold for anyµ ∈ B0, it follows thatω ∈ Q∗ and thusγ̃ = γτ ∈ B∗/Q∗ as we
wished.

We then already have thatητ : B0 → B0 is given byµ �→ ε̃γτ
−1µγτ for someε̃ = ±1.

If µ = c1(L) for a polarizationL on A, this means thatc1(Lτ ) = ε̃γτ
−1µγτ . SinceLτ is

still an ample line bundle we have, according to Theorem 3.1(3), thatε̃ = sign(n(γτ )). �
We can now prove the following result that yields Theorem 1.3 in the introduction

immediate corollary. Let us before say a word about the Néron–Severi group and th
of polarizations on an abelian varietyA/K.

Firstly, we remark thatAK is always attached with a polarization and thus the Pic

numberρ(AK) never vanishes. Namely, ifA
i

↪→ PN
K is an embedding ofA into a projective

space overK, theni∗(O(1)) ∈ NS(AK). However, any polarization constructed by the
means is very ample and hence can not be principal. This should be taken into accou
together with the fact that any abelian surface with hereditary quaternionic multiplic
admits a principal polarization overQ (cf. [20, Corollary 6.3]).
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By [11], or also Theorem 3.1, we thus have that 1� ρ(AK) � 3. Both three case
are possible and each possibility has a direct translation in terms of the algebra of end
morphisms:ρ(AK) = 1 if and only if End0K(A) := EndK(A) ⊗ Q is Q or an imaginary
quadratic field,ρ(AK) = 2 if and only if End0K(A) is a real quadratic field andρ(AK) = 3
if and only if End0K(A) = End

Q
(A) = B.

The following definition wasintroduced in [21] and [22].

Definition 3.3. Let O be an order in a quaternion algebraB overQ and letD = disc(O).
We say thatO admits atwist of degreeδ � 1 if there existsm ∈ Z, m | D, such that

B = Q + Qi + Qj + Qij =
(−Dδ,m

Q

)

with i, j ∈ O, i2 = −Dδ, j2 = m and ij = −j i. In this case we say that the twist is
normm. If δ = 1, we say thatO admits aprincipal twist.

Remark. For a given orderO in an indefinite quaternion algebra, letNδ = {m1, . . . ,mt },
0 < mi | D, denote the (possibly empty) set of norms of the twists of degreeδ onO. It is
easy to show thatN1 is either empty orN1 = {m,D/m} for somem | D. In other cases
Nδ can be larger. Indeed, ifδ = D for instance, thenND is either empty or equal to th
set of sums of two squaresm = m2

1 + m2
2 that divideD. We finally note that a quaternio

orderO can very well admit twists of several different degrees.

Remark. In practice, the computation of a finite number of Hilbert symbols suffice
decide whether a given indefinite order is twisting of certain degreeδ. Let us just quote
that a necessary and sufficient condition forB to contain a maximal orderO admitting a
twist of degreeδ and normm is thatm > 0, m | D = disc(O) = disc(B) and that for any
odd primep | D: m /∈ F∗2

p if p � m (D/m /∈ F∗2

p if p | m, respectively).

Examples of quaternion algebras with principally twisting maximal orders areB =
(−6,2

Q
) andB = (−10,2

Q
) of discriminantD = 6 andD = 10, respectively.

Theorem 3.4. LetA/K be an abelian surface defined over a number fieldK with quater-
nionic multiplication by an hereditary orderO of discriminantD in a quaternion algebra
B and letL/K be the minimal extension ofK such thatEndL(A) �O. Fix a polarization
L0 ∈ H 0(Gal(Q,K),NS(AQ)) and letδ = deg(L0) be its degree.

(A) (1) If δ is not equal toD neither to3D up to squares, thenGal(L/K) � {1}, C2 or
D2 = C2 × C2.

(2) If δ = Dk2 for somek ∈ Z, thenGal(L/K) � Cn or Dn with n = 1, 2, or 4.

(3) If δ = Dk2

3 for somek ∈ Z, thenGal(L/K) � Cn or Dn for n = 1, 2, 3, or 6.
(B) In any of the cases above, ifO does not admit any twist of degreeδ, thenGal(L/K)

is necessarily cyclic.
(C) (1) If Gal(L/K) � C2, thenEnd0

K(A) � Q(
√−Dδ) or Q(

√
mi) for 0 < mi ∈ Nδ a

norm of a twist of degreeδ onO.
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3.4.
(2) If G = C3 or C6, thenEnd0
K(A) � Q(

√−3).
(3) If G = C4, thenEnd0

K(A) � Q(
√−1).

(4) If G = Dn, thenEndK(A) � Q.

Proof. Recall that, according to Proposition 2.1, Gal(L/K) � Cn or Dn with n = 1,2, 3,
4, or 6. LetL0 ∈ H 0(Gal(Q,K),NS(A

Q
)) be a polarization onA and letµ = c1(L0) ∈O0.

It satisfies thatµ2 + Dδ = 0 by Theorem 3.1(1). Fixτ ∈ Gal(L/K) and letγτ ∈ B∗ the
quaternion associated toτ in Section 2. Suitably scaling it, we can (and we do) choo
representative in NB∗(O)/Q∗ such thatγτ ∈ O andn(γτ ) is a square-free integer. The
sinceγτ must normalizeO, we know thatn(γτ ) | D.

Since the algebraic class ofL0 is Gal(Q/K)-invariant, it follows from Theorem 3.2 tha
µ = c1(L0) = c1(Lτ

0) = ετ γτ
−1µγτ .

If ετ = −1, then the above expression implies thatµγτ = −γτµ. Since tr(µγτ ) =
µγτ − γ̄τµ = − tr(γτ )µ ∈ Q∗, we deduce that tr(γτ ) = 0. This means thatγτ

2 = m for
somem | D andB = Q + Qµ + Qγτ + Qµγτ = (−Dδ,m

Q
). The indefiniteness ofB forces

m to be positive. We obtain that in this case〈[γτ ]〉 � C2.
On the other hand, ifετ = 1, thenγτ ∈ Q(µ) � Q(

√−Dδ) = Q(
√−Dδ), where we

let Dδ denote the square-free part ofDδ. In this case, and bearing in mind thatγτ must
generate a finite subgroup ofB∗/Q∗, we deduce that either

• γτ = ±√
Dδ/Dδ · µ and henceDδ | D and〈[γτ ]〉 � C2,

• γτ = 1+ζn for somenth-primitive root of unityζn ∈ B∗, n = 3 or 6, and henceDδ = 3
and〈[γτ ]〉 � Cn or

• γτ = 1 + ζ4 for some 4th-primitive root of unityζ4 ∈ B∗ and henceDδ = 1 and
〈[γτ ]〉 � C4.

We conclude that a necessary condition for Gal(L/K) to contain a cyclic subgroup o
ordern � 3 is Dδ = 1 or 3 which amounts to say that deg(L0) = δ is D or 3D up to
squares, respectively. Also, if deg(L0) = Dk2, then necessarily Gal(L/K) � Cn or Dn

with n = 1, 2, or 4 and an analogous statement holds if deg(L0) = 3D up to squares
Further, ifB �� (−Dδ,m

Q
) for any 0< m | D, then it follows from the discussion above th

ετ = 1 for anyτ ∈ Gal(L/K) and, as a consequence, Gal(L/K) ⊂ Q(µ)∗/Q∗. Since the
only finite subgroups ofQ(µ)∗/Q∗ are cyclic, the proof of parts (A) and (B) is complete

As for part (C), assume first that Gal(L/K) = 〈[γτ ]〉 � C2. Then γτ ∈ B∗ satisfies
γτ

2 = −n(γτ ) ∈ Q∗ and we already saw that the only possibilities are, up to squ
n(γτ ) = Dδ or m ∈ Nδ . In any of these cases, End0

K(A) = {β ∈ EndL(A): βτ = β} =
{β ∈ EndL(A): βγτ = γτβ} = Q(γτ ) and this implies our first assertion of part (C). Si
ilarly, if Gal(L/K) = 〈1 + ζn〉 � Cn with n = 3, 4, or 6 then End0K(A) = Q(1 + ζn) �
Q(

√−1) or Q(
√−3) depending on the cases. Finally, if Gal(L/K) = 〈γτ , γτ ′ 〉 � Dn with

〈γτ 〉 � Cn and 〈γτ ′ 〉 � C2, then End0K(A) = {β ∈ Q(γτ ): βτ ′ = β} = Q. Here, the las
equality holds because it is not possible thatγτ andγτ ′ commute. �

The following lemma may be useful in many situations in order to apply Theorem
It easily follows from Proposition 3.1.
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Lemma 3.5. LetA/Q be an abelian surface withEnd(A) a maximal order in a quaternio
algebra of discriminantD. If there exist prime numbersp,q | D such thatp splits in
Q(

√−1) andq splits inQ(
√−3), then no polarizations onA have degreeDk2 or 3Dk2

for anyk ∈ Z.

4. The action of Gal(QQQ/K) on Tate modules

Let A be an abelian surface defined over a number fieldK such that End
Q
(A) � O is

an order in an indefinite quaternion algebraB over Q. Let L/K be the minimal field of
definition of the endomorphisms ofA. In this section we consider the compatible fam
of Galois representations{σ�} given by the action ofG = Gal(Q/K) on the Tate module
T�(A) of A. Throughout, we restrict ourselves to primes� � D ·N , whereD = disc(O) and
N is the product of the places of bad reduction ofA. We refer the reader to [10] for a
accurate study of the Galois representations arising from ramified primes� | disc(B) | D.

Our aim is two-fold: we wish to make an effective approach to Jacobson–Ohta’s
orem 1.4 and to our main result Theorem 3.4. Bearing this idea in mind, we assum
L/K is a quadratic extension, in contraposition to the other possibilities permitted by
orem 3.4. Then, we know that EndK(A) is an order in a quadratic fieldQ(

√
d). Assume

further for simplicity thatQ(
√

d) is real, and letR be its ring of integers. The imagina
quadratic case is described along the same lines but for certain differences (cf. Section 5.2).

In this setting, it is well known that the four dimensional Galois representationsσ� are
reducible overQ(

√
d), that is,

σ� = ρλ ⊕ ρ
γ
λ ,

whereλ | � is a prime inQ(
√

d) over� and Gal(Q(
√

d)/Q) = 〈γ 〉. Moreover, det(ρλ) = χ

is the�-adic cyclotomic character (cf. [18]).
The representationsρλ have their images contained in the groups

Uλ = {
M ∈ GL2(Rλ): detM ∈ Z∗

�

}
.

If we consider the subgroupH = Gal(Q/L) of index two ofG, we know by Theo-
rem 1.4 thatρλ|H : H → AutO(T�(A)) � O∗

� � GL2(Z�) is surjective for almost ever
prime�. This imposes a strong restriction on the image ofρλ: in general, it can not be th
full groupUλ but a subgroupVλ := Image(ρλ) that contains the image ofH as a norma
subgroup of index at most 2.

For a primeλ, let us callH� := Image(ρλ|H). We know that it always holds tha
H� ⊆O∗

� and we say that� is anexceptionalprime if the inclusion fails to be an equality
By applying Faltings’ proofof Tate’s conjecture as in [18, Proposition 3.5] (toget

with Cebotarev density theorem) the condition on EndK(A) ⊆R to be a real quadratic o
der implies that there are infinitely many Frobenius elements with tr(ρλ(Frob℘)) ∈R�Z.
In turn, this implies thatVλ � O∗

� and thatH� is a normal subgroup ofVλ of index two for
almost every primeλ such that( d ) = −1. If, on the other hand,( d ) = 1, thenRλ = Z�
� �
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and thusVλ ⊆O∗
� . In particular, by applying Theorem 1.4, it holds thatO∗

� ⊆ Vλ ⊆ Uλ and

[Vλ : O∗
� ] = 2 if

(
d
�

)
) = −1 andO∗

� = Vλ if
(
d
�

) = 1, for almost every primeλ.
Let us restrict for a while to inert primes: those such that( d

�
) = −1. For them, we have

thatVλ ⊆ Uλ and there is the following exact sequence:

0 → H� → Vλ → {±1} → 0. (4.1)

Moreover, it is easy to see thatH� = Vλ ∩ O∗
� . By considering the quotientVλ/H� �

Gal(L/K), using the information on the ramification ofρλ and varying the prime�, we
conclude thatL/K is unramified outsideN in agreement with Proposition 1.2. From (4.1),
it follows that the quadratic characterψ corresponding to Gal(L/K) determines whether o
not the imageρλ(Frob℘) belongs toH�, i.e.,ρλ(Frob℘) ∈ H� ⇔ ψ(℘) = 1. Equivalently,

ρλ(Frob℘) ∈O∗
� ⇐⇒ ψ(℘) = 1. (4.2)

Let ℘ be a prime such thatψ(℘) = −1, so thatρλ(Frob℘) ∈ Vλ � H�. Since
[Vλ : H�] = 2, we have that

ρ2
λ(Frob℘) ∈ H� ⊆O∗

� . (4.3)

Let us denotea℘ := tr(ρλ(Frob℘)). We know that the determinant ofρλ is the�-adic
cyclotomic characterχ and we hence obtain that tr(ρ2

λ(Frob℘)) = a2
℘ − 2p. Thus, (4.3)

implies that

a2
℘ ∈ Z�. (4.4)

Observe that (4.4) is automatic for the remaining primes: those that split inQ(
√

d)/Q.
Therefore, we haveQ({a℘}) = Q(

√
d) andQ({a2

℘}) = Q. From this and the fact that th

characterψ governs the behaviour ofρλ for every� inert in Q(
√

d) (see (4.2)), it is an
easy exercise to show that, for every℘ � D · N :

aγ
℘ = ψ(℘)a℘. (4.5)

In fact, if the determinant is defined overQ, Serre proved that compatible families
Galois representations verifying this property of havinginner twistsare characterized b
the strict inclusion ofQ({a2

℘}) in Q({a℘}).
For an arbitrary rational prime�, observe thata℘ = u℘

√
d , u℘ ∈ Z if ψ(℘) = −1. Let

us fix such an element with the further restrictiona℘ �= 0 and letp be the rational prime

such that℘ | p. To ease the notation, we denoteM℘ = ( a℘ 0
0 1/a℘

)
.

Using (4.5) and imitating the proof of the theorem of Papier (see [17, Section 4]
p. 398]) with the restriction that� � pN(a℘), we deduce thatVλ = 〈GL2(Z�),M℘〉 for those
non-exceptional primes�. In particular, this holds for almost every prime�. In conclusion,
we have shown that for every prime� verifying

� � D · N · p · N(a℘), (4.6)
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the maximal possible image ofρλ is Õ∗
� := 〈GL2(Z�),M℘〉 ⊆ GL2(Rλ) and that the image

is in fact maximal for almost everyλ. We thus wonder:How can the finite set of rationa
primes� such thatVλ � Õ∗

� be bounded?
In addition to restriction (4.6), the main point is that we need to impose the follo

condition on the residual modλ representations̄ρλ (obtained fromρλ by composing with
the naive reduction):̄ρλ|H must be irreducible and the order of the image Image(ρ̄λ|H)

must be a multiple of�.
As explained in [17], for� > 2 � [Vλ : H�], if one checks that̄ρλ is irreducible and tha

the order of its image is a multiple of�, thenρ̄λ|H will also verify both these conditions
The main result on the determination of images for 2-dimensional Galois representatio
in [17] (see also [15] and [4]) then implies thatH� = GL2(Z�) andVλ = Õ∗

� for every
primeλ, λ | � such that

• � verifies (4.6);
• ρ̄λ is irreducible with image of order multiple of�;
• � � 5 and det: H� → Z∗

� is surjective;
• there exists a prime� in K with a� ∈ Z and� � a�,� � �.

Since det(ρλ|H ) = χ |H , det|H� is surjective whenever� does not ramify inL/Q. As
L/K is unramified outsideN , it is enough to impose that� � N,� � disc(K).

Theorem 4.1. Let ℘, � be primes inK such thatQ(a℘) = Q(
√

d) anda� ∈ Z. Let� � 5
be a rational prime such that� �= p,� � N(a℘), � � N · D,� � disc(K), � � a�,� � � and let
λ | � in Q(

√
d) be such that̄ρλ is irreducible and� | | Image(ρ̄λ)|. Then,

Image(ρλ) = 〈
GL2(Z�),M℘

〉
.

The condition� | | Image(ρ̄λ)| can be dealt with by elimination. Using the classificat
of maximal subgroups ofPGL2 over a finite field (of characteristic�) due to L.E. Dickson
we know that any irreducible subgroup either has order multiple of� or its projective
image falls in one of the following cases: cyclic, dihedral orsmall exceptional(isomorphic
to A4, S4, or A5). Thus, the above theorem asserts that, in order to explicitly bound th
of exceptional primes in a concrete example, it only remains to bound the set of p
such thatρ̄λ (modulo its centre) is either reducible, cyclic, dihedral or small exceptio
This will be accomplished in the following section.

Another key ingredient in the determination of the image ofρλ is the description of the
restriction ofρ̄λ to the inertia subgroup at�: the determinant ofρλ being the cyclotomic
character, we know a priori that bothρλ and its residual counterpartρ̄λ necessarily ramify
at �. Thanks to the results of Raynaud (cf. [13]), we know that one of the following m
hold:

ρ̄λ|I� �
(

1 ∗
0 χ

)
or

(
ψ2 0
0 ψ�

2

)
, (4.7)

whereχ denotes the mod� fundamental character andψ2 a fundamental character o
level 2.
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5. A concrete example of GL2-type

5.1. Fields of definitionand endomorphism algebras

In this section we illustrate our results with an explicit example. We refer to [5] to fu
examples of Jacobians with quaternionic multiplication with different behaviours.

Let C be the smooth projective model of the genus 2 hyperelliptic curve

Y 2 = 1

48
X

(
9075X4 + 3025

(
3+ 2

√−3
)
X3 − 6875X2 + 220

(−3+ 2
√−3

)
X + 48

)
.

By [7], the ring of endomorphisms of the Jacobian variety ofC overQ is a maximal orde
in the quaternion algebra of discriminantD = 10 overQ. In this section we prove th
following theorem.

Theorem 5.1. Let J (C)/K be the Jacobian variety ofC overK = Q(
√−3). Then,L =

Q(
√−3,

√−11) is the minimal field of definition of the quaternionic endomorphisms o
J (C) and

EndK
(
J (C)

) ⊗Z Q = Q(
√

5).

Moreover, as it is shown in [7], there is an isomorphism of curvesC
�−→ Cτ between

C and the Galois conjugated curveCτ , whereτ denotes the non trivial involution ofK
overQ. Since the isomorphism lifts to an isomorphismJ (C) � J (C)τ of abelian varieties
the generalized Shimura–Taniyama–Weil conjecture predicts thatJ (C) should be modula
(cf. [18]).

According to Theorem 1.3, in order to prove thatL/K is a quadratic extension, it su
fices to exclude the casesL = K and Gal(L/K) = D2.

From the model we have ofC we see that its set of primes of bad reduction is conta
in {2,3,5,7,11}. Thus, we takeN = 2 · 3̆ · 5 · 7 · 11, wherĕ3 = √−3 ramifies inK/Q. Let
us consider the Galois representationsσ� acting on the Tate modules ofA = J (C). In [7],
the characteristic polynomials Pol℘(x) of the matricesσ�(Frob℘) for the first primes℘ � N
of K of residue class degree 1 were computed and factorized as follows:

Pol℘(x) = (
x2 − a℘x + p

)(
x2 − b℘x + p

)
. (5.1)

The computed values ofa℘ , b℘ satisfy the following: they are either both rational in
gers or both integers inQ(

√
5); while a℘ = b℘ in the first case, they are conjugated to e

other in the second. In particular, this implies that the caseL = K is impossible, since els
we would haveQ({a℘}) = Q.

Suppose then that[L : K] = 4. This would imply that the representationsσ� would be
absolutely irreducible. Indeed, this is a consequence of Faltings’ proof of Tate’s conjectu
since by Theorem 1.3 we know that in this case EndK(A) = Z.

Now, since Gal(L/K) = D2, we know that there are three intermediate fieldsK �
E1,E2,E3 � L satisfyingE1 · E2 = E2 · E3 = E3 · E1 = L. For each of them, we know
that EndEi (A) is an orderRi in a quadratic fieldWi .
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We wish to apply the results of the previous section to the extensionsL/Ei and we first
need to explain how these results generalize to the case of a nonreal fieldWi . The only
changes concern the determinant of the two-dimensional irreducible componentsρi

λ and
ρi

λ

γi of the representations of Gal(Q/Ei): by the Riemann hypothesis, it easily follow
that in the standard factorization (5.1) of the characteristic polynomials it must hol
a℘, b℘ ∈ R. Thus, ifWi is not real, we have that tr(ρi

λ(Frob℘)) = a℘ ∈ Wi � Q ⇒ a℘ /∈ R
for almost every prime℘ in Ei inert inL/Ei and hence det(ρi

λ(Frob℘)) �= p. This and the
description ofρi

λ|I� forces the determinant ofρi
λ to be equal toφi · χ for some non-trivial

finite order characterφi unramified outsideN . Finally, since the determinant isχ when
restricted to the subgroupGL of index two ofGK , we conclude thatφi is precisely the
quadratic character corresponding to Gal(L/Ei). Formula (4.5) is thus verified (with th
obvious change of notation:ψ becomesφi ).

Let us callTi = Gal(Q/Ei), i = 1,2,3. We conclude thatσ� is absolutely irreducible
and we know that it contains the reducible groupsσ�|Ti = ρi

λ ⊕ ρi
λ

γi as normal subgroup
of index two, where〈γi〉 = Gal(Wi/Q).

We also know that the extensionsEi/K only ramify at the primes inN so there are
finitely many options for them and thus also forL. Let H = Gal(Q/L). We know that
σ�|H = (ρi

λ ⊕ ρi
λ

γi
)|H = ρ� ⊕ ρ� for i = 1,2, and 3 andρ� with values inGL(2,Z�) for

almost every�. Let℘ be a prime inK. If ℘ is totally decomposed inL/K, then Frob℘ ∈ H

and tr(σ�(Frob℘)) = 2 · tr(ρ�(Frob℘)) = 2a℘ with a℘ ∈ Z.
On the other hand, let℘ be a prime inK not totally decomposed inL/K. Despite this

fact, there existsi ∈ {1,2,3} such that℘ decomposes inEi/K, but is inert inL/Ei . Then
Frob℘ ∈ Ti � H and by applying formula (4.5), we obtain that

tr
(
σ�(Frob℘)

) = tr
(
ρi

λ(Frob℘)
) + tr

(
ρi

λ

γi
(Frob℘)

) = a℘ + aγi
℘

= a℘ + φi(Frob℘)a℘ = 0.

Lemma 5.2. LetA/K be an abelian surface with quaternionic multiplication and letL/K

be the minimal field of definition of the endomorphisms ofA. LetN be the product of the
primes of bad reduction ofA overK. Then, ifGal(L/K) = D2, there exist two differen
quadratic extensionsE1 andE2 of K, both unramified outsideN , such that

• L is the compositum ofE1 andE2.
• For every prime℘ � N of K totally decomposed inL/K, the characteristic polynomia

of σ�(Frob℘), when factorized as in(5.1), verifiesa℘ = b℘ ∈ Z.

On the other hand, if℘ does not totally decompose inL/K, then

tr
(
σ�(Frob℘)

) = 0.

There is a finite number of possibilities forE1 andE2: in the example considered, the
two fields must be two (different) extensions ofK = Q(

√−3) unramified outsideN =
2· 3̆·5·7·11. Computations show that, for any choice of such a pair of quadratic exten



L.V. Dieulefait, V. Rotger / Journal of Algebra 281 (2004) 124–143 139

the

is-
med

ing
an va-
a

hes

alois
yashi’s
Sec-

ntation
e

rimes

a-
there is a prime℘ of K not totally decomposed in the compositum field contradicting
trace 0 condition of the lemma above.

We recall that, in order to simplify computations, we only computed the character
tic polynomials for primes℘ of K that have residue class degree 1. We have perfor
these computations for all such℘ with residue characteristicp � 193. Therefore, in virtue
of Lemma 5.2, we conclude thatL/K is not a quartic extension in our example. Hav
eliminated two of the three cases of Theorem 1.3(I), we conclude that the Jacobi
riety J (C) of Hashimoto–Murabayashi’s curveC has quaternionic multiplication over
quadratic extensionL of K = Q(

√−3) and that EndK(J (C)) is the real quadratic field
Q(

√
5).

The quadratic extensionL/K is unramified outsideN = 2 · 3̆ · 5 · 7 · 11 and formula
(4.5) tells us that a non zero tracea℘ is in Z if and only if the prime℘ decomposes in
L/K. Thus, considering all possible quadratic extensions ofK unramified outsideN and
applying formula (4.5) to the traces computed, we see that the only extension that matc
is L = Q(

√−3,
√−11).

5.2. Explicit determination of the images of the Galois representations

We now wish to compute the finite set of (possibly) exceptional primes of the G
representations on the Tate modules of the Jacobian variety of Hashimoto–Muraba
curveC. By Theorem 5.1, we are placed under the assumptions of Theorem 4.1 in
tion 4.

The hard part of the task is determining the primes such that the residual represe
fails to be irreducible or does not have a multiple of� order. These primes must fall in on
of the following cases:

(1) ρ̄λ reducible,
(2) P(ρ̄λ) cyclic,
(3) P(ρ̄λ) dihedral,
(4) P(ρ̄λ) small exceptional.

5.2.1. Reducible primes
We begin with the determination of those primes falling in cases (1) and (2), i.e., p

such thatρ̄λ is reducible overFλ. We will call themreducible primes. Applying Raynaud’s
result, we see that ifλ � N is a reducible prime, we are in one of the two following situ
tions:

(a) ρ̄λ �
(

ε ∗
0 ε−1χ

)
,

(b) ρ̄λ �
(

εψ2 ∗
0 ε−1ψ�

2

)
,

whereε is, in both cases, a character unramified outsideN , χ is the mod� cyclotomic
character andψ2 a fundamental character of level 2.
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In order to control the characterε we can use the bound for conductors of abe
varieties given in [2]. SinceA is an abelian surface defined overQ(

√−3), we obtain that
cond(A) | 220 · 3̆16 · 59 · 74 · 114. This is a bound for the conductor ofρλ ⊕ ρ

γ
λ and thus we

can assume that, for any primeλ in Q(
√−3) it holds that cond(ρλ) | 210 · 3̆8 · 55 · 72 · 112.

If λ is a reducible prime as in case (a) or (b) above, the characterε must therefore verify
cond(ε) | 25 · 3̆4 · 52 · 7 · 11. Let us first treat

Case (a). Equating traces, we obtain

(a℘ mod λ) = ε(Frob℘) + ε−1(Frob℘)p

as elements inFλ, for every℘ � �N . Let K := Q(
√−3) andR its ring of integers. We will

apply class field theory overK to compute the reducible primes. We shall use repeat
the fact thatK has class number 1 and that the only units inK are the sixth roots of unity

Observe that the image ofε is contained inF∗
λ, so this character of the Galois groupG

of K corresponds to a cyclic extension ofK unramified outsideN with conductor dividing
c := 25 · 3̆4 · 52 · 7 · 11. If we call

P(c) = {
℘: there existsπ ∈R with ℘ = (π) andπ ≡ 1 (mod c)

}
and letF denote the ray class field ofK of conductorc, thenF is characterized by the fac
thatF/K is abelian and the setP(c) is exactly the set of prime ideals ofK that decom-
pose totally inF . The cyclic extensionF ′ of K corresponding toε is of course containe
in F . Thus, given a prime ß= (t) in K verifying tf ≡ 1 (mod c), we have(ßf ,F/K) =
(ß,F/K)f = 1 ∈ Gal(F/K) and fromK ⊆ F ′ ⊆ F we obtain:ε(Frobß)f = 1. From this
and the assumption that the characteristic polynomial ofρ̄λ(Frobß) admitsε(Frobß) as a
root, we obtain the equation for the resultant:

Resq := Res
(
x2 − aßx + q, xf − 1

) ≡ 0 (mod λ)

for ß � �N , q the rational prime below ß and ß= (t) for somet with tf ≡ 1 (mod c).
In the example, we apply this equation withq = 31,43, and 61, ß| q generated by

t = 2+3
√−3,4+3

√−3, and 7+2
√−3 (respectively) having all them order modc equal

to f = 240. The values of the traces areaß = −4,4
√

5, and 4
√

5 (respectively). Having
computed Resq for these three values ofq , we see that for every primeλ in Q(

√
5) with

λ | � > 11 one of them verifyλ � Resq, � �= q . Thus we conclude that̄ρλ is not reducible as
in case (a) for any� > 11.

Case (b). The analysis made in case (a) tells us how to control characterε, now it re-
mains to say a few words about the “fundamental character”ψ2: in fact, we are abusin
notation since we are denotingψ2 a character ofGK unramified outside� whose re-
striction to I� agrees with a level 2 fundamental character. We can identify these
characters becauseK has class number 1. Let ß= (t) be a prime inK, then we know
thatψ2(Frobß) ≡ ζ t ′ (mod λ) whereζ is a unit inK (ζ 6 = 1) andt ′ = t or tα , α the order
two element in Gal(K/Q). Observe that for case (b) to hold it should be� inert in K/Q,
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and sotα ≡ t� (mod λ). Take as in the previous discussion of case (a) a prime ß= (t) of
K with tf ≡ 1 (mod c). Increasef if necessary so that 6| f . Then, using the assumptio
that bothε(Frobß)ψ2(Frobß) andε−1(Frobß)ψ�

2(Frobß) are roots of the characterist
polynomial ofρ̄λ(Frobß), we conclude that the following equation is satisfied:

Res
(
x2 − aßx + q, xf − tf

) ≡ 0 (mod λ)

for ß � �N , q the rational prime below ß and ß= (t) for somet with tf ≡ 1 (mod c), 6 | f .
We apply this equation in the example withq = 43,61 and 193. Forq = 193 we take ß| q
generated byt = 1 + 8

√−3, this generator has order modc equal tof = 120 and the
corresponding trace isaß = 6

√
5. From these computations it follows that ifλ | � > 11 and

� �= 89 the residual representationρ̄λ does not fall in case (b).
It only remains to say a word about� = 89. In order to prove that this is not r

ducible prime, we use the following fact: letH = Gal(Q/L) be the absolute Galois grou
of the field L of definition of the quaternionic endomorphisms. We know that, for an
λ � N · D, the image of the restriction̄ρλ|H lies in GL2(F�). Combined with the assump
tion in case (b), this shows that (the semisimplification of)ρ̄λ|H is contained in a non-spl
Cartan subgroup ofGL2(F�) (P(ρ̄λ|H) is cyclic). Thus, the image of̄ρλ|H can contain
no matrix whose characteristic polynomial is reducible overF� with two different mod�

eigenvalues. We have computed a few characteristic polynomials for primes℘ such that
Frob℘ ∈ H (recall that we have shown that this is the case ifa℘ ∈ Z, a℘ �= 0) and we
found that, forp = 157, the corresponding characteristic polynomial isx2 + 4x + 157 and
that it reduces mod 89 with two different eigenvalues. This shows that 89 is not a red
prime as in case (b).

5.2.2. Dihedral and small exceptional primes
The determination of dihedral primes is carried out by using the technique appl

[6,19,24] via the description of the restriction toI� provided by Raynaud’s theorem.
If P(ρ̄λ) is dihedral, then there exists a Cartan subgroupC such that the imageVλ of ρ̄λ

is contained in the normalizerN of C but not inC itself. Composingρ̄λ with the quotient
N /C � C2 � {±1}, we obtain a quadratic characterφ of the Galois groupG = Gal(Q/K)

corresponding to a quadratic extensionE� of K unramified outside�N . Furthermore, the
description ofρ̄λ|I� for � � N shows that, if� > 3, it must be contained inC, soE�/K does
not ramify at�. The traces of elements inN �C all vanish and the valueφ(Frob℘), where
φ only ramifies at the prime divisors ofN , determines whether̄ρλ(Frob℘) falls in C or not.
Thus, for every prime℘ in K such that℘ is inert inE�/K, we have thatφ(Frob℘) = −1
and hencea℘ ≡ 0 (mod λ).

Therefore, the algorithm to compute all dihedral primes is the following:

• List all quadratic extensionsE of K unramified outside{2, 3̆,5,7,11}.
• For each of these extensions, find several primes℘ in K such that

℘ inert inE/K and a℘ �= 0.



142 L.V. Dieulefait, V. Rotger / Journal of Algebra 281 (2004) 124–143

1

e the
lic
c

l

ple

e
.

p

22,

r

or.

.

-

If λ | � is a dihedral prime, we then should have that, for some quadratic extensionE/K

as above and all primes℘ � � verifying †,

λ | a℘.

We have computed the tracesa℘ for every prime℘ of K with residue class degree
and N(℘) � 193 and applied the above algorithm to all quadratic extensions ofQ(

√−3)

unramified outside{2, 3̆,5,7,11} and we found no dihedral primesλ | � > 11. Finally,
in order to eliminate the possibility of primes with small exceptional image, we us
trick applied in [6,19]: the description ofP(ρ̄λ|I�) shows that this group contains a cyc
subgroup of order� ± 1. Hence, if� > 5, � � N , the image ofP(ρ̄λ) can not be isomorphi
to neitherA4, S4 norA5. We have thus proved the following theorem.

Theorem 5.3. LetC/K be a smooth projective model of the curve

Y 2 = 1

48
X

(
9075X4 + 3025

(
3+ 2

√−3
)
X3 − 6875X2 + 220

(−3+ 2
√−3

)
X + 48

)
overK = Q(

√−3) and letA/K be its Jacobian variety. Let{ρλ} be the two-dimensiona
Galois representations on the Tate modules ofA. Then, for every prime� > 11, λ | �, the
residual representation̄ρλ is absolutely irreducible and the order of its image is a multi
of �.

In order to apply Theorem 4.1, we just observe that, for primes℘ above 13 and 19, w
havea℘ = 2

√
5, whereas for primes ß above 31 and 37, we haveaß = −4, 4, respectively

Theorem 5.4. For every prime� > 11, λ | �, the image of the Galois representationρλ is

the subgroup of GL2(Z[√5]λ) generated by GL2(Z�) and the diagonal matrix
( √

5 0

0
√

5
−1

)
.

In particular, if � ≡ ±1 (mod 5), � �= 11, the groups GL2(Z�) and GL2(F�) are realized as
Galois groups overQ(

√−3) and the corresponding extension is unramified outside2310�.
Furthermore, for every prime� > 11, the group PGL2(F�) is realized as a Galois grou
overQ(

√−3), again through an extension unramified outside2310�.
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