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Abstract

We study the geometry of confocal quadrics in pseudo-Euclidean spaces of arbitrary dimension d and
any signature, and related billiard dynamics. The goal is to give a complete description of periodic billiard
trajectories within ellipsoids. The novelty of our approach is the introduction of a new discrete combinatorial
geometric structure associated with a confocal pencil of quadrics, a colouring in d colours. This is used to
decompose quadrics of d 4+ 1 geometric types of a pencil into new relativistic quadrics of d relativistic
types. A study of what we term discriminant sets of tropical lines £ and X~ and their singularities
provides insight into the related geometry and combinatorics. This yields an analytic criterion describing
all periodic billiard trajectories, including light-like trajectories as a case of special interest.
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1. Introduction

Pseudo-Euclidean spaces and pseudo-Riemannian manifolds occupy a very important position
in science as a geometric background for general relativity. A modern account of the
mathematical aspects of the theory of relativity was recently published [8]. From a mathematical
point of view, in comparison with Euclidean and Riemannian cases, apart from a natural
similarity that includes some rather technical adjustments, there are some cases in which a
pseudo-Euclidean setting creates new situations and challenging problems. The aim of this paper
is to report on such cases in a study of the geometry of confocal quadrics and related billiard
dynamics in pseudo-Euclidean spaces.

Recall that in Euclidean d-dimensional space, a general family of confocal quadrics contains
exactly d geometric types of non-degenerate quadrics. Moreover, each point is the intersection
of d quadrics of different types. Together with some other properties (E1-ES in Section 4), these
facts are crucial for the introduction of Jacobi coordinates and for applications in the theory
of separable systems, including billiards. The case of d-dimensional pseudo-Euclidean space
highlights a striking difference, since a confocal family of quadrics has d + 1 geometric types of
quadrics. In addition, quadrics of the same type have a nonempty intersection. These seem to be
impregnable obstacles to the extension of methods for applying Jacobi type coordinates from the
Euclidean case [9] to pseudo-Euclidean spaces.

To overcome this crucial problem, we have created a new feature of confocal pencils of
geometric quadrics in pseudo-Euclidean d-dimensional spaces. The novelty of our approach is
the introduction of a new discrete, combinatorial-geometric structure associated with a confocal
pencil, a colouring in d colours, that transforms a geometric quadric from a pencil into a union of
several relativistic quadrics. These relativistic quadrics satisfy properties PE1-PES, analogues of
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E1-ES5, and lead to a new notion of decorated Jacobi coordinates. A decorated Jacobi coordinate
is a pair comprising a number and a type-colour. These coordinates are used to develop methods
for use in a further study of billiards within confocal quadrics in pseudo-Euclidean spaces of
arbitrary dimension.

The study of colouring and relativistic types of quadrics, which is the main focus of the present
paper, is closely related to the study of what we call discriminant sets X and X~ attached to a
confocal pencil of quadrics in pseudo-Euclidean space, as sets of the tropical lines of quadrics.
They are developable, with light-like generatrices. Their swallowtail-type singularities [1] are
placed at the vertices of curvilinear tetrahedra 7+ and 7 —.

Khesin and Tabachnikov introduced billiards within ellipsoids in pseudo-Euclidean space [16]
and their study motivated the present investigation. Sections 2 and 3 discuss, clarify and slightly
improve some of the properties described by Khesin and Tabachnikov [16].

Section 2 describes pseudo-Euclidean spaces and their confocal families of geometric
quadrics. In this section, Theorem 2.3 gives a complete description of structures of types of
quadrics from a confocal pencil in pseudo-Euclidean space, which touch a given line. This
theorem plays an essential role in proving properties PE3—PES in Section 5. Section 3 discusses
the geometric properties of elliptical billiards in the two-dimensional case. An elementary
but complete description of periodic light-like trajectories is derived in Theorem 3.3 and
Proposition 3.6. In Section 4 we suggest a new setting for types of confocal quadrics, an
essential novelty of pseudo-Euclidean geometry. For the three-dimensional case, we give a
detailed description of discriminant surfaces X*, the unions of tropical lines of geometric
quadrics from a pencil (Propositions 4.3, 4.7, 4.9 and 4.11). We describe their singularity
subsets, curvilinear tetrahedra 7%, in Proposition 4.5. We introduce decorated Jacobi coordinates
in Section 4.5 for three-dimensional Minkowski space, and provide a detailed description
of colouring in three colours, with a complete description of all three relativistic types of
quadrics. Section 4.6 provides a generalized definition of decorated Jacobi coordinates to
arbitrary dimension, and Proposition 4.21 proves properties PEl and PE2. In Section 5 we
apply relativistic quadrics and decorated Jacobi coordinates to provide an analytic description
of periodic billiard trajectories. Theorem 5.1 describes an effective criterion for determining the
type of a billiard trajectory. Proposition 5.2 proves properties PE3-PES. Finally, Theorem 5.3
provides an analytic description of all periodic billiard trajectories in pseudo-Euclidean spaces.
As a corollary, Theorem 5.4 proves a full Poncelet-type theorem for pseudo-Euclidean spaces.

2. Pseudo-Euclidean spaces and confocal families of quadrics

This section first describes the basic notions connected with pseudo-Euclidean spaces. Then
some basic facts on confocal families of quadrics in such spaces are reviewed and improved.
Our main result in this section is a complete analysis of quadrics from a confocal family that are
touching a given line, as formulated in Theorem 2.3.

2.1. Pseudo-Euclidean spaces

Definition of pseudo-Euclidean space. A pseudo-Euclidean space EX! is a d-dimensional space
R? with pseudo-Euclidean scalar product:

(s Vg = X1y1 + -+ Xk Yk — Xk+1Yk+1 =+ — XdVd» 2.1
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where k,l € {1,...,d — 1}, k +1 = d. The pair (k, ) is called the signature of the space. We
denote Ey; = diag(1,1,...,1,—1,...,—1), with k 1s and [ — 1s. Then the pseudo-Euclidean
scalar product is:

(X, Yk = Egx oy,

where o is the standard Euclidean product.
The pseudo-Euclidean distance between points x and y is:

diste 1 (x, y) = (X — ¥, x — Y)k1-

Since the scalar product can be negative, note that the pseudo-Euclidean distance can take
imaginary values.
Let £ be a line in pseudo-Euclidean space and let v be its vector. £ is called:

e space-like if (v, V)i > 0;
o time-like if (v, v)i; < 0; and
o light-like if (v, v)x; = 0.

Two vectors x and y are orthogonal in pseudo-Euclidean space if (x, y);; = 0. Note that a
light-like line is orthogonal to itself.

For a given vector v # 0, consider a hyper-plane v o x = 0. Vector Ej ;v is orthogonal to
the hyper-plane; moreover, all other orthogonal vectors are collinear with Ej jv. If v is light-like,
then so is Ey jv, and Ey ;v belongs to the hyper-plane.

Billiard reflection in pseudo-Euclidean space. Let v be a vector and « a hyper-plane in pseudo-
Euclidean space. We decompose vector v into the sum v = a + n, of a vector n, orthogonal to
a and a belonging to «. Then vector v’ = a — ny, is a the billiard reflection of v on . It is easy
to see that v is also a billiard reflection of v" with respect to «.

Moreover, note that lines containing vectors v, v’, a and n, are harmonically conjugated [16].

Note that v = v’ if v is contained in « and v’ = —v if v is orthogonal to «. If n, is light-like,
which means that it belongs to «, then the reflection is not defined.

Line ¢’ is a billiard reflection of ¢ off a smooth surface S if their intersection point £ N ¢’
belongs to S and the vectors of £ and ¢ are reflections of each other with respect to the tangent
plane of S at this point.

Remark 2.1. It is directly evident from the definition of reflection that the type of line is
preserved by a billiard reflection. Thus, the lines containing segments of a given billiard trajectory
within S are all of the same type: they are all either space-like, time-like, or light-like.

If S is an ellipsoid, then it is possible to extend the reflection mapping to points where the
tangent planes contain the orthogonal vectors. At such points, a vector reflects onto the opposite
one, i.e. vV = —v and ¢/ = £. According to the explanation of this phenomenon by Khesin and
Tabachnikov [16], it is natural to consider each such reflection as two reflections.

2.2. Families of confocal quadrics

For a given set of positive constants ai, az, . . ., a4, an ellipsoid is given by:
2 2 2
X X X
g-Ly2 44, 2.2)

aj az aq
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Note that the equation for any ellipsoid in pseudo-Euclidean space can be changed to the
canonical form (2.2) using transformations that preserve the scalar product (2.1).
The family of quadrics confocal with £ is:

2 2 2 2
X X xk 1 X
Q) —L 4.4 Tk o444 -1, reR (2.3)
a — A ag — A Qg4+l + A aq + A

Unless stated otherwise, we consider the non-degenerate case, when set {ay, ..., ak, —ai+1,
., —ag} consists of d different values:

ap>ay>--->ar>0>—agy; > - > —ay.
For A € {ay, ..., ar, —ai+1, ..., —aq}, the quadric Q, is degenerate and coincides with the

corresponding coordinate hyper-plane.

It is natural to join one more degenerate quadric to the family (2.3): the one corresponding to
the value A = oo, which is the hyper-plane at the infinity.

For each point x in the space, there are exactly d values of A, such that (2.3) is satisfied.
However, not all the values are necessarily real: either all d of them are real or there are d — 2
real and 2 conjugate complex values. Thus, through every point in the space, there are either d
or d — 2 quadrics from the family (2.3) [16].

The line x + fv (¢ € R) is tangential to quadric Q, if the quadratic equation

Ay(x+tv)ox+1tv)=1 2.4)

has a double root, where

) 1 1 1 1
A, = diag s , e .
ap — . ap — A agy1 +A ag + A
Calculating the discriminant of (2.4), we obtain:

(Asx 0 v)? — (Avov)(Ax0x — 1) =0, (2.5)

which is equivalent to
d

> iy, 26)

where
_ 2
1wxm_au+§:@ﬂ—iﬁl 2.7
o ejai —ea;

with ¢ values given by

1, 1<i<k
B=V21, k+l<i<d.

Eq. (2.6) can be transformed to
P)

: —0, (2.8)
[T(ai —ein)
i=1
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where the coefficient of A9~! in P(1) is equal to (v, v)x;. Thus, polynomial P(}) is of degree
d — 1 for space-like and time-like lines, and of smaller degree for light-like lines. However, in
the latter case, it is natural to consider the polynomial P (L) also as of degree d — 1, taking
the corresponding roots to be equal to infinity. Thus, light-like lines are characterized by being
tangential to the quadric Qx.

With this setting in mind, we note that Khesin and Tabachnikov proved that the polynomial
P (1) has at least d — 3 roots in R U {oo} [16].

Thus, we have the following.

Proposition 2.2. Any line in the space is tangential to either d — 1 or d — 3 quadrics of the
SJamily (2.3). If this number is equal to d — 3, then there are two conjugate complex values of A
such that the line is also tangential to these two quadrics in CC.

This was stated and proved by Khesin and Tabachnikov [16], who claimed that light-like line
have only d — 2 or d — 4 caustic quadrics because they did not consider Q. as a member of the
confocal family.

A line with a non-empty intersection with an ellipsoid from (2.3) will be tangential to d — 1
quadrics from the confocal family [16]. However, we prove this in another way to provide greater
insight into the distribution of the caustic parameters along the real axis. The next theorem
provides a detailed description of the distribution of parameters of quadrics containing a given
point placed inside an ellipsoid from (2.3).

Theorem 2.3. In pseudo-Euclidean space EF!, consider a line intersecting ellipsoid £ (2.2).

Then this line touches d — 1 quadrics from (2.3). If we denote their parameters by o1, ..., 04—
and take

{b17"‘7bpicl""7cq}:{81a17“"gdad7a17"'9ad_1}7

g < Zc=<c1<0<b <by<--- < by, p+q=2d—1,

we also have the following:

o [fthe line is space-like, then p =2k —1,q =2, a1 = by, a; € {baj—1, b2} for1 <i <k—1,
and ajyx—1 € {cj—1,c25) for 1 < j <L

o [f the line is time-like, then p = 2k, q = 21 — 1, ¢; = —ay, a; € {b2i_1, by} for 1 <i <k,
and ajyi € {c2j—1, 25} for1 < j <I—1

o [fthe line is light-like, then p =2k, g =2l — 1, b, =00 = o, bp_1 = a1, o; € {b2i_1, by}
forl <i<k—1landajy € {c2j—1,c25}for1 < j<Il—-1

Moreover, for each point on £ inside &, there are exactly d distinct quadrics from (2.3) that
contain it. More precisely, there is exactly one parameter of these quadrics in each of the intervals

(c2i-1,¢20-2), ..., (c3,¢2), (c1,0), (0, b1), (b2, b3), ..., (b2k—2, bop—1).

Proof. Let ¢ be a line that intersects &, let x = (xq, ..., xg) be a point on £ placed inside &,
and let v = (vy, ..., vg) bet a vector of the line. Then the parameters of quadrics touching £ are
solutions of (2.5), i.e. they are roots of polynomial P(}).

If £ is space-like or time-like, that is (v, v)x; # 0O, we then have that polynomial P is of
degree d — 1 and we want to prove that all its d — 1 roots are real. By contrast, if £ is light-like,
P is of degree d — 2 and we want to prove that all d — 2 roots are real, and to add oo as the
(d — 1)-th root.
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Note that for the real solutions of the equation Ajv o v = 0, the right-hand side of (2.5) is
positive. Thus, we first examine the roots of A, v o v.

We have
d 2
v R(A)
A = ! =
AV OV Z]: 4 — gi)\. 7
= [1(ai —ein)
i=1
with
d
RO =Y 7] —e;n.
i=1 i

‘We calculate

sign R(e;a;) = & (— )k,

sign R(—00) = (—1)’sign (v, V)¢,
sign R(400) = (—1)k_lsign (v, V).

Thus, it is evident that polynomial R, which is of degree d — 1 for space-like or time-like £ and of
degree d — 2 for light-like £, changes sign at least d — 1 times along the real axis if (v, v)x; # 0,
and at least d — 2 times otherwise, so all its roots are real. Moreover, there is one root in each of
the d — 2 intervals:

(siv1aiv1, giai), ief{l,....k—=1,k+1,...,d -1}

and one more in (—o0, —ay) or (aj, +00) if € is space-like or time-like, respectively.
We denote the roots of R by &o, ¢1, . - ., {g—2, and order them in the following way:

¢ € (@it1,a;), forl <i<k-—1,

§j € (=ajy2, —ajy1), fork <j<d-2,
go € (—o0, —ag) for space-like ¢,

Lo € (ay, +oo) for time-like £,

go = oo for light-like £.

The right-hand side of (2.5) is positive for o, ..., {g—2. It will be also be positive for A = 0
because (Agx o v)2 > 0, Agv o v > 0 and, since x is inside & = Qp, Agx o x < 1.
Note that (2.5) and the equivalent expression (2.8) change sign at points €;a; and for roots
of P only. Thus, these expressions have positive values at the endpoints of each of the d — 2
intervals ({g—2, §a—3) - -+ » (Ck+15 §k)> (Gks 0), (0, Sk—1)5 (Gk—1, §k—2) - - -+ (62, §1) and in one of
(%0, ¢a—2) or (&1, o), depending if £ is space-like or time-like, respectively. Each of these d — 1
intervals contains one point from {¢;a;}, and thus each of them needs to contain at least one more
point at which (2.8) changes its sign, that is, a root of 7P. We conclude that all roots of P are real,
and that they are distributed exactly as stated in this proposition.

Now consider quadrics from the confocal family containing point x. Their parameters are
solutions of the equation Ajx o x = 1. Observe that Ajx o x — 1 is strictly monotonous and
changes sign inside each of the following intervals:

(—aq, —aq—1), ..., (—aky2, —aiy1), (ag, ag-1), - .., (az, ay),
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and thus it has one root in each of them. In addition, for such solutions, the right-hand side of
(2.5) is positive and thus there is one solution in each of the following:

(ca—1,c2-2),...,(c3,¢2), (b2, b3), ..., (ba—2, ba_1),

which makes d — 2 solutions. Two more solutions are placed in (c1, b1), because Agxox —1 < 0
and A;x ox — 1 > 0 close to the endpoints of this interval. This concludes the proof. [

The analogue of Theorem 2.3 for Euclidean space was proved by Audin [2].

Corollary 2.4. For each point placed inside an ellipsoid in pseudo-Euclidean space, there are
exactly two other ellipsoids from the confocal family containing this point.

3. Elliptical billiard in the Minkowski plane

In this section we study the properties of confocal families of conics in the Minkowski plane.
We derive focal properties of such families and the corresponding elliptical billiards. We then
address light-like trajectories of such billiards and derive a periodicity criterion in a simple form
in Theorem 3.3. Proposition 3.6 proves that the flow of light-like elliptical billiard trajectories is
equivalent to a certain rectangular billiard flow.

3.1. Confocal conics in Minkowski plane

We first review the basic properties of families of confocal conics in the Minkowski plane.
Let

2 2
&%+%=1 3.1)

denote an ellipse in the plane, where a and b are fixed positive numbers.
The associated family of confocal conics is:

%2 . 32 B

a—i b+r

The family is shown in Fig. 1. We can distinguish the following three subfamilies in (3.2):

Cy 1, »eR (3.2)

e For A € (—b, a), conic C,, is an ellipse.
e For A < —b, conic C,, is a hyperbola with the x-axis as the major axis.
e For A > a, conic C, is also a hyperbola, but its major axis is the y-axis.

In addition, there are three degenerated quadrics C,, Cp and C, corresponding to the y-axis,
the x-axis and the line at infinity, respectively. Note the three pairs of foci Fi(+/a + b, 0),
F(—+/a+b,0); G1(0,a+b), G2(0, —v/a+ b); and H{(1 : —1 : 0), Hp(1 : 1 : 0) are

on the line at the infinity.
We can distinguish four lines:

x+y=+a+b, x+y=—va+b,
x—y=+a+b, x—y=—+a+b.

These lines are common tangents to all conics in the confocal family.
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Fig. 1. Family of confocal conics in the Minkowski plane.

It is elementary and straightforward to prove the following.

Proposition 3.1. For each point on ellipse C,, . € (—b, a), either the sum or the difference of
its Minkowski distances from the foci Fy and F, is equal to 2+/a — \; either the sum or the
difference of the distances from the other pair of foci G1, G is equal to 2i/b + A.

Either the sum or the difference of the Minkowski distances of each point of the hyperbola C,,
A € (—o0, —D), from the foci F| and F, is equal to 2+/a — A; for the other pair of foci G1, G2,
it is equal to 2+/—b — A.

Either the sum or the difference of the Minkowski distances of each point of the hyperbola C,,
A € (a, +00), from the foci F1 and F» is equal to 2i/A — a; for the other pair of foci G1, G, it
is equal to 2i~/b + A.

A billiard within an ellipse also has the well-known focal property.

Proposition 3.2. Consider a billiard trajectory within ellipse £ given by (3.1) in the Minkowski
plane such that the line containing the initial segment of the trajectory passes through a focus
of confocal family (3.2), say F|, G, or Hy. If the tangent to £ at the reflection point of this
segment is not light-like, then the line containing the next segment will pass through F,, G2, or
H,, respectively.

In other words, the segments of one billiard trajectory will alternately contain foci of one of
the pairs (Fy, F2), (G1, G3) or (Hy, Hy). The only exceptions are successive segments obtained
by the reflection on the light-like tangent. Such segments coincide.

3.2. Light-like trajectories of the elliptical billiard

Now we study the light-like trajectories of an elliptical billiard in the Minkowski plane. An
example of such a billiard trajectory is shown in Fig. 2.

Successive segments of such trajectories are orthogonal to each other. This implies that a
trajectory can close only after an even number of reflections.
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Fig. 2. Light-like billiard trajectory.

Periodic light-like trajectories. The analytic condition for n-periodicity of a light-like billiard
trajectory within the ellipse £ given by (3.1) can be written by applying the more general Cayley’s
condition for closedness of a polygonal line inscribed in one conic and circumscribed about
another one [4,5,17,14]:

By By ... Bui
dec| B+ Bs o B2 | o Githn=om, (3.3)
Butv1 Bmi2 ... B
where

Va—=2)(b+2x) = By+ B+ BA> +- -

is the Taylor expansion around A = 0.
Now we derive an analytic condition for periodic light-like trajectories in another way that
leads to a more compact form of (3.3).

Theorem 3.3. A light-like billiard trajectory within ellipse £ is periodic with period n, where n
is an even integer, if and only if

k
arctan [ e 4 [ 1=k <2 (65) =11, (3.4)
b n 2 2
Proof. Applying the following affine transformation

(x,y) = (xv/b, y/a),

the ellipse is transformed into a circle. The light-like lines are transformed into lines parallel to
two directions, with the angle between them equal to 2arc tan y/a/b. Since the dynamics on the
boundary is rotation by this angle, the proof is complete. [

As an immediate consequence, we obtain the following.
Corollary 3.4. For a given even integer n, the number of different ratios of the axes of ellipses
with n-periodic light-like billiard trajectories is equal to:

@(n)/2 if nis not divisible by 4,
o(n)/4 if nis divisible by 4.
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@ is the Euler’s totient function, i.e. the number of positive integers not exceeding n that are
relatively prime to n.

Remark 3.5. There are four points on £ at which the tangents are light-like. Those points cut
four arcs on £. An n-periodic trajectory within & hits each one of a pair of opposite arcs exactly
k times, and hits the arcs from the other pair 5 — k times.

Light-like trajectories in ellipses and rectangular billiards

Proposition 3.6. The flow of light-like billiard trajectories within ellipse £ is trajectorially
equivalent to the flow of those billiard trajectories within a rectangle whose angle with the sides
is 7. The ratio of the sides of the rectangle is equal to

T

a
2arc tan \/;

Proof. For ellipses with periodic light-like trajectories, the proof follows from Theorem 3.3 and
Remark 3.5.
In other cases, the number

-1

—2 —— — 1 is not rational. Thus, the statement holds for these
2arc tan \/;
cases because of the density of rational numbers. [

Remark 3.7. The flow of light-light billiard trajectories within a given oval in the Minkowski
plane will be trajectorially equivalent to the flow of certain trajectories within a rectangle
whenever invariant measure m on the oval exists such that m(AB) = m(CD) and m(BC) =
m(AD), where A, B, C and D are points on the oval at which the tangents are light-like.

4. Relativistic quadrics

We now introduce relativistic quadrics as a tool for further investigation of billiard dynamics.
The geometric quadrics of a confocal pencil and their types in pseudo-Euclidean spaces do
not satisfy the usual properties of confocal quadrics in Euclidean spaces, including those
necessary for applications in billiard dynamics. For example, we have already mentioned that in
d-dimensional Euclidean space there are d geometric types of quadrics, while in d-dimensional
pseudo-Euclidean space there are d + 1 geometric types of quadrics. Thus, we first select the
important properties of confocal families in Euclidean space as E1-ES in Section 4.1. Section 4.2
considers the two-dimensional case, the Minkowski plane. We study appropriate relativistic
conics, as first described by Birkhoff and Morris [3]. Section 4.3 investigates the geometric types
of quadrics in a confocal family in three-dimensional Minkowski space. Section 4.4 analyses
tropic curves on quadrics in the three-dimensional case and introduces an important notion of
discriminant sets % corresponding to a confocal family. The main facts for discriminant sets
are proved in Propositions 4.3, 4.7, 4.9 and 4.11. Then we study curved tetrahedra 7+, which
represent the singularity sets of X%, and collect related results in Proposition 4.5. Section 4.5
introduces decorated Jacobi coordinates for three-dimensional Minkowski space and provides
a detailed description of colouring in three colours. Each colour corresponds to a relativistic
type, and we describe decomposition of a geometric quadric of each of the four geometric types
into relativistic quadrics. This complex combinatorial geometric problem is solved using our
analysis of discriminant surfaces. We give a complete description of all three relativistic types
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of quadrics. Section 4.6 provides a generalized definition of decorated Jacobi coordinates in
arbitrary dimensions. Proposition 4.21 proves properties PE1 and PE2, the pseudo-Euclidean
analogues of E1 and E2.

4.1. Confocal quadrics and their types in Euclidean space

A general family of confocal quadrics in d-dimensional Euclidean space is given by

2 2
X1 Xd

by — A by — A
forb; > by > --- > by > 0.
Such a family has the following properties.

=1, 2eR 4.1

E1 Each point of the space E¢ is the intersection of exactly d quadrics from (4.1); moreover, all
these quadrics are of different geometrical types.

E2 Family (4.1) contains exactly d geometric types of non-degenerate quadrics; each
type corresponds to one of the disjoint intervals of the parameter A: (—o0, by),
(ba, ba-1), ..., (b2, by).

The parameters (A1, ..., Ag) corresponding to the quadrics of (4.1) that contain a given point
in E4 are called Jacobi coordinates. We order them as A; > - - - > Ag4.

Now consider the motion of a billiard ball within an ellipsoid, denoted by &, of family (4.1).
Without loss of generality, assume that the parameter A corresponding to this ellipsoid is equal
to 0. Recall that by Chasles’ theorem, each line in E¢ touches some d — 1 quadrics from (4.1).
Moreover, for a line and its billiard reflection on a quadric from (4.1), the d — 1 quadrics are the
same. This means that each segment of a given trajectory within £ has the same d — 1 caustics;
we denote their parameters by By, ..., B4—1, and introduce the following

{b1, ..., b} = {b1,...,b4,0,B1, ..., Ba-1},

such that by > by > --- > byy. Thus, we will have 0 = l;zd < byg_1, by = by. Moreover, it is
always: B; € {I;z,', 13254_1}, foreachi € {1,...,d}[2].

Now we can summarize the main properties of the flow of the Jacobi coordinates along the
billiard trajectories.

E3 Along a fixed billiard trajectory, the Jacobi coordinate A; (1 < i < d) takes values in segment
[b2i—1, bai].

E4 Along a trajectory, each A; achieves local minima and maxima exactly at touching points with
corresponding caustics, intersection points with corresponding coordinate hyper-planes, and,
fori = d, at reflection points.

ES5 Values of A; at these points are byi—y and by;; between the critical points, X; changes
monotonically.

These properties are key in algebrogeometric analysis of billiard flow.

At first glance, it seems that such properties do not hold in the pseudo-Euclidean case. In
d-dimensional pseudo-Euclidean space, a general confocal family contains d 4 1 geometric types
of quadrics; in addition, quadrics of the same geometric type have a non-empty intersection.
Thus, analysis of billiard flow using Jacobi-type coordinates is much more complicated.

We overcome this problem by introducing a new notion of relativistic quadrics. We equip
a geometric pencil of quadrics with an additional structure, a decoration, that decomposes
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geometric quadrics of the pencil into coloured subsets that form new types of relativistic quadrics.
The new notion of relativistic quadrics, i.e. coloured geometric quadrics, is more suitable for
pseudo-Euclidean geometry. It is then possible to introduce a new system of coordinates, a
nontrivial pseudo-Euclidean analogue of Jacobi elliptic coordinates, that plays a fundamental
role in our subsequent study of separable systems.

4.2. Confocal conics in the Minkowski plane

Consider first the case of the 2-dimensional pseudo-Euclidean space E!'!, namely the
Minkowski plane. We mentioned in Section 3.1 that a family of confocal conics in the Minkowski
plane contains conics of three geometric types: ellipses, hyperbolas with the x-axis as the major
axis, and hyperbolas with the y-axis as the major axis, as shown on Fig. 1. However, it is more
natural to consider relativistic conics, as analysed by Birkhoff and Morris [3]. In this section, we
give a brief account of that analysis.

Consider points F|(v/a + b, 0) and F>(—+/a + b, 0) in the plane.

For a given constant ¢ € RT U iR, a relativistic ellipse is the set of points X satisfying

diStl,l(Fl, X)+ diStl’l(FQ, X) = 2c,
while a relativistic hyperbola is the union of the sets given by the following equations:

diStl,l(Fl, X) — diStl’l(FQ, X) = 2c,
disty, 1 (F2, X) — disty 1 (F1, X) = 2c.

Relativistic conics can be described as follows.

0 < ¢ < +/a + b: The corresponding relativistic conics lie on ellipse C,_ > from family (3.2).
The ellipse C,_. is split into four arcs by touching points with the four common
tangents. Thus, the relativistic ellipse is the union of the two arcs intersecting the
y-axis, while the relativistic hyperbola is the union of the other two arcs.

¢ > «/a + b: The relativistic conics lie on C,_,» — a hyperbola with x-axis as the major one.
Each branch of the hyperbola is split into three arcs by touching points with common
tangents; thus, the relativistic ellipse is the union of the two finite arcs, while the
relativistic hyperbola is the union of the four infinite arcs.

c is imaginary: The relativistic conics lie on hyperbola C,_ >, a hyperbola with the y-axis as
the major axis. As in the previous case, the branches are split into six arcs by common
points for the four tangents. The relativistic ellipse is the union of the four infinite arcs,
while the relativistic hyperbola is the union of the two finite arcs.

The conics are shown in Fig. 3.

Remark 4.1. All relativistic ellipses are disjoint from each other, as are all relativistic
hyperbolas. Moreover, at the intersection point between a relativistic ellipse that is part of the
geometric conic C,, belonging to confocal family (3.2) and a relativistic hyperbola belonging to
Cy,, A1 < Az always holds.

This remark serves as motivation for the introduction of relativistic types of quadrics in higher-
dimensional pseudo-Euclidean spaces.
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Fig. 3. Relativistic conics in the Minkowski plane. Relativistic ellipses and hyperbolas are represented by full and dashed
lines, respectively.

4.3. Confocal quadrics in three-dimensional Minkowski space and their geometric types

Consider the three-dimensional Minkowski space E>!. A general confocal family of quadrics
in this space is given by:
2 2 2
X y Z
: =1, AeR, 4.2
Ry Sl Sy S | “2
witha > b > 0,c > 0.
The family (4.2) contains quadrics of four geometric types:

1-sheeted hyperboloids oriented along the z-axis for A € (—oo0, —c);

ellipsoids corresponding to A € (—c, b);

1-sheeted hyperboloids oriented along the y-axis for A € (b, a); and

2-sheeted hyperboloids for A € (a, +00); these hyperboloids are oriented along the z-axis.

In addition, there are four degenerate quadrics: Q,, Qp, Q_. and Q, that is, planes x = 0,
y = 0, z = 0, and the plane at infinity, respectively. In the coordinate planes, we single out the
following conics:

e hyperbola C}° : - zb + Tz = 1 in the plane x = 0;
e cllipse C;° : —h + ZT 1 in the plane y = 0; and
o ellipse C*. : T + by_ = 1 in the plane z = 0.

4.4. Tropic curves on quadrics in three-dimensional Minkowski space and discriminant sets 5%

For each quadric, note the tropic curves, the set of points at which the metrics induced on the
tangent plane are degenerate.
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Since the tangent plane at point (xg, Yo, zo) of Q, is given by

XX0 YYo 20

A b ctn

and the induced metric is degenerate if and only if the parallel plane that contains the origin is
tangential to the light-like cone x% + y*> — z2 = 0, i.e.

1

2 2 2
X0 Yo )

@2 o CrE

3

we arrive at the statement formulated by Khesin and Tabachnikov [16].

Proposition 4.2. The tropic curves on Q) are the intersection of the quadric with the cone

x2 y2 Z2

@22 T =2 ey

Now consider the set of the tropic curves on all quadrics of the family (4.2). From
Proposition 4.2, we obtain the following.

Proposition 4.3. The union of the tropic curves on all quadrics of (4.2) is a union of two ruled
surfaces X7 and X =, which can be parametrically represented as:

o+ a— A . b—X . , (42 cos2t+s1n2t
x = cost, = sint, z=(c ,
Ja+c Y Vb +c¢ +c¢ b+c
B a— X b— A cos2t  sin’t
X ix= cost, y = sint, z=—(+2X) +

_«/a—i—c Vb +c a+c b+c’
withA € R, t € [0, 27).

The intersection of these two surfaces is an ellipse in the xy-plane:

2 2
X

i y
atc b+c

ytnxy =1, z=0.

The two surfaces X, X~ are developable as embedded into Euclidean space. Moreover; their
generatrices are all light-like.

Proof. Letr = (x, y, z) denote an arbitrary point of XU X~ and let n be the corresponding unit
normal vector, n = r; X r;/|r), X r;|, where x denotes the vector product in three-dimensional
Euclidean space. Then the Gaussian curvature of the surface is K = (LN — M 2) J/(EG — F 2,
withL=ry - n=0M=r,;, - n=0N=ry - nE=r,-r,, F=r)-r;andG =1, - 1;.
Since

(@a+b—2x+ (b— a)cos(2t))?

J— 2—
EG—=F"= 2@+ )b +c¢) #0.

the Gaussian curvature K is equal to zero. [

Surfaces ¥ and X~ in Proposition 4.3 are shown in Fig. 4.
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Fig. 4. The union of all tropic curves of a confocal family.

Pei defined a generalization of the Gauss map to surfaces in three-dimensional Minkowski
space [19] and introduced the pseudo vector product as

X1 X X3

XAY=|y1 Y2 y3| = (x2y3 —x3y2,x3y1 — X1y3, —(x1y2 — x2y1)) = E21(X X y).
ey ey —e3

It is easy to check that (X Ay, X)2.1 = (X Ay, ¥)2.1 = 0. Then, for surface S : U — E>!, with
U C R?, the Minkowski Gauss map is defined as

s  aS
G:U — RP?, Gixp,x) =P — A —),
dx;  0x2

where P : R? \ {(0, 0, 0)} — RP? is the usual projection.

Lemma 4.4. The Minkowski Gauss map of surfaces X is singular at all points.
Proof. This follows from the fact that ry A r; is light-like forall X and . O

Since the pseudo-normal vectors to X* are all light-like, these surfaces are light-like
developable, as defined by Chino and Izumiya [7], who classified such surfaces as

e a light-like plane;
e a light-like cone; or

e atangent surface of a light-like curve.

Since X't and X~ are contained neither in a plane nor in a cone, we expect that they will be
tangent surfaces of some light-like curve, as shown in Corollary 4.10.
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Fig. 5. Curved tetrahedron 7 T: the union of all tropic curves on X1 corresponding to A € (b, a).

For each of the surfaces X, X ~, it is evident that tropic lines corresponding to 1-sheeted
hyperboloids oriented along the y-axes form a curved tetrahedron (Fig. 4). We denote the
tetrahedra by 7 and 7 —, respectively; they are symmetric with respect to the xy-plane. Fig. 5
shows the tetrahedron 7+ C X',

We now summarize the properties of these tetrahedra.

Proposition 4.5. Consider the subset T+ of X7 determined by the condition ). € [b, a]. This
set is a curved tetrahedron with the following properties.

e [ts vertices are

V(a—b0b+c) V( a—bob-l-c)
1 /—a+cy ) ;—a+c ) 2 /—a+c7 ) ,—a+c 3

V(O a—b a+c> V(O a—b a+c)

: Vb Vb+c)’ 7 Jb¥c b+ ’

e The shorter arcs of conics C;; *and Cay * determined by Vi, Vo and V3, V4, respectively, are two
edges of the tetrahedron.

o These two edges represent self-intersection of X,

e The other four edges are determined by the relation
—a—b+2x+(a—>b)cos2t =0. 4.3)

e These four edges are cuspid edges of X7

e Thus, at each vertex of the tetrahedron, a swallowtail singularity of X+ occurs.

Proof. Eq. (4.3) is obtained from the conditionr; x ry, =0. [
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Lemma 4.6. The tropic curves of the quadric Q,,, represent exactly the locus of points (x,y, z)

for which the equation
%2 32 22

PRy Y A S i Y

has Ao as a multiple root.

1 (4.4)

Proof. Without loss of generality, take Lo = 0. Eq. (4.4) is equivalent to

M@+ qr+qo=0 (4.5)
with

p=-x"—y'+Z+a+b-c,

q1 =x2(b—c)+y2(a—c)—zz(a+b)—ab+bc+ac,

qo = x%be + yzac + z%ab — abc.

Polynomial (4.5) has Ay = 0 as a double zero if and only if g9 = g1 = 0. Obviously, gg = 0 is
equivalent to the condition that (x, y, z) belongs to Q. Additionally, we have

q1 :xz(b—c)—i—yz(a—c)—zz(a+b)—ab+bc+ac
2 2 2 2 2 2
X Y z X y Z
=w”‘“*“”(;*?*?“)ﬁ’”(:ﬁb—z‘c—z)’

which is needed. 0O

Proposition 4.7. A tangent line to the tropic curve of a non-degenerate quadric of the
family (4.2) is always space-like, except on a 1-sheeted hyperboloid oriented along the y-axis.
Tangent lines to a tropic on 1-sheeted hyperboloids oriented along the y-axis are light-like at
four points, while at other points of the tropic curve the tangents are space-like.
Moreover, a tangent line to the tropic of a quadric from (4.2) belongs to the quadric if and
only if it is light-like.

Proof. The tropic curves on 9, similar to the approach in Proposition 4.3, can be represented

as
o a— X\ , © b—Ar . , ) = L 4 1) cos? ¢t N sin? ¢
X = COS T, = simt, Z = C s
Ja—+c Y Vb +c a+c b+c

with ¢t € [0, 27).
We calculate
»  (a+b—21—(a—b)cos2r)?
T 2(a+b+2c—(a—Db)cos2r)’
which is always non-negative and may only be zero if 1 € [b, a]. For A € (b, a), there are exactly
four values of ¢ in [0, 27) for which the expression is zero.

Now fix t € [0,27) and & € R. The tangent to the tropic of 9, at (x(¢), y(¢), z(¢t)) is
completely contained in Q; if and only if, for each ,

O +TEO? GO+ GO+
a—x b—A c+ A -

4y -z

)
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Fig. 6. Tropic curves and light-like tangents on a hyperboloid.

which is equivalent to
a+b—2A— (a—b)cos2t _
a+b+2c—(a—b)cos2t

Remark 4.8. In other words, the only quadrics of family (4.2) that may contain a tangent to their
tropic curve are 1-sheeted hyperboloids oriented along the y-axis, and such tangents are always
light-like. The tropic curves and their light-like tangents on such a hyperboloid are shown in
Fig. 6.

Note that equations obtained in the proof of Proposition 4.7 are equivalent to (4.3) of
Proposition 4.5, which leads to the following.

Proposition 4.9. Each generatrix of X and X~ is contained in one 1-sheeted hyperboloid
oriented along the y-axis from (4.2). Moreover, such a generatrix touches one of the tropic curves
of the hyperboloid and one of the cusp-like edges of the corresponding curved tetrahedron at the
same point.

Corollary 4.10. Surfaces X+ and X~ are tangent surfaces of the cuspid edges of tetrahedra T ™
and T, respectively.

The next propositions provide further analysis of light-like tangents to tropic curves on a
1-sheeted hyperboloid oriented along the y-axis.
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Proposition 4.11. For fixed Lo € (b, a), consider a hyperboloid Q;, from (4.2) and an arbitrary
point (x,y, z) on Qy,. Eq. (4.4) has, along with Lo, two other roots in C, which we denote by \
and ho. Then L1 = Xy if and only if (x, v, z) is placed on a light-like tangent to a tropic curve of
Q}LO'

Proof. The proof follows from the fact that the light-like tangents are contained in X+ U X~
(Proposition 4.3, Lemma 4.6 and Proposition 4.9). [

Proposition 4.12. Tiwo light-like lines on a 1-sheeted hyperboloid oriented along the y-axis
Jfrom (4.2) are either skew or intersect each other on a degenerate quadric from (4.2).

Proof. The proof follows from the fact that the hyperboloid is symmetric with respect to the
coordinate planes. [J

Lemma 4.13. Consider a non-degenerate quadric Qy, that is not a hyperboloid oriented along
the y-axis, i.e. Ao & [b, a]U{—c}. Then each point of Q,, that is not on one of the tropic curves
is contained in two additional distinct quadrics from family (4.2).

Consider two points A and B of Q,,, in the same connected component bounded by the tropic
curves. Let )y, Ay and My, X'y denote the solutions, different to Lo, of (4.4) corresponding to A
and B, respectively. Then, if A is less than (greater than, between) \/,, )»Z‘, it is also less than
(greater than, between) Xy, M.

Lemma 4.14. Let Q) be a hyperboloid oriented along the y-axis, Ao € (b, a). Let A and B be
two points of Qy, in the same connected component bounded by the tropic curves and light-like
tangents. Then if A is contained in two more quadrics from family (4.2), the same is true for B.

In this case, let )\, A} and My, L} denote the real solutions, different to Ao,
of (4.4) corresponding to A and B, respectively. Then if Lq is less than (greater than, between)
My, A, it is also less than (greater than, between) Mg, M.

By contrast, if A is not contained in any other quadric from (4.2), then the same is true for all
points of its connected component.

Proof. The proof of Lemmas 4.13 and 4.14 follows from the fact that the solutions of (4.4)
continuously change through space and that two of the solutions coincide exactly on tropic curves
and their light-like tangents. [J

4.5. Generalized Jacobi coordinates and relativistic quadrics in three-dimensional Minkowski
space

Definition 4.15. The generalized Jacobi coordinates of point (x, y, z) in the 3D Minkowski
space E>! are the unordered triplet of solutions of (4.4).

Note that any of the following cases may occur:

e Generalized Jacobi coordinates are real and different.

e Only one generalized Jacobi coordinate is real.

e Generalized Jacobi coordinates are real, but two of them coincide; or
e All three generalized Jacobi coordinates are equal.

Lemmas 4.13 and 4.14 help in defining relativistic types of quadrics in 3D Minkowski
space. Consider connected components of quadrics from (4.2) bounded by tropic curves and, for
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1-sheeted hyperboloids oriented along the y-axis, their light-like tangent lines. Each connected
component represents a relativistic quadric.

Definition 4.16. A component of quadric Q,, is of relativistic type E if, at each of its points, Ao
is less than the other two generalized Jacobi coordinates.

A component of quadric Q,,, is of relativistic type H L if, at each of its points, Aq is between
the other two generalized Jacobi coordinates.

A component of quadric Q,, is of relativistic type H 2 if, at each of its points, Aq is greater
than the other two generalized Jacobi coordinates.

A component of quadric Qy,, is of relativistic type O if, at each of its points, Ag is the only real
generalized Jacobi coordinate.

Lemmas 4.13 and 4.14 guarantee that the types of relativistic quadrics are well defined, so
that each such quadric can be assigned a unique type E, H', H? or 0.

Definition 4.17. Suppose (x, y, z) is a point of the 3D Minkowski space E>! where (4.4) has
real and different solutions. Decorated Jacobi coordinates of that point are the ordered triplet of
pairs

(E.aD),  (H'.2),  (H?23)
of generalized Jacobi coordinates and the corresponding types of relativistic quadrics.
Now we analyse the arrangement of the relativistic quadrics. We start with their intersections

with the coordinate planes.

Intersection with the xy-plane. In the x y-plane, the Minkowski metric is reduced to the Euclidean
metric. Family (4.2) intersects this plane in the following family of confocal conics:

2 2
Xy X y
C*):a—ﬁb—x:l

(4.6)

We conclude that the xy-plane is divided by ellipse Cf); into two relativistic quadrics:

e The region within C™, is a relativistic quadric of E-type.
e The region outside this ellipse is of H'-type.

Moreover, the types of relativistic quadrics intersecting the xy-plane are as follows:

e The components of ellipsoids are of H!-type.
e The components of 1-sheeted hyperboloids oriented along the y-axis are of H>-type.
e The components of 1-sheeted hyperboloids oriented along the z-axis are of E-type.

Intersection with the xz-plane. In the xz-plane, the metric is reduced to the Minkowski metric.
The intersection of family (4.2) with this plane is the following family of confocal conics:

x2 Z2

Cie =
» a—k+c+k

4.7

The plane is divided by ellipse C;* and the four joint tangents of (4.7) into 13 parts:

e The part within C;* is a relativistic quadric of H Ltype.
e Four parts placed outside of C;° that have a non-empty intersection with the x-axis are of
H’-type.
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z

Fig. 7. Intersection of relativistic quadrics with coordinate planes.

e Four parts placed outside of C;° that have a non-empty intersection with the z-axis are of
E-type.

e The four remaining parts are of O-type and no quadric from the family (4.2), except the
degenerate Q), passes through any of their points.

Intersection with the yz-plane. As in the previous case, in the yz-plane, the metric is reduced to
the Minkowski metric. The intersection of family (4.2) with this plane is the following family of
confocal conics:

2 2

e, Y S 48
A b—x+c+,\ (4.8)

The plane is divided by hyperbola C;° and joint tangents of (4.8) into 15 parts:

e The two convex parts determined by C, are relativistic quadrics of H!-type.

o Five parts placed outside of C,° that have a non-empty intersection with the coordinate axes
are of H?-type.

o Four parts, each placed between C,° and one of the joint tangents of (4.8), are of E-type.

e No quadric from the family (4.2), except the degenerate Q,, passes through points of the four
remaining parts.

The intersection of relativistic quadrics with the coordinate planes is shown in Fig. 7. Type E
quadrics are coloured in dark gray, type H' medium grey, type H? light grey, and type 0 white.
Curves nyc Gy~ C)* are also white in the figure.

From the above analysis, using Lemmas 4.13 and 4.14, we can determine the type of each

relativistic quadric with a non-empty intersection with some of the coordinate hyper-planes.

One-sheeted hyperboloids oriented along the z-axis: . € (—o00, —c). Such a hyperboloid is
divided by its tropic curves into three connected components; two of them are unbounded and
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mutually symmetric with respect to the xy-plane, while the third is the bounded annulus placed
between them. The two symmetric components are of H'-type, while the third is of E-type.

Ellipsoids: A € (—c, b). An ellipsoid is divided by its tropic curves into three bounded connected
components; two of them are mutually symmetric with respect to the xy-plane, while the third is
the annulus placed between them. In this case, the symmetric components represent relativistic
quadrics of E-type. The annulus is of H !-type.

One-sheeted hyperboloids oriented along the y-axis: A € (b, a). The decomposition of those
hyperboloids into relativistic quadrics is more complicated and interesting than for the other
types of quadrics from (4.2). By its two tropic curves and their eight light-like tangent lines, such
a hyperboloid is divided into 28 connected components:

e Two bounded components placed inside the tropic curves are of H'-type.

e Four bounded components placed between the tropic curves and light-like tangents such that
they have non-empty intersections with the xz-plane are of H>-type.

e Four bounded components placed between the tropic curves and light-like tangents such that
they have non-empty intersections with the yz-plane are of E-type.

e Two bounded components, each limited by four light-like tangents, are of H>-type.

e Four unbounded components, each limited by two light-like tangents such that they have non-
empty intersections with the xy-plane, are of H2-type.

e Four unbounded components, each limited by two light-like tangents such that they have non-
empty intersections with the yz-plane, are of E-type.

e Eight unbounded components, each limited by four light-like tangents, are sets of points not
contained in any other quadric from (4.2).

Two-sheeted hyperboloids: A € (a, 400). Such a hyperboloid is divided by its tropic curves into
four connected components: two bounded ones are of H2-type, while the two unbounded are of
H'-type.

4.6. Decorated Jacobi coordinates and relativistic quadrics in d-dimensional pseudo-Euclidean
space

Inspired by the results obtained in Sections 4.2 and 4.5, we introduce relativistic quadrics and
their types in confocal family (2.3) in the d-dimensional pseudo-Euclidean space Ef-/.

Definition 4.18. Generalized Jacobi coordinates of point x in the d-dimensional pseudo-
Euclidean space EX/ is the unordered d-tuple of solutions A of

2 2 2 2

Xq Xk k41 X4
=1. 4.9
al—k+ +ak—)» ak+1 + A +ad+k .9)

As already mentioned in Section 2.2, this equation has either d or d —2 real solutions. Besides,
some of the solutions may be multiple.

The set X, of points x in R where Eq. (4.9) has multiple solutions is an algebraic hyper-
surface. Y; divides each quadric from (2.3) into several connected components. We call these
components relativistic quadrics.

Since the generalized Jacobi coordinates depend continuously on x, we have the following
definition.
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Definition 4.19. We say that a relativistic quadric placed on Q;, is of fype E if, at each of its
points, A is less than the other d — 1 generalized Jacobi coordinates.
We say that a relativistic quadric placed on Q;, is of type H (1 <i <d—1)if, ateach of its
points, Ao is greater than i other generalized Jacobi coordinates and less than d — i — 1 of them.
We say that a relativistic quadric placed on Q;,, is of type 0’ (0 <i <d —2)if, at each of its
points, Aq is greater than i other real generalized Jacobi coordinates and less than d — i — 2 of
them.

It would be interesting to analyse the properties of the discriminant manifold Y, as well as the
combinatorial structure of the arrangement of relativistic quadrics, as in Section 4.5 for d = 3.
Note that this description would have [d/2] substantially different cases in each dimension,
depending on the choice of k and /.

Definition 4.20. Suppose (x1, ..., xy) is a point of the d-dimensional Minkowski space E*
where (4.9) has real and different solutions. Decorated Jacobi coordinates of that point are the
ordered d-tuplet of pairs

(B, o), (H' 32), .., (HY )
of generalized Jacobi coordinates and the corresponding types of relativistic quadrics.

Since we consider billiard system within ellipsoids in pseudo-Euclidean space, it is of interest
to analyse the behaviour of decorated Jacobi coordinates inside an ellipsoid.

Proposition 4.21. Let £ be the ellipsoid in EX! given by (2.2). We have the following:

PE1 Each point inside £ is the intersection of exactly d quadrics from (2.3); moreover, all of
these quadrics are of different relativistic types.

PE2 Types of these quadrics are E, H', ..., HY™1: each type corresponds to one of the disjoint
intervals of the parameter \:

(_ada _ad—l)a (_ad—la _ad—z)a ceey (_ak-l—]a 0)5 (O’ ak)a (ak7 ak—l)a ceey (a29 a1)~

Proof. The function given by the left-hand side of (4.9) is continuous and strictly monotonic
in each interval (—aq, —aq—1), (—aq—1, —aq—2), ..., (—ax+2, —ap+1), (@, ax-1), - . ., (a2, a1),
with infinite values at their endpoints. Thus, (4.9) has one solution in each of them. Conversely,
in (—ag+1, ar) the function tends to +oo at the endpoints, and has only one extreme value, the
minimum. Since the value of the function for A = 0 is less than 1 for a point inside &, it follows
that (4.9) will have two solutions in (—ak+1, ax), one positive and one negative. [

Proposition 4.21 proves the relativistic analogues of properties E1 and E2 from Section 4.1
for the Euclidean case.

5. Billiards within quadrics and their periodic trajectories

In this section we first derive further properties of ellipsoidal billiards in pseudo-Euclidean
spaces. In Section 5.1, Theorem 5.1 provides a simple and effective criterion for determining
the type of a billiard trajectory, knowing its caustics. Then we derive properties PE3-PES in
Proposition 5.2. In Section 5.2 we prove a generalization of the Poncelet theorem for ellipsoidal
billiards in pseudo-Euclidean spaces and derive the corresponding Cayley-type conditions, giving
a complete analytical description of periodic billiard trajectories in an arbitrary dimension. These
results are contained in Theorems 5.3 and 5.4.
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5.1. Ellipsoidal billiards

Ellipsoidal billiards. Billiard motion within an ellipsoid in pseudo-Euclidean space is uniformly
straightforward inside the ellipsoid and obeys the reflection law on the boundary. We consider
billiard motion within ellipsoid &, given by (2.2), in EX/. The family of quadrics confocal with
Eis (2.3).

Since functions F; given by (2.7) are integrals of billiard motion [18,2,16], for each zero A
of (2.6) the corresponding quadric Q,, is a caustic of billiard motion, i.e. it is tangential to each
segment of the billiard trajectory passing through point x with velocity vector v.

Note that, according to Theorem 2.3, for a point placed inside &£, there are d real solutions
of Eq. (4.9). In other words, there are d quadrics from the family (2.3) containing such a point,
although some of them may be multiple. Also, by Proposition 2.2 and Theorem 2.3, a billiard
trajectory within an ellipsoid will always have d — 1 caustics.

According to Remark 2.1, all segments of a billiard trajectory within £ will be of the same
type. Now, we can apply the reasoning from Section 2.2 to billiard trajectories.

Theorem 5.1. In the d-dimensional pseudo-Euclidean space EF!, consider a billiard trajectory
within ellipsoid €& = Qy, and let quadrics Qq,, ..., Qq,_, from the family (2.3) be its caustics.
Then all billiard trajectories within £ sharing the same caustics are of the same type: space-like,
time-like, or light-like, as the initial trajectory. Moreover, the type is determined as follows:

e if oo €{ay,...,a —_1}, the trajectories are light-like;
o if (—D)\-ay---ag_1 > 0, the trajectories are space-like;
o if (=) -aj---ag_1 <0, the trajectories are time-like.

Proof. Since values of functions F; given by (2.7) are preserved by the billiard reflection and

d
D Fi(x,v) = (v, v,
i=1

the type of billiard trajectory depends on the sign of Z?: 1 Fi(x, v). From the equivalence of

relations (2.6) and (2.8), it follows that the sum depends only on the roots of P, i.e. on parameters
of,...,a4_1 of the caustics.

Note that the product o - - - @y—1 changes continuously for the variety of lines in E*! that
intersect £, with infinite singularities at light-like lines. Besides, the subvariety of light-like
lines divides the variety of all lines into subsets of space-like and time-like lines. When passing
through light-like lines, one of the parameters «; passes through infinity going from positive to
negative real numbers or vice versa; thus, a change in sign for the product occurs simultaneously
with a change in the type of line.

Now take oj = —ag4j for 1 < j < [ and note that all lines placed in the k-dimensional
coordinate subspace EX x 0/ will have corresponding degenerate caustics. The pseudo-Euclidean
metric is reduced to the Euclidean metric in this subspace, and thus such lines are space-like.
Since a1, . .., ok are positive for lines of E* x 0 that intersect &, the statement is proved. [

Note that, in general, for fixed d — 1 quadrics from the confocal family we can find joint
tangents of different types, which makes Theorem 5.1 somewhat unexpected. However, for fixed
caustics, only lines having one type may intersect with a given ellipsoid, and only these lines
give rise to billiard trajectories.

Next we investigate the behaviour of decorated Jacobi coordinates along ellipsoidal billiard
trajectories.
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Proposition 5.2. Let T be the trajectory of a billiard within ellipsoid £ in pseudo-Euclidean
space EF!. Let ay, ..., aq_1 be the parameters of the caustics from the confocal family (2.3) of
T and take by, ..., by, c1, ..., cq as in Theorem 2.3. Then we have the following:

PE3 Along T, each generalized Jacobi coordinate takes values in exactly one of the segments
[ca—1, ca—2l, .- -, [e3, c2l, [c1, OL, [0, 1], [b2, b3, . . ., [bok—2, bok—1]-

PE4 Along T, each generalized Jacobi coordinate can achieve local minima and maxima only at
touching points of the corresponding caustics, points of intersection with the corresponding
coordinate hyper-planes, and at reflection points.

PES Values of the generalized Jacobi coordinates at critical points are 0, by, ..., by—1,
c1, ..., C2—1, between the critical points, the coordinates change monotonically.

Proof. Property PE3 follows from Theorem 2.3. Along each line, the generalized Jacobi
coordinates change continuously. Moreover, they are monotonic at all points where the line
has a transversal intersection with a non-degenerate quadric. Thus, critical points on a line are
touching points with the corresponding caustics and points of intersection with the corresponding
coordinate hyper-planes.

Note that the reflection points of 7 are also points of transversal intersection with all quadrics
containing those points, except for £. Thus, at such points, 0 will be a critical value of the
corresponding generalized Jacobi coordinate, and all other coordinates are monotonic. This
proves PE4 and PES. [

The properties we obtained are pseudo-Euclidean analogues of properties E3—E5 from
Section 4.1, which hold for ellipsoidal billiards in Euclidean spaces.

5.2. Analytic conditions for periodic trajectories

Now we derive analytic conditions of Cayley type for periodic trajectories of an ellipsoidal
billiard in pseudo-Euclidean space, and thus obtain a generalization of the Poncelet theorem for
pseudo-Euclidean spaces.

Theorem 5.3 (Generalized Cayley-Type Conditions). In the pseudo-Euclidean space EF! (k +
I = d), consider a billiard trajectory T within ellipsoid £ given by (2.2). Let Qq,, ..., Qu,_,
from confocal family (2.3) be the caustics of T.

Then T is periodic with period n if and only if the following condition is satisfied:

e forn =2m:

Bay1 Baya ... Batm-i
rank Bat2 Bats ... Batm <m—d+1 or
Bm+l Bm+2 .o By
Bay1 Bay2 ... Baitm
rank | B, Buti ... Byy—1 | <m—d+2;
Cn Cm+1 oo Com

Dy, Dpyy1r ... Doy
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e forn =2m+ 1:

Byy1 Bay2 ... Baim
Byyo  Bay3z ... Batm+i
rank | ... <m—d+2 or
Bm—H Bm+2 .. By
Cm—i—l Cm+2 oo Cop
Biv1 Bit2 ... Baim
Bav>  Bays ... Biym+l
rank | ... <m—d+2.
Bn+1 Bmt2 .. B
Dm+1 Dm+2 cee D2m

Here, (B;), (C;), (D;) are coefficients in the Taylor expansions around A = 0 of the functions

fo) = \/(Oll —A) - (og—1 —A) - (a1 — &1X) - - (ag — &q\), l‘fl(—j‘; and Lfl(—j‘i respectively.

Proof. Denote
Pi(A) = (a1 —A)---(ag—1 —A) - (a1 — &11) - - - (ag — €q\).

Following Jacobi [15], along a given billiard trajectory we consider the integrals

Zd: / dhy 2": / hdhs Xd: / 29245 5

=) VPG o) VP =) VPG '
According to PE3 of Proposition 5.2, we can suppose that

A1 €10, b1], Ai € [boi—2,boi—1] for2 <i <k;

Ak+1 € [c1, 0], Meyj € leaj—1,0j-2] for2 <j <l

Along a billiard trajectory, according to PE4 and PES of Proposition 5.2, each A; will pass
through the corresponding interval monotonically from one endpoint to another and vice versa,

alternately. Note also that values by, ..., by—1, c1,...,c2—1 correspond to the Weierstrass
points of the hyper-elliptic curve

1?2 =Pi(). (5.2)

Calculation of integrals (5.1) reveals that the billiard trajectory is closed after n reflections if and
only if, for some ny, ny such that ny + n, = n,

nA(Py) = ni A(Py) + n2 A(Pe))

on the Jacobian of curve (5.2). Here, A is the Abel-Jacobi map and P, is a point on the curve
corresponding to A = ¢. Furthermore, in the same manner as in previous studies [10,11], we
obtain the conditions as stated in the theorem. [

As an immediate consequence, we obtain the following.

Theorem 5.4 (Generalized Poncelet Theorem). In the pseudo-Euclidean space EX! (k +1 = d),
consider a billiard trajectory T within ellipsoid &.

If T is periodic and becomes closed after n reflections on the ellipsoid, then any other
trajectory within £ with the same caustics as T is also periodic with period n.
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Remark 5.5. A generalization of the full Poncelet theorem of Chang et al. [6] to pseudo-
Euclidean spaces was presented by Wang et al. [20]. However, they only discussed space-like
and time-like trajectories.

A Poncelet-type theorem for light-like geodesics on the ellipsoid in 3D Minkowski space was
proved by Genin et al. [13].

Remark 5.6. Theorems 5.3 and 5.4 also hold in symmetric and degenerate cases, that is,
when some of the parameters &;a;, «; coincide or, in the case of light-like trajectories, when
00 € {aj | 1 < j <d — 1}. Insuch cases, we need to desingularise the corresponding curve, as
previously explained in detail [9,12].

When we consider light-like trajectories, the factor containing the infinite parameter is omitted
from polynomial P;.

Example 5.7. We find all 4-period trajectories within ellipse £ given by (3.1) in the Minkowski
plane, i.e. all conics C,, from confocal family (3.2) corresponding to such trajectories.
By Theorem 5.3, the condition is B3 = 0, where

V@—=21)b+A) (e — 1) = By+ BiA+ B2 + B3A> + -
is the Taylor expansion around A = 0. Since

_ (=ab —aa + ba)(—ab + aa + ba)(ab + aa + ba)

B3

16(aba)5/? ’
we obtain the following solutions:
ab ab ab
o] = s o) = ———, o3 = — .
b—a a+b a+b

Since o ¢ (—b,a) and az, @3 € (—b, a), conic Cy, is a hyperbola, while Cy, and Cq; are
ellipses.
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