
Available online at www.sciencedirect.com

2212-8271 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 2015
doi: 10.1016/j.procir.2015.12.021

 Procedia CIRP 41 (2016) 864 – 869

ScienceDirect

48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 2015

Analysis and design of computerized numerical controls for execution on
multi-core systems

 José María Vivancoa, Matthias Keinerta,*, Armin Lechlera, Alexander Verlb
aInstitute for Control Engineering of Machine Tools and Manufacturing Units (ISW), Seidenstr. 36, Stuttgart, 70174, Germany

bFraunhofer-Gesellschaft, Hansastr. 27c, Munich, 80686, Germany

* Corresponding author. Tel.: +49-711-685-84625; fax: +49-711-685-82808. E-mail address: matthias.keinert@isw.uni-stuttgart.de

Abstract

Multi-core processors offer a performance increment compared to single-core platforms. This leap in performance is desired to be ported to
computerized numerical controls. However, in order to profit of the benefits multi-core processors can bring, the software has to be tailored to
real parallel execution. In this paper a concept is proposed for partitioning numerical control software functions for being concurrently executed
on multi-core systems. Specifically, the interpreter and the cutter radius compensation modules have been analyzed for devising a feasible parallel
architecture. The parser algorithm has been implemented following the proposed scheme in a thread-based approach. Experiments were conducted
under a real time Linux kernel extension utilizing the PREEMPT_RT patch. The results were compared against its serial version in terms of
execution times to validate the concept.
© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Scientific Committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS
2015.

 Keywords: Computerized numerical control; Multi-core; Parallel computing

1. Introduction

Since its advent Computerized Numerical Controls (CNC)
have advanced the manufacturing industry. They came to
substitute manual machining when high accuracy and
complexity is required and contributed simultaneously to
reduce lead time. But the manufacturing needs became
increasingly challenging and still are, asking for efficient
solutions from the research community. These necessities
involve productivity and quality enhancements, researches
have been directed to find good levels in both. Methods such as
adaptive control, high level interpolators, high-speed
contouring control, and feed-rate optimization, among others,
have been proposed [1-3]. Most of these methods increase the
complexity of the algorithms and in turn demand better
computing performance. Similarly, the functionality of CNC
systems has been extended considerably. The most modern
systems are capable to perform monitoring for diagnosis,
collision detection, and data recording for energy
considerations [4-6]. These features demand for high capability
of the computing platform to process large amounts of data in

short time [7]. While the complexity in CNC software is
growing, single-core processors performance is not getting
considerable increases any more [8]. Multi-core processors
offer a possibility to keep increasing performance by adding
more budgets of transistors on a single device [8]. Furthermore
this technology outperforms its single-core counterpart in the
way of dealing with thermal considerations and power
consumption [9]. This condition is suggesting the migration of
CNC systems to multi-core platforms. A parallel software
concept for allowing concurrent execution on multi-core
processors of CNC functions is proposed in this paper.
Specifically, the suggested design consists in partitioning the
Interpreter (IPR) module into threads for dynamically
distributing its execution among system cores. The presented
software mechanism solves efficiently sequential data
dependencies and permits the parallel execution of the cutter
radius compensation function. Tests following the proposed
software architecture show the benefits in performance of the
parallel algorithm against its serial variant under several
scenarios.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82804822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

865 José María Vivanco et al. / Procedia CIRP 41 (2016) 864 – 869

This paper is organized as follows: In Section 2 a discussion
is presented regarding works considered relevant to this
research. This is followed by presenting the state-of-the-art
concept of CNC systems in Section 3. Further, the designed
parallel concept of an IPR module is described in Section 4. In
Section 5 a case study of a software implementation is
presented following the proposed parallel concept, a
benchmarking analysis among different scenarios results
comprising serial and parallel executions is reported. A
discussion about the developed work is presented in Section 6.
Finally, in Section 7, the paper closes with a summary and an
outlook about this research.

2. Related Work

Few approaches address migration from single-core to
multi-core platforms in automation applications whereas none
of them focuses on CNC software partitioning at a lower level
than tasks segmentation. All current available methods rely on
static and semi-static tasks allocation on cores. One of the main
downsides of this is the lack of flexibility whenever a different
architecture is present. For instance, Intel Corporation and
Beckhoff GmbH [10] propose a solution for tasks migration to
parallel platforms based on static allocation from tasks to
system cores. The designer has to define the arrangement
manually and the software can be restructured when using a
different platform. Likewise, Bregenzer and Hartmann [11]
propose a method to generate a graph-based model of a CNC
firmware looking at its runtime characteristics. Based on
developer’s expertise, optimal parallel designs can be proposed
to meet a set of objectives. Although this approach provides a
deep study of the firmware tasks interaction, it strongly
depends on the computing platform utilized. In like manner,
IBM Corporation [12] presents a model driven tool in order to
ease the arbitrary assignation of tasks to different cores and to
virtually execute the system to achieve the predicted
performance gains. Changes on the parallelization strategy
require little effort compared to other static methods. Another
work using static parallelization is reported by Dadji et al. [13],
they presented an approach for concurrently scheduling
modules in a PC-based control system for parallel kinematic
robots. This method is based on segmentation of tasks into
modules. Tasks within different modules have no shared
memory dependencies for allowing parallel execution on
different system cores. A different approach based on dynamic
parallelization at the algorithmic level is presented by Keinert
et al. [14]. It has shown already the benefits of parallelization
using a more flexible strategy than those using static allocation
of tasks onto cores. Specifically the look-ahead module has
been partitioned for concurrent execution on multi-core
systems. Regarding other modules in a CNC system such as the
IPR, Hong et al. [15] proposed a method to leverage its
execution in order to be able to provide enough data to the next
module in the data processing flow. The IPR is run in a separate
thread independently from other modules in the system.
Although this research is not focused on parallel computing, it
shows the seriousness for the IPR to decode data opportunely.

3. Concept of CNC Systems

The architecture design of CNC systems is vendor specific.
However, the concept does not differ substantially from one
another. In this paper the CNC system components and their
interaction are considered as presented by Suh et al. [16] (see
Fig. 1).

A CNC system is mainly composed by a Man Machine
Interface (MMI), a Programmable Logic Controller (PLC), and
a Numerical Control Kernel (NCK). The MMI enables the
interaction between the user and the CNC system. This
interaction comprises machine status displaying, program
edition, process parameter settings, among others. The PLC
processes the system IO signals, tool changes, and in general it
controls the machine behavior not related to the servo drives.
The NCK realizes the functions related to the interpretation of
the NC-program, trajectory generation, and position control.

Since the MMI and the PLC analysis is out of the scope of
this study, these elements are not further considered. The NCK
is composed by several modules which process data following
a sequential flow. They are scheduled according to their
priority and depending its nature their iteration times are
defined. High priority functions present the shortest iteration
times, followed by the middle priority tasks having larger cycle
times than the aforementioned functions, and finally the low
priority modules are executed in the remaining computation
time.

The IPR module that is in the focus of this paper, decodes
sequentially data blocks (hereinafter referred as blocks)
specified in the NC-program. Depending on this information,
process parameters, and machine specific data, it builds data
structures for commanding system peripherals and for defining
the tool path. Further modules of a CNC system are:

 Acceleration/Deceleration (Acc/Dec) module
 Rough Interpolation (IPO) module
 Mapping or transformation module
 Fine interpolation module (Fine IPO)
 Position Control module

Fig. 1. CNC system components

866 José María Vivanco et al. / Procedia CIRP 41 (2016) 864 – 869

4. Interpreter Parallel Concept

The proposed parallel architecture of an IPR (see Fig. 2)
consists in several modules concurrently executed following a
thread based approach.

The Feeder module runs on its own thread. It sequentially
fetches blocks defined in the NC-program and stores them in
the stringBuffer. Its execution starts before all the other
modules in order to fill up the stringBuffer for initialization
purposes. The stringBuffer itself is managed as a circular
queue. It stores strings corresponding to the blocks defined in
the NC-program. It can be thought as a 2-Dimensional array
consisting of g rows and n columns, being n the same number
of Lexical Analzer (LEX) threads. The sequence of blocks bread
retrieved by the Feeder in terms of the column i where the data
is stored in the stringBuffer is given as follows:

n

iN
knkib ssread

1
0; (1)

 i: Column in the stringBuffer where the data is placed.
 N: Total number of blocks in a NC-program.
 n: Total number of LEX threads.

The term ks is synchronized among all columns, it is
incremented when a row in the stringBuffer is filled. Data
contained in each column corresponds specifically to a certain
LEX thread according to a unique ID number assigned to each
LEX thread. The LEX module is split in n threads running
concurrently. Each LEX thread parses data from its specific
column in the stringBuffer, transforms it in a readable data
structure to the system named parsedStructure, and stores the
deciphered data in the so called parsedBuffer. The
parsedBuffer holds the data after being decoded by the LEX
module and also after being processed by the Data Analyzer
(DA) module. This buffer consists in only one column and h
rows. Given that the LEX threads run independent from each
other, their indexes where to store data in the parsedBuffer are
updated separately. They are incremented once a block is
parsed and stored. These indexes must be restarted after
reaching the last memory space in the parsedBuffer
corresponding to each LEX thread called: idxie. Where sub-
index i stands for the LEX thread ID, and sub-index e denotes
the last index reachable by the LEX thread i. The sequence for
updating these indexes is defined as follows:

...... 010 iieii idxidxidxidx (2)

n

ik
knkiidx pipiik

1
0; (3)

 i: LEX thread ID.
 h: Rows in parsedBuffer.
 n: Total number of LEX threads.

Fig. 2. Interpreter (IPR) parallel concept.

The DA module is executed on its own thread. It
sequentially processes data from the parsedBuffer. This
software component solves most of the sequential data
dependencies within the IPR. Instructions which take effect
throughout the whole process until another similar instruction
replaces this setting are called modal instructions. The values
defined by these instructions are tracked and modified by this
module. Likewise, when increments in machine axes positions
are specified in the NC-program instead of tool coordinates for
defining the tool path, the DA module updates the current tool
location. This value is held by a variable in the parsedStructure
called currentPoint. Equally important, when the programmed
tool path must be suited for matching the cutter radius
dimensions (cutter radius compensation mode on), an extra
segment might be added to the original block depending on the
angle between the current and its previous block. The DA
module realizes calculations in order to evaluate whether to add
or not an extra segment and according to the result it assigns to
each block a sequential number called cmdID. This number
defines the index where data is going to be stored in the so
named commandsBuffer.

The Data Distributor (DD) module shifts the already
analyzed data to the Executor (EX) module. The amount of data
passed remains static but it is adjusted in order to optimize the
whole process execution speed. The EX module computes the

867 José María Vivanco et al. / Procedia CIRP 41 (2016) 864 – 869

destination point of the tool and realizes the cutter
compensation algorithm when it is active. It is executed on 1
threads running concurrently. Certain amount of data is passed
by the DD module to each EX thread to be processed. Each EX
thread stores immediately its computed result in the so called
commandsBuffer. This buffer holds data delivered by all LEX
threads. The information contained in this buffer serves for
further processing such as velocity profile, and interpolation.
The next module taking data from this buffer is specifically the
Acc/Dec.

Following the proposed concept, an application comprising
the Feeder, stringBuffer, LEX, and parsedBuffer has been
devised. The thread-based parallel software has been
developed using Pthreads Application Programming Interface
(API). It specifies a Portable Operating System Interface
(POSIX) providing a set of features to create, terminate, and
synchronize threads [17]. Pthreads provides a mechanism for
creating threads in a joinable state. This attribute lets thread
resources, such as thread specific data, to be maintained in the
system after the thread is terminated. These resources are
reclaimed by the Operating System (OS) until the thread is
joined to another thread. All threads in the developed
application are created as joinable in order to facilitate code
extendibility.

The software defines the parallelization strategy without
setting any affinities from threads to system cores (unless
specified). The OS allocates threads to the available cores and
manages migration among them. This makes impossible to
have always the same computing scenario. Hence, it is not
possible to predict which thread is going to finish first its
execution. In order to ensure the correctness of the algorithm
the approach shown on Fig. 3 has been implemented.

The main thread is created when the process is started. All
the other threads on the application are spawned from it. The
Feeder thread is the first created from the main, it starts
fetching blocks from the NC-program and storing them in the
stringBuffer. After the stringBuffer is full or an initialization
time has passed, the LEX threads are created from the main.
The Feeder thread is joined to the main after all LEX threads
have finished processing their corresponding data, and are
joined to the main thread.

A thread in this application can be in three different states:
Active, Sleeping, and Zombie. The first, is the state when all
thread resources are utilized, and thread execution is taking
place. The second, happens when a thread is suspended waiting
for other threads to join it, this applies only to the main thread.
The last, is reached when a thread finishes its execution but it
is still not joined to any other thread.

5. Case Study

In this section the effectiveness of the proposed algorithm is
investigated through comparison among several execution
scenarios, this analysis includes a benchmarking between
parallel versions against the serial variant. The application was
tested on an Intel Core i3-2370M processor with 2.40GHz and

Fig. 3. Thread execution scheme.

4 logical processors. The Linux RT extension with the
PREEMPT_RT patch was utilized in order to explore the
system characteristics under an OS which reinforces
determinism. As input to the software a NC-program was
selected including 998 blocks.

Since this research strives to propose a dynamical
parallelization strategy in which threads can run on any core
and be migrated according to the need by the OS, the behavior
of threads migration is explored (see Fig. 4). The cores on
which threads were allocated for execution at each function
specific iteration were tracked. A function iteration for the
Feeder thread consists in the operations needed for fetching a
block from the NC-program and placing it in the stringBuffer.
For LEX threads, a function iteration comprises the steps for
retrieving a block data from the stringBuffer, analyze its
content, parse it, and store the result in the parsedBuffer. From
Fig. 4 it may be seen that minimum migration of threads
execution among system cores is present on a 4 cores system
when 5 active threads are scheduled.

In order to deeply analyze the system behavior, 500
consecutive executions were performed at each test scenario.
The time it takes for the LEX module to process the whole file
is recorded at each program run. The realized experiments
differ in the following parameters: Priority: Scheduling policy,
parallelization strategy and number of threads.

Fig. 4. Thread execution over system cores.

868 José María Vivanco et al. / Procedia CIRP 41 (2016) 864 – 869

The priority defines all application threads priority in a
range of 0-99. System processes compete also for resources
within this priorities span. The software was tested with
priority 0 (Non-RT constraints. It can be preempted by system
processes. Several user space processes run at the same level.)
and priority 90 (Considerable high RT constraints. Can only be
preempted by few equal or higher priority system processes.).

The scheduling policy determines the algorithm utilized for
dictating threads execution. In the performed experiments the
Linux-provided default policies were used, namely
SCHED_OTHER (It applies when no RT behavior is desired.
It is based on equal timing execution for all threads.) and
SCHED_FIFO (It implements a FIFO scheduling policy. It
preempts any thread running under SCHED_OTHER policy. A
thread under this policy runs until it completes its execution or
it is preempted. These threads can be preempted by another
higher priority thread or a new one introduced under the same
priority (if it is runnable). In the realized tests this policy is set
for threads running at priorities above 0.).

The parallelization strategy defines how threads are
allocated to system cores for execution. For benchmarking
purposes not only dynamic parallelization is used but also static
threads allocation onto system cores. Using static
parallelization each of the spawned threads from the main is
executed for all the long the process lasts on a specific
processor and is never migrated. Hereafter this method is
named as ATT n Threads, where n denotes the total number of
active threads. Using dynamic parallelization the OS
determines the system core where to execute each thread and
the migrations required. From now onwards this method is
referred as DET n Threads, where n has the same meaning as
above.

The thread number refers to the total number of active
threads. When referring to active threads, the main thread is not
counted because it is most of the time in a Sleeping mode. For
the serial version only 1 LEX and 1 Feeder thread are created
and are both allocated to run on CPU0. For the parallel
executions 4 and 8 active threads algorithms were tested. When
testing DET n versions the OS allocates threads onto execution
whereas for ATT n algorithms the arrangements in Tables 1 and
Table 2 were tried.

Table 1. Att 4 Threads configuration.

CPU0 CPU1 CPU2 CPU3

Feeder LEX0 LEX1 LEX2

Table 2. Att 8 Threads configuration.

CPU0 CPU1 CPU2 CPU3

Feeder LEX0 LEX1 LEX2

LEX3 LEX4 LEX5 LEX6

Statistical data obtained by the various experiments is

shown on Table 3, a graphical version in Fig. 5 and Fig. 6. In
each test scenario is considered worthwhile to know the mean,
minimum, and maximum execution times. Furthermore the
standard deviation σ gives us a way to measure the dispersion

among the run times at each scenario. In order to quantify the
benefits of the proposed solution a performance gain factor is
determined for all parallel versions against its serial variant
with the same test parameters, this gain is calculated in terms
of average execution times (from now onwards it is referred as
performance gain).

The gathered results supply valuable information from
which we can comment the following: The performance gain
obtained by the parallelized algorithm depends mainly on 2
factors: priority assigned to the application threads, and ratio
between number of threads and system cores. The Det n
Threads versions show very close results to their Att n Threads
counterparts when setting high priorities and equal number of
threads as cores on the computing platform. Under these
conditions the resulted performance gains were 4.205, and
4.225 for the Det 4 Threads and Att 4 Threads executions
respectively. Without reinforcing determinism the timing
results homogenity of the Det n Threads algorithms is seriously
degraded. When setting priority 90 to the software threads, both
parallel versions Det 8 Threads and Att 8 Threads presented
slower execution times than their 4 threaded variants,
especially the performance gain for the Det 8 Threads
algorithm was considerably decremented getting only a gain
factor of 2.621. In general the application behavior is better
when splitting up the execution in the same number of threads
as available processing cores than when running the software
over 8 threads.

Table 3. Recorded experiment results.

 Mean
(ms)

Min
(ms)

Max
(ms)

σ (ms) Gain

Non RT. Serial 9.265 9.144 13.172 0.262 -

Non RT. Det 4 Threads 4.841 2.429 10.871 1.366 1.914

Non RT. Att 4 Threads 2.629 2.486 8.708 0.455 3.524

Non RT. Det 8 Threads 9.314 4.436 29.802 1.521 0.995

Non RT. Att 8 Threads 6.995 5.116 19.705 2.7 1.3245

Priority 90. Serial 10.643 10.105 11.383 0.176 -

Prio 90. Det 4 Threads 2.531 2.37 4.47 0.111 4.205

Prio 90. Att 4 Threads 2.519 2.437 4.96 0.15 4.225

Prio 90. Det 8 Threads 4.061 3.937 5.785 0.112 2.621

Prio 90. Att 8 Threads 2.328 2.535 4.52 0.13 4.0498

Fig. 5. Experiments execution time results part 1.

869 José María Vivanco et al. / Procedia CIRP 41 (2016) 864 – 869

Fig. 6. Experiments execution results part 2.

6. Discussion

The reported results show the possibility of getting
advantage of multi-core systems by partitioning CNC software
modules following a dynamic parallelization strategy. The
developed functions were tested isolated from the complete
NCK. Admittedly the integration of the devised software in a
complete NCK is desired in order to test the effect of threads
competing for system resources, interaction among software
components, and heavier computational load. Nevertheless, the
work presented in this paper is a step forward towards the goal
of conceiving a parallel NCK architecture. Furthermore, the
obtained results bring us an approximation to the real execution
scenario, and let the door open for further research on this lead.

7. Summary and Outlook

Parallel programming has been addressed towards CNC
software partitioning. The devised concept does not rely on
static parallelization, it can be split on any number of threads
letting the OS to allocate and migrate threads among cores for
execution. The proposed design is based on the study of state
of the art NCK modules allowing concurrent execution of an
IPR and considering also the cutter radius compensation
function. Following the proposed design the Feeder and the
LEX modules were implemented, being the latter partitioned
into 4 and 8 threads for benchmarking purposes. Recorded
timing results on a 4 processing cores platform showed
considerable performance gains of the suggested approach
against its serial variants. It turned out that priority at which the
application threads are run, and ratio between number of active
threads and available system cores influence on the
performance enhancement.

This research could be directed towards several paths. The
complete implementation of a parallel NCK following a
dynamic parallelization strategy will bring the benefits of
multi-core processors to CNC taking advantage also of the
rapid computing technology evolution. So far the presented
hypothesis has been proved on the IPR module, and the look
ahead function [14]; interpolation algorithms can also benefit
of this strategy resulting in higher machining accuracy.

Acknowledgements

The work presented in this paper was funded by the DFG in
the project PANAMA.

References

[1] Koren Y. Control of machine tools. Journal of Manufacturing Science and
Engineering, 119(4B):749{755, 1997.

[2] Erkorkmaz K and Altintas Y. High speed cnc system design. part iii: high
speed tracking and contouring control of feed drives. International Journal
of Machine Tools and Manufacture, 41(11):1637{1658, 2001.

[3] Sencer B, Altintas Y, and Croft E. Feed optimization for five-axis cnc
machine tools with drive constraints. International Journal of Machine
Tools and Manufacture, 48(7):733{745, 2008.

[4] M. Keinert, A. Huf, and A. Verl. Continuous parameter calculation as
control internal task (kontinuierliche kennwertberechnung als
steuerungsinterne task). Proceedings of SPS/IPC/DRIVES 2010,
Nuremberg, Germany, pages 361{369, 2010.

[5] D. Scheifele and G. Pritschow. Methods for the avoidance of surface defects
and collisions during milling operation for the lot size one. In Proceedings
of CIRP 2nd International Conference on Process Machine Interactions,
Vancouver, Canada, 2010.

[6] A. Verl, E. Westkaemper, E. Abele, A. Dietmair, J. Schlechtendahl, J.
Friedrich, H. Haag, and S. Schrems. Architecture for multilevel monitoring
and control of energy consumption. In Glocalized Solutions for
Sustainability in Manufacturing, pages 347{352. Springer, 2011.

[7] M. Keinert and A. Verl. System platform requirements for high-
performance cncs. In Proceedings of FAIM 2012 22nd international
conference on fexible automation and intelligent manufacturing, Helsinki,
Finland, 2012.

[8] S. A. Guccione. Hardware/software trade offss in multicore architectures.
2008.

[9] P. Gepner and M. F. Kowalik. Multi-core processors: New way to achieve
high system performance. In Parallel Computing in Electrical Engineering,
2006. PARELEC 2006. International Symposium on, pages 9-13. IEEE,
2006.

[10] N.N. Simplifying multi-core migration in automation applications. White
Paper, Intel/Beckhoff 2008.

[11] J. Bregenzer and J. Hartmann. An approach towards automation firmware
modeling for an exploration and evaluation of efficient parallelization
alternatives. In Parallel Computing in Electrical Engineering (PARELEC),
2011 6th International Symposium on, pages 13{18. IEEE, 2011.

[12] N.N. Model driven development - simplifying multicore systems
deployment. White Paper, IBM Corporation, 2009.

[13] Y. Dadji, J. Maass, and H. Michalik. Parallel task processing on a
multicore platform in a pc-based control system for parallel kinematics. In
proceedings of the 6th International Conference on Computing,
Communications and Control Technologies (CCCT), Orlando (FL), USA,
2008.

[14] M. Keinert, B. Kaiser, A. Lechler, and A. Verl. Analysis of cnc software
modules regarding parallelization capability. Proceedings of 24th
International Conference on Flexible Automation and Intelligent
Manufacturing (FAIM), San Antonio, Texas., 2014.

[15] H. Hong, D. Yu, X. Zhang, and L. Chen. Research on the data hungry
problem in cnc system based on the architecture of real-time multitask. In
Computer Research and Development (ICCRD), 2011 3rd International
Conference on, volume 2, pages 103{108. IEEE, 2011.

[16] S.-H. Suh, S.-K. Kang, D.-H. Chung, and I. Stroud. Theory and design of
CNC systems. Springer, 2008.

[17] B. Chapman, G. Jost, and R. Van Der Pas. Using OpenMP: portable shared
memory parallel programming, volume 10. MIT press, 2008.

