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Abstract

Katriel, Rasetti and Solomon introduced a q-analogue of the Zassenhaus formula written as e(A+B)q =
eAqe

B
qe
c2
q e

c3
q e

c4
q e

c5
q : : : ; where A and B are two generally noncommuting operators and ezq is the Jackson q-

exponential, and derived the expressions for c2, c3 and c4. It is shown that one can also write e
(A+B)
q =

eAqe
B
qe

C2
q2 e

C3
q3 e

C4
q4 e

C5
q5 : : : : Explicit expressions for C2, C3 and C4 are given.
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1. Introduction

As is well known, the Baker–Campbell–Hausdor- (BCH) formula

eAeB = eA+B+(1=2) [A;B]+(1=12) ([A; [A;B]]+[[A;B];B])+··· (1)

helps express the product of two noncommuting exponential operators as a single exponential operator
in which the exponent is, in general, an in=nite series in terms of repeated commutators and several
hundred terms of the series have been calculated using the computer. The dual of the BCH formula
is the Zassenhaus formula

eA+B = eAeBe−1=2[A;B]e1=6[A; [A;B]]−1=3[[A;B];B] · · · (2)
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which helps disentangle an exponential operator into a product of, in general, an in=nite series
of exponential operators involving repeated commutators (see [12] for details). The BCH and the
Zassenhaus formulas have several applications (see, for example, [14–16,7].
With the advent of q-deformed algebraic structures in physics (see, for example, [1,2,8] and

references therein) there has been a growing interest in q-generalization of several results of classical
analysis. Katriel and Solomon [11] =rst obtained the q-analogue of the BCH formula and later Katriel
et al. [10] proposed a q-analogue of the Zassenhaus formula. Let us brieFy recall their results.
The Jackson q-exponential is de=ned by

exq =
∞∑
n=0

xn

[n]!
; (3)

where

[n] =
1− qn
1− q (4)

is the Heine basic number and

[n]! = [n] [n− 1] [n− 2] · · · [1] [0]! = 1; (5)

such that

lim
q→1

[n] = n; lim
q→1

exq = e
x: (6)

In the following [n] will refer to the q-deformed n de=ned by (4) corresponding to the base q. If the
base is di-erent then it will be indicated explicitly; for example, [n]qk will mean (1− qkn)=(1− qk).
The q-exponential function e�xq is the eigenfunction of the Jackson q-di-erential operator

Dqf(x) =
f(x)− f(qx)
(1− q)x (7)

such that

Dqe�xq = �e
�x
q : (8)

The q-commutator is de=ned by

[X; Y ]q = XY − qYX (9)

and it obeys the q-antisymmetry property

[Y; X ]q =−q[X; Y ]q−1 : (10)

The q-BCH formula found in [11] reads

eAqe
B
q = e

A+B+(q=[2])[A;B]q−1+(q
2=[2]3!)([A;[A;B]q]q−1+[[A;B]q;B]q−1 )+···

q : (11)

Katriel and Solomon [11] have given the explicit expressions for the terms involving up to 4-tuple
q-commutator. In the limit q→ 1 the above q-BCH formula (11) is seen to agree with the classical
BCH formula (1).
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When A and B satisfy the relation AB=q−1BA it is found that [A; B]q−1 , [A; [A; B]q]q−1 , [[A; B]q; B]q−1 ,
and all the higher q-commutators vanish leading to the result of SchHutzenberger [13] and Cigler [3]
(see also, [5]):

eAqe
B
q = e

A+B
q if AB= q−1BA: (12)

The q-analogue of the Zassenhaus formula proposed in [10] reads

e(A+B)q = eAqe
B
qe
c2
q e

c3
q e

c4
q e

c5
q · · · ; (13)

where

c2 = [B; A]q=[2];

c3 = ([[B; A]q; A]q2=[3]!) + ([[B; A]q; B]q=[3]);

c4 = ([[[B; A]q; A]q2 ; A]q3=[4]!) + ([[[B; A]q; B]q2 ; B]q3=[2][4])

+ ([[[B; A]q; A]q2 ; B]q=[2][4]) + (q[[B; A]q; [B; A]q]q=[2]
2[4]);

: : : :

(14)

In this article we shall see that it is possible to have a q-Zassenhaus formula written also as

e(A+B)q = eAqe
B
qe

C2
q2 e

C3
q3 e

C4
q4 e

C5
q5 · · · (15)

and give the explicit expressions for the =rst few terms.

2. The Zassenhaus formula

A standard procedure to obtain the Zassenhaus formula is as follows. Set

ex(A+B) = exAexBex
2C2ex

3C3 · · · : (16)

Di-erentiating both sides of (16) with respect to x and multiplying it from the right by

e−x(A+B) = · · · e−x3C3e−x2C2e−xBe−xA; (17)

one obtains

A+ B=A+ exABe−xA + exAexB(2xC2)e−xBe−xA

+exAexBex
2C2(3x2C3)e−x

2C2e−xBe−xA + · · · : (18)

The expressions exABe−xA, exexB(2xC2)e−xBe−xA, etc., are expanded again using the formula

exABe−xA =
∞∑
n=0

xn

n!
{An; B}; (19)

where the multiple commutator bracket {An; B} is de=ned by
{An+1; B}= [A; {An; B}] {A0; B}= B: (20)
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Then, Eq. (18) becomes

0=
∞∑
n=1

xn

n!
{An; B}

+2x
∞∑
m=0

∞∑
n=0

xm+n

m!n!
{Am; Bn; C2}

+3x2
∞∑
l=0

∞∑
m=0

∞∑
n=0

xl+m+2n

l!m!n!
{Al; Bm; Cn2 ; C3}+ · · · (21)

with

{A0; Bn; C2}= {Bn; C2}
{Am+1; Bn; C2}= [A; {Am; Bn; C2}] · · · :

(22)

Equating the coeKcients of xn to zero in (21) one obtains

C2 =− 1
2 [A; B]

C3 = 1
6 [A; [A; B]]− 1

3 [[A; B]; B] · · · :
(23)

There are also alternative methods of derivation of the above result (see, for example, [14,15] for
more details). For our purpose of deriving a q-analogue of the Zassenhaus formula we shall follow
Karplus and Schwinger [9] (see Appendix I where exp(A + B) is expanded in powers of B up to
the second term using a method we adopt here).

3. A q-analogue of the Zassenhaus formula

Let

F(x) = ex(A+B)q ; F(0) = I (24)

and write

ex(A+B)q = exAq G(x); G(0) = I: (25)

On q-di-erentiating with respect to x

DqF(x) = (A+ B)ex(A+B)q : (26)

Note that q-di-erentiation obeys the q-Leibniz rule

Dq(fg) = (Dqf)g+ f(qx)(Dqg) = (Dqf)g(qx) + f(Dqg): (27)
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Now, q-di-erentiating the right-hand side of (25) using the q-Leibniz rule we have

(A+ B)ex(A+B)q =AexAq G(x) + e
qxA
q DqG(x)

=Aex(A+B)q + eqxAq DqG(x): (28)

Thus,

Bex(A+B)q = BexAq G(x) = e
qxA
q DqG(x) (29)

or

DqG(x) = (eqxAq )−1BexAq G(x): (30)

Recall that the inverse of q-di-erentiation is q-integration (see, for example, [4,6]), de=ned by∫ x

0
dq�f(�) = (q− 1)x

∞∑
n=1

q−nf(q−nx); (31)

such that

Dq

(∫ x

0
dq�f(�)

)
= f(x): (32)

Then, the formal solution of the q-di-erential equation (30) for G(x) with the initial condition
G(0) = I , is given by

G(x) = I +
∫ x

0
dq�(eq�Aq )−1Be�Aq G(�)

= I +
∫ x

0
dq�(eq�Aq )−1Be�Aq

+
∫ x

0
dq�1(eq�1Aq )−1Be�1Aq

∫ �1

0
dq�2(eq�2Aq )−1Be�2Aq

+ · · · : (33)

Using the well known result

exqe
−x
q−1 = 1; (34)

we can rewrite (33) as

G(x) = I +
∫ x

0
dq�e

−q�A
q−1 Be

�A
q

+
∫ x

0
dq�1e

−q�1A
q−1 Be�1Aq

∫ �1

0
dq�2e

−q�2A
q−1 Be�2Aq

+ · · · : (35)
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We now require a q-analogue of the classical formula (19). By straightforward expansion and
regrouping of terms in powers of x we have

(eqxAq )−1BexAq

=e−qxAq−1 Be
xA
q = B+ x[B; A]q +

x2

[2]!
[[B; A]q; A]q2 +

x3

[3]!
[[[B; A]q; A]q2 ; A]q3 + · · · : (36)

Let us write this equation as

e−qxAq−1 Be
xA
q = B+

∞∑
n=1

xn

[n]!
Xn (37)

with the de=nition

Xn = [ · · · [[[B; A]q; A]q2 ; A]q3 · · · ]; A]qn ; n= 1; 2; 3; : : : : (38)

Now, using (37) and (38) in (35), we get

G(x) = I +
∫ x

0
dq�

{
B+

∞∑
n=1

�n

[n]!
Xn

}

+
∫ x

0
dq�1

{
B+

∞∑
n=1

�n1
[n]!

Xn

}∫ �1

0
dq�2

{
B+

∞∑
n=1

�n2
[n]!

Xn

}
+ · · · : (39)

Collecting the =rst few terms of the resulting series in powers of x we have

G(x) =
{
I + xB+

x2B2

[2]!
+
x3B3

[3]!
+ · · ·

}

+
{
x2X1
[2]!

+
x4X 21

[1][2]![4]
+

x6X 31
[1]2[2]![4][6]

+ · · ·
}

+
{
x3

(
X2
[3]!

+
BX1
[3]!

+
X1B
[1][3]

)
+ x6(· · ·) + · · ·

}
+ · · · : (40)

Realizing that the terms in the =rst bracket sum to exBq let us rewrite (40) as

G(x) = exBq

(
I + e−xBq−1

{
x2X1
[2]!

+
x4X 21

[1][2]![4]
+

x6X 31
[1]2[2]![4][6]

+ · · ·
}

+e−xBq−1

{
x3

(
X2
[3]!

+
BX1
[3]!

+
X1B
[1][3]

)
+ x6(· · ·) + · · ·

}
+ · · ·

)
: (41)

Substituting the series expansion e−xBq−1 , using the relation

[n]q−1 = q
1−n[n]q (42)



R. Sridhar, R. Jagannathan / Journal of Computational and Applied Mathematics 160 (2003) 297–305 303

and after some straightforward algebra one can rewrite (41) further as

G(x) = exBq e
x2X1=[2]
q2

(
I + e−x

2X1=[2]
q2

{
−xB+ qx

2B2

[2]
− q2x3B3

[3]
+ · · ·

}
· · ·

+e−x
2X1=[2]

q2

{
x3

(
X2
[3]!

+
BX1
[3]!

+
X1B
[3]

)
+ · · ·

}
+ · · ·

)
: (43)

Now, substituting the series expression for e−x
2X1=[2]

q2 and simplifying, one recognizes that one can

pull out a factor e
x3{([X1 ;B]q=[3])+(X2=[3]!)}
q3 from the above expression and write

G(x) = exBq e
x2[B;A]q=[2]

q2 e
x3{([[B;A]q;B]q=[3])+([[B;A]q;A]q2 =[3]!)}
q3 · · ·

=exBq e
−qx2[A;B]q−1 =[2]
q2 e

x3{(q3[A;[A;B]q−1 ]q−2 =[3]!)−(q[[A;B]q−1 ;B]q=[3])}
q3 · · · : (44)

This shows that the general expression for G(x) can be assumed to be

G(x) = exBq e
x2C2
q2 ex

3C3
q3 ex

4C4
q4 · · · : (45)

The crucial point here is to note that the exponential factors in G(x) have bases q; q2; q3; q4; : : : ;
respectively, unlike in the formula (13) introduced by Katriel et al. [10]. Thus, having recognized a
new general form of G(x) we can use the comparison method to determine C2;C3;C4; : : : ; in (45).
To this end, we write (25) as

∞∑
n=0

xn

[n]!
(A+ B)n =

∞∑
j; k;l;m;:::=0

xj+k+2l+3m+···

[j]q![k]q![l]q2 ![m]q3 !
AjBkCl2C

m
3 · · · (46)

and compare the coeKcients of equal powers of x. This leads to coupled equations for C2;C3;C4; : : : ;
which can be solved in terms of A and B after straightforward algebra. Thus, solving the =rst few
equations we con=rm the forms of C2 and C3 already obtained above (compare (44) and (45)) and
=nd that

C4 =
1
[4]!

(−q6[A; [A; [A; B]q−1 ]q−2 ]q−3 + q3[3][[A; [A; B]q−1 ]q−2 ; B]q
− q[3][[[A; B]q−1 ; B]q; B]q2): (47)

Now, using (25), (44), (45) and (47), we get the q-Zassenhaus formula as

e(A+B)q =eAqe
B
qe

−q[A;B]q−1 =[2]
q2 e

{(q3[A;[A;B]q−1 ]q−2 =[3]!)−(q[[A;B]q−1 ;B]q=[3])}
q3

×e(1=[4]!)(−q
6[A;[A;[A;B]q−1 ]q−2 ]q−3+q

3[3][[A;[A;B]q−1 ]q−2 ;B]q−q[3][[[A;B]q−1 ;B]q;B]q2 )
q4 (48)

up to the =rst =ve terms. In the limit q→ 1 it is found that C2, C3 and C4 become the expressions
for the classical Zassenhaus formula (see, for example, (7)–(9) of [15]). When AB = q−1BA it is
found that C2 = C3 = C4 = · · ·= 0 leading to the SchHutzenberger–Cigler result (12).



304 R. Sridhar, R. Jagannathan / Journal of Computational and Applied Mathematics 160 (2003) 297–305

In the literature on q-series there are two other de=nitions of the q-exponential:

eq(x) =
∞∑
n=0

xn

(1− q)(1− q2) · · · (1− qn) ; (49)

Eq(x) =
∞∑
n=0

qn(n−1)=2xn

(1− q)(1− q2) · · · (1− qn) ; (50)

such that

lim
q→1

eq((1− q)x) = ex; (51)

lim
q→1

Eq((1− q)x) = ex; (52)

eq(x)Eq(−x) = 1: (53)

Let us note that the corresponding Zassenhaus formulae can be found in straightforward ways by
using the relations:

eq(x) = ex=(1−q)q ; (54)

Eq(x) = e
x=(1−q)
q−1 : (55)

Thus, we =nd, using (48) and (54),

eq(A+ B) = e(A+B)=(1−q)q

=eq(A)eq(B)eq2(−q[A; B]q−1=(1− q)) · · · (56)

and

eq(A+ B) = eq(A)eq(B) if AB= q−1BA: (57)

Similarly,

Eq(A+ B) = e
(A+B)=(1−q)
q−1

=Eq(A)Eq(B)Eq2(−[A; B]q=(1− q)) · · · (58)

and

Eq(A+ B) = Eq(A)Eq(B) if AB= qBA: (59)

4. Conclusion

To summarize, it is found that the classical Zassenhaus formula

eA+B=eAeBe−(1=2)[A;B]e(1=6)[A; [A;B]]−(1=3)[[A;B];B]

×e(1=4!)(−[A; [A; [A;B]]]+3[[A; [A;B]];B]−3[[[A;B];B];B]) · · · (60)
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has a q-analogue given by

e(A+B)q =eAqe
B
qe

−q[A;B]q−1 =[2]
q2 e

{(q3[A;[A;B]q−1 ]q−2 =[3]!)−(q[[A;B]q−1 ;B]q=[3])}
q3

×e(1=[4]!)(−q
6[A;[A;[A;B]q−1 ]q−2 ]q−3+q

3[3][[A;[A;B]q−1 ]q−2 ;B]q−q[3][[[A;B]q−1 ;B]q;B]q2 )
q4

× · · · ; (61)

where the q-exponential is de=ned by

exq =
∞∑
n=0

xn

[n]!
: (62)

Thus, we have shown that while Katriel et al. [10] have proposed a q-analogue of the Zassenhaus
formula in the form

e(A+B)q = eAqe
B
qe
c2
q e

c3
q e

c4
q e

c5
q · · · ; (63)

it is possible to have a q-Zassenhaus formula written also as

e(A+B)q = eAqe
B
qe

C2
q2 e

C3
q3 e

C4
q4 e

C5
q5 · · · : (64)

We have also explicitly found the =rst few terms of the disentanglement formula (64).
It should be noted that once a q-Zassenhaus formula is given for the q-exponential de=ned by

(62) for the other two common de=nitions of the q-exponential (49) and (50) found in the literature
the corresponding q-Zassenhaus formulae can be found using the relations (54) and (55).
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