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Abstract 

Multi-core processors offer a performance increment compared to single-core platforms. This leap in performance is desired to be ported to 
computerized numerical controls. However, in order to profit of the benefits multi-core processors can bring, the software has to be tailored to 
real parallel execution. In this paper a concept is proposed for partitioning numerical control software functions for being concurrently executed 
on multi-core systems. Specifically, the interpreter and the cutter radius compensation modules have been analyzed for devising a feasible parallel 
architecture. The parser algorithm has been implemented following the proposed scheme in a thread-based approach. Experiments were conducted 
under a real time Linux kernel extension utilizing the PREEMPT_RT patch. The results were compared against its serial version in terms of 
execution times to validate the concept. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 
2015. 
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1. Introduction 

Since its advent Computerized Numerical Controls (CNC) 
have advanced the manufacturing industry. They came to 
substitute manual machining when high accuracy and 
complexity is required and contributed simultaneously to 
reduce lead time. But the manufacturing needs became 
increasingly challenging and still are, asking for efficient 
solutions from the research community. These necessities 
involve productivity and quality enhancements, researches 
have been directed to find good levels in both. Methods such as 
adaptive control, high level interpolators, high-speed 
contouring control, and feed-rate optimization, among others, 
have been proposed [1-3]. Most of these methods increase the 
complexity of the algorithms and in turn demand better 
computing performance. Similarly, the functionality of CNC 
systems has been extended considerably. The most modern 
systems are capable to perform monitoring for diagnosis, 
collision detection, and data recording for energy 
considerations [4-6]. These features demand for high capability 
of the computing platform to process large amounts of data in 

short time [7]. While the complexity in CNC software is 
growing, single-core processors performance is not getting 
considerable increases any more [8]. Multi-core processors 
offer a possibility to keep increasing performance by adding 
more budgets of transistors on a single device [8]. Furthermore 
this technology outperforms its single-core counterpart in the 
way of dealing with thermal considerations and power 
consumption [9]. This condition is suggesting the migration of 
CNC systems to multi-core platforms. A parallel software 
concept for allowing concurrent execution on multi-core 
processors of CNC functions is proposed in this paper. 
Specifically, the suggested design consists in partitioning the 
Interpreter (IPR) module into threads for dynamically 
distributing its execution among system cores. The presented 
software mechanism solves efficiently sequential data 
dependencies and permits the parallel execution of the cutter 
radius compensation function. Tests following the proposed 
software architecture show the benefits in performance of the 
parallel algorithm against its serial variant under several 
scenarios.  

 

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82804822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


865 José María Vivanco et al.  /  Procedia CIRP   41  ( 2016 )  864 – 869 

 

This paper is organized as follows: In Section 2 a discussion 
is presented regarding works considered relevant to this 
research. This is followed by presenting the state-of-the-art 
concept of CNC systems in Section 3. Further, the designed 
parallel concept of an IPR module is described in Section 4. In 
Section 5 a case study of a software implementation is 
presented following the proposed parallel concept, a 
benchmarking analysis among different scenarios results 
comprising serial and parallel executions is reported. A 
discussion about the developed work is presented in Section 6. 
Finally, in Section 7, the paper closes with a summary and an 
outlook about this research. 

2. Related Work 

Few approaches address migration from single-core to 
multi-core platforms in automation applications whereas none 
of them focuses on CNC software partitioning at a lower level 
than tasks segmentation. All current available methods rely on 
static and semi-static tasks allocation on cores. One of the main 
downsides of this is the lack of flexibility whenever a different 
architecture is present. For instance, Intel Corporation and 
Beckhoff GmbH [10] propose a solution for tasks migration to 
parallel platforms based on static allocation from tasks to 
system cores. The designer has to define the arrangement 
manually and the software can be restructured when using a 
different platform. Likewise, Bregenzer and Hartmann [11] 
propose a method to generate a graph-based model of a CNC 
firmware looking at its runtime characteristics. Based on 
developer’s expertise, optimal parallel designs can be proposed 
to meet a set of objectives. Although this approach provides a 
deep study of the firmware tasks interaction, it strongly 
depends on the computing platform utilized. In like manner, 
IBM Corporation [12] presents a model driven tool in order to 
ease the arbitrary assignation of tasks to different cores and to 
virtually execute the system to achieve the predicted 
performance gains. Changes on the parallelization strategy 
require little effort compared to other static methods. Another 
work using static parallelization is reported by Dadji et al. [13], 
they presented an approach for concurrently scheduling 
modules in a PC-based control system for parallel kinematic 
robots. This method is based on segmentation of tasks into 
modules. Tasks within different modules have no shared 
memory dependencies for allowing parallel execution on 
different system cores. A different approach based on dynamic 
parallelization at the algorithmic level is presented by Keinert 
et al. [14]. It has shown already the benefits of parallelization 
using a more flexible strategy than those using static allocation 
of tasks onto cores. Specifically the look-ahead module has 
been partitioned for concurrent execution on multi-core 
systems. Regarding other modules in a CNC system such as the 
IPR, Hong et al. [15] proposed a method to leverage its 
execution in order to be able to provide enough data to the next 
module in the data processing flow. The IPR is run in a separate 
thread independently from other modules in the system. 
Although this research is not focused on parallel computing, it 
shows the seriousness for the IPR to decode data opportunely. 

3. Concept of CNC Systems 

The architecture design of CNC systems is vendor specific. 
However, the concept does not differ substantially from one 
another. In this paper the CNC system components and their 
interaction are considered as presented by Suh et al. [16] (see 
Fig. 1). 

A CNC system is mainly composed by a Man Machine 
Interface (MMI), a Programmable Logic Controller (PLC), and 
a Numerical Control Kernel (NCK). The MMI enables the 
interaction between the user and the CNC system. This 
interaction comprises machine status displaying, program 
edition, process parameter settings, among others. The PLC 
processes the system IO signals, tool changes, and in general it 
controls the machine behavior not related to the servo drives. 
The NCK realizes the functions related to the interpretation of 
the NC-program, trajectory generation, and position control. 

Since the MMI and the PLC analysis is out of the scope of 
this study, these elements are not further considered. The NCK 
is composed by several modules which process data following 
a sequential flow. They are scheduled according to their 
priority and depending its nature their iteration times are 
defined. High priority functions present the shortest iteration 
times, followed by the middle priority tasks having larger cycle 
times than the aforementioned functions, and finally the low 
priority modules are executed in the remaining computation 
time. 

The IPR module that is in the focus of this paper, decodes 
sequentially data blocks (hereinafter referred as blocks) 
specified in the NC-program. Depending on this information, 
process parameters, and machine specific data, it builds data 
structures for commanding system peripherals and for defining 
the tool path. Further modules of a CNC system are: 

 Acceleration/Deceleration (Acc/Dec) module 
 Rough Interpolation (IPO) module 
 Mapping or transformation module 
 Fine interpolation module (Fine IPO) 
 Position Control module 

 

Fig. 1. CNC system components 
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4. Interpreter Parallel Concept 

The proposed parallel architecture of an IPR (see Fig. 2) 
consists in several modules concurrently executed following a 
thread based approach.  

The Feeder module runs on its own thread. It sequentially 
fetches blocks defined in the NC-program and stores them in 
the stringBuffer. Its execution starts before all the other 
modules in order to fill up the stringBuffer for initialization 
purposes. The stringBuffer itself is managed as a circular 
queue. It stores strings corresponding to the blocks defined in 
the NC-program. It can be thought as a 2-Dimensional array 
consisting of g rows and n columns, being n the same number 
of Lexical Analzer (LEX) threads. The sequence of blocks bread 
retrieved by the Feeder in terms of the column i where the data 
is stored in the stringBuffer is given as follows: 

n

iN
knkib ssread

1
0;                     (1) 

 i: Column in the stringBuffer where the data is placed. 
 N: Total number of blocks in a NC-program. 
 n: Total number of LEX threads. 

The term ks is synchronized among all columns, it is 
incremented when a row in the stringBuffer is filled. Data 
contained in each column corresponds specifically to a certain 
LEX thread according to a unique ID number assigned to each 
LEX thread. The LEX module is split in n threads running 
concurrently. Each LEX thread parses data from its specific 
column in the stringBuffer, transforms it in a readable data 
structure to the system named parsedStructure, and stores the 
deciphered data in the so called parsedBuffer. The 
parsedBuffer holds the data after being decoded by the LEX 
module and also after being processed by the Data Analyzer 
(DA) module. This buffer consists in only one column and h 
rows. Given that the LEX threads run independent from each 
other, their indexes where to store data in the parsedBuffer are 
updated separately. They are incremented once a block is 
parsed and stored. These indexes must be restarted after 
reaching the last memory space in the parsedBuffer 
corresponding to each LEX thread called: idxie. Where sub-
index i stands for the LEX thread ID, and sub-index e denotes 
the last index reachable by the LEX thread i. The sequence for 
updating these indexes is defined as follows: 

...... 010 iieii idxidxidxidx                  (2) 

n

ik
knkiidx pipiik

1
0;                   (3) 

 i: LEX thread ID. 
 h: Rows in parsedBuffer. 
 n: Total number of LEX threads. 

 

Fig. 2. Interpreter (IPR) parallel concept. 

The DA module is executed on its own thread. It 
sequentially processes data from the parsedBuffer. This 
software component solves most of the sequential data 
dependencies within the IPR. Instructions which take effect 
throughout the whole process until another similar instruction 
replaces this setting are called modal instructions. The values 
defined by these instructions are tracked and modified by this 
module. Likewise, when increments in machine axes positions 
are specified in the NC-program instead of tool coordinates for 
defining the tool path, the DA module updates the current tool 
location. This value is held by a variable in the parsedStructure 
called currentPoint. Equally important, when the programmed 
tool path must be suited for matching the cutter radius 
dimensions (cutter radius compensation mode on), an extra 
segment might be added to the original block depending on the 
angle between the current and its previous block. The DA 
module realizes calculations in order to evaluate whether to add 
or not an extra segment and according to the result it assigns to 
each block a sequential number called cmdID. This number 
defines the index where data is going to be stored in the so 
named commandsBuffer. 

The Data Distributor (DD) module shifts the already 
analyzed data to the Executor (EX) module. The amount of data 
passed remains static but it is adjusted in order to optimize the 
whole process execution speed. The EX module computes the 
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destination point of the tool and realizes the cutter 
compensation algorithm when it is active. It is executed on 1 
threads running concurrently. Certain amount of data is passed 
by the DD module to each EX thread to be processed. Each EX 
thread stores immediately its computed result in the so called 
commandsBuffer. This buffer holds data delivered by all LEX 
threads. The information contained in this buffer serves for 
further processing such as velocity profile, and interpolation. 
The next module taking data from this buffer is specifically the 
Acc/Dec. 

Following the proposed concept, an application comprising 
the Feeder, stringBuffer, LEX, and parsedBuffer has been 
devised. The thread-based parallel software has been 
developed using Pthreads Application Programming Interface 
(API). It specifies a Portable Operating System Interface 
(POSIX) providing a set of features to create, terminate, and 
synchronize threads [17]. Pthreads provides a mechanism for 
creating threads in a joinable state. This attribute lets thread 
resources, such as thread specific data, to be maintained in the 
system after the thread is terminated. These resources are 
reclaimed by the Operating System (OS) until the thread is 
joined to another thread. All threads in the developed 
application are created as joinable in order to facilitate code 
extendibility. 

The software defines the parallelization strategy without 
setting any affinities from threads to system cores (unless 
specified). The OS allocates threads to the available cores and 
manages migration among them. This makes impossible to 
have always the same computing scenario. Hence, it is not 
possible to predict which thread is going to finish first its 
execution. In order to ensure the correctness of the algorithm 
the approach shown on Fig. 3 has been implemented. 

The main thread is created when the process is started. All 
the other threads on the application are spawned from it. The 
Feeder thread is the first created from the main, it starts 
fetching blocks from the NC-program and storing them in the 
stringBuffer. After the stringBuffer is full or an initialization 
time has passed, the LEX threads are created from the main. 
The Feeder thread is joined to the main after all LEX threads 
have finished processing their corresponding data, and are 
joined to the main thread. 

A thread in this application can be in three different states: 
Active, Sleeping, and Zombie. The first, is the state when all 
thread resources are utilized, and thread execution is taking 
place. The second, happens when a thread is suspended waiting 
for other threads to join it, this applies only to the main thread. 
The last, is reached when a thread finishes its execution but it 
is still not joined to any other thread. 

5. Case Study 

In this section the effectiveness of the proposed algorithm is 
investigated through comparison among several execution 
scenarios, this analysis includes a benchmarking between 
parallel versions against the serial variant. The application was 
tested on an Intel Core i3-2370M processor with 2.40GHz and 

 

Fig. 3. Thread execution scheme. 

4 logical processors. The Linux RT extension with the 
PREEMPT_RT patch was utilized in order to explore the 
system characteristics under an OS which reinforces 
determinism. As input to the software a NC-program was 
selected including 998 blocks. 

Since this research strives to propose a dynamical 
parallelization strategy in which threads can run on any core 
and be migrated according to the need by the OS, the behavior 
of threads migration is explored (see Fig. 4). The cores on 
which threads were allocated for execution at each function 
specific iteration were tracked. A function iteration for the 
Feeder thread consists in the operations needed for fetching a 
block from the NC-program and placing it in the stringBuffer. 
For LEX threads, a function iteration comprises the steps for 
retrieving a block data from the stringBuffer, analyze its 
content, parse it, and store the result in the parsedBuffer. From 
Fig. 4 it may be seen that minimum migration of threads 
execution among system cores is present on a 4 cores system 
when 5 active threads are scheduled. 

In order to deeply analyze the system behavior, 500 
consecutive executions were performed at each test scenario. 
The time it takes for the LEX module to process the whole file 
is recorded at each program run. The realized experiments 
differ in the following parameters: Priority: Scheduling policy, 
parallelization strategy and number of threads. 

 

 

Fig. 4. Thread execution over system cores. 
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The priority defines all application threads priority in a 
range of 0-99. System processes compete also for resources 
within this priorities span. The software was tested with 
priority 0 (Non-RT constraints. It can be preempted by system 
processes. Several user space processes run at the same level.) 
and priority 90 (Considerable high RT constraints. Can only be 
preempted by few equal or higher priority system processes.). 

The scheduling policy determines the algorithm utilized for 
dictating threads execution. In the performed experiments the 
Linux-provided default policies were used, namely 
SCHED_OTHER (It applies when no RT behavior is desired. 
It is based on equal timing execution for all threads.) and 
SCHED_FIFO (It implements a FIFO scheduling policy. It 
preempts any thread running under SCHED_OTHER policy. A 
thread under this policy runs until it completes its execution or 
it is preempted. These threads can be preempted by another 
higher priority thread or a new one introduced under the same 
priority (if it is runnable). In the realized tests this policy is set 
for threads running at priorities above 0.). 

The parallelization strategy defines how threads are 
allocated to system cores for execution. For benchmarking 
purposes not only dynamic parallelization is used but also static 
threads allocation onto system cores. Using static 
parallelization each of the spawned threads from the main is 
executed for all the long the process lasts on a specific 
processor and is never migrated. Hereafter this method is 
named as ATT n Threads, where n denotes the total number of 
active threads. Using dynamic parallelization the OS 
determines the system core where to execute each thread and 
the migrations required. From now onwards this method is 
referred as DET n Threads, where n has the same meaning as 
above. 

The thread number refers to the total number of active 
threads. When referring to active threads, the main thread is not 
counted because it is most of the time in a Sleeping mode. For 
the serial version only 1 LEX and 1 Feeder thread are created 
and are both allocated to run on CPU0. For the parallel 
executions 4 and 8 active threads algorithms were tested. When 
testing DET n versions the OS allocates threads onto execution 
whereas for ATT n algorithms the arrangements in Tables 1 and 
Table 2 were tried. 

Table 1. Att 4 Threads configuration. 

CPU0 CPU1 CPU2 CPU3 

Feeder LEX0 LEX1 LEX2 

Table 2. Att 8 Threads configuration. 

CPU0 CPU1 CPU2 CPU3 

Feeder LEX0 LEX1 LEX2 

LEX3 LEX4 LEX5 LEX6 

 
Statistical data obtained by the various experiments is 

shown on Table 3, a graphical version in Fig. 5 and Fig. 6. In 
each test scenario is considered worthwhile to know the mean, 
minimum, and maximum execution times. Furthermore the 
standard deviation σ gives us a way to measure the dispersion 

among the run times at each scenario. In order to quantify the 
benefits of the proposed solution a performance gain factor is 
determined for all parallel versions against its serial variant 
with the same test parameters, this gain is calculated in terms 
of average execution times (from now onwards it is referred as 
performance gain). 

The gathered results supply valuable information from 
which we can comment the following: The performance gain 
obtained by the parallelized algorithm depends mainly on 2 
factors: priority assigned to the application threads, and ratio 
between number of threads and system cores. The Det n 
Threads versions show very close results to their Att n Threads 
counterparts when setting high priorities and equal number of 
threads as cores on the computing platform. Under these 
conditions the resulted performance gains were 4.205, and 
4.225 for the Det 4 Threads and Att 4 Threads executions 
respectively. Without reinforcing determinism the timing 
results homogenity of the Det n Threads algorithms is seriously 
degraded. When setting priority 90 to the software threads, both 
parallel versions Det 8 Threads and Att 8 Threads presented 
slower execution times than their 4 threaded variants, 
especially the performance gain for the Det 8 Threads 
algorithm was considerably decremented getting only a gain 
factor of 2.621. In general the application behavior is better 
when splitting up the execution in the same number of threads 
as available processing cores than when running the software 
over 8 threads. 

Table 3. Recorded experiment results. 

 Mean 
(ms) 

Min 
(ms) 

Max 
(ms) 

σ (ms) Gain 

Non RT. Serial 9.265 9.144 13.172 0.262 - 

Non RT. Det 4 Threads 4.841 2.429 10.871 1.366 1.914 

Non RT. Att 4 Threads 2.629 2.486 8.708 0.455 3.524 

Non RT. Det 8 Threads 9.314 4.436 29.802 1.521 0.995 

Non RT. Att 8 Threads 6.995 5.116 19.705 2.7 1.3245 

Priority 90. Serial 10.643 10.105 11.383 0.176 - 

Prio 90. Det 4 Threads 2.531 2.37 4.47 0.111 4.205 

Prio 90. Att 4 Threads 2.519 2.437 4.96 0.15 4.225 

Prio 90. Det 8 Threads 4.061 3.937 5.785 0.112 2.621 

Prio 90. Att 8 Threads 2.328 2.535 4.52 0.13 4.0498 

 

 

Fig. 5. Experiments execution time results part 1. 
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Fig. 6. Experiments execution results part 2. 

6. Discussion 

The reported results show the possibility of getting 
advantage of multi-core systems by partitioning CNC software 
modules following a dynamic parallelization strategy. The 
developed functions were tested isolated from the complete 
NCK. Admittedly the integration of the devised software in a 
complete NCK is desired in order to test the effect of threads 
competing for system resources, interaction among software 
components, and heavier computational load. Nevertheless, the 
work presented in this paper is a step forward towards the goal 
of conceiving a parallel NCK architecture. Furthermore, the 
obtained results bring us an approximation to the real execution 
scenario, and let the door open for further research on this lead. 

7. Summary and Outlook 

Parallel programming has been addressed towards CNC 
software partitioning. The devised concept does not rely on 
static parallelization, it can be split on any number of threads 
letting the OS to allocate and migrate threads among cores for 
execution. The proposed design is based on the study of state 
of the art NCK modules allowing concurrent execution of an 
IPR and considering also the cutter radius compensation 
function. Following the proposed design the Feeder and the 
LEX modules were implemented, being the latter partitioned 
into 4 and 8 threads for benchmarking purposes. Recorded 
timing results on a 4 processing cores platform showed 
considerable performance gains of the suggested approach 
against its serial variants. It turned out that priority at which the 
application threads are run, and ratio between number of active 
threads and available system cores influence on the 
performance enhancement. 

This research could be directed towards several paths. The 
complete implementation of a parallel NCK following a 
dynamic parallelization strategy will bring the benefits of 
multi-core processors to CNC taking advantage also of the 
rapid computing technology evolution. So far the presented 
hypothesis has been proved on the IPR module, and the look 
ahead function [14]; interpolation algorithms can also benefit 
of this strategy resulting in higher machining accuracy. 
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