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1. INTRODUCTION

Logarithmic Sobolev inequalities are an essential tool in the study of
various problems (cf., e.g., [G2], [D-SC], [L3]). The main purpose of
this paper is to refine some known connections between logarithmic Sobolev
inequalities, exponential integrability of ``smooth'' functions and the con-
centration of measure. Provided a logarithmic Sobolev inequality holds, we
estimate exponential moments of functions in terms of the ``modulus of
their gradient'' and deduce a transportation inequality with a corresponding
concentration inequality. Furthermore, we shall describe all probability
measures satisfying logarithmic Sobolev inequalities on the real line.

Let us describe the general scheme of logarithmic Sobolev inequalities.
Let (0, +) denote a probability space, and assume there is an operator 1
defined on a set A of bounded measurable functions on 0 with the following
properties:
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(1) for any f # A, 1( f ) is a non-negative measurable function on 0;

(2) for all f # A and for all a # R, b�0, a+bf # A and 1(a+bf )=
b1( f ).

Introduce the entropy functional:

Ent(g)#| g log g d+&| g d+ log | g d+

=| g log
g

� g d+
d+, g�0.

We will say that (0, +, 1 ) satisfies a logarithmic Sobolev inequality with
constant c�0 (for short, LSIc) if, for all f # A,

Ent(e f )�
c
2 | 1( f )2 e f d+. (1.1)

If 1 is a derivation, i.e., if for all f # A with values in (a, b) and
u # C�[a, b], we have u( f ) # A and 1(u( f ))=|u$( f )| 1( f ), then (1.1) is
equivalent to the more familiar version

Ent(g2)�2c | 1(g)2 d+, (1.2)

whenever g # A satisfies inf g>0. To be more precise, (1.1) represents an
exponential (or, modified) form of (1.2) which is usually called logarithmic
Sobolev inequality (the normalization 1

2 in (1.1) is chosen such that c=1
in the Gaussian case). In the most interesting cases of derivations 1, this
operator and the inequality (1.2) itself (as well as (1.1)) are easily extended
to a larger class of functions including unbounded ``smooth'' functions. For
example, when 0 is a metric space with metric d, one may consider the
following natural generalization of the modulus of the usual gradient:

1( f )(x)=|{f (x)|= lim sup
d(x, y) � 0+

| f (x)& f ( y)|
d(x, y)

.

In this case, we may define 1 on the class of all Lipschitz functions f (i.e.,
with & f &Lip<�), and the inequalities (1.1) and (1.2) hold for this class if
they hold for all bounded Lipschitz functions. Thus, for the Euclidean
space 0=Rn with the usual Euclidean metric, we arrive at the usual defini-
tion of logarithmic Sobolev inequalities.

One of the questions of interest is to determine whether or not, a given
probability measure + satisfies LSIc with some finite c. In the case of the
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real line 0=R, we provide the following characterization. Let F(x)=
+((&�, x]), x # R, denote the distribution function of +, and let p be the
density of the absolutely continuous part of + with respect to Lebesgue
measure. Let m denote a median of +. Set

D0= sup
x<m \F(x) log

1
F(x)+ |

m

x

1
p(t)

dt,

D1= sup
x>m \(1&F(x)) log

1
1&F(x)+ |

x

m

1
p(t)

dt,

defining D0 and D1 to be zero in case +((&�, m))=0 or +((m, +�))=0,
respectively.

Theorem 1.1. Let + be an arbitrary probability measure on R. For some
constant c, the log-Sobolev inequality Ent(g2)�2c � | g$|2 d+ holds in the
class of all smooth functions g on R if and only if D0+D1<+�. In this
case, the optimal value of c satisfies

K0(D0+D1)�c�K1(D0+D1),

where K0 and K1 are certain absolute positive constants.

The proof of Theorem 1.1 uses a result of M. Artola, G. Talenti, and
G. Tomaselli on Hardy-type inequalities with weights on the real line
(cf. [Mu]) and is given in Sections 4 and 5 (cf. Theorem 5.3). In Section 4,
we transform logarithmic Sobolev inequalities (1.2), up to an absolute
multiplicative constant, into Sobolev-type inequalities & f&� f d+&2

N�
c � 1( f )2 d+ in a suitable Orlicz space LN(0, +) with Orlicz function
N(x)=x2 log(1+x2). On the real line this allows to reduce LSIc to a
Hardy-type inequality (cf. Propositions 4.1 and 4.2).

In Section 2 we study in a general setting exponential moments of a func-
tion f # A in terms of the distribution of 1( f ) under + provided LSIc

holds. As a main result (cf. Theorem 2.1), we prove, in particular:

Theorem 1.2. For any function f # A with � f d+=0,

| e f d+�| ec1( f )2 d+. (1.3)

This estimate implies inequalities for exponential moments of ``Lipschitz''
functions similar to those proved by S. Aida, T. Masuda and I. Shigekawa
[A-M-S] and M. Ledoux [L1], [L2]. In the Gaussian case, (1.3)
improves an exponential inequality due to G. Pisier [P1]. In the case of
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the discrete cube, it affirmatively answers his question (p. 182) on the
validity of the discrete analogue of the Gaussian variant of (1.3). These
examples and applications will be discussed in more detail in Corollaries
2.2�2.4.

In Section 3, we study for a metric space (0, d ) equipped with a
probability measure + inequalities of the following type:

W:(+, &)��2c | log
d&
d+

d&. (1.4)

Here W:(+, &) denotes the Kantorovich�Rubinstein distance between + and
& (we shall consider the cases :=1 and :=2, only) which is defined as the
infimum of

\|| d(x, y): d?(x, y)+
1�:

over all probability measures ? on the product space 0_0 with marginal
distributions + and & (& is an arbitrary probability measure on 0 which is
absolutely continuous with respect to + with density d&�d+). Thus, (1.4)
relates the minimal transportation cost needed to transport & into + to the
so-called informational divergence D(& & +)=� log(d&�d+) d&. Such trans-
portation inequalities have been introduced for :=1 by K. Marton
[Ma1]. On the basis of (1.4), she established concentration inequalities for
discrete product measures (and, furthermore, for distributions of certain
Markov processes, [Ma2]), of the form

1&+(Ah)�exp \&
1
2c \h&�2c log

1
+(A)+

2

+ , (1.5)

where Ah denotes h-neighborhood of a set A/0. This approach has been
studied as well by M. Talagrand in [T4] proving, in particular, that the
canonical Gaussian measure +=#n on the Euclidean space satisfies an
inequality (1.4) for the W2-metric:

W2(#n , &)��2 | log
d&
d#n

d&. (1.6)

As a consequence, M. Talagrand derives from (1.6) using Marton's line
of arguments, a sharp Gaussian concentration inequality (1.5) with c=1
(which is similar to an isoperimetric inequality).

A natural question arising in connection with (1.4) is to find an
appropriate functional form for (1.4) and to relate it to other classes of
inequalities. When :=1, we shall prove:
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Theorem 1.3. Assume � d(x, x0) d+(x)<+�, for some x0 # 0 (where d
denotes the metric on 0). The transportation inequality (1.4) holds for all
probability measures & on 0 which are absolutely continuous with respect to
+ if and only if, for all t # R and all functions f on 0 with � f d+=0 and
& f &Lip�1,

| etf d+�ect2�2.

In particular, (1.4) together with the concentration inequality (1.5) always
holds assuming the LSIc-property.

Such a functional description shows as well that, in turn, (1.5) implies
(1.4) although with a worse constant. Thus, (1.5) and (1.4) are essentially
equivalent. However, we do not know, whether or not (1.4) with :>1 is
implied by a logarithmic Sobolev inequality. A main argument we use in
the case :=1 is the well known Kantorovich�Rubinstein's theorem
representing the metric W1 in terms of Lipshitz functions on 0, and it
seems there is no such ``Lipshitz'' representation for W: . The question of a
functional representation for metrics of Kantorovich�Rubinstein-type
(raised by R. M. Dudley) was open for some time until V. L. Levin and
S. T. Rachev proved in particular that ([Lev], [Ra])

W 2
2(&, +)=sup | g d&&| d+,

where the supremum is taken over all pairs of bounded continuous func-
tions (g, f ) such that g( y)& f (x)�d(x, y)2, for all x, y # 0. This func-
tional description allows one to give an equivalent representation for the
transportation inequality (1.4) with :=2 (and with c=1) by a relation
between the distribution of an arbitrary function f and the distribution of
the function (Sf )(x)=inf [ f ( y)+ 1

2d(x, y)2 : y # 0]. Namely, (1.4) is
equivalent to the inequality

| eSf d+�e� f d+. (1.7)

Inequalities of this type were introduced by B. Maurey [Mau] as a func-
tional approach to some of M. Talagrand's isoperimetric inequalities
([T1], [T2]). They are now referred to as inf-convolution inequalities.
Using this approach, we shall give a simple alternative proof of Talagrand's
transportation inequality (1.6) via (1.7) with +=#n . In this case, the
inequality (1.7) may be viewed as a generalization of a Tsirel'son exponen-
tial inequality for the supremum of a bounded Gaussian process.
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2. EXPONENTIAL INTEGRABILITY

First we emphasize some particular cases and applications of:

Theorem 2.1. Assume (0, +, 1 ) satisfies LSIc . Then, for any f # A with
mean � f d+=0, and for all :>c�2,

| e f d+� \| e:1( f )2 d++
c�(2:&c)

. (2.1)

In addition, for all f # A and * # (0, 1],

| e f d+�\| e*f +(1&*) c1( f )2�2 d++
1�*

. (2.2)

For *=1, there is an equality in (2.2), and comparing the derivatives of
the both sides at *=1, we obtain exactly (1.1). Hence (2.2) is another
version of the LSIc -property. In this sense, (2.2) is stronger than (2.1).

Assuming that 1( f )�1 +-a.e. and applying (2.1) to functions tf with
: � +�, we get, for all t�0,

| etf d+�ect2�2. (2.3)

When 1 is a derivation, one can also apply (2.1) to functions t( f 2&� f 2)
with 0�t<1�(4c). Then 1( f 2&� f 2)=2 | f | 1( f )�2 | f |, so that by (2.1)
with :=1�(4t),

| etf 2 d+�exp \t(1&2ct)
1&4ct | f 2 d++ .

This is not as sharp as (2.3) and can be improved by virtue of (2.2). In
the same way, applying (2.2) to sf 2�(2c) (instead of f ) with 0<s<1 and
*=( p&s)�(1&s), where p # (s, 1] is arbitrary, we get

| esf 2�(2c) d+�\| e psf 2�(2c) d++
(1&s)�( p&s)

.

This inequality becomes an equality for p=1, so comparing the derivatives
of the logarithm of the both sides at p=1 one gets

0�
1

1&s _|
sf 2

2c
esf 2�(2c)(1&s)&| esf 2�(2c) log | esf 2�(2c)& .
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This means that the function u(s)=log � esf 2�(2c) d+ satisfies the differential
inequality u$(s)�u(s)�1�(s(1&s)), which expresses the fact that the function

v(s)=exp {1&s
s

u(s)==\| esf 2�(2c)+
(1&s)�s

does not increase in 0<s<1. Comparing v(s) with v(0+) and introducing
t=s�(2c), we arrive at

| etf 2 d+�exp \ t
1&2ct | f 2 d++ , 0<t<

1
2c

. (2.4)

The inequality (2.3) has been shown to follow from (1.1) by M. Ledoux
[L1], [L2], and (2.4) was deduced from (1.1) by. S. Aida, T. Masuda and
I. Shigekawa [A-M-S], see also [A-S] (according to [D-S], the original
idea goes back to I. Herbst). The above deduction of (2.4) from (2.2) essen-
tially repeates an argument of [A-M-S]. As for the proof of (2.1), we
develop an argument of M. Ledoux which was based on a another differen-
tial inequality. Below we will also show that (2.3) is implied by (2.4) (this
requires however that 1 is a derivation; cf. Remark 2.5).

For :=c, (2.1) becomes

| e f d+�| ec1( f )2 d+. (2.5)

This inequality seems to be new except for the case of Gaussian measures
where it had a different constant in the exponent. More precisely, let
(0, +)=(Rn, #n) be the Euclidean space equipped with the canonical
Gaussian measure with density (2?)&n�2e&|x|2�2, and let 1( f )=|{f | denote
the length of the usual gradient of a smooth function f. Given a convex
function 8 on R, G. Pisier [P1] proved that, for smooth functions f with
� f d#n=0.

|
Rn

8( f ) d#n�|
Rn |Rn

8 \?
2

({f (x), y)+ d#n(x) d#n( y),

where the constant ?�2 appears to be optimal for the choice 8(x)=|x|. For
8(x)=ex, this inequality yields

|
Rn

e f d#n�|
Rn

exp \?2

8
|{f | 2+ d#n . (2.6)
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On the other hand, by Gross' logarithmic inequality [G1], (1.2) holds for
#n with c=1. Therefore, according to (2.5), the constant in the exponent
can be somewhat improved:

Corollary 2.2. For any integrable smooth function f on Rn with
� f d#n=0,

|
Rn

e f d#n�|
Rn

e |{f |2 d#n .

From Theorem 2.1, we also get �Rn e | f | d#n<+�, whenever
�Rn e:|{f |2 d#n<+�, for some :> 1

2. Clearly, the condition :� 1
2 is

necessary to prove this claim. Thus, it is natural to ask whether or not,
even for one dimension, the above implication holds for := 1

2 . This turns
out to be the case (an observation due to M. Talagrand [T5]).

Consider another important example. Let + be an arbitrary product
probability measure on the cube 0=[&1, 1]n. Recently, M. Ledoux [L3]
established for such a measure, in the spirit of some of Talagrand's concen-
tration inequalies ([T1], [T3]), a logarithmic Sobolev inequality (1.1) for
the class A of all convex smooth functions on [&1, 1]n. He also deter-
mined the optimal constant as c=4. Together with (2.5) this yields:

Corollary 2.3. For any smooth convex function f on [&1, 1]n with
� f d#n=0,

|
[&1, 1]n

e f d+�|
[&1, 1]n

e4 |{f |2 d+. (2.7)

Note that, in such a situation, the inequality (1.1) may not follow from
(1.2) since the latter does not hold with a universal constant even in dimen-
sion one for the class of all convex functions.

Let us now specialize to the canonical Bernoulli (i.e., normalizing
counting) measure +n on the discrete cube [&1, 1]n. In this case, (1.1)
holds true for convex functions with optimal constant c=2 (cf. [B]). This
can easily be shown using the Gross' discrete logarithmic inequality [G1].
Thus the constant 4 in the exponent in (2.7) can be replaced by 2. Now we
are able to state a discrete version of Pisier's inequality (2.6). Take for 1( f )
the length of a discrete gradient of f:

[D( f )(x)]2= :
n

k=1
} f (s i (x))& f (x)

2 }
2

.

Here f is an arbitrary function f on [&1, 1]n, and si (x) denotes the
neighbor of the point x # [&1, 1]n on the i-th coordinate: s i (x) j=xj , for
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j{i, and si (x) i=&x i . As in the Gaussian case, (0, +, D) satisfies (1.2)
with c=1 [G1]. It is easily verified, with the same constant (although D
is not a derivation), that the triple (0, +, D) satisfies (1.1). Thus, we obtain
a discrete version of Corollary 2.2:

Corollary 2.4. For any function f on [&1, 1]n with � f d+n=0, we
have

|
[&1, 1]n

e f d+n�|
[&1, 1]n

eD( f )2 d+n .

Proof of Theorem 2.1. It is well known that the entropy functional can
be represented as

Ent(g)=sup | gh d+

where the supremum is taken over all functions h with � eh d+�1. In
particular,

| eh d+=1 implies | gh d+�Ent(g).

Put ;=log � e:1( f )2 d+ so that � eh d+=1 for h=:1( f )2&;. Hence, for any
on-negative measurable function g,

| (:1( f )2&;) g d+�Ent(g).

Take g=e f so that

: | 1( f )2 e f d+&; | e f d+�Ent(e f). (2.8)

Now, applying (1.1) in order to estimate the first term on left hand side of
(2.8), we get

Ent(e f)�
;c

2:&c | e f d+. (2.9)

We now apply (2.9) to functions of the form tf, t�0, f # A. Hence, put

;(t)=log | e:t1( f )2 d+
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and define the function u by

| etf d+=etu(t).

Since Ent(etf)=t2u$(t) etu(t), (2.9) will transform into

u$(t)�
c

2:&c
;(t2)

t2 , t>0.

Note that ;(t) is a convex function. In addition, ;(0)=0 and ;$(0)�0,
hence ;(t) is non-negative and non-decreasing in t�0. Consequently, the
function ;(t)�t does not decrease in t>0. Thus, we can conclude that, for
0�t�1, u$(t)�c;(1)�(2:&c)=c;�(2:&c). Recalling that � f d+=0, we
also have u(0)=0. As a result,

u(1)�
c

2:&c
;, and | e f d+=eu(1)�exp \ c

2:&c
;+ .

This proves (2.1). To prove (2.2), take ;=log � e*f +(1&*) c1( f )2�2 d+. As in
(2.8) we have

| (*f + 1
2 (1&*) c1( f )2&;) g d+�Ent(g).

Applying (1.1) to this inequality with g=e f yields the result.

Remark 2.5. Given a function f on the probability space (0, +) and a
constant c>0, assume that, for all a # R and 0<t<1�2c

| et( f +a)2 d+�exp \ t
1&2ct | ( f +a)2 d++ .

Then, for all t # R.

| etf d+�et � f d++ct2�2.

Indeed, set fa= f+a. As in (2.8), for any probability density g (with
respect to the measure +), we have

| \tf 2
a&

t
1&2ct | f 2

a d++ g d+�Ent(g).
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Optimizing over t # [0, 1�2c), we arrive at

& fa&L2(g d+)&& fa&L2(d+)�- 2c Ent(g).

Letting a � &�, and also a � +�, we get

}| fg d+&| f d+}�- 2c � g log g d+.

This implies (3.8) which is equivalent to (3.6) (cf. Proof of Theorem 3.1
below).

3. TRANSPORTATION INEQUALITIES

Let 0 be a separable metric space with metric d. Given :�1 and two
Borel probability measures + and & on 0, we defined the quantity

W:(+, &)=inf \|| d(x, y): d?(x, y)+
1�:

,

where the infimum is taken over all probability measures ? on the product
space 0_0 with marginal distributions + and &. This quantity is com-
monly refered to as L:-Wasserstein distance between + and &. When :=1,
W1(+, &) represents the classical Kantorovich�Rubinstein distance. The
measure & will be assumed to be absolutely continuous with respect to +,
with density d&�d+. In this case, the so-called informational divergence of &
with respect to +,

D(& & +)=| log
d&
d+

d&,

is well defined. As shown by K. Marton [Ma1], [Ma2], suitable upper
estimates for W1(+, &) in terms of D(& & +) like

W1(+, &)�- 2cD(& & +) (3.1)

turn out to be well adapted to derive from them sharp concentration
inequalities for + (assuming that & in (3.1) is arbitrary). To start with,
let us recall Marton's argument. Given Borel sets A and B of positive
+-measure, define the conditional restrictions of + by +A(C)=+(C & A)�
+(A), +B(C)=+(C & B)�+(B), for any Borel set C of 0. By the triangle
inequality and by (3.1),
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W1(+A , +B)�W1(+, +A)+W1(+, +B)�- 2cD(+A & +)+- 2cD(+B & +)

=�2c log
1

+(A)
+�2c log

1
+(B)

.

On the other hand, all the measures ? on 0_0 with marginals +A and
+B must be supported in A_B, i.e., ?(A_B)=1. Therefore, by the very
definition of W1 , we have W1(+A , +B)�d(A, B)=inf [d(x, y) : x # A, y # B].
Hence,

d(A, B)��2c log
1

+(A)
+�2c log

1
+(B)

. (3.2)

This is already an isoperimetric-type inequality. Given h>0, let Ah denote
the open h-neighborhood of A for d, Ah=[x # 0 : d(a, x)<h for some
a # A]. Taking for B the complement of Ah, one obtains from (3.2) the
following equivalent property: For every A and h�- 2c log(1�+(A)),

1&+(Ah)�exp \&
1
2c \h&�2c log

1
+(A)+

2

+ . (3.3)

As an example, one may take the product space 0=01_ } } } _0n with
the Hamming metric d(x, y)=card[i�n : xi { yi] and with a product
measure +=+1 � } } } �+n . In this case, (3.1)�(3.3) hold with optimal con-
stant c=n�4 [Ma2]. For the Hamming distance, concentration inequalities
related to (3.3) appeared first in the work of R. Ahlswede, P. Ga� cs, and
J. Ko� rner [A-G-K] under the name ``blowing up'' property. They can be
proved in this special case by different methods (cf. [MS], [T3]), but,
among these inequalities, (3.3) is apparently the sharpest one. The par-
ticular two-point case 0=[0, 1]n with uniform measure + is the exception:
The optimal bound on the left-hand side of (3.3) is known and given by
Harper's theorem [H]. Another important example is the Gaussian
measure +=#n on 0=Rn with the usual Euclidean metric. In this case, the
inequality (3.1), with c=1, has recently been established by M. Talagrand
[T4]. His approach is another transportation inequality

W2(+, &)�- 2c D(& & +), (3.4)

which of course is stronger than (3.1) and has the advantage that, for the
Euclidean-type distance, it can be extended by induction from one dimen-
sion to n dimensions without loss in the constant c. However, it is not
clear whether (3.4) implies a sharper concentration inequality than (3.3).
Another question of interest is whether or not (3.1) is indeed stronger than
its consequence (3.3). It turns out that (3.1) has a simple functional

12 BOBKOV AND GO� TZE



description which shows that, up to an absolute constant, (3.1) itself
is a consequence of (3.3), which in particular holds assuming the
LSIc -property.

Theorem 3.1. Let + be a probability measure on (0, d ) such that
� d(x, x0) d+(x)<+�, for some x0 # 0. The inequality

W1(+, &)�- 2c D(& & +) (3.5)

holds for any absolutely continuous probability measure & (with respect to +),
if and only if, for every function f on 0 with & f &Lip�1 and � f d+=0, and,
for all t # R.

| etf d+�ect2�2. (3.6)

The assumption on + ensures that all Lipschitz functions on 0 are
+-integrable which is necessary to get exponential, integrability in the
form (3.6). Finally, in order to connect (3.5) with logarithmic Sobolev
inequalities, we recall that, for every function f on 0 with & f &Lip<+�,
``the modulus of gradient'' of f is given by

1f (x)=|{f (x)|= lim sup
d(x, y) � 0+

| f (x)& f ( y)|
d(x, y)

(with |{f (x)|=0 for isolated points x in 0). Thus, we have by Theorem 3.1:

Corollary 3.2. Given c>0, assume that LSIc is satisfied for the triple
(0, +, 1 ). Then, (3.5) holds. In particular, for every Borel set A/0 and
h�- 2c log 1�+(A),

1&+(Ah)�exp \&
1
2c \h&�2c log

1
+(A)+

2

+ .

Indeed, (3.6) is exactly the exponential inequality (2.3) which is implied
by LSIc as soon as the assumption 1( f )�1 is fulfilled. This relation holds
since |{f (x)|�& f &Lip , for all x # 0. This establishes (3.5) and its conse-
quence (3.3).

Proof of Theorem 3.1. Without loss of generality we restrict ourselves
to the case t�0 in (3.6). As in the proof of Theorem 2.1, (3.6) holds if and
only if, for any non-negative Borel measurable function g on 0,

| (tf &ct2�2) g d+�Ent(g).
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This inequality is homogeneous in g, so g may be chosen as a probability
density (with respect to +). Recalling that f has mean 0, we conclude that
(3.6) holds if and only if, for any probability density g,

| ( fg& f ) d+�
ct
2

+
1
t | g log g d+. (3.7)

Minimizing the right hand side of (3.7) in t>0, we may rewrite (3.7) equiv-
alently as

| ( fg& f ) d+�- 2c � g log g d+. (3.8)

Let g be the density of the measure &. Then (3.8) takes the form

| f d&&| f d+��2c | log
d&
d+

d&=- 2c D(& & +). (3.9)

It remains to note that, by the Kantorovich�Rubinstein theorem (cf., e.g.,
[D, p. 330]),

sup }| f d&&| f d+}=W1(+, &), (3.10)

where the sup is taken over all Lipschitz functions f on 0 with & f &Lip�1.
To be more precise, let M1 denote the space of all Borel probability
measures & on 0 such that � d(x, x0) d&(x)<+�, for some x0 # 0. Then
(M1 , W1) is a metric space. Furthermore, all Lipschitz functions are
&-integrable, for & # M1 , and (3.10) holds whenever +, & # M1 (the
Kantorovich�Rubinstein theorem). To prove the equivalence of (3.5) and
(3.6), assume first that the property (3.6) or, equivalently, the inequality
(3.9) with arbitrary & is fulfilled. Assume D(& & +)<+�. Then, by (3.9)
and by the assumption on +, we obtain & # M1 , and thus, one may apply
(3.10). Hence, we arrive at (3.5). Conversely, assume that (3.5) is satisfied.
Via (3.10), we get (3.9), for any & # M1 . That is, (3.7) is satisfied, provided
� d(x, x0) g(x) d+(x)<+�, for some x0 # 0. In particular, by the assump-
tion on +, (3.7) holds for all bounded probability densities g. Therefore, it
holds for all probability densities g. But (3.7) is equivalent to (3.6). Thus,
Theorem 3.1 is proved.

Remark 3.3. The subgaussian property (3.5) (up to an absolute con-
stant in the exponent) can be expressed in another way. Given a function
f with � f d+=0, the optimal value of c=c( f ) in (3.5) satisfies

K0& f &2
N�c�K1& f &2

N ,

14 BOBKOV AND GO� TZE



where & f &N denotes the Orlicz norm for N(x)=ex2
&1, and where K0 and

K1 denote universal constants (one may take K0=1�6, K1=2). Therefore,
roughly speaking, - c in (3.5) is a diameter of the family of all functions
f on 0 with mean 0 and & f &Lip�1 in the Orlicz space LN(0, +) (cf. section
4 for definitions). Obviously, this diameter is at most Kc, for some univer-
sal K, provided that the concentration inequality (3.3) is satisfied. Thus,
using Theorem 3.1, (3.3) implies the transportation inequality (3.1) with a
constant Kc.

The statement in Corollary 3.2 that LSIc implies (3.5) can be sharpened:

Theorem 3.4. Given c>0, assume that LSIc is satisfied by the triple
(0, +, 1 ). Then, for any probability measure & which is absolutely continuous
with respect to +,

sup
& f &Lip�1

& f &L2(d&)&& f &L2(d+)�- 2c D(& & +). (3.11)

Clearly, (3.11) is stronger than (3.5): Insert in (3.11) Lipshitz functions
f +a with |a| � �. The proof of this statement uses (2.4) and the same
arguments as those given in Remark 2.5. Hence we omit it.

What is the interpretation of the left hand side of (3.11), say Q(&, +)?
Indeed, in connection with Theorem 3.4, this is a natural question.
Obviously, W1(+, &)�Q(&, +)�W2(+, &), but we do not know when the
equality Q(&, +)=W2(+, &) holds for every absolutely continuous &. In the
case of Gaussian measures +=#n on 0=Rn (with the Euclidean metric d ),
this would imply Talagrand's inequality (3.4),

W2(#n , &)�- 2c D(& & #n), for c=1, (3.12)

based on the Gross logarithmic inequality, only. Nevertheless, one can give
a simple alternative proof of (3.12) using the Levin�Rachev functional
description of the Wasserstein metric and the Maurey (-type) inf-convolu-
tion inequality for the Gaussian measure.

To be more precise, assume that (0, d) is a Polish space, and let + and
& denote probability measures on 0. Then,

W 2
2(&, +)=sup | g d&&| f d+, (3.13)

where the supremum is taken over all pairs of bounded continuous func-
tions (g, f ) such that g( y)& f (x)�d(x, y)2, for all x, y # 0. This func-
tional form for W2 is due to V. L. Levin [Lev] and S. T. Rachev [Ra]
(they established (3.13) in an even more general setting). The requirements
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on (g, f ) suggest to consider instead of g the so-called inf-convolution. Put
in general

(Sf )(x)=(Sd2�2 f )(x)=inf [ f ( y)+ 1
2 d(x, y)2 : y # 0]

(without discussing inessential questions of measurability here). Thus,
(3.13) is equivalent to

sup
f _| Sf d&&| f d+&= 1

2W 2
2(&, +), (3.14)

which holds for all (measurable) f. Therefore the inequality (3.12) is equiv-
alent to

| eSf d+�e� f d+, for all f, where +=#n . (3.15)

Indeed, (3.15) amounts to say that, for any probability density g of a
measure & with respect to +=#n ,

| Sf d&&| f d#n=| \Sf &| f d#n+ g�Ent g=D(& & #n),

which is exactly (3.12) due to (3.14). So, (3.15) is indeed a functional form
for Talagrand's transportation inequality (3.12). It might be worthwhile to
note that, for convex functions f on Rn, (3.15) can be rewritten in an
infinite dimensional setting as Tsirel'son's inequality [Ts]

E exp [sup
t

(xt&_2
t �2)]�exp [E sup

t
xt],

where xt denotes an arbitrary bounded Gaussian process with variances _2
t .

In order to prove (3.15), we shall use an argument of B. Maurey [Mau].
We use the Brunn�Minkowki inequality in the functional form of
A. Pre� kopa and L. Leindler ([Pr], [Lei], cf. also [P2, p. 3] for a simple
proof due to K. Ball): Given (fixed) * # (0, 1), for any measurable functions
u, v and w on Rn,

\| e&u dx+
*

\| e&v dx+
1&*

�| e&w dx (3.16)
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holds provided that u, v and w satisfy w(*x+(1&*) y)�*u(x)+
(1&*) v( y), for all x, y # Rn. For a given function f on Rn, this condition
is satisfied for all * # (0, 1) by the functions

w(x)= 1
2 |x| 2, u(x)= 1

2 |x| 2+(1&*) f (x), v(x)= 1
2 |x| 2&*(Sf )(x),

and for these functions (3.16) may be rewritten as

\| e*Sf d#n+
1&*

\| e&(1&*) f d#n+
*

�1. (3.17)

When *= 1
2 , this is Maurey's inf-convolution inequality � eSf�2 d#n � e& f�2 d#n

�1. There is equality in (3.17) when *=1, and comparing derivatives at
this point, we arrive at (3.15).

Remark 3.5. M. Talagrand established another transportation inequality
of the form (3.12) for the product measure +n on Rn of the two-sided
exponential measure with density d+n(x)�dx=e&(|x1| + } } } +|xn| )2&n. His
inequality ([T4, Theorem 1.2]) is

W2(+n , &)�- c D(& & +n), c=
:

1&:
, : # (0, 1), (3.18)

where the distance W2(+n , &) corresponds to the (noncanonical) metric d:

in Rn given by

1
2 d 2

:(x, y)= :
n

i=1

U(: |xi& y i | ), x, y # Rn, where U(t)=t&1+e&t.

The function U( |t| ) behaves like 1
2t2 for small t and like |t| for large t. In

fact, a stronger inequality, namely, the inequality (3.18) with respect to the
cost function �n

i=1 U(:(x i& yi)) was proved in [T4], and in this stronger
inequality the condition :<1 is essential, and there are cases of equality
for each :.

As in the Gaussian case, the transportation inequality (3.18) can be con-
nected with a known inf-convolution inequality. Using arguments as above,
the inequality (3.15) with +=+n and with operator S=Sd 2

:�c ,

| eSd
2

:�cf d+n�e� f d+n, (3.19)

represents a functional form for (3.18). In this case, an inf-convolution
inequality related to (3.19) was obtained by B. Maurey in the same paper
[Mau] but as a functional form for a different isoperimetric-type inequality
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for +n due to M. Talagrand ([T2]). Namely, B. Maurey proved that, for
all functions f on Rn,

| eS\2�2 f d+n | e&f d+n�1 (3.20)

with respect to the metric \ on Rn given by 1
2 \2(x, y)=�n

i=1 W( |xi& yi | ),
x, y # Rn, where W(t)= 1

36t2 for |t|�4, and W(t)= 2
9 ( |t|&2) otherwise.

Since (3.20) implies

| eS\2�2 d+n�e� f d+n, (3.21)

and since the functions U and W can be estimated up to constants by each
other, we roughly arrive at (3.18). Indeed, (3.21) implies (3.19) and thus
(3.18) if and only if S\2�2�Sd2

:�c , that is, if and only if W(t)�2U(:t)�c, for
all t�0. By a simple computation, the optimal constant is determined
to be

c=sup
t>0

2U(:t)
W(t)

=36:2

(the sup is attained at t=0). Thus, (3.18) holds with this c for all :>0.

4. LOGARITHMIC SOBOLEV INEQUALITIES AS
POINCARE� -TYPE INEQUALITIES IN ORLICZ SPACES

Since 1( f +a)=1( f ), for all a # R, the inequality

Ent( f 2)�c | 1( f )2 d+ (4.1)

may formally be strengthened as

L( f )#sup
a # R

Ent(( f +a)2)�c | 1( f )2 d+. (4.2)

Now (4.2) being equivalent to (4.1) is invariant under translations
f � f +const, which leads to the question whether the functional L1�2 may
be a seminorm. Indeed, we will connect it to an Orlicz space norm.

Let (0, +) be a probability space. Given a Young function
N : R � [0, +�), i.e., an even, convex function with N(0)=0, N(x)>0 for
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x>0 the Orlicz space LN=LN(0, +) consists of all measurable functions f
with

& f &N=sup {*>0 : | N( f�*) d+=<+�.

Any Young function N strictly increases on [0, +�) so an inverse
N&1 : [0, +�) � [0, +�) exists. When N(x)=|x| p(1�p<+�), LN is
the usual Lebesgue space with norm & f &p . In what follows, we consider the
norms & f &N and & f &9 for the Young functions N(x)=x2 log(1+x2) and
9(x)=|x| log(1+|x| ), respectively

Proposition 4.1. For any function f in LN(0, +),

2
3 " f &| f d+"

2

N
�L( f )� 13

4 " f &| f d+"
2

N
. (4.3)

Thus, the Logarithmic Sobolev inequality (4.1) is equivalent, up to a
numerical multiplicative constant, to an inequality

" f &| f d+"N
�C &1( f )&2 (4.4)

which belongs to the class of Poincare� -type inequalities. When 0=R, the
estimates (4.3) can be further modified, and (4.4) may be reduced to a
Hardy-type inequality for the Orlicz space norm & }&9 .

Let m=m(+) denote a median of the probability measure + on R. For
functions f on R introduce f0= f1(&�, m] and f1= f1[m, +�) .

Proposition 4.2. Assume that for any smooth function f on R,

Ent( f 2)�c |
�

&�
f $(x)2 d+(x). (4.5)

Then, for any smooth function f on R with f (m)=0,

& f 2
0&9+& f 2

1&9�d |
�

&�
f $(x)2 d+(x) (4.6)

with d=75c�2. Conversely, (4.6) implies (4.5) with c=117d�2.

The inequality (4.6) being an equivalent form for logarithmic Sobolev
inequalities on the real line will be used in the next section to characterize
probability measures + satisfying (4.5). The proof of Propositions 4.1 and
4.2 is given in this section. Clearly, (4.5) as well (4.6) may be extended from
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the class of all smooth functions to the class of all absolutely continuous
functions (with the same condition f (m)=0 in the case of (4.6)).

Lemma 4.3. & f &1�& f &2�(- 5�2) & f &N , for all f # LN(0, +).

Proof. One may assume that & f &N=1. Since � 9( f 2) d+=� N( f ) d+
=1, we have, by Jensen's inequality, 9(� f 2 d+)�1. Hence, � f 2 d+�
�&1(1)<5�4 since �(5�4)=1.014...>1 (where 9 &1 denotes the inverse
function).

Proof of Proposition 4.1. One may assume that f # LN , & f &N=1, and
that � f d+=0. The second inequality in (4.3) is essentially a version of an
inequality due to O. S. Rothaus who showed ([Ro], Lemma 10) that

L( f )�Ent( f 2)+2 | f 2 d+ (4.7)

whenever � f d+=0. Now, introducing the function U(x)=2x&x log x,
x�0, and noting that

| f 2 log f 2 d+�| f 2 log(1+ f 2) d+=| N( f ) d+=1,

we obtain that

Ent( f 2)+2 | f 2 d+=| f 2 log f 2 d++U \| f 2 d++�1+U \| f 2 d++ .

(4.8)

The function U(x) increases in 0�x�e. Hence, by Lemma 4.3,

U \| f 2 d++<U(5�4)=5�2&9(5�4)<9�4.

Combining (4.7) and (4.8), we get L( f )�13�4. This proves the second
inequality in (4.3).

In order to prove the first inequality in (4.3), assume that f # LN ,
� f d+=0, and by homogeneity that L( f )=2. Since in general

| f 2 d+&\| f d++
2

= 1
2 lim

|a| � �
Ent(( f +a)2)� 1

2L( f ),
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we get � f 2 d+�1. Thus, � f 2 d+ log � f 2 d+�0 and therefore

| f 2 log f 2 d+=Ent( f 2)+| f 2 d+ log | f 2 d+

�Ent( f 2)

�L( f )=2.

But 9(x)�1+x log x, for all x�0. Therefore,

| N( f ) d+=| 9( f 2) d+�1+| f 2 log f 2 d+�3.

Finally note that N(x�- 3)� 1
3N(x), for all real x. Consequently,

� N( f�- 3) d+�1, that is, & f�- 3&N�1. Thus, & f &2
N�3= 3

2L( f ), and
Proposition 4.1 follows.

To prove Proposition 4.2, we need an elementary lemma.

Lemma 4.4. For any function f # LN(R, +),

" f &| f d+"N
�3 & f &N . (4.9)

If f =0 on (&�, m(+)), we also have

& f &N�5 " f &| f d+"N
. (4.10)

Proof. By Lemma 4.3, & f&� f d+&N�& f &N+& f &1�3 & f &N . This
proves (4.9). To prove (4.10), using the Cauchy�Schwarz inequality and
once more by Lemma 4.3, we get

}| f d+}= }| f1(&�, m) d+}�& f &2

1

- 2
��5

8
& f &N .

Hence,

& f &N�" f &| f d+"N
+ }| f d+}�" f &| f d+"N

+�5
8

& f &N .
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Thus,

& f &N�
1

1&- 5�8 " f &| f d+"N
�5 " f &| f d+"N

and Lemma 4.4 is proved.

Proof of Proposition 4.2. First we derive (4.6) from (4.5). By Proposi-
tion 4.1, we have, for any smooth function f from LN(R, +),

2
3 " f &| f d+"

2

N
�c |

�

&�
f $(x)2 d+(x). (4.11)

As already noted, this inequality extends to all absolutely continuous func-
tions f in LN(R, +) in the sense that starting with an integrable function f $,
one defines f as indefinite integral of f $. This implies in particular that the
measure + on the right hand side of (4.11) may be replaced with its
absolutely continuous component (with respect to Lebesgue measure), and
therefore the integral in (4.11) can be taken over any set of full Lebesgue
measure, e.g., over R"[m]. Hence, we can apply (4.11) to f0 and f1

2
3 " f0&| f0 d+"

2

N
�c |

m

&�
f $(x)2 d+(x),

2
3 " f1&| f1 d+"

2

N
�c |

+�

m
f $(x)2 d+(x).

Applying (4.10) and the general identity &g&2
N=&g2&9 , we get

2
75 & f 2

0&9�c |
m

&�
f $(x)2 d+(x),

2
75 & f 2

1&9�c |
+�

m
f $(x)2 d+(x).

Adding these inequalities, we obtain (4.6) with d=75c�2.
To derive (4.5) from (4.6), we use (4.9). First assume f (m)=0. Since

f =f0+ f1 , we have

" f &| f d+"
2

N
�\" f0&| f0 d+"N

+" f1&| f1 d+"N+
2

�9(& f0&N+& f1&N)2�18(& f0 &2
N+& f1 &2

N)

=18(& f 2
0&9+& f 2

1 &9)�18d |
�

&�
f $(x)2 d+(x)
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where we used (4.6) in the last inequality. Now, by Proposition 4.1,

L( f )� 13
4 " f &| f d+"

2

N
� 117

2 d |
�

&�
f $(x)2 d+(x).

This inequality is invariant under translations f � f +const, thus it holds
without the condition f (m)=0. This proves (4.5) for c=117d�2.

5. PROBABILITY MEASURES SATISFYING LOGARITHMIC
SOBOLEV INEQUALITIES ON THE REAL LINE

Using Proposition 4.2, we shall give in this section a direct characteriza-
tion of probability measures + on the real line R satisfying the logarithmic
Sobolev inequality

Ent( f 2)�c |
�

&�
f $(x)2 d+(x) (5.1)

with some (finite) constant c for all smooth functions f on R. Our tool is
the following theorem due to M. Artola, G. Talenti, and G. Tomaselli (cf.
[Mu]) on the optimal constant A=A(&, *) in the Hardy-type inequality
with weights

|
�

0
f (x)2 d&(x)�A |

�

0
f $(x)2 d*(x).

Here f is supposed to be an arbitrary smooth function on [0, +�) such
that f (0)=0, and + and * are (non-negative) Borel measures on [0, +�).
Denote by p*= p*(x) the absolutely continuous component of * with
respect to Lebesgue measure, and define the constant B=B(&, *) as

B(&, *)=sup
x>0

&([x, +�)) |
x

0

dt
p*(t)

.

Theorem 5.1 [Mu]. B�A�4B.

This theorem has the following natural generalization. Consider a Borel
measure & on [0, +�) and a Banach space (X, & }&) of Borel measurable
functions on [0, +�) (with usual factorization with respect to measure &)
such that

(1) f�| g| &-a.e., g # X implies f # X and & f &�&g&, for all Borel
measurable functions f;
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(2) any pointwise non-decreasing sequence fn of non-negative func-
tions in X converging pointwise to a function f # X satisfies & fn& � & f &.

By property (1), X is an ideal Banach space, and property (2) is called
order semicontinuity of the norm. For an ideal Banach space X, the last
property is equivalent to a representation of the norm in X in the form

& f &=sup
g # G

|
�

0
| f (x)| g(x) d&(x), (5.2)

for some family G of non-negative Borel measurable functions g on
[0, +�) (this statement holds in the setting of an abstract probability
space (0, &), cf., e.g., [KA, p. 190]).

For these Banach spaces X, one immediately obtains by Theorem 5.1:

Corollary 5.2. Let A=A(X, *) be the optimal constant in the inequality

& f 2&�A |
�

0
f $(x)2 d*(x), (5.3)

where f # X is an arbitrary smooth function such that f (0)=0. Then,
B�A�4B, where

B=B(X, *)=sup
x>0

&1[x, +�) & |
x

0

dt
p*(t)

.

Indeed, the measures &g(dx)= g(x) &(dx) satisfy B(&g , *)�A(&g , *)�
4B(&g , *). Using the definitions (5.2) and (5.3), we get

A(X, *)=sup
g # G

A(&g , *), B(X, *)=sup
g # G

B(&g , *),

hence, B(X, *)�A(X, *)�4B(X, *).
In particular, one may apply Corollary 5.2 to the Orlicz space X=L9 (&)

which of course satisfies the properties (1) and (2) above. Recall that
9(x)=|x| log(1+|x| ). For indicator functions, we get by definition of the
Orlicz norm

&1[x, +�)&9=
1

9 &1(1�&([x, +�)))
,

where 9 &1 denotes the inverse function. Consequently, the optimal con-
stant A in (5.3) for the norm & }&=& }&� can be estimated as follows:
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sup
x>0

1
9 &1(1�&([x, +�))) |

x

0

dt
p*(t)

�A�4 sup
x>0

1
9 &1(1�&([x, +�))) |

x

0

dt
p*(t)

. (5.4)

Using Proposition 4.2, we may now conclude the proof of the main
result of this section.

Let + be a Borel probability measure on R with distribution function
F(x)=+((&�, x]), and density function p= p(x), x # R, for its absolutely
continuous part with respect to Lebesgue measure. Denote by m a median
of +. Define

D0= sup
x<m \F(x) log

1
F(x)+ |

m

x

1
p(t)

dt,

D1= sup
x>m \(1&F(x)) log

1
1&F(x)+ |

x

m

1
p(t)

dt,

defining D0 and D1 to be zero in case +((&�, m))=0 or +((m, +�))=0,
respectively.

Theorem 5.3. For some positive absolute constants K0 and K1 , the
optimal value of c in the logarithmic Sobolev inequality (5.1) satisfies

K0(D0+D1)�c�K1(D0+D1).

Actually, one may choose K0=1�150 and K1=468. To simplify the
expression in (5.4), we first prove:

Lemma 5.4. Let c1= 1
2 , c2=2. For all t�2,

c1

t
log t

�9&1(t)�c2

t
log t

. (5.5)

Proof. The first inequality in (5.5), that is,

9 \ c1 t
log t+=

c1 t
log t

log \1+
c1 t

log t+�t

will follow, due to c1 �log t�1 for t�2, from the inequality

c1 t
log t

log(1+t)�t,
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which is equivalent to log(1+t)�2 log t, that is, to 1+t�t2. The last is
evident. The second inequality in (5.5),

c2 t
log t

log \1+
c2 t

log t+�t,

may be rewritten as

1+
c2 t

log t
�t1�c2

and will follow from c2 t�log t�t1�c2. For c2=2, the last is equivalent to
u(t)=log t�(2 - t)�1. The function u attains its maximum on the interval
[2, +�) at the point t=e2, and u(e2)=1�e<1. Hence Lemma 5.4 follows.

Proof of Theorem 5.3. Without loss of generality, let m=0. The
inequality (4.6) may be divided into the two inequalities:

& f 2
0&9�d |

0

&�
f $0(x)2 d+(x), (5.6)

& f 2
1&9�d |

�

0
f $1(x)2 d+(x), (5.7)

where f0 and f1 are arbitrary smooth functions defined on (&�, 0] and
[0, +�), respectively, with f0(0)= f1(0)=0. According to (5.4) with &=*
being the restriction of + to [0, +�), and by Lemma 5.5, we have, for the
optimal constant d1 in (5.7),

1
2

sup
x>0

+([x, +�)) log
1

+([x, +�)) |
x

0

dt
p(t)

�d1�8 sup
x>0

+([x, +�)) log
1

+([x, +�)) |
x

0

dt
p(t)

. (5.8)

Here we have used the fact that m=0 is a median, hence, t=
1�+([x, +�))�2, for all x>0. It is obvious that the supremum in (5.8)
will not change if one replaces the expression +([x, +�)) by +((x, +�)).
But +((x, +�))=1&F(x), and using definition of D1 , we may rewrite
(5.8) as

1
2D1�d1�8D1 .
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By a similar reasoning, we get, for the optimal constant d0 in (5.6),

1
2D0�d0�8D0 .

By Proposition 4.2, (5.1) implies (5.6)�(5.7) with d=75c�2. Since d=
max(d0 , d1) is the optimal constant satisfying both inequalities (5.6) and
(5.7), we get

1
2 max(D0 , D1)�75c�2.

Therefore, D0+D1�150c which implies Theorem 5.3 with K0=1�150. On
the other hand, again by Proposition 4.2, c�117d�2=117 max(d0 , d1)�2,
so, c�468 max(D0 , D1)�468(D0+D1). Thus, one may choose K1=360
which proves Theorem 5.3.
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