NOTE

SOME GENERALIZATIONS OF A COMBINATORIAL IDENTITY OF L. VIETORIS

H.M. SRIVASTAVA
Department of Mathematics, University of Victoria, Victoria, BC, Canada V8W 2 Y2

Received 24 September 1985

Revised 1 July 1986
A remarkably simple proof is presented for an interesting generalization of a combinatorial identity given recently by L. Vietoris [Monatsh. Math. 97 (1984) 157-160]. It is also shown how this general result can be extended further to hold true for basic (or q-) series.

1. Introduction

For real or complex λ, let

$$
\begin{equation*}
\binom{\lambda}{0}=1, \quad\binom{\lambda}{n}=\frac{\lambda(\lambda-1) \cdots(\lambda-n+1)}{n!}, \quad n=1,2,3, \ldots, \tag{1}
\end{equation*}
$$

so that

$$
\begin{equation*}
\binom{\lambda+n-1}{n}=(-1)^{n}\binom{-\lambda}{n} \tag{2}
\end{equation*}
$$

and, for integers m and n,

$$
\begin{equation*}
\binom{m}{n}=\frac{m!}{n!(m-n)!}=\binom{m}{m-n}, \quad 0 \leqslant n \leqslant m . \tag{3}
\end{equation*}
$$

Recently, Vietoris [3] proved the combinatorial identity:

$$
\begin{equation*}
(m+n)!=\frac{m!}{k!(m-k-1)!} \sum_{i=0}^{n}\binom{n}{i}(k+i)!(m+n-k-i-1)!, \tag{4}
\end{equation*}
$$

where m, n, k are integers, with

$$
\begin{equation*}
0 \leqslant k \leqslant m-1 \quad \text { and } n \geqslant 0 . \tag{5}
\end{equation*}
$$

Making use of the definition (3), Vietoris's identity (4) can readily be rewritten in its equivalent form:

$$
\begin{equation*}
\binom{m+n}{n}=\sum_{i=0}^{n}\binom{k+i}{i}\binom{m+n-k-i-1}{n-i}, \tag{6}
\end{equation*}
$$

where, as before, m, n, k are integers constrained by (5).
0012-365X/87/\$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

A closer examination of the combinatorial identity (6) would suggest the existence of an interesting generalization of Vietoris's result (4) in the form:

$$
\begin{equation*}
\binom{\mu+n}{n}=\sum_{i=0}^{n}\binom{\lambda+i}{i}\binom{\mu-\lambda+n-i-1}{n-i}, \tag{7}
\end{equation*}
$$

where λ and μ are arbitrary complex numbers, and $n=0,1,2, \ldots$
Formula (7) can indeed be rewritten in a form analogous to (4) by using Gamma functions.

2. Derivation of Identity (7)

In view of the elementary relationship (2), we have

$$
\begin{equation*}
\binom{\lambda+i}{i}=(-1)^{i}\binom{-\lambda-1}{i}, \quad i=0,1,2, \ldots \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\binom{\mu-\lambda+n-i-1}{n-i}=(-1)^{n-i}\binom{\lambda-\mu}{n-i}, \quad 0 \leqslant i \leqslant n \tag{9}
\end{equation*}
$$

so that (7) evidently becomes

$$
\begin{equation*}
(-1)^{n}\binom{\mu+n}{n}=\sum_{i=0}^{n}\binom{-\lambda-1}{i}\binom{\lambda-\mu}{n-i} \tag{10}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\binom{-\mu-1}{n}=\sum_{i=0}^{n}\binom{-\lambda-1}{i}\binom{\lambda-\mu}{n-i} \tag{11}
\end{equation*}
$$

where we have applied the relationship (2) once again.
Formula (11) is an immediate consequence of the well-known Vandermonde convolution [1]:

$$
\begin{equation*}
\binom{\lambda+\mu}{n}=\sum_{i=0}^{n}\binom{\lambda}{i}\binom{\mu}{n-i}, \tag{12}
\end{equation*}
$$

which holds true for all (real or complex) values of λ and μ, and for integer $n \geqslant 0$.
Obviously, the above derivation of the general formula (7) is much simpler than Vietoris's proof of the special case of (7) when $\lambda=k$ and $\mu=m$, where k and m are integers constrained as in (5),

In order to present an alternative proof of (7), let $F(a, b ; c ; x)$ denote the Gaussian hypergeometric series defined by

$$
\begin{equation*}
F(a, b ; c ; x)=\sum_{i=0}^{\infty} \frac{(a)_{i}(b)_{i}}{(c)_{i}} \frac{x^{i}}{i!} \tag{13}
\end{equation*}
$$

where, for convenience,

$$
\begin{equation*}
(a)_{0}=1, \quad(a)_{i}=a(a+1) \cdots(a+i-1), \quad i=1,2,3, \ldots \tag{14}
\end{equation*}
$$

Since

$$
\begin{equation*}
\binom{\lambda+n-1}{n}=\frac{(\lambda)_{n}}{n!}, \quad n=0,1,2, \ldots \tag{15}
\end{equation*}
$$

the right-hand side of the general identity (7) equals

$$
\begin{equation*}
(\mu-\lambda)_{n} F(-n, \lambda+1 ; \lambda-\mu-n+1 ; 1) \tag{16}
\end{equation*}
$$

where the hypergeometric series is finite because n is a nonnegative integer.
Now apply a special case of Gauss's summation theorem [2, p. 19] in the form:

$$
\begin{equation*}
F(-n, b ; c ; 1)=\frac{(c-b)_{n}}{(c)_{n}}, \quad n=0,1,2, \ldots \tag{17}
\end{equation*}
$$

and note from (14) that

$$
\begin{align*}
\frac{(-\mu-n)_{n}}{(\lambda-\mu-n+1)_{n}}=\frac{(\mu+1)_{n}}{(\mu-\lambda)_{n}}, & n=0,1,2, \ldots, \tag{18}\\
& \lambda-\mu+1 \neq 1,2,3, \ldots,
\end{align*}
$$

and (16) immediately yields the left-hand side of the general identity (7) under the (easily removable) constraint that $\lambda-\mu+1$ is not a positive integer.

3. A basic (or q-) extension of Identity (7)

In terms of the basic (or q-) number [λ] and basic (or q-) factorial [n]! defined by

$$
\begin{equation*}
[\lambda]=\frac{1-q^{\lambda}}{1-q} ; \quad[n]!=[1][2][3] \cdots[n], \quad[0]!=1 \tag{19}
\end{equation*}
$$

let the (Gaussian) basic (or q-) binomial coefficient be given by [cf. eq. (1) et seq.]

$$
\left[\begin{array}{l}
\lambda \tag{20}\\
0
\end{array}\right]=1, \quad\left[\begin{array}{l}
\lambda \\
n
\end{array}\right]=\frac{[\lambda][\lambda-1] \cdots[\lambda-n+1]}{[n]!}, \quad n=1,2,3, \ldots
$$

for arbitrary λ, so that

$$
\left[\begin{array}{c}
\lambda+n-1 \tag{21}\\
n
\end{array}\right]=(-1)^{n} q^{\frac{1}{2} n(2 \lambda+n-1)}\left[\begin{array}{c}
-\lambda \\
n
\end{array}\right], \quad n=0,1,2, \ldots,
$$

and, for integers m and n,

$$
\left[\begin{array}{c}
m \tag{22}\\
n
\end{array}\right]=\frac{[m]!}{[n]![m-n]!}=\left[\begin{array}{c}
m \\
m-n
\end{array}\right], \quad 0 \leqslant n \leqslant m
$$

From the definitions (1) and (20) it is easily verified that

$$
\lim _{q \rightarrow 1}\left[\begin{array}{l}
\lambda \tag{23}\\
n
\end{array}\right]=\binom{\lambda}{n}, \quad n=0,1,2, \ldots,
$$

λ being a complex number.
By appealing to known q-extensions of familiar results like (12) and (17) (cf., e.g. [2, p. 348]), it is not difficult to prove the following q-extension of the general combinatorial identity (7):

$$
\left[\begin{array}{c}
\mu+n \tag{24}\\
n
\end{array}\right]=\sum_{i=0}^{n}\left[\begin{array}{c}
\lambda+i \\
i
\end{array}\right]\left[\begin{array}{c}
\mu-\lambda+n-i-1 \\
n-i
\end{array}\right] q^{(\mu-\lambda) i}
$$

where λ and μ are arbitrary complex numbers, and n is a nonnegative integer.
Finally, in view of the limit relationship (23), the general combinatorial identity (7) would follow from (24) upon letting $q \rightarrow 1$.

Acknowledgments

This work was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant A-7353.

References

[1] J. Riordan, Combinatorial Identities (Wiley, New York, 1968).
[2] H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series (Wiley, New York, 1985).
[3] L. Vietoris, Eine Verallgemeinerung der Gleichung $(n+1)!=n!(n+1)$ und zugehörige vermutete Ungleichungen, Monatsh. Math. 97 (1984) 157-160.

