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Abstract 

The application of the hyperelasticity constitutive relationships for modelling of elastomeric bridge bearings is presented. 
Elastomers which are used for bridge bearings are nearly incompressible materials. Consequently, two models of hyperelasticity 
for rubber-like materials, i.e. neo-Hookean and Yeoh models are considered. The neo-Hookean model is the simplest possible 
model of hyperelasticity but unfortunately it has a number of disadvantages (i.e. at certain deformation modes it gives physically 
unreasonable predictions). The Yeoh model for nonlinear elastic materials is superior to neo-Hookean model and leads to rational 
description of the behavior of the elastomers for significant elongations and is implemented in many commercial programs using 
finite element method (FEM). In this work, ABAQUS program is utilized for modelling of chosen bridge bearings. The parameters 
of two constitutive models are determined based on experimental results and are used in numerical calculations for selected 
examples of bridge bearings. Concluding remarks are drawn and directions of future research are outlined. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of organizing committee of the XXIV R-S-P seminar, Theoretical Foundation of Civil 
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1. Introduction 

Elastomeric bearings undergo large strains and deformations that go beyond the limit of applicability of classical 
theory of small displacements. Consequently, in order to adequately model large displacements and deformations the 
continuum mechanics has to be applied [1, 2]. For a proper description of elastomer elastic properties the 
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hyperelasticity theory is used, with a wide range of constitutive models available [3]. In this work, the authors propose 
a constitutive model that can be reduced to the most well-known hyperelastic material models, i.e. Yeoh, Mooney-
Rivlin and neo-Hookean. The main goal of this paper is to present the superiority of the Yeoh model to the most 
commonly used neo-Hookean model. Although the Yeoh model is not overly complicated it can predict the correct 
behavior of the elastomer material in uniaxial tension and simple shear tests in the range of a greater extent of 
deformation than the neo-Hookean or Mooney-Rivlin material models. In the case of neo-Hookean and Yeoh model 
based on the available in literature experimental tests ([4]) the material parameters for a typical elastomer used for 
bridge bearings were established. The applicability of the analyzed models is presented through the analysis of the 
exemplary bridge bearing subjected to compression and shear [5]. For this purpose the finite element method and 
ABAQUS/Standard software package are applied [6]. 

2. Constitutive modelling of elastomeric bearings components 

2.1. Modelling of steel reinforcements 

In the case of bearing steel reinforcing sheets the model of large deformation for elastic-plastic materials was used. 
This model is a generalization of small deformation plasticity model made by substitution of logarithmic strain tensor 
in place of small deformation strain tensor in elasticity and plasticity constitutive relationship, cf. [2]. In ABAQUS 
finite element software it is accessible through the option NLGEOM=ON accompanied by the ELASTIC and 
PLASTIC constitutive models, cf. [6].  For reinforcing plates the typical steel isotropic elasticity parameters were 
assumed: E = 210 GPa and ν = 0.3. For ideal plasticity the Huber-Mises yield condition and an associated flow rule 
were applied with plasticity limit obtained in tension test equal to: fy= 235 [MPa]. 

2.2. Hyperelasticity models for elastomers 

Constitutive model for isotropic incompressible elastomers, which is described in further part of this work, is 
formulated in the frame of hyperelasticity and proposed in [3]. The fundamental idea of the model is the assumption 
that stored energy function (SEF) of incompressible rubber-like materials is a regular function with respect to isochoric 
deformation tensors. As a result in [3] and [5] the following general stored energy function was under investigation: 
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where ia  are material parameters, and invariants of isochoric deformation tensors can be written in the following 
form:  

1 1
1 2tr tr , tr trI IB C B C . (2) 

Let us recall that the incompressibility assumption can be written as 

1 det 1 0, det 1 det 1 0J F C B , (3) 

where F  is the deformation gradient tensor, C  and B  are Cauchy-Green right and left stretch tensors  
( ,T TC F F B FF , where „T” is a tensor transposition), see [1, 2, 3]. Symbols „tr” and „det” are used respectively 
as a trace and determinant of the tensor. The deformation tensors and their invariants present in constitutive 
relationships result from multiplicative decomposition of the gradient tensor F  on volumetric and isochoric parts  
( 3 JF F , ,T TC F F B FF ), cf. [1, 2, 3]. 

In accordance with the energy conservation law and the incompressibility constraint (3) results, that hyperelasticity 
constitutive relationship (in Euler description) can be written as: 
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where 
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In general, scalar p can be determined for the given boundary value problem. In (4) σ  stands for Cauchy stress 
tensor (sometimes called „true stress tensor”). It should be noted that in order to interpret the results of experimental 
tests the constitutive relations (4) need to be rewritten in the form with nominal Piola-Kirchhoff stress tensor 

TJS σF , (see [1, 2, 3])). Already in the early versions of ABAQUS [6] the hyperelasticity model has been 
implemented in the so-called modified polynomial form proposed by Rivlin in 1948: 
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where, klC  and kD  are material parameters (for 0kD  incompressible material model is obtained). 
Function (1) is a special case of (6) for parameters ia  expressed as 
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The rest of the parameters should be set as equal to zero. Relationships for klC  could be expressed as 
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In [3] it was demonstrated that the model of  incompressible material with function (1) leads to a correct evaluation 
of the influence of invariant 2I  and its coupling with invariant 1I .  

It was also shown that the SEF (1), with parameters ia , is more convenient for the analysis of boundary value 
problem of hyperelastic elastomers than the Mooney-Rivlin proposal (6) used in ABAQUS [6]. It is worth noting that 
in particular cases of the model according to (1) we can obtain: Yeoh model [7] ( 4 5 0a a ), Mooney-Rivlin model 
( 2 3 5 0a a a ) and neo-Hooken model ( 2 3 4 5 0a a a a ). 

3. Determination of the hyperelasticity parameters 

Material parameters enter linearly to elastomer models proposed in Section 2. Therefore, to determine the 
parameters of SEF (1) linear optimization method (method of least squares) is applied. It should be emphasized that 
this is a major advantage of the proposed model (compared to e.g. Ogden models [1] for which nonlinear optimization 
methods are needed). It means that using linear optimization methods on the basis of experimental results model’s 
parameters can be determined uniquely. To determine the material parameters the simultaneous optimization of the 
two basic independent experimental tests: uniaxial compression/tension, pure/simple shear was used, cf. [3]. 

In the case of the incompressible materials the pure shear test is experimentally performed through tension test 
with plane strain additional assumption, and such test is called planar tension [1, 4]. Explicit form of formulae on the 
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components of Piola-Kirchhoff stress tensor as a function of elongation (or shear angle) for analyzed experimental 
tests are given in [5]. 

The elasticity parameters of elastomer used in the bearings are determined based on the results of experiments 
published in [4], where among others, the results of uniaxial tension/compression, pure and simple shear tests are 
included. Several different combinations of experimental data were utilized, which lead to a good approximation of 
the experimental results with Yeoh model. Some examples of the obtained results were shown in Fig. 1 and Table 1. 

 
a)

 

b)

 

Fig.1. Comparison of the Yeoh (solid line) and neo-Hookean (dashed line) models with experimental data: (a) uniaxial tension; (b) simple shear. 

 Table 1. Parameters of the Yeoh material model taken under consideration in further analyzes. 

Model 10C [MPa] 20C [MPa] 30C [MPa] 

MY_1 (parameters obtained on the basis of uniaxial tension and simple shear tests) 0.27337 -0.06226 0.01874 

MY_2 (parameters obtained on the basis of uniaxial tension and pure shear tests) 0.30256 -0.10768 0.03778 

Based on conclusions presented in [3], in the case of an insufficient number of experimental data (mainly the lack 
of biaxial test results) the hyperelasticity models, which are independent of the second invariant of isochoric 
deformations, should be taken into consideration. This remark is confirmed by the analysis of results of the data 
published in [4]. 

For the FEM models presented in Section 4 two sets of material parameters contained in Table 1 were adopted. For 
comparison purposes, neo-Hookean model parameters were assumed on the basis of data presented in Table 1 (in this 
case the only model parameter is 10C ). The other simplified models were not analyzed, because they do not lead to 
satisfactory approximation of the experiments results. 

4. Compression and shear tests of elastomeric bridge bearing  

4.1. Assumptions of FE models and boundary conditions 

In the paper a typical elastomeric bearing, which is commonly used in bridge structures, was taken under 
consideration. Its geometry and dimensions were shown in Fig. 3. Material parameters were described in previous 
sections of this work. The considered type of elastomeric bearing was analyzed in three-dimensional space (3D) and 
also as 2D problem with the plane strain state (PSS) assumption. FEM mesh of the bearing in the plane strain state is 
illustrated in Fig. 2a. In the case of 2D task the solution convergence analysis was carried out including an influence 
of the mesh discretization. The mesh was gradually thickening maintaining the size ratios of elements close to the 
square. Eventually, following mesh using rectangular elements with an approximate length of the element edge was 
taken under consideration in further analysis: 2.5 [mm] in the case of outer supporting steel plates (8 layers of finite 
elements on the steel plate thickness), 1.33 [mm] for elastomer (12 layers of finite elements on the elastomer 
thickness), 1.67 mm [mm] for steel reinforcement sheets (3 layers of finite elements on the steel sheet thickness). 
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The application of the above described FEM mesh led to a satisfactory convergence of the results with acceptable 
computation time. Due to the application of hyperelastic models for nearly incompressible materials CPE4RH 
elements were used that are available in the ABAQUS/Standard library (CPE4RH: 4-node bilinear, reduced 
integration with hourglass control, hybrid element). FE model in the plane strain state consists of 17520 finite elements 
and 35355 nodes. 

In the case of three-dimensional modelling of the analyzed bearing the symmetry of the bearing geometry and 
applied load was taken into account. This allows for analyzing of the half-model (including the relevant boundary 
conditions of symmetry) and significantly reduces the time of numerical calculations. FEM mesh of the bearing in the 
three-dimensional space is illustrated in Fig. 2b. FEM elements are approximately twice the size of FEM elements 
taken under consideration for 2D model. C3D8RH elements were used that are available in the ABAQUS/Standard 
library (C3D8RH: 8-node linear brick, reduced integration with hourglass control, hybrid elements). FE model in the 
three-dimensional space consists of 120400 finite elements and 249074 nodes. 

 
a)

            

b)

  

Fig. 2. FEM mesh: (a) in the plane state of strain; (b) in three-dimensional space. 

The outer supporting steel plate connected to the bridge span is an element with a very high stiffness. For this 
reason, the displacement boundary conditions should be applied while performing compression and shearing tests, cf. 
also results from [5]. For convenience, so-called reference point RP, which is linked to nodes lying on the whole 
surface of the outer supporting steel plate, was introduced with the use of MPC option available in ABAQUS/Standard. 
The use of this option leads to the creation of a rigid connection between all the nodes situated on the edge/surface 
P1P2/P1P2P3P4 and reference point RP (see Fig. 3). Total bearing load is applied at reference point RP. At this point 
it is possible to define both forces (in three directions) and moments (about three axes) or displacements and rotations. 
All actions are transmitted by the rigid element, so these two types of boundary conditions are equivalent. 

 

a)

   

b)

  

Fig. 3. Boundary conditions applied to outer supporting steel plates with the use of MPC option: (a) 3D FE model; (b) plane strain FE model. 
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4.2. Compression test 

In the case of compression test three constitutive models of hyperelasticity for rubber-like materials were 
considered: i.e. NH, MY_1 and MY_2. Compression test was carried out by applying a compressive force in the 
direction of y axis at the reference point RP. Simultaneously, displacements of this node in directions of axes x and z 
were blocked. The absolute value of the displacement uy of the reference point RP as a function of bearing compressive 
force Py depending on the adopted constitutive model of elastomer was illustrated in Fig. 3. Note that the plane strain 
theory provides a much greater bearing stiffness than the 3D model (displacement according to PSS are approximately 
twice lower than in 3D). 

 

 

Fig. 4. Bearing compressive force Py as a function of the displacement uy of the reference point RP depending on the adopted constitutive model 
of elastomer. Comparison of compression test results in the case of plane strain and 3D models. 

Huber-Mises stress map of elastomeric bearing subjected to compressive force equal to Py=6300 [kN] (which 
corresponds to the load capacity of the considered bearing [9]) applied at the reference point RP is presented in  
Fig. 4. Results are referred to constitutive material model MY_1. It is noteworthy that in this case maximum Huber-
Mises stresses reached approximately 77 [MPa] and are located in steel reinforcement sheets in the region of the 
symmetry axis of the bearing. The maximum stresses in elastomer layers slightly exceeded the value of 3 [MPa]. 
Additionaly, Fig. 5 presents Huber-Mises stress map of elastomeric bearing obtained for the three-dimensional FE 
model. 
 

 

Fig. 5. Huber-Mises stress map of elastomeric bearing in 2D plane strain model subjected to compressive force Py=6300 [kN] applied at the 
reference point RP (see point A in Fig. 3). 

 

Fig. 6. Huber-Mises stress map of elastomeric bearing 3D model subjected to compressive force Py=6300 [kN] applied at the reference point RP 
(MY_1 constitutive model). 
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4.3. Shear test 

In the case of shear test also three constitutive models of hyperelasticity for rubber-like materials were considered: 
i.e. NH, MY_1 and MY_2. Shear test was carried out by applying the horizontal displacement ux of the reference point 
RP (displacement of this node in direction of axis y as well as rotation about z axis were not blocked). The value of 
the shearing force Px as a function of horizontal displacement ux of the reference point RP depending on the adopted 
constitutive model of elastomer was illustrated in Fig. 6. The graphs clearly show a significant stiffening of bearings 
in the case of models MY_1 i MY_2 after exceeding the displacement ux = 78 [mm]. The stiffness of the bearing in 
the case of NH model is at a comparable level in the whole range of displacement. It should also be noted that in the 
range of displacements specified by the standard (i.e. ux<ulim) regardless of the constitutive models these graphs are 
nearly the same, see Fig. 6. 

 

 

Fig. 7. Bearing shear force Px as a function of the displacement ux of the reference point RP depending on the adopted constitutive model of 
elastomer. Comparison of shear test results in the case of plane strain and 3D models. 

Huber-Mises stress maps of elastomeric bearing subjected to horizontal displacement ux= 42 [mm] of the reference 
point RP (where ux= 42[mm] corresponds to the maximum displacement of the considered bearing allowed by the 
standard [9]) are presented in Fig. 7. Based on these results, it can be concluded that a fourfold increase of the RP 
node displacement causes nearly fourfold increase of maximum value of Huber-Misses stresses. A qualitative 
difference is that the area of stresses close to extreme stresses increased dozen times. 

 

 

  Fig. 8. Huber-Mises stress map of elastomeric bearing plane strain model subjected to displacement  ux of the reference point RP ux=42 [mm] 
(see point A in Fig. 6). 

Stress map regarding 3D model with the use of MY_1 material model is presented in Fig. 8. Results derived from 
the use of plane strain and 3D models are very similar (except the areas close to the edges of the bearing). Furthermore, 
global response of analyzed bearings is nearly the same (curves are overlapping, see Fig 6). 
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Fig. 9. Huber-Mises stress map of elastomeric bearing for 3D model subjected to displacement ux=42 [mm] of the reference point RP. 

5. Conclusions 

 The superiority of the Yeoh hyperelastic material model to neo-Hookean and Mooney-Rivlin models is well visible 
for the significant values of elongations (shear angle). The Yeoh model for 1 1.2  describes properly the 
behavior of the elastomer in the uniaxial tension/compression tests. Similarly, in the case of simple shear test for 

0.2  the Yeoh model predictions are better than predictions resulting from the use of the neo-Hookean model. 
These differences, for high displacements values, significantly influence the global response of elastomeric 
bearings in the case of considered experimental tests, i.e. compression and shear tests. Proper modelling of bearings 
requires at least the Yeoh model to predict their reasonable behavior for significant deformations that could occur 
in practice, e.g. when numerically determining the limit load for elastomer bearing. 

 For comparison purposes, the discussed elastomer bearing was analyzed as a three-dimensional body as well as a 
two-dimensional body with plane strain assumption during performing FEM calculations. As far as the global 
response of considered bearing is concerned, in the case of shear test almost the same results were obtained from 
2D and 3D analyzes. In the compression test the differences are significant and global stiffnesses of the bearing do 
not match from the very beginning. Hence the conclusion that in the case of a complex load histories, in order to 
avoid significant errors the bearing should be modelled in three-dimensional space. 

 For considered elastomer bearing working in the displacement range given in the standard [9] the Huber-Mises 
equivalent stresses in reinforcing sheets do not exceed 33% of the yield stress in the compression test and 14% of 
the yield stress in the shear test. 

 In the case of application of presented constitutive material model in the dynamic problems (earthquake 
engineering) it is necessary to take into account also the viscous properties of the material. 
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