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a b s t r a c t

In this paper, the Laplace decomposition method is employed to obtain approximate an-
alytical solutions of the linear and nonlinear fractional diffusion–wave equations. This
method is a combined form of the Laplace transform method and the Adomian decom-
position method. The proposed scheme finds the solutions without any discretization or
restrictive assumptions and is free from round-off errors and therefore, reduces the nu-
merical computations to a great extent. The fractional derivative described here is in the
Caputo sense. Some illustrative examples are presented and the results show that the solu-
tions obtained by using this technique have close agreementwith series solutions obtained
with the help of the Adomian decomposition method.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional differential equations have drawn the interest of many researchers [1–5] due to their important applications
in science and engineering, such as modelling of anomalous diffusive and sub-diffusive systems, description of fractional
random walk and unification of diffusion and wave propagation phenomena. Analysis of the diffusion–wave equation in
mathematical physics has been of considerable interest in the literature. The time fractional diffusion–wave equation [6] is
obtained from the classical diffusion or wave equation by replacing the first or second order time derivative by a fractional
derivative of order α with 0 < α < 1 or 1 < α < 2, respectively. It is observed that as α increases from 0 to 2, the process
changes from slow diffusion to classical diffusion to diffusion–wave to a classical wave process. Fractional diffusion–wave
equations have important applications in mathematical physics [7].

The Laplace decomposition method (LDM) is one of the efficient analytical techniques to solve linear and nonlinear
equations [8–15]. LDM is free of any small or large parameters and has advantages over other approximation techniques
like perturbation. Unlike other analytical techniques, LDM requires no discretization and linearization. Therefore, results
obtained by LDM are more efficient and realistic. This method has been used to obtain approximate solutions of a class
of nonlinear ordinary and partial differential equations [8,9,12–14]. See for example, the Duffing equation [10] and the
Klein–Gordon equation [11]. In this paper, the LDM is applied to solve fractional partial differential equations. We discuss
how to solve fractional diffusion–wave equations using LDM. The results of the present technique have close agreement
with approximate solutions obtained with the help of the Adomian decomposition method [16].
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2. Basic definition

Definition 1. A real function f (t), t > 0 is said to be in the space Cα, α ∈ ℜ, if there exists a real number p (> α), such
that f (t) = tpf1(t)where f1 ∈ C[0,∞]. Clearly Cα ⊂ Cβ if β ≤ α.

Definition 2. A function f (t), t > 0 is said to be in the space Cm
α , m ∈ N


{0} , if f (m) ∈ Cα .

Definition 3. The left sided Riemann–Liouville fractional integral of order µ ≥ 0, of a function f ∈ Cα, α ≥ −1 is defined
as [17,18]

Iµf (t) =


1

Γ (µ)

∫ t

0

f (τ )
(t − τ)1−µ

dτ , µ > 0, t > 0,

f (t), µ = 0.
(1)

Definition 4. The left sided Caputo fractional derivative of f , f ∈ Cm
−1, m ∈ N ∪ {0} , is defined as [2,19]

Dµ
∗
f (t) =

∂µf (t)
∂tµ

=


Im−µ

[
∂mf (t)
∂tm

]
, m − 1 < µ < m, m ∈ N,

∂mf (t)
∂tm

, µ = m.
(2)

Note that [2,19]

(i) Iµt f (x, t) =
1

Γ (µ)

 t
0

f (x,t)
(t−s)1−µ

µ > 0, t > 0,

(ii) Dµ∗t f (x, t) = Im−µ
t

∂mf (x,t)
∂tm , m − 1 < µ ≤ m.

Definition 5. The Mittag-Leffler function Eα(z) with α > 0 is defined by the following series representation, valid in the
whole complex plane [20]:

Eα(z) =

∞−
n=0

zn

Γ (αn + 1)
. (3)

Definition 6. The Laplace transform of f (t)

F(s) = L[f (t)] =

∫
∞

0
e−st f (t)dt. (4)

Definition 7. The Laplace transform L[f (t)] of the Riemann–Liouville fractional integral is defined as [21]

L {Iα f (t)} = s−αF(s). (5)

Definition 8. The Laplace transform L[f (t)] of the Caputo fractional derivative is defined as [21]

L {Dα f (t)} = sαF(s)−

n−1−
k=0

s(α−k−1)f (k)(0), n − 1 < α ≤ n. (6)

3. Laplace decomposition method

The aim of this section is to discuss the use of the Laplace transform algorithm for the linear and nonlinear partial
fractional differential equations.

3.1. LDM for linear fractional diffusion equation

Consider the following general form of the linear fractional diffusion equation with the specified initial condition :

Dαt u(x̄, t) =

n−
i=1

Ni(x̄, t)
∂2u(x̄, t)
∂x2i

+ φ(x̄, t)um(x̄, t)m = 0, 1, 0 < α < 1, (7)

u(x̄, 0) = f (x̄).
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The methodology consists of applying Laplace transform first on both sides of Eq. (7)

L[Dαt u(x̄, t)] = L


n−

i=1

Ni(x̄, t)
∂2u(x̄, t)
∂x2i


+ L[φ(x̄, t)um(x̄, t)]. (8)

Using the differentiation property of Laplace transform and initial condition given in Eq. (8), we get

sαL[u(x̄, t)] − sα−1f (x̄) = L


n−

i=1

Ni(x̄, t)
∂2u(x̄, t)
∂x2i


+ L[φ(x̄, t)um(x̄, t)], (9)

L[u(x̄, t)] = s−1f (x̄)+ s−αL


n−

i=1

Ni(x̄, t)
∂2u(x̄, t)
∂x2i


+ s−αL[φ(x̄, t)um(x̄, t)]. (10)

The second step in the Laplace decomposition method is that we represent solution as an infinite series given by

u(x̄, t) =

∞−
m=0

um(x̄, t), (11)

where the component um(x̄, t), m ≥ 0 will be determined in a recursive manner. For the casem = 0, we set

u0(x̄, t) = L−1
[s−1f (x̄)] + L−1

[s−αL[φ(x̄, t)]], (12)

uj+1(x̄, t) = L−1


s−αL


n−

i=1

Ni(x̄, t)
∂2uj(x̄, t)
∂x2i


, j ≥ 0. (13)

For the casem = 1, we set

u0(x̄, t) = L−1
[s−1f (x̄)], (14)

uj+1(x̄, t) = L−1


s−αL


n−

i=1

Ni(x̄, t)
∂2uj(x̄, t)
∂x2i


+ L−1

[s−αL[φ(x̄, t)uj(x̄, t)]] j ≥ 0. (15)

3.2. LDM for nonlinear fractional heat equation

Consider the following general form of the nonlinear fractional heat equation with the indicated initial condition:

Dαt u(x̄, t) =

n−
i=1

Ni(x̄, t)
∂2u(x̄, t)
∂x2i

+ φ(x̄, t)um(x̄, t), 0 < α < 1, (16)

u(x̄, 0) = f (x̄), m = 2, 3, . . . .

The methodology consists of applying Laplace transform first on both sides of Eq. (16)

L[Dαt u(x̄, t)] = L


n−

i=1

Ni(x̄, t)
∂2u(x̄, t)
∂x2i


+ L[φ(x̄, t)um(x̄, t)]. (17)

Using the differentiation property of Laplace transform and initial condition given in Eq. (17), we get

sαL[u(x̄, t)] − sα−1f (x̄) = L


n−

i=1

Ni(x̄, t)
∂2u(x̄, t)
∂x2i


+ L[φ(x̄, t)um(x̄, t)], (18)

L[u(x̄, t)] = s−1f (x̄)+ s−αL


n−

i=1

Ni(x̄, t)
∂2u(x̄, t)
∂x2i


+ s−αL[φ(x̄, t)um(x̄, t)]. (19)

The second step in the Laplace decomposition method is that we represent solution as an infinite series given by

u(x̄, t) =

∞−
m=0

um(x̄, t). (20)

For obtaining the Adomian decomposition, set

L[φ(x̄, t)um(x̄, t)] = L


∞−

m=1

Am(u0, . . . , um)


, (21)
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where Am are Adomian polynomials which depend upon u0, u1, . . . , um. Substituting (20) and (21) in (19) and applying
inverse Laplace transform to (19), our required recursive relation is given below

u0(x̄, t) = L−1
[s−1f (x̄)], (22)

uj+1(x̄, t) = L−1


s−αL


n−

i=1

Ni(x̄, t)
∂2uj(x̄, t)
∂x2i


+ L−1

[s−αL[Aj(u0, . . . , uj)]] j ≥ 0, (23)

where Aj, j ≥ 0 is given by

Aj =
1
j!

dj

dλj


φ(x̄, t)


∞−
j=1

uj(x̄, t)λj
m

λ=0

= φ(x̄, t)
1
j!

dj

dλj


∞−
j=1

uj(x̄, t)λj
m

λ=0

. (24)

3.3. Applying LDM to linear/nonlinear fractional wave equation

Consider the following general form of the fractional wave equation with given initial conditions:

Dαt u(x̄, t) =

n−
i=1

Ni(x̄, t)
∂2u(x̄, t)
∂x2i

+ φ(x̄, t)um(x̄, t), 1 < α < 2, (25)

u(x̄, 0) = f (x̄),
∂u(x̄, 0)
∂t

= g(x̄).

Eq. (25) denotes the linear fractional wave equation for m = 0 or 1. Applying the operator Laplace transform on both sides
of Eq. (25) and using the differentiation property of Laplace transform and given initial condition, we get

L[u(x̄, t)] = s−1f (x̄)+ s−2g(x̄)+ s−αL


n−

i=1

Ni(x̄, t)
∂2u(x̄, t)
∂x2i


+ s−αL[φ(x̄, t)um(x̄, t)]. (26)

Case (i)m = 0
Following the Laplace decomposition method, define

u0(x̄, t) = L−1
[s−1f (x̄)] + L−1

[s−2g(x̄)] + L−1
[s−αL[φ(x̄, t)]], (27)

uj+1(x̄, t) = L−1


s−αL


n−

i=1

Ni(x̄, t)
∂2uj(x̄, t)
∂x2i


, j ≥ 0. (28)

Case (i)m = 1, 2, . . .

u0(x̄, t) = L−1
[s−1f (x̄)] + L−1

[s−2g(x̄)], (29)

uj+1(x̄, t) = L−1


s−αL


n−

i=1

Ni(x̄, t)
∂2uj(x̄, t)
∂x2i


+ L−1

[s−αL[Aj(u0, . . . , uj)]] j ≥ 0, (30)

where Aj is the Adomian polynomial defined in Eq. (24).
M-term approximate solution is given by

ψM =

M−1−
m=0

um (31)

and the exact solution is u(x̄, t) = limM−→∞ ψM .

4. Illustrative examples

To give a clear overview of this method, we present some examples below.

Example 1. Consider the fractional diffusion equation

Dαt U = −
1
3

3−
i=1

∂2U
∂x2i

− ∞ < xi < ∞, t > 0,

U(x̄, 0) = e−(x1+x2+x3), α ∈ (0, 1).
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The Laplace decomposition method leads to the following scheme

u0 = L−1
[s−1(e−(x1+x2+x3))], um+1 = L−1


s−αL


−

1
3

3−
i=1

∂2um

∂x2i


, m = 0, 1, . . . .

In the first iteration, we have

u0 = e−(x1+x2+x3), u1 = L−1


s−αL


−

1
3

3−
i=1

∂2u0

∂x2i


= −e−(x1+x2+x3)

tα

Γ (α + 1)
.

The subsequent terms are

u2 = L−1


s−αL


−

1
3

3−
i=1

∂2u1

∂x2i


= e−(x1+x2+x3)

t2α

Γ (2α + 1)
,

u3 = L−1


s−αL


−

1
3

3−
i=1

∂2u2

∂x2i


= −e−(x1+x2+x3)

t3α

Γ (3α + 1)
,

...

um = L−1


s−αL


−

1
3

3−
i=1

∂2um−1

∂x2i


= (−1)me−(x1+x2+x3)

tmα

Γ (mα + 1)
, m = 2, 3, . . . .

Using the above terms, the solution U(x̄, t) is

U(x̄, t) = e−(x1+x2+x3)

1 −

tα

Γ (α + 1)
+

t2α

Γ (2α + 1)
−

t3α

Γ (3α + 1)
− · · ·


= e−(x1+x2+x3)


1 +

∞−
m=1

(−tα)m

Γ (mα + 1)


= e−(x1+x2+x3)Eα(−tα).

We note that the result obtained by LDM is the same as ADM solution [16].

Example 2. Consider the two-dimensional fractional wave equation

Dαt U = 2

∂2U
∂x21

+
∂2U
∂x22


− ∞ < x1, x2 < ∞, t > 0,

U(x̄, 0) = sin x1 sin x2,
∂U(x̄, 0)
∂t

= 0, α ∈ (1, 2).

The Laplace decomposition method leads to the following scheme:

u0 = L−1
[s−1(sin x1 sin x2)], um+1 = L−1

[
s−αL

[
2

∂2um

∂x21
+
∂2um

∂x22

]]
, m = 0, 1, . . . .

In the first iteration we have

u1 = L−1
[
s−αL

[
2

∂2u0

∂x21
+
∂2u0

∂x22

]]
= −

4tα

Γ (α + 1)
(sin x1 sin x2).

The subsequent terms are

u2 = L−1
[
s−αL

[
2

∂2u1

∂x21
+
∂2u1

∂x22

]]
=

42t2α

Γ (2α + 1)
(sin x1 sin x2),

u3 = L−1
[
s−αL

[
2

∂2u2

∂x21
+
∂2u2

∂x22

]]
= −

43t3α

Γ (3α + 1)
(sin x1 sin x2),

...

um = L−1
[
s−αL

[
2

∂2um−1

∂x21
+
∂2um−1

∂x22

]]
= (−1)m

4mtmα

Γ (mα + 1)
(sin x1 sin x2), m = 2, 3, . . . .
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Fig. 1. Approximate solution of u(x, t).

Using the above terms, the solution U(x̄, t) is

U(x̄, t) = (sin x1 sin x2)

1 −

4tα

Γ (α + 1)
+

42t2α

Γ (2α + 1)
−

43t3α

Γ (3α + 1)
− · · ·


= (sin x1 sin x2)


1 +

∞−
m=1

(−4tα)m

Γ (mα + 1)


= (sin x1 sin x2)Eα(−4tα).

Again, we note that the result obtained by LDM is same as ADM solution [16].

Example 3. Consider the nonlinear fractional wave equation [1]

Dαt u + auxx + βu + γ u3
= 0, 0 < x < 1, t > 0,

u(x, 0) = B tan(Kx),
∂u(x, 0)
∂t

= BcK sec2(Kx), α ∈ (1, 2),

where a, c, β, γ , are constants and B =


β

γ
, K =


−β

(2(a+c2))
.

The Laplace decomposition method leads to the following scheme:
u0 = L−1

[s−1B tan(Kx)+ s−2BcK sec2(Kx)],

um+1 = −aL−1
[
s−αL

[
∂2um

∂x2

]]
− βL−1

[s−αL[um]] − γ L−1
[s−αL[Am]], m = 0, 1, . . . ,

where Am are Adomian polynomials defined in Eq. (24). We have
u0 = B tan(Kx)+ tBcK sec2(Kx),

u1 = −
2BcKt1+αβ sec2(Kx)

Γ (2 + α)
−

6B3c3K 3t3+αγ sec6(Kx)
Γ (4 + α)

−
Btαβ tan(Kx)
Γ (1 + α)

−
2aBK 2tα sec2(Kx) tan(Kx)

Γ (1 + α)
−

6B3c2K 2t2+α sec4(Kx) tan(Kx)
Γ (3 + α)

−
6B3cKt1+αγ sec2(Kx) tan2(Kx)

Γ (2 + α)
−

B3tαγ tan3(Kx)
Γ (1 + α)

−
2aBcKt1+α(2K 2 sec4(Kx)+ 4K 2 sec2(Kx) tan2(Kx))

Γ (2 + α)
.

In Fig. 1, u(x, t), (≈ u0 + u1 + u2 + u3 + u4 + u5 + u6) is drawn for α = 1.95, B = .816497, c = .5, β = −1.0, γ = −1.5
and K = .426401.

The result obtained by LDM is same as ADM solution [16].

5. Conclusion

The Laplace decomposition method is a powerful tool which is capable of handling linear/nonlinear fractional partial
differential equations. In this paper, for the first time, this method has been successfully applied to fraction diffusion and
wave equations. The method produced the same solution as the Adomian decomposition method with the proper choice of
initial approximation. Itwas noted that the scheme found the solutionswithout any discretization or restrictive assumptions
and was free from round-off errors and therefore reduced the numerical computations to a great extent.
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