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ABSTRACT 

The proportion o f  the optimum fuzzy number ranking procedure measures the 
consonance of  the fuzzy number under comparison with the fuzzy ideals of  ~a~ 
and min. This is accomplished by using three successive levels o f  analysis, where the 
number of  levels utilized is dependent upon the difficulty of  the ranking problem. 
This method is then compared to eight existing fuzzy number comparison methods. 
When evaluating all nine methods (using five examples) in terms of  the method 
attributes of  robustness, accuracy, and ease of  use, the Lee-Li and proportion of  
the optimum methods are recommended. If, however, the decision maker desires 
the most flexible model, due to spread-preference differences, then the proportion 
o f  the optimum method is recommended. 

KEYWORDS: f u z z y  sets, f u z z y  numbers, f u z z y  number comparison 

I N T R O D U C ~ O N  

The task of comparing fuzzy numbers to yield a totally ordered set can be 
extremely difficult. In many instances, only a partially ordered set results, which 
may be acceptable to a mathematician but not to an analyst, who may need a 
discrete evaluation of smallest and largest. 

Many people have studied the comparison of fuzzy numbers and have pro- 
posed methods that yield a totally ordered set or ranking (Adamo [1], Baas 
and Kwakernak [2], Baldwin and Guild [3], Bortolan and Degani [4], Chang 
[5], Chen [6], Dubois and Prade [7], Jain [8, 9], Kerre [10], Li and Lee [11], 
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Murakami [12], Nakamura [13], Tsukamoto et al [14], Watson et al [15], and 
Yager [16-18]). A review and comparison of these existing methods can be 
found in Li and Lee [11]. These methods range from the trivial to the complex, 
from including one fuzzy number attribute (mode) to including many fuzzy 
number attributes (such as mode, spread, and closeness to a fuzzy ideal). Some 
have higher discrimination capabilities and can solve more types of comparison 
problems (ie, are more robust). Still others have higher modeling accuracy. All 
are "goal-specific," meaning that they can be used only for a single type of 
decision-maker's comparison goal set. 

This paper introduces a new fuzzy number comparison method, the propor- 
tion of the optimum [19]. It incorporates the fuzzy number attributes of mode 
and spread to determine the degree of consonance with the ~ and min. 

To illustrate the proportion of the optimum method in comparison with the 
existing comparison methods, five examples (Section 4) will be solved using 
each approach, highlighting the robustness, flexibility, accuracy, and ease of use 
of each method. The eight existing methods used for comparison are Yager's 
F1, F3, and F4 indices [18], Chang's [5], Kerre's [10], Murakami et al's [12], 
Nakamura's [13], and Lee and Li's [20]. The results will then be compared, 
and a discussion of the appropriate uses of each method will follow. 

REVIEW OF FUZZY NUMBER COMPARISON METHODS 

Since the proportion of the optimum method is not based on possibility, only 
the current methods that are not based on possibility theory will be reviewed. 

Yager's F1 Index 

Yager's first ranking index [16-18] can be considered a weighted mean value 
of the fuzzy number. In a general form, the index is 

1 

Fl(,4i) = f0 g(x)tz'a'(x)dx 

fo l# A~ (x ) dx 
(1) 

where g(x) is a weight function measuring the importance of the value x. When 
g(x) = x, the index can be thought of as the geometric center of Ai as seen 
in Figure 1. Note that the support of the fuzzy number is [0, 1]. If the support 
sets of the fuzzy numbers under comparison are not [0, 1], then they can be 
rescaled by dividing each of the members of max[sup SA, ], where i denotes 
the/th fuzzy number. The use of this scaling procedure will yield an index of 
1/max[sup SA, ] times the index if scaling is not used. The integration limits 
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Figure 1. Yager's F1 index when g(x) = x.  
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min[inf SA, ] and m/ax[sup SAI ] 

If the exact indices are not desired, then scaling is not required. The decision 
logic is, the higher the index, the higher the ranking of the fuzzy number. 

When g(x )  = x and the fuzzy numbers are triangular, Eq. (1) reduces to 

FI ( / I i )  = l (a  + b  + c )  (2) 

where a = inf S~, ,  #A, (b) = 1, and c -- sup S L.  

The rankings of, , t l  and-42 in the five examples (Section 4) using this index, 
with g(x )  = x ,  are listed in Table 1. Since Yager's F1 index is a measure of 
the mean value, it is subject to the pitfall of nondiscrimination when the modes 
of the fuzzy numbers are equivalent and the spreads are symmetric as seen in 
Example 2. 

Yager's F3 Index 

The F3 index [20] measures the area under the membership function from the 
mode back to the origin, as shown in Figure 2. The mathematical expression is 

f0 ctmaX F3(Ai) = M ( A ~ )  do~ (3) 

where amax = sup ~Ai(x) and M(A~) represents the average value of the 
elements having at least an s-grade of membership. Again, the higher the 
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Figure 2. Yager's F3 index. 
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index value, the higher the ranking. Before M(A~) can be calculated, however, 
the membership function must be expressed in terms of o~ (also known as the 
interval of confidence). The results for the five examples are listed in Table 
1. Note that, like the F1 index, this index cannot discern fuzzy numbers with 
identical modes and symmetric spreads. 

Yager's F4 Index 

This index [20] measures the closeness, in terms of Hamming distance, of 

~(x) 

#. 

Figure 3. Calculation of Yager's F4 index. 
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the fuzzy number to a fuzzy "true" value defined as 

#t~e(x) = x (4) 

where the support of true is [0, 1]. If the supports of the fuzzy numbers in 
question are not [0, 1], the scaling method described for the F1 index can be 
used if desired. 

The F4 index is exactly equal to the Hamming distance between #t~e(x) and 
tx~ (x). It is calculated by using 

P 1 
F4(,4i) = J0 Ix - tt ~,(x)[ d x  (5) 

Figure 3 illustrates the F4(,4i) calculation. 
Note that in this case the smal ler  the F4 value, the greater the ranking 

of-4i.  The rankings of-41 and -42 for Examples 1-5 are listed in Table 1. 
Unlike Yager's F1 and F3 indices, the F4 index can discriminate between 
fuzzy numbers with identical modes and symmetric spreads. Furthermore, this 
method ranks as higher those fuzzy numbers with larger spreads, while F1 and 
F3 rank fuzzy numbers with lower spreads as higher. 

Chang's Method 

Chang [5] proposes an index similar to Yager's F1 index. He defines his 
index as 

C ( A i )  = f x# ;4 , ( x )dx  (6) 
J S  

which reduces to 

C (74i) = ~(b - a)(a + b + c) (7) 

for a triangular fuzzy number (a, b, c). Note that this is the numerator of 
Yager's F1 index with g(x)  = x .  Therefore, Chang's index is a nonnormalized 
version of Yager's F1 index with g(x)  = x .  Chang also has the restriction of 
the support of "4i being [0, 1], so scaling must be employed if the support is 
not strictly [0, 1] and the exact indices are required. However, for comparison 
purposes only, the scaling need not be used, as the same decision will be reached 
with or without the scaling. 

As with Yager's F1 index, the larger the index, the higher the ranking. The 
rankings for Examples 1-5 are also found in Table 1. Note that this method 
favors fuzzy numbers with larger spreads. 

Kerre's Method 

Like Yager, Kerre [10] applies the concept of minimizing the Hamming 
distance between the fuzzy number ,'ti and some preidentified goal. Unlike 
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Yager, however, the goal Kerre chooses is the fuzzy maximum (m-~). The 
index is calculated by 

/ ,  

K(~4i) ---- t [IZF4~(X) - IX~aax(X)l dx (8) 
d~ 

where SAI is the support of-4i.  
The smaller the index, the higher the ranking because of the smaller distance 

from the fuzzy maximum. Table 1 lists the rankings for Examples 1-5. This 
method behaves exactly like Yager's F1 with respect to nondiscrimination with 
identical modes and symmetric spreads. 

The Murakami-Maeda-Imamura Methods 

In 1983, Murakami, Maeda, and Imamura [12] introduced two ranking meth- 
ods for triangular and trapezoidal fuzzy numbers: the a-cut method and the 
centroid method. The a-cut method is identical to Adamo's [1] method, which 
is based on possibility theory, so it will not be reviewed here. 

The centroid method calculates the centroid (x0,Y0) of each fuzzy number 
.;li, and the fuzzy number with the largest x0 and Y0 values becomes the largest 

fuzzy number. The centroid values are defined as 

1 

fo XlZA, (x) dx 
(9) X o  = 1 

f lz;~, (x) dx 

and 

fo 1Xp.~i ( X ) ~ 4 i ( X )  d# 
(lO) Yo : 1 

fo Xl~ ~,(x) dlz 

Note that these definitions implicitly restrict the support of the fuzzy numbers 
to [0, 1], so scaling must be used if exact indices are desired. Also note that 
x0 is exactly equal to Yager's F1 index when g(x) = x. Li and Lee [11] prove 
that Y0 also equals F1 when g(x) = (l /2)/za(x).  

However, in special cases, the centroid values can lead to inconsistent con- 
clusions. For example, let Ai be the rectangular fuzzy number and .212 the 
isosceles triangular fuzzy number illustrated in Figure 4. Note that when the 
x0's are compared, the conclusion is -A1 > -212- Recognizing this problem, Mu- 
rakami et al suggest ranking the fuzzy numbers according to the importance the 
decision maker attaches to both x0 and Y0. This means that the ordering is then 
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4. Illustration of special cases of the Murakami-Maeda-Imamura centroid 

based on one coordinate of the centroid or the other. Bortolan and Degani [4] 
suggest that x0 seems to be the only rational index, since most fuzzy numbers 
are normalized [sup #Ai (x) -- 1]. 

Using this method for the five examples yields the rankings listed in Table 
1. When determining x0 and Y0 for these triangular fuzzy numbers, Y0 = 0.33 
for all of them (as for any triangular fuzzy number), so this method essentially 
defaults to Yager's F1 index with g(x)  = x ,  with all its characteristics and 
qualities. 

Nakamura's Method 

Nakamura [13] builds upon Kerre's method and Tsukamoto et al 's [14] 
method to form a comparison index t~p(Zi > A j)  that combines the Hamming 
distance of both fuzzy numbers to the fuzzy minimum and the fuzzified best 
and worst states. Mathematically, #p(ai > A j) is defined as { ~----d[c~D(ALi, ~m(ALi, ALj) 

#p(Ai :> A j )  : q- (1 - ot)D(ZRi, ~IIn(ARi, A R j ) ) ] ,  A s ~ 0 

1/2, A~, = 0 

(11) 
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= ot[D(Ari, mien(ALl, J4Lj) + D(ALi, ~lm(ALi, ~ILj)) ] 

+ (1 - a)[D(AR~, mi~'-n(ARi, f4Rj) + D(ARj, mlm(ARi , ARj))] (12) 

D(Ai,  -A j) = f #A,(X) - #Ai(X) dx (13) 
.Is 

/x~Li (r) = sup#A, (x) Vr E R (14) 
r>x 

/z~R,(r) = sup#a,(x) Vr E R (15) 
r<x 

JILi and "~Ri are illustrated in Figure 5. 
For clarification, the illustrations of mi~-'-h(.ALi, JILj) and ~-ln(f4ni, ilRj), 

which represent the fuzzified worst and best states, are shown in Figures 6 
and 7, respectively, a reflects the decision-maker's preference placed on the 
left-hand side tail versus the right-hand side tail (ie, the desirability of erring 
lower versus erring higher). The index itself represents a weighted combina- 
tion of the distances between a fuzzy number and the fuzzy best and worst 
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Figure 6. Illustration of min(Au, ALj). 
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as a proportion of the sum of weighted combinations of the distances be- 
tween both fuzzy numbers and the fuzzy best and worst. The logical use of 
the index is, when t~p(.,~/ > A2) >- 0.5 then 24 i > Aj.  Note that by definition 
#p(/ij  >/ t i )  = 1 - #p(Ai > A j). 

The solutions of Examples 1-5 when ~ = 0.5 are listed in Table 1. In general, 
as ~ increases, fuzzy numbers with smaller spreads are judged to be greater. 
When o~ = 0.5, Nakamura's method cannot distinguish fuzzy numbers with 
identical modes and symmetric spreads. 

Lee  and Li ' s  M e t h o d  

Very recently, Lee and Li [11] proposed a ranking method based on a gener- 
alized mean value and spread of the fuzzy numbers. In general, the generalized 
mean value is calculated as 

/A,  x#A, (x)f(~li) dx 
m(Ai) (16) 

JSA, # A, ( x ) f  (-Ai) dx 

where f ( / t i )  is the probability density function of.4i .  Note that this is a gener- 
alized version of Yager's F1 index function expressed in Eq. (1) with g(x) = x 
and a uniform density f ( A i )  = 1/[Zi]. However, the meanings are different. 
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Yager's F1 is a weighted mean value, whereas Lee and Li 's  is a probability 
measure of  a fuzzy event. The spread is then calculated as 

[ f s  XZlxA , ( x ) f (~4 i )  d x  

S(~4i) :]~-[ fSA' IXAI (x) f (f4i) dx 
L JSh i 

[m(~li)i ] 2 
(17) 

When a uniform density function is assumed and the fuzzy numbers are trian- 
gular, Eqs. (16) and (17) reduce to 

m ( f t i )  = (1/3)(a + b  + c )  

s ( f t i )  = (1/18)(a 2 + b 2 + c 2 - a b  - a c  - b c )  

(18) 

(19) 

and 

where a = inf S&, /z~  i(b) = 1, and c = S.~ i . 
When a proportional density function, f(ffti) ---- C ttA(X), is assumed, Eqs. 

(16) and (17) reduce to 

(20) m ( / t i )  = (1/4)(a + b + 2c) 

S(/4i) = [(a -- b) 2 if- 2(a - c) 2 + 2(b - c)2]/80 (21) 
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Proofs of these reductions are given in Lee and Li [11]. Once the mean values 
and spreads are calculated for the fuzzy numbers, the ordering rule Li and Lee 
propose is 

Ifm(Ai) > m(~tj)orifm(~ti) = m(Ai)andsOti) < s(~4j), thenAi > .4j. 

Note that the spreads come into play only when the mean values are equal. No 
concurrent analysis of mean values and spreads is made. 

When uniform probability distributions are assumed, the rankings for Exam- 
ples 1-5 are those listed in Table 1. This method ranks as higher those fuzzy 
numbers with smaller spreads. 

PROPORTION OF THE OPTIMUM METHOD 

The proportion of the optimum method [19], like Kerre's and Nakamura's 
methods, compares the fuzzy numbers to specified fuzzy ideals. Recall that 
Kerre calculated the Hamming distance from the fuzzy number to the fuzzy 
maximum, and Nakamura calculated a ratio based on the Hamming distance 
from the fuzzy best and worst for each alternative to the global fuzzy best and 
worst. With the proportion of the optimum method, normalized fuzzy numbers 
will be compared on the basis of their consonance with the fuzzy max and fuzzy 
min. This will be accomplished using three levels or "cuts" of analysis: 

1. "Rough cut"--the determination of the percentage of the fuzzy__number 
used to form the fuzzy m-~ and fuzzy min, [m-'~ (MP) and min (mp) 
proportions]. 

2. "Fine cut"--the determination of the degree of propensity toward the m-~ 
or min [composite m-~ (CMP) and composite min (cmp) proportions]. 

3. "Final choice"-- selection based on the decision-maker's preference of 
amount of spread or amount of vagueness desired (denominators of 
CMPs). 

Not all comparison situations will require all three levels. In general, as the 
difficulty of the comparison increases, so does the number of levels used. 

To perform the "rough cut," the m-~ (MP) and min (mp) proportions are 
calculated using 

[~fi-ax(a,aj)(x) ~,a,(x)] A dx 

MP(,4i) = A' (22) 

~sA, (x) dx Iz,~ i 
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and 

A (x)] d x  [~m(~,~i)(x) 

mp(.4i) -- Ai (23) 

sA~ (x) d x  

After MP(,'~i) and mp(A/) are calculated for each alternative Ai, they are ranked 
according to the logic presented in Table 2. Note that if after the comparisons, 
MP(Ai) and mp(Ai) prove indeterminate, which may happen if a fuzzy number 
with small area is compared to a fuzzy number with large area, then the "fine 
cut" is employed using the composite ~ ( C M P )  and composite min(cmp) 
proportions: 

MP(/Ii) ---- 1 - cmp(-~i) (24) 
CMP(Ai) -- MP(.4i) + mp(.~i) 

mp(.4i) - 1 - cmp(,4i) (25) 
cmp(.Ai) -- MP(.4i) + mp(Ai) 

These composite m-~ and min proportions are compared using the logic pre- 
sented in Table 3. [Note that because of the structure of CMP(.'li) + cmp(.4 i )  = 

1, only the three instances listed in Table 3 are mathematically possible.] If 
the rankings are still indeterminate after this level, the "final choice" compar- 
ison factors, which are simply the denominators of the CMPs, are calculated. 
Specifically, 

d[CMP(Ai)] --- MP(Ai) + mp(.,4i) (26) 

The use of the denominators of the CMPs is dependent upon the decision- 
maker's preference of larger versus smaller spreads. (Note the last two transla- 
tion "THEN"  columns in Table 3.) In general, the third level will be invoked 
only if the fuzzy numbers under comparison are fairly indistinguishable (ie, 
same mode and/or symmetric spreads). Such a case is illustrated in Example 2. 
Out of the five examples presented, only Example 2 needs the third level for 
solution. The ranking for these five examples can also be found in Table 1. 

If more than two fuzzy numbers are to be compared, then the CMP(Ai) and 
cmp(Ai) are based on a ~ and mi~-~ formed by more than two fuzzy numbers. 
Two group rankings are then developed: one based on the CMP(.Zli) and one 
based on cmp(Ai). Recall that, for the first ranking, the fuzzy number with the 
largest CMP is ranked largest and so on down. For the second ranking, the 
fuzzy number with the largest cmp is ranked smallest, and so on up. Often, the 
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Ranking Logic for Proportion of the Optimum Method 
(MP and MP Proportions) 

IF AND THEN 

MP(Ai) > MP(,4j) mp(Ai) _< mp(4)  Ai > Aj 
mp(Ai) > mp(Aj) Calculate the composite proportions 

and compare, using Table 3. 

Calculate the composite proportions 
and compare, using Table 3. 

.4i = A j  

MP(/Ii) < MP(Aj) 

MP(~) = MP(~) 

mp(.'4i) -> mp(.dj) 
mp(.Ai) < mp(.,~j) 

mp(/li) < mp(/ij) 
mp(Ai) = mp(.,{j) 
mp(/{i) > mp(/ij) 

orders will conflict in some way. Those fuzzy number relationships that conflict 
given initial group ranking are then further investigated on a pairwise basis to 
resolve the conflict, using the logic in Tables 2 and 3. 

FIVE EXAMPLES 

Example 1. Different Mode, Same Spreads 

This example, illustrated in Figure 8, tests each method's capability of dis- 
criminating between means when the spreads of the fuzzy numbers are equal. 
The triangular membership functions of A1 and A2 are 

and 

x / 3 -  1, 3 < x < 6  

~.a, (x) = - x / 3 + 3 ,  6 < x < 9  

0, elsewhere 

(27) 

x / 3 - 5 / 3 ,  5 < x < 8  

#,a2(x) = - x / 3  + 11/3, 8 < x < 11 

0, elsewhere 

(28) 
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Figure 8. Example 1. Different mode, same spread. 

Example 2. Same Mode,  Different and Symmetric Spreads 

This example tests each method's capability of discriminating between 
spreads when the modes of the fuzzy numbers are the same. Figure 9 illus- 
trates this example. 

x / 3 -  1, 3 < x < 6  

#a,(x)= -x/3+3, 6<x<9 

0, elsewhere 

(29) 

~,(x) 

2 3 4 5 6 7 8 9 I0 Ii 

Figure 9. Example 2. Same mode, different and symmetric spreads. 

- A 2 
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Figure 10. Example 3. Same LHS function. 
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11 

and 

I x ~ 3  - 5, 

~.a2(x) = J - x / 3  + 7, 

[ 0 ,  

5 < x < 6  

6 < x _ < 7  

elsewhere 

(30) 

Example 3. Same Left-Hand-Side (LHS) Function 

This example notes how the methods perform when the two fuzzy numbers 
being compared have a left-hand-side function in common. Figure 10 illustrates 
this example. The membership functions are 

and 

x / 3 -  1, 3 < x < 6  

#.a, (x) = - x / 3  + 1, 6 < x < 9 

0, elsewhere 

x / 3 -  1, 3 < x < 6  

t~A2(X) = --X/2 + 4 ,  6 < X  < 8  

O, elsewhere 

(31) 

(32) 

Example 4. Same Right-Hand-Side (RHS) Function 

This example notes how the methods perform when the two fuzzy numbers 
being compared have a right-hand-side function in common. Figure 11 illus- 
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Figure 11. Example 4. Same RHS function. 

. . . .  i A2 

trates this example. The membership functions are 

x / 3 -  1, 3 < x < 6  

; zh , (x )=  - x / 3 + 3 ,  6 < x _ < 9  

O, elsewhere 

(33) 
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Figure 12. Example 5. Low mode, small spread versus high mode, large spread. 
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and 

x - 5 ,  5 < x < 6  

/~iz(x) = - x / 3  + 3, 6 < x < 9 

O, elsewhere 

(34) 

Example 5. Low Mode, Small Spread Versus High Mode, Large Spread 

This example illustrates how the method "trades off"  mode values versus 
spread values. This example is illustrated in Figure 12, and the membership 
functions are noted below. 

f x - 5 ,  

# ~ , ( x ) =  ~ - x + 7 ,  

1,0, 

5 < x < 6  

6 < x < 7  

elsewhere 

(35) 

x/7 - 7, 

t~(x)= -x+8, 

O, 

O<x<7 

7 < x < 8  

elsewhere 

(36) 

COMPARISON OF PROPORTION OF THE OPTIMUM WITH THE 
OTHER METHODS 

The nine ranking methods explored in this paper will be compared with one 
another using four criteria: robustness, accuracy, flexibility, and ease of use. 

Robustness refers to the ability of the method to distinguish the larger from 
the smaller fuzzy number, that is, to come up with a discrete ranking without 
an equality. Therefore, the method that has the most discrete rankings (least 
number of equalities) would be judged the most robust. 

Accuracy is the degree to which the method matches intuition. Without em- 
pirical data, intuition must suffice as the "real-world" base. 

Flexibility is the ability of the method to incorporate different goal sets. For 
example, one decision maker may prefer smaller-spread fuzzy numbers; another 
may prefer larger-spread numbers. Those methods that can adapt to different 
goal sets are judged to be more flexible than those methods that cannot. 

Ease o f  use incorporates the length of solution procedure with the ease 
of numerical computations required to solve a given fuzzy number compari- 
son problem. The methods that require simpler numerical computations and a 
shorter solution algorithm would be judged easier to use. 
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Using intuition, the rankings for the five examples are listed below, and the 
behavior of the ranking methods is discussed. 

EXAMPLE 1. DIFFERENT MODE, SAME SPREAD. The ranking should be 
-41 <-42, because the spreads are exactly the same and the mode of-')2 is 
larger than the mode of A1. 

All of the nine ranking methods matched intuition. 

EXAMPLE 2. SAME MODE, DIFFERENT AND SYMMETRIC SPREADS. Here, 
the ranking could be ,'tl < -'t2 if the decision maker preferred less vagueness 
(smaller spread), or ,211 > -'t2 if the decision maker preferred a greater amount 
of vagueness to ensure inclusion of all the extremes. 

For this example, over half the models were unable to discriminate between the 
fuzzy numbers (Yager's F1, Yager's F3, Kerre's, Murakami's centroid, and 
Nakamura's with ~ --- .5). Yager's F4 and Chang's models implicitly favor 
the larger-spread numbers, and Lee and Li's model favors smaller-spread num- 
bers. Only the proportion of the optimum method allows the decision maker to 
explicitly favor the smaller or larger spread numbers. 

EXAMPLE 3. SAME LEFT-HAND-SIDE (LHS) FUNCTION. Here, the ranking 
should be -41 >-42, because the modes and LHS functions are identical and 
-41 has a greater number of higher support values. Even if a decision maker is 
spread-averse, this is still the logical ranking due to the identical modes. 

All of the nine ranking methods matched intuition. 

EXAMPLE 4. SAME RIGHT-HAND-SIDE (RHS) FUNCTION. The ranking should 
be A1 < ,4~, because modes and LHS functions are identical and A1 has a 
greater number of higher support values. Again, this should be the logical 
ranking even if the decision maker prefers larger spreads, because the additional 
vagueness is on the lower end. 

The majority of the models, including the proportion of the optimum method, 
yielded this ranking. However, Yager's F4 and Chang's methods had the reverse 
ranking. These two methods seem to favor the larger spread numbers regardless 
of the direction of the spreads. 

EXAMPLE 5. LOW MODE, SMALL SPREAD VERSUS HIGH MODE, LARGE 
SPREAD. Upon introspection, the ranking should be .4~ >-A2. If a decision 
maker is spread-averse, the trade-off of a higher-mean number with a large 
spread for a slightly lower-mean number with a substantially smaller spread 
would seem acceptable. Even if a decision maker is spread-seeking, the ranking 
should still be A1 > -'t2, because the bulk of the spread is with the left-hand 
or lower portion of the fuzzy number. 
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With the exception of Yager's F4 and Chang's methods, all the methods fol- 
lowed this intuition. 

When evaluating all nine models in terms of robustness, Yager's F1 [with 
g(x) = x] and F3, Kerre's, Murakami's centroid, and Nakamura's (with ot = 
0.5) methods cannot discriminate between fuzzy numbers with identical modes 
and symmetric spreads (as stated before, for Example 2). Therefore, Yager's 
F4, Chang's, Lee and Li's, and the proportion of the optimum methods should 
be considered more robust. In terms of flexibility, only the proportion of the 
optimum method allows the decision maker to incorporate a preference for 
larger or smaller spreads, assuming all other comparison attributes are equal, 
without a loss of accuracy. It is therefore not "goal-specific" and is more 
flexible than the other eight methods. 

It is acknowledged that Nakamura's method allows for some flexibility in this 
regard, by the ability to change c~. As a increases, smaller-spread fuzzy numbers 
are ranked higher, given relatively equal modes. Conversely, as ct decreases to 
zero, larger-spread fuzzy numbers are ranked higher, given relatively equal 
modes, and the method would yield results similar to Yager's F4 and Chang's 
methods. 

The most accurate models are Lee and Li's and the proportion of the opti- 
mum methods, for they match intuition exactly for all five examples, with no 
discrimination problems. 

All of the methods presented in this paper require integration to calculate 
the ranking indices. A computer-coded numerical integration program could be 
easily implemented for each of them. Therefore, in terms of ease of use, all 
the methods would have a very similar ease-of-use level. However, recall that 
Yager's F1 and F4 and Chang's methods require a support set of [0, 1]. Scaling 
would have to be used for these approaches if the exact indices were desired 
before the integration could take place, reducing the ease of use of these three 
methods. Of the remaining six methods, only Lee and Li's and the proportion 
of the optimum provide a tiered solution structure based on the level of difficulty 
of the problem. Such a structure is attractive, for it does not force a lengthy 
solution algorithm if the problem is straightforward. 

CONCLUSIONS 

Overall, when comparing these nine ranking methods in terms of robustness, 
flexibility, accuracy, and ease of use, the Lee-Li and proportion of the optimum 
methods are superior to the remaining seven. When comparing these two meth- 
ods with each other, however, note that while they are equivalent in terms of 
robustness and accuracy, the Lee-Li method can be easier to use without com- 
puterized calculations i f  the fuzzy numbers are triangular, while the proportion 
of the optimum method is more flexible in terms of the ability to explicitly 
incorporate the decision-maker's spread preferences. It is suggested, therefore, 
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that if the decision maker wants to use the most flexible model possible, due 
to possible spread preference differences, then the proportion of the optimum 
method should be used. 
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