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Abstract

Katriel, Rasetti and Solomon introduced a g-analogue of the Zassenhaus formula written as eEfHB) =
ALB

C2 AC3 AC4 AC5 . ] _
e e e segter’ ..., where 4 and B are two generally noncommuting operators and ¢ is the Jackson g

. . . . . A+B
exponential, and derived the expressions for c¢;, ¢3 and c4. It is shown that one can also write e(q +B) _
A B b2 b3 €4 b5 ici i i

eye e e e Explicit expressions for ¢,, ¢3 and %4 are given.
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1. Introduction

As is well known, the Baker—Campbell-Hausdorff (BCH) formula

eAB — oA+B+(1/2)[ABI+(1/12) ([4,[4,B]|+{[4,B],B])+-- (1)
helps express the product of two noncommuting exponential operators as a single exponential operator
in which the exponent is, in general, an infinite series in terms of repeated commutators and several
hundred terms of the series have been calculated using the computer. The dual of the BCH formula

is the Zassenhaus formula
oAtB — oAgBo—1/214,B] 41 /6[A.[4.B]~1/3[[4.B1B] 2)
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which helps disentangle an exponential operator into a product of, in general, an infinite series
of exponential operators involving repeated commutators (see [12] for details). The BCH and the
Zassenhaus formulas have several applications (see, for example, [14—16,7].

With the advent of g-deformed algebraic structures in physics (see, for example, [1,2,8] and
references therein) there has been a growing interest in g-generalization of several results of classical
analysis. Katriel and Solomon [11] first obtained the g-analogue of the BCH formula and later Katriel
et al. [10] proposed a g-analogue of the Zassenhaus formula. Let us briefly recall their results.

The Jackson g-exponential is defined by

o0 n

. x
eq - ; [n]' b (3)
where
1 —g”
(] = <2 4)
—q
is the Heine basic number and
(]! =[n][n—1][n—2]---[1] [0]'=1, (5)
such that
lim[n] =n, lime; =e" (6)
qﬂ] q~>l

In the following [n] will refer to the g-deformed n defined by (4) corresponding to the base g. If the
base is different then it will be indicated explicitly; for example, [n], will mean (1 — g"/(1 —¢").
The g-exponential function e7* is the eigenfunction of the Jackson g-differential operator

S(x) — flgx)
D, f(x) =222 (7)
SO g

such that

Dyej = e’ (8)
The g-commutator is defined by

[X, Y], = XY — q¥X )
and it obeys the g-antisymmetry property

[Y.X], = —qlX, Y], (10)

The ¢-BCH formula found in [11] reads

A+B 21)[4,B] — 2 II213Y([A4,[4,B],], —1 +[[4,B],,B] —1 )+
egeg:eq+ /DAY, -1+ RIATABY ) 1481, Bl -1 ) (11
Katriel and Solomon [11] have given the explicit expressions for the terms involving up to 4-tuple
g-commutator. In the limit ¢ — 1 the above ¢g-BCH formula (11) is seen to agree with the classical
BCH formula (1).
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When 4 and B satisfy the relation AB=¢~'BA it is found that [4,B],-1, [4,[4,B] 1,1, [[4,B];, B],-1,
and all the higher g-commutators vanish leading to the result of Schiitzenberger [13] and Cigler [3]
(see also, [5]):

ejel =i if AB=q 'BA. (12)

The g-analogue of the Zassenhaus formula proposed in [10] reads

(A+B) _ A _B_.c2,c3 ,Ca s oL
e, =¢, e, e/e’elle, , (13)

where
¢ =[B,4],/[2],
c3 = ([[B,4],,4],/131") + ([[B,4],, B],/[3]),
cs = ([[[B.4],, 4] 2. A1,5/[41)) + ([[[B. 4], B2, B] 5 /[2][4]) (14)
+ ([[[B, 4], 412, B1,/121[4]) + (q[[B, 4], [B, 4],1,/[121°[4]),

In this article we shall see that it is possible to have a g-Zassenhaus formula written also as

A+B) _ A B .C, € 64 C
61(1 )—eqeqeq;eqfeq;‘eqf-~~ (15)

and give the explicit expressions for the first few terms.

2. The Zassenhaus formula

A standard procedure to obtain the Zassenhaus formula is as follows. Set
td+B) _ A B PO G (16)

Differentiating both sides of (16) with respect to x and multiplying it from the right by

e XA+B) _ . e—x3C3e—x2CZe—xBe—xA, (17)
one obtains
A+B=A4+e"Be™ + e’ (2xCy)e e
+ eerxBex2C2(3x2C3 )e—szze—xBe—xA NI (18)
The expressions e/ Be™, e*e*?(2xC,)e*Pe ™, etc., are expanded again using the formula
o
e“Be ™ = Z; 4B}, (19)

where the multiple commutator bracket {4”, B} is defined by
{4"" B} =[4,{4",B}] {4°.B}=B. (20)
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Then, Eq. (18) becomes

X n
X n
OZZ;! {4", B}
n=1

—l—ZxZZ o {A’” B",Cy}

m=0 n=0

O XX, yltmt2n

2 I
+3x ZZZ e (4B, G G} (21)
I=0 m=0 n=0
with
{AO,Bn, CQ} — {Bn, CQ} (22)
{Am+l,Bn, CZ} _ [A, {Am,Bn, C2}] L.
Equating the coefficients of x” to zero in (21) one obtains
Cy=—1[4,B]
s (23)

There are also alternative methods of derivation of the above result (see, for example, [14,15] for
more details). For our purpose of deriving a g-analogue of the Zassenhaus formula we shall follow
Karplus and Schwinger [9] (see Appendix I where exp(4 + B) is expanded in powers of B up to
the second term using a method we adopt here).

3. A g-analogue of the Zassenhaus formula

Let
F(x)=e"  F)=1 (24)
and write
xX(A+B) _ xA _
ey =, G(x), GO0)=1L (25)

On g-differentiating with respect to x
DyF(x) = (4 + B)e[ "™ (26)
Note that g-differentiation obeys the g-Leibniz rule

Dy(f9) = (Dgf)g + f(qx)(Dgg) = (Dyg.f)9(qx) + f(Dyg)- (27)
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Now, g-differentiating the right-hand side of (25) using the g-Leibniz rule we have

(4 + B)ei"?) = 4ef G(x) + 1 D, G(x)

=Ae"P + e D G(x). (28)

Thus,

Be ") = Bef' G(x) = ¢ Dy G(x) (29)
or

D,G(x) = (e")~'Bel! G(x). (30)

Recall that the inverse of g-differentiation is g-integration (see, for example, [4,6]), defined by
| dcro=a- 1wy a @ G1)
0 n=1

such that

D, ( / dqéf(§)> = /(). (32)

0

Then, the formal solution of the g-differential equation (30) for G(x) with the initial condition
G(0) =1, is given by

Gx)=1+ / d (el Be' G(&)
0
=]+ /x dqé(eZéA)_lBef;A
0

+/Ox dy& (e ) Be /05‘ dy&r(el=) ™ B!
+oeee (33)
Using the well known result
e"ei"l =1, (34)

we can rewrite (33) as

Gx)=1+ / dCe, 94 Bei

&
+/ d flefq‘;‘A eglA/ d fze g4 eQA
0 0

b (35)
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We now require a g-analogue of the classical formula (19). By straightforward expansion and
regrouping of terms in powers of x we have

gxA\—1 p xA
() Bey,

2 3

xA xA
=e 7‘11 Be,/ =B +x[B,A], + [2]'[[8 Al Al + Bl ([[B, 4], 412, A) s + -+ . (36)
Let us write this equation as
quBerA B + Z [ ]' n (37)
with the definition
)(nz ["'[[[B’A]q:vA]q%A]q} "']’A]q”: n= 1,2933'” . (38)

Now, using (37) and (38) in (35), we get

G(x)=1+/ dé{B—i—Z[]' }

X o n & ° n
+/0 dé {B—I—;[Hi!){n}/o dq52{3+;[ni!xn}+ e (39)

Collecting the first few terms of the resulting series in powers of x we have

ZBZ 3B3
{x2X1+ x4X12 N x° X7 +}
[2]'  [1I[21[4]  [11[2]![4]1[6]
X  BXi  XB 6. .. } 40
+{ ([3]*[3]!*[1][3]>+x( A R (0

Realizing that the terms in the first bracket sum to ej;B let us rewrite (40) as

2 4y2 6y3

_ Xi XX, x°X,

Gx_exB<]+exB{x 4 L I +}
) 21 ORE T PRI
X BX; X\B
—xB 3 2 1 1 6

22, 240 o) ) 41
e {x <[3]!+[3]! +[1][3]) e }+ ) @D

Substituting the series expansion ¢ _1 , using the relation

[n]- = q'"[n], (42)
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and after some straightforward algebra one can rewrite (41) further as

22 2 3p3
. . qx°B q°x°B
G(x) xB Xl/[z] <I+ Xl/[2 {—XB+ _ +}
G (2] (3]

e [ (Ko, B KB L
o {x <[3]!+[3]!+[3])+ }+ ) (43)

Now, substituting the series expression for eqx X1/2]

3{([)(1 B1,/[31)+(Xa/[31D)}

and simplifying, one recognizes that one can

pull out a factor e from the above expression and write

xBx[BA] /121 ¥ {([1BAL B, /BDH(BALAL2/BID}
¢

G(x)=

—qx [AB] ~1/12] 2 {(g*[4.,[4.8] g—11g—2/B1D—(qll4.B],-1.B],/13]) }
=e’e , y e ' e (44)

This shows that the general expression for G(x) can be assumed to be

x x} x4(
G(x)= e B € gzeq;g}eqf“ cee (45)
The crucial point here is to note that the exponential factors in G(x) have bases ¢,4°,¢°,¢%,... ,
respectively, unlike in the formula (13) introduced by Katriel et al. [10]. Thus, having recognized a
new general form of G(x) we can use the comparison method to determine 4,,%3,%4,... , in (45).
To this end, we write (25) as

0 > K ThA2043m

= A'B* L6y - - 46
Z [n]! " ,%:0 (1, Tk1, (11,2 [m] ! 203 (46)

and compare the coefficients of equal powers of x. This leads to coupled equations for €,, %63, %s,... ,
which can be solved in terms of 4 and B after straightforward algebra. Thus, solving the first few
equations we confirm the forms of %, and %5 already obtained above (compare (44) and (45)) and
find that

= W( q°[4,[4,[4, B] 11,21, + ¢*[31[[4, [4, B],-1],-2, B,
— g[31[([4, B],. B1,- Bl,»). (47)
Now, using (25), (44), (45) and (47), we get the g-Zassenhaus formula as

o MBI (@A), -1,/ 31 ~(lAB], -1 81, /3D)}
q7¢ ¢

" e(i/w!qu“ [A[A[AB],~11,—2],—3 +¢° BUALAB], -1 ],—2.B],—qD3II[[4.B],~1.B],.B],2) 48)
q

e+B)

_ A
q =¢

up to the first five terms. In the limit ¢ — 1 it is found that %,, %5 and %, become the expressions
for the classical Zassenhaus formula (see, for example, (7)—(9) of [15]). When AB = g~ 'BA it is
found that €, = 65 = %4 =--- =0 leading to the Schiitzenberger—Cigler result (12).
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In the literature on g-series there are two other definitions of the g-exponential:

x}’l

— 49
R I R () )
qn(n 1)/2
_ , 50
Eqlx) = Z(l D0 —a) (1 —q") 0
such that
lim ey((1 — g)x) =", (51)
q—)
lim £4((1 = q)x) = e, (52)
q—)
e, (X)Ey(—x) = 1. (53)

Let us note that the corresponding Zassenhaus formulae can be found in straightforward ways by
using the relations:

eg(x) = e} !7, (54)

q(x)—ex/(l 2 (55)
Thus, we find, using (48) and (54),
e, (A + B) = e+BV1-0)
q

=¢¢(A)eg(B)ep(—ql4, Bl /(1 —q))- - (56)
and
e (4 +B)=¢e,(A)e,(B) if AB=q 'BA. (57)
Similarly,
E (A +B)= (A+B)/(1 q)
=Eq(A)Eq(B)qu(—[A,B]q/(l —q)) - (58)
and
E A+ B)=E/A)E/B) if AB = qBA. (59)

4. Conclusion

To summarize, it is found that the classical Zassenhaus formula

eATB — o4 B o= (1/2)l4,B]o(1/6)I4,[4,B]]—(1/3)Il4, B].8]

s @1/ 4 (=14, [4,[4, BII+3([4,[4,B]], B]=3[[[4.B]. BLB]) . (60)
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has a g-analogue given by

QU+B) _ eAeBe*q[AaB]q—l/[Z]e{(‘IS[Aa[AaB]q—l]q—z/D]!)*(‘][[ArB]q—lrB]q/B])}
q 979~ q¢? e

(1/[4)(—q* [AA[AB], 11,21, -3+ BIALAB, 1], -2.B],~q[3]I[[4.B], 1 .B,.B],2)
4

q
X, (61)
where the g-exponential is defined by
oo xn
X — = 62
¢ 2 ] (62)

Thus, we have shown that while Katriel et al. [10] have proposed a g-analogue of the Zassenhaus
formula in the form

(A+B) _ A BAC2aC3aca 005 .

€, =e e e, ee e, , (63)
it is possible to have a g-Zassenhaus formula written also as

(A+B) _ A B.%» €3 s (55.”

e, =€, e e e e s . (64)

We have also explicitly found the first few terms of the disentanglement formula (64).

It should be noted that once a g-Zassenhaus formula is given for the g-exponential defined by
(62) for the other two common definitions of the g-exponential (49) and (50) found in the literature
the corresponding g-Zassenhaus formulae can be found using the relations (54) and (55).
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