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For positive integers k and m, and a digraph D, the k-step m-

competition graph Ck
m(D) of D has the same set of vertices as D and

an edge between vertices x and y if and only if there are distinct

m vertices v1, v2, . . . , vm in D such that there are directed walks of

length k from x to vi and from y to vi for 1� i �m. In this paper,

we present the definition of m-competition index for a primitive

digraph. The m-competition index of a primitive digraph D is the

smallest positive integer k such that Ck
m(D) is a complete graph.We

study m-competition indices of primitive digraphs and provide an

upper bound for them-competition index of a primitive digraph.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

For terminology and notation used herewe follow [1,3,7]. LetD = (V, E) denote a digraph (directed

graph) with vertex set V = V(D), arc set E = E(D) and order n. Loops are permitted but multiple arcs

are not. A x → y walk in a digraph D is a sequence of vertices x, v1, . . . , vt , y ∈ V(D) and a sequence

of arcs (x, v1), (v1, v2), . . . , (vt , y) ∈ E(D), where the vertices and arcs are not necessarily distinct. A

closed walk is a x → y walk where x = y. A cycle is a closed x → y walk with distinct vertices except

for x = y.

The length of a walkW is the number of arcs inW . The notation x
k→ y is used to indicate that there

is a x → ywalk of length k. The distance from vertex x to vertex y in D is the length of a shortest walk

from x to y, and denote this by d(x, y). An l-cycle is a cycle of length l, and denote this by Cl . If the
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digraph D has at least one cycle, the length of a shortest cycle in D is called the girth of D, and denote

this by s(D).
A digraph D is called strongly connected if for each pair of vertices x and y in V(D) there is a walk

from x to y. For a strongly connected digraph D, the index of imprimitivity of D is the greatest common

divisor of the lengths of the cycles in D, and is denoted by l(D). If D is a trivial digraph of order 1, l(D) is
undefined. For a strongly connected digraph D, D is primitive if l(D) = 1. If D is primitive, there exists

some positive integer k such that there is a walk of length exactly k from each vertex x to each vertex

y. The smallest such k is called the exponent of D, denoted by exp(D).

Proposition 1 [3]. Let D be a primitive digraph with n vertices, and let s be the girth of D. Then we have

exp(D) � n + s(n − 2).

Cohen [6] introduced the notion of competition graph in connection with a problem in ecology.

The competition graph of a digraph D, denoted by C(D), has the same set of vertices as D and an edge

between vertices x and y if and only if there is a vertex z such that (x, z) and (y, z) are arcs of D. Since

the notion of competition graphs was introduced, there has been numerous literature on competition

graphs. For surveys of the literature of competition graphs, see [8]. In addition to ecology, their various

applications include applications to channel assignments, coding, andmodeling of complex economic

and energy systems.

Cho et al. [5] generalized competition graph to m-step competition graph. Let D be a digraph with

vertex set V and let k be a positive integer. A vertex z of D is a k-step common prey for x and y if x
k−→ z

and y
k−→ z. The k-step competition graph of D, denoted by Ck(D), has the same vertex set as D and an

edge between vertices x and y if and only if x and y have a k-step common prey in D and x /= y. The

k-step digraph of D, denoted by Dk , has the same vertex set as D and an arc (x, y) if and only if there is

a x
k−→ y in D. The k-step competition graph of D is the competition graph of Dk , Ck(D) = C(Dk), see

[7]. The concept of k-step digraph and k-step graph are not new, and some asymptotic behavior of Dk

is well known, see [3]. For all undefined graph terminology, see [4,5].

For a positive integerm,m-competition graph of a digraphD, denoted by Cm(D), has the same vertex

set as D and an edge x and y if and only if there are at least m distinct vertices v1, v2, . . . , vm and

arcs (x, vi) and (y, vi) for 1� i �m. That is an edge x and y if and only if there is at least m common

preys for vertices x and y. The k-step m-competition graph Ck
m(D) has the same vertex set as D and an

edge x and y if and only if there are at least m distinct vertices v1, v2, . . . , vm such that vi (1� i �m)

is k-step common prey for vertices x and y, i.e. there exist x
k−→ vi and y

k−→ vi. By the definition of

m-competition graph, we have the following.

Proposition 2. For any digraph D and positive integers m and k, we have

Ck
m(D) = Cm(Dk).

Lemma 3. For a primitive digraph D of order n (� 3) and each positive integer m where 1�m� n, there

is a positive integer k such that Ck
m(D) = Kn, where Kn denotes a complete graph of order n. We also have

Ck+1
m (D) = Kn if Ck

m(D) = Kn.

Proof. We have Cm(Dexp(D)) = Kn by the definition of exp(D) and m-competition graph. Let k =
exp(D). Then by Proposition 2 we have Ck

m(D) = Kn.

Next suppose k be a positive integer such that Ck
m(D) = Kn. Each pair of vertices has at least m

common preys and each vertex has at leastm preys in Dk . Consider two vertices x and y in V(D). There
exist vertices u and v such that there are arcs (x, u) and (y, v). If u = v, we can findm preys of u in Dk .

If u /= v, we can find m common preys of u and v in Dk . In all cases, we can find m common preys of x

and y in Dk+1. Therefore, we have Ck
m(D) = Ck+1

m (D) = Kn. This establishes the result. �
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2. Competition index and scrambling index of a primitive digraph

In this section,weassumethatD is aprimitivedigraphandm is apositive integer such that1�m� n.

The m-competition index of D is the smallest positive integer k such that for every pair of vertices x

and y, there exist distinct vertices v1, v2, . . . , vm such that x
k−→ vi and y

k−→ vi for 1� i �m in D. That

is, the m-competition index of D is the smallest positive integer k such that every pair of vertices x

and y have at least m common preys in Dk . The m-competition index of D is denoted by km(D). From
Lemma 3, km(D) is the smallest positive integer k such that Ck

m(D) = Ck+i
m (D) = Kn for every positive

integer i. An analogous definition can be given for nonnegative matrices. Them-competition index of a

primitive matrix A, denoted by km(A), is the smallest positive integer k such that any two rows of Ak

have positive elements in at least m identical columns.

Akelbek and Kirkland [1] introduced the scrambling index of a primitive digraph D, denoted by

k(D), and in 2008, Kim [7] introduced the competition index of a digraph. In the case of primitive

digraphs, the definitions of scrambling index and competition index are the same. Furthermore, these

definitions are the same as our definition of the m-competition index of a primitive digraph when

m = 1. The m-competition index is a generalization of the competition index and the exponent of a

primitive digraph.

For a primitive digraphD and x, y ∈ V(D)(x /= y),wedefine the localm-competition indexof vertices

x and y as

km(D : x, y) = min{k : x and y have m common preys in Dt where t � k}.
Wemay define

km(D : x, x) = min{k : x has at least m preys in Dt where t � k}.
Consider a vertex x ∈ V(D). We define the local m-competition index of x as

km(D : x) = max
y∈V(D)

{km(D : x, y)}.
Then,

km(D) = max
x∈V(D)

km(D : x) = max
x,y∈V(D)

km(D : x, y).
From the definitions of km(D), km(D : x), and km(D : x, y), we have

km(D : x, y) � km(D : x) � km(D).

By the definitions of the m-competition index and the exponent of D of order n, we have

km(D) � exp(D),

wherem is a positive integer with 1�m� n. Furthermore we have

kn(D) = exp(D).

Proposition 4. For a primitive digraph D of order n and for positive integers i, j such that 1� i < j � n, we

have

ki(D) � kj(D).

Furthermore, we have k(D) � km(D) for a positive integer m (� n).

Proof. For each pair of vertices x and y, ki(D : x, y) � kj(D : x, y). This establishes the result. �

From the Proposition 4, we have the following relation between the competition index (scrambling

index) and the exponent of a primitive digraph D:

k(D) = k1(D) � k2(D) � · · · � kn(D) = exp(D).
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Fig. 1. The Wielandt graphWn .

3. Upper bound for the m-competition index of a primitive digraph

In [1,2,7], there are some results related to k(D) = k1(D).

Proposition 5 [1]. Let D be a primitive digraph with n vertices, and let s be the girth of D. Then, we have

k(D) � n − s +
⎧⎪⎪⎨
⎪⎪⎩

(
n−1
2

)
s, when s is even,

(
s−1
2

)
n, when s is odd.

Theorem 6 [1,7]. Let D be a primitive digraph of order n, and let Wn be the Wielandt graph as shown in

Fig. 1. Then,

k(D) � k(Wn).

Equality holds if and only if D = Wn.

Next we determine the upper bound of km(D) for a primitive digraph. First, we study the m-

competition index of the Wielandt graph Wn.

Lemma 7. For the Wielandt graph Wn and 1�m� n (n� 3), we have

km(Wn) = 1 +
⎧⎨
⎩

(
n+m−2

2

)
(n − 1), when n + m is even,(

n+m−3
2

)
n, when n + m is odd.

Proof. Let the vertex set of Wn be labeled as in Fig. 1.

Case 1. n + m is even.

Consider two vertices x and y in {v1, v2, . . . , vn−1, vn}. There are arcs (x, vi) and (y, vj) in Wn such

that 1� i, j � n − 1. Consider the digraph (Wn)
n−1.

V((Wn)
n−1) = {v1, v2, . . . , vn},

E((Wn)
n−1) = {(vi, vi)|i = 1, 2, . . . , n − 1} ∪ {(vi, vi−1)|i = 2, 3, . . . , n} ∪ {(v1, vn)}.

Since vi and vj are the loop vertex of (Wn)
n−1, the minimum number of vertices that can be reached

from vi at
(
n+m−2

2

)
-step in (Wn)

n−1 is
(
n+m
2

)
and the minimum number of vertices that can be

reached from vj is the same. Therefore, vi and vj have at least m common preys at
(
n+m−2

2

)
-step in

(Wn)
n−1. That is, km((Wn)

n−1 : vi, vj) �
(
n+m−2

2

)
. Therefore, km(Wn : x, y) � 1 +

(
n+m−2

2

)
(n − 1).
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Fig. 2. W ′
n .

Consider vertices vn and v� n
2
�. In (Wn)

n−1, vn and v� n
2
� have nom common preys at

(
n+m−2

2

)
-step.

Therefore, we have

km

(
Wn : vn, v� n

2�
)

>

(
n + m − 2

2

)
(n − 1),

which, in turn, leads to km(Wn) = 1 +
(
n+m−2

2

)
(n − 1).

Case 2. n + m is odd.

Sincen + m is odd,wemay suppose that 1�m� n − 1. Consider two vertices x and y in {v1, v2, . . . ,
vn−1, vn}. There are arcs (x, vi) and (y, vj) inWn such that 1� i, j � n − 1. Consider the digraph (Wn)

n.

Each vertex has a loop, and {v1, v2, . . . , vn−1} forms an (n − 1)-cycle in (Wn)
n.

V((Wn)
n) = {v1, v2, . . . , vn},

E((Wn)
n) = {(vi, vi)|i = 1, 2, . . . , n} ∪ {(vi, vi+1)|i = 1, 2, · · · , n − 1} ∪ {(vn−1, v1), (vn, v1)}.

Since vi and vj are the loop vertex of (Wn)
n, theminimumnumber of vertices that can be reached from

vi at
(
n+m−3

2

)
-step in (Wn)

n is
(
n−1+m

2

)
and the minimum number of vertices that can be reached

from vj is the same. Therefore, vi and vj have at leastm common preys at
(
n+m−3

2

)
-step in (Wn)

n. That

is, km((Wn)
n : vi, vj) �

(
n+m−3

2

)
. Therefore, km(Wn : x, y) � 1 +

(
n+m−3

2

)
n.

Considerverticesvn andv n−m+1
2

. In (Wn)
n,vn andv n−m+1

2
havenom commonpreysat

(
n+m−3

2

)
-step.

Therefore, we have

km

(
Wn : vn, v n−m+1

2

)
>

(
n + m − 3

2

)
n,

and km(Wn) = 1 +
(
n+m−3

2

)
n. This establishes the result. �

By a similar argument, we can find them-competition index of another digraph of order n andwith

girth (n − 1).

Example 8. For the digraphW ′
n in Fig. 2 with girth (n − 1) and 1�m� n (n� 3), we have

km(W ′
n) = km(Wn) − 1.

Theorem 9. Let D be a primitive digraph of order n (�3) and let s be the girth of D. For a positive integer

m such that 1�m� n, we have
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km(D) �

⎧⎨
⎩
n +

(
n+m−4

2

)
s, when n + m is even,

n − 1 +
(
n+m−3

2

)
s, when n + m is odd.

Proof. Let C be an s-cycle and consider two vertices x and y.

Case 1. n + m is even.

We can find vertices u and v in V(C) such that there exist x
n−s−→ u and y

n−s−→ v. Since u and v are

vertices in V(C), there are loops, one containing u and the other containing v inDs.Ds is primitive since

D is primitive. For a positive integer l such that 1� l � n, the minimum number of vertices that can be

reached from a vertex with a loop at l-step is (l + 1). Therefore, the minimum number of vertices that

can be reached from u at
(
n+m−2

2

)
-step is

(
n+m
2

)
in Ds. The minimum number of vertices that can be

reached from v is the same. We hence have km(Ds : u, v) �
(
n+m−2

2

)
, and km(D : u, v) �

(
n+m−2

2

)
s.

Therefore, we have

km(D : x, y) � n − s +
(
n + m − 2

2

)
s.

Case 2. n + m is odd.

Thereexists avertexu inV(C) such that thereexistsx
n−s−1−→ uory

n−s−1−→ u.Without lossof generality,

we may assume that x
n−s−1−→ u(∈ V(C)). Then, we can find a vertex v in V(C) such that there exists

y
n−1−→ v since n − s� n − 1. Theminimumnumber of vertices that can be reached from u at

(
n+m−1

2

)
-

step is
(
n+m+1

2

)
in Ds, and the minimum number of vertices that can be reached from v at

(
n+m−3

2

)
-

step is
(
n+m−1

2

)
in Ds. Therefore, we have

km(D : x, y) � n − s − 1 +
(
n + m − 1

2

)
s.

This establishes the result. �

Denote

K(n, s, m) =
⎧⎨
⎩
n +

(
n+m−4

2

)
s, when n + m is even,

n − 1 +
(
n+m−3

2

)
s, when n + m is odd.

The next example shows that Theorem 9 is sharp for a special case.

Example 10. Let D be a primitive digraph whose adjacency matrix A is given as

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

0 0 0 0 1

1 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

The order of D is 5 and s(D) = 3. Thus, we can check

k1(A) = 7 /= 8 = K(5, 3, 1),

k2(A) = 10 = K(5, 3, 2),

k3(A) = 11 = K(5, 3, 3),

k4(A) = 13 = K(5, 3, 4),

k5(A) = 14 = K(5, 3, 5).
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Remark. Let D be a primitive digraph of order n (�3) and let s be the girth of D. From Theorem 9, we

have

exp(D) = kn(D) � n + (n − 2)s.

This is the same result of Proposition 1. We also have kn−1(D) � n − 1 + (n − 2)s by Theorem 9, and

equality holds when D = Wnby Lemma 7.

Theorem 11. Let D be a primitive digraph of order n (�3). For a positive integer m such that 1�m� n,

we have

km(D) � km(Wn).

Equality holds if and only if D = Wn.

Proof. Let s(D) = s. By Theorem 6, this theorem holds when m = 1. Furthermore, by Lemma 7 and

Example 8, this theoremholdswhen s = n − 1. Let us supposem� 2 and s� n − 2.Wewill show that

km(D) < km(Wn).
Case 1. n + m is even.

km(D) � n +
(
n + m − 4

2

)
s (by Theorem 9)

� n +
(
n + m − 4

2

)
(n − 2)

(
n + m − 4

2
� 0

)

= 3 − n + m

2
+

(
n + m − 2

2

)
(n − 1)

< 1 +
(
n + m − 2

2

)
(n − 1) (n� 3, m� 2)

= km(Wn).

Case 2. n + m is odd.

km(D) � n − 1 +
(
n + m − 3

2

)
s (by Theorem 9)

� n − 1 +
(
n + m − 3

2

)
(n − 2)

(
n + m − 3

2
� 0

)

= 2 − m +
(
n + m − 3

2

)
n

< 1 +
(
n + m − 3

2

)
n (m� 2)

= km(Wn).

Ifm� 2 and s� n − 2, then we have km(D) < km(Wn). This establishes the result. �

4. Closing remark

Akelbek and Kirkland [1,2] obtained an upper bound for 1-competition index, and they also charac-

terized all the primitive digraphs with this upper bound. In [9], it was carried out a research on exp(D)
and its generalization for primitive matrices. These results of these studies can be generalized to m-

competition indices. In the present study, we introduce km(D) as another generalization of exp(D) and
competition index of D.
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