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Abstract

This paper is about a connection between a general problem of partitions inZ/nZ and the expression of determinants of
certain circulant matrices. The main result of the article is a method for calculating, in certain special cases, explicit formulas
for the number of partitions of elements inZ/nZ in distinct summands and the number of partitions of elements inZ/nZ with
less thant repetitions. Explicit formulas for partitions inZ/nZ in the general case can be found by explicitly calculating the
determinants of certain circulant matrices.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A partition of an integerm is a representation ofm as a sum of positive integers. The problem of counting the number of
partitions ofm is a well-known problem. It has a long history and belongs to the classical problems in number theory, see, e.g.,
[1,5]. Many questions about partitions are still open[1]. Questions about the unrestricted partition function can be generalized by
requiring that the summands belong to a certain subset ofN as in[2,5] or by fixing some constraints on the number of repetitions
of the summands (e.g. partitions without repetition, also in[5]).

The goal of this paper is to derive a generalization whenm is viewed as an element ofZ/nZ, n ∈ N. This extended notion
of partition must be clarified since unless the number of summands is limited, there will always be an infinite number of
representations of a givenm ∈ Z/nZ as a sum of elements inZ/nZ. Indeed, one can add an arbitrary number of summands
as long as their sum is equal to zero. The following definition gives the exact type of partitions we will be dealing with in the
sequel.

Definition 1. Let n be a positive integer,m ∈ Z/nZ andC be a nonempty subset of{0,1,2,3, . . . , n − 1}. A C-partition ofm
modulon is an equality of the form

x1 + · · · + xk = m in Z/nZ,
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where

• k�1,
• ∀i ∈ {1, . . . , k}, xi ∈ {1, . . . , n − 1},
• ∀x ∈ {1, . . . , n − 1}, |{i ∈ {1, . . . , k} | xi = x}| ∈ C.

TwoC-partitionsx1 + · · · + xk = m andy1 + · · · + yl = m are the same if and only ifl = k and there exists a permutation�
of {1, . . . , k} such thatyi = x�(i), i.e., the order of the summands is unimportant.

Example 2. LetC = {0,1,3}. Then 1+ 2+ 2+ 2+ 5= 4mod 8 is aC-partition of 4 modulo 8. This partition is equal to the
C-partition 2+ 1+ 2+ 5+ 2= 4mod 8.

We can now pose the following natural problem:

Problem 3. Let n, m andC be as above. Find the number ofC-partitions ofmmodulon.

A special case of this problem, whenC = {0,1}, asks to enumerate the number of partitions ofm without repetition of
summands. Such partitions will be calledstrict partitionsin the sequel. In this case, Problem 3 asks to enumerate the number of
possible expressions

x1 + · · · + xk = m in Z/nZ,

where thexi are all different and where the order of the summands is irrelevant. This problem can be seen as the modular version
of the usual problem of partitions with unequal parts[5, Chapter XIX]. Despite the huge literature on partitions and additive
number theory, the author was not able to find any results on problems of this type.

The main result of this paper is a method for calculating the number ofC-partitions inZ/nZ in terms of the determinant of
certain circulant matrices. This method leads to explicit formulas for the number of strict partitions and partitions where less
thant repetitions are admitted.

In Section 2, we will deal with properties of circulant matrices and technical results helpful in the computation of some of
them. In Section 3, some theory about Ramanujan’s sums will be recalled and the inverse of a matrix, with Ramanujan’s sums
as entries, will be found. We will prove the main result on generalC-partitions in Section 4 and give the explicit formulas when
C = {0,1,2, . . . , t − 1} and for strict partitions in Section 5.

2. Circulant matrices

LetM be a circulantn by nmatrix, i.e., a matrix of the form

M = Circn[a0, a1, . . . , an−1] =




a0 a1 a2 . . . an−1
an−1 a0 a1 . . . an−2
an−2 an−1 a0 . . . an−3

...
...

...
. . .

...

a1 a2 a3 . . . a0


 .

From the usual theory of such matrices[4], it is known that given a primitiventh root of unity, say�n, one has

det Circn[a0, a1, . . . , an−1] =
n−1∏
j=0

p(�j
n) wherep(x) =

n−1∑
k=0

akx
k. (2.1)

A point that will be implicitly used in the sequel is that any primitiventh root of unity can be considered in the product, a direct
consequence of Galois theory. A useful result in the computation of such a determinant is the following technical Lemma:

Lemma 4. Letn, t be positive integers, d a divisor of n and let(t, d) be the greatest common divisor of t and d. The following
equality holds:

n−1∏
j=0

(1+ (�d)j + (�d)2j + · · · + (�d)(t−1)j ) =
{

tn/d if (t, d) = 1,
0 otherwise.
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Proof. A different expression for the sum when�j
d


= 1 leads to the following equation:

n−1∏
j=0

(1+ �j
d

+ �2j
d

+ · · · + �(t−1)j
d

) = tn/d
n−1∏
j=1
d�j

1− �tj
d

1− �j
d

.

If t andd have a non-trivial common divisor then there existsj with 0< j < d and�tj
d

= 1. Thus, the product is null. Ift and
d are relatively prime, the numerator and the denominator of the product on the right-hand side are the same, which gives the
result. �

Proposition 5. LetC ⊂ {0,1,2,3, . . . , n − 1} andd |n. If
ak = |{c ∈ C | cd = kmodn}|

then

n−1∏
j=0


∑

c∈C
�cdj
n


 = det Circn[a0, a1, . . . , an−1].

Proof. This follows by applying (2.1) to the equality

∑
c∈C

(�j
n)cd =

n−1∑
k=0

|{c ∈ C | cd = kmodn}|(�j
n)k =

n−1∑
k=0

ak(�
j
n)k. �

3. Ramanujan’s sums

Let n�1 andk be integers and letUn be the set of primitiventh roots of unity inC. Consider Ramanujan’s sumsC(k, n)

(notation of[3], also writtencn(k) in [5]) defined by

C(k, n) =
∑

(m,n)=1
1�m� n

�mk
n =

∑
�∈Un

�k =
�(n) · �( n

(k,n)
)

�( n
(k,n)

)
,

where� is Euler’s totient function and� the Möbius function. The last equality is proved in[5]; using it, one can explicitly
compute Ramanujan’s sums if the factorization ofn is known. These sums are integers. This section is devoted to proving and
recalling some results on these sums.

Lemma 6. For anyd |n, we have∑
(m,n)=d
1�m� n

�mk
n =

∑
�∈Un/d

�k = C(k, n/d). (3.1)

The proof is left to the reader. The next lemma is exactly Theorem 2 of[3].

Lemma 7. For all d1 |n, d2 |n, Ramanujan’s sums satisfy the following orthogonal relation:

∑
d|n

C(n/d, d1) · C(n/d2, d) =
{

n if d1 = d2,

0 otherwise.

Given a positive integern, letDn be the set of divisors ofn, with � = |Dn|, written asDn = {d1 = 1< d2< · · · < d� = n}.
Note that with this notation, we haven/di = d�−i . For suchn andDn we define the matrixRn as follows:

Rn ∈ Mat�×�(Z) with (Rn)ij = C(di, dj ).

This matrix will naturally appear in the next section. All the information we need from it is in the next proposition.
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Proposition 8. LetR′
n ∈ Mat�×�(Z) be defined by(R′

n)ij = C(n/di, n/dj ) = C(d�−i , d�−j ). Then

(1) the matrixRn is invertible withR−1
n = 1

nR
′
n,

(2) detRn = detR′
n,

(3) detRn = n
�
2 .

Proof. (1) Using Lemma 7, we have

(Rn · R′
n)ij =

�∑
k=1

C(di, dk)C(n/dk, n/dj )

=
∑
d|n

C(n/d, d�−j )C(n/d�−i , d)

=
{

n if d�−j = d�−i , i.e. if i = j,

0 otherwise .

The same equality with
(
R′

n · Rn

)
ij
is also true, which gives the result.

(2) The equality is obvious sinceRn is obtained fromR′
n by an even number of permutations of rows and columns.

(3) From (1) and (2), we haven� = det(nI) = det(Rn · R′
n) = (detRn)2. �

4. The number ofC-partitions modulo n

Let us fix a positive integern as well as a nonempty subsetC of {0,1, . . . , n − 1}. We definepn(m,C) to be the number of
C-partitions ofmmodulon:

pn(m,C) = |{x1 + · · · + xk = m is aC-partition of mmod n}|.

The multiplicative group of units inZ/nZ, (Z/nZ)∗, acts naturally by multiplication onZ/nZ. Interestingly, it also acts on the
set of allC-partitions inZ/nZ. Supposex1 + x2 + · · · + xk = m is aC-partition ofm. Then clearly for anya ∈ (Z/nZ)∗,
ax1+ ax2+· · ·+ axk = am is aC-partition ofam, as defined in the introduction. In other words, ifSm is the set ofC-partitions
ofm, one has

aSm = {ax1 + · · · + axk = am | x1 + · · · + xk = m is aC-partition of m}

and

aSm = Sam.

This yields the following fact formandm′ inZ/nZ: if there exists ana ∈ (Z/nZ)∗ such thatam=m′, thenpn(m,C)=pn(m′,C).
Thus, the action of(Z/nZ)∗ onZ/nZ will be a crucial point in the following. The equivalence relation onZ/nZ induced by
this action is the point of the next lemma, the proof of which is left to the reader.

Lemma 9. (1) In Z/nZ, two elements m and̃m are equivalent under the action of(Z/nZ)∗ if and only if(m, n) = (m̃, n).
(2) For all m ∈ Z/nZ, there exists a uniqued|n such that d and m are in the same equivalence class.

Lemma 9 shows that in order to solve Problem 3, it is sufficient to computepn(d,C) for all d|n since

pn(m,C) = pn(d,C) with d = (m, n). (4.1)

Here is the main theorem:
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Theorem 10. Let n be a positive integer, m an element ofZ/nZ, a = (m, n), andC a nonempty subset of{0,1, . . . , n − 1}.
Givend|n, let

ak = |{c ∈ C | cd = kmod n}|

and

�d = 1

|C| det Circn[a0, . . . , an−1].

Then the number ofC-partitions of m inZ/nZ is given by

pn(m,C) = 1

n

∑
d|n

C(a, d)�n/d

= 1

n

∑
d|n

�(d)�( d
(a,d)

)

�( d
(a,d)

)
�n/d .

Proof. For a fixedd |n, let ak be as above. Using Proposition 5, we have

det Circn[a0, . . . , an−1] =
n−1∏
j=0


∑

c∈C
�cdj
n




= |C|
n−1∏
j=1


∑

c∈C
�cdj
n




= |C|


 ∑

ij ∈C
j=1,...,n−1

(�n)d(1i1+2i2+···+(n−1)in−1)


 . (4.2)

LetC= {c1, c2, . . . , cr } and let us fix notation: for any finite subsetL of N, we define‖L‖ = ∑
l∈Ll (and‖∅‖ = 0). If for each

term(�n)d(1i1+2i2+···+(n−1)in−1) of 4.4 we define

Lj = {x ∈ {1,2, . . . , n − 1} | ix = cj },

then the above summation can be written as a sum over all possible disjoint unions in

U = {L = (L1, . . . , Lr ) |L1 � · · · � Lr = {1,2, . . . , n − 1}}

as

det Circn[a0, . . . , an−1] = |C|

 ∑

L∈U

(�n)d(c1‖L1‖+c2‖L2‖+···+cr‖Lr‖)

 .
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For allL in U, let us write�(L) = c1‖L1‖ + c2‖L2‖ + · · · + cr‖Lr‖modn. Note that the set{L ∈ U |�(L) = m} is in bijection
with the set ofC-partitions ofm. Thus

det Circn[a0, . . . , an−1] = |C|




n−1∑
m=0


 ∑

L∈U
�(L)=m

1


 (�n)dm




= |C|

n−1∑

m=0

pn(m,C)(�n)dm




= |C|




∑
l|n

pn(l,C)


 ∑

(m,n)=l,
1�m� n

(�n)dm




︸ ︷︷ ︸
c.f . 3.2




= |C|

∑

l|n
pn(l,C)C(d, n/l)


 , (4.3)

where Eq. (4.1) has been used in (4.3). In other words, for each divisord of n, we have the following equation:

∑
l|n

C(d, n/l)pn(l,C) = 1

|C| det Circn[a0, . . . , an−1] = �d .

Whend goes through all divisors ofn, we obtain the following system of linear equations:




C(d1, d1) C(d1, d2) C(d1, d3) . . . C(d1, d�)
C(d2, d1) C(d2, d2) C(d2, d3) . . . C(d2, d�)
C(d3, d1) C(d3, d2) C(d3, d3) . . . C(d3, d�)

...
...

...
. . .

...

C(d�, d1) C(d�, d2) C(d�, d3) . . . C(d�, d�)







pn(n/d1,C)

pn(n/d2,C)

pn(n/d3,C)
...

pn(n/d�,C)


 =




�d1
�d2
�d3
...

�d�


 .

This systemcannoweasily be solved since thematrix on the left-hand-side isRn which possesses the inverse1nR
′
n byProposition

8. Thus


pn(n/d1,C)

pn(n/d2,C)

pn(n/d3,C)
...

pn(n/d�,C)


 = 1

n




C(n/d1, n/d1) C(n/d1, n/d2) . . . C(n/d1, n/d�)
C(n/d2, n/d1) C(n/d2, n/d2) . . . C(n/d2, n/d�)
C(n/d3, n/d1) C(n/d3, n/d2) . . . C(n/d3, n/d�)

...
...

. . .
...

C(n/d�, n/d1) C(n/d�, n/d2) . . . C(n/d�, n/d�)







�d1
�d2
�d3
...

�d�


 .

Thus, replacing all then/di with di , together with Eq. (4.1), we have shown that

pn(m,C) = pn(a,C) = 1

n

∑
d|n

C(a, d)�n/d .

This ends the proof of the theorem.�

Example 11. Let n = 15,D15= {1,3,5,15}, andC = {0,1,2,5}. We get

�1 = 1
4 det Circ15[1,1,1,0,0,1,0,0,0,0,0,0,0,0,0] = 341,

�3 = 1
4 det Circ15[2,0,0,1,0,0,1,0,0,0,0,0,0,0,0] = 21296,

�5 = 1
4 det Circ15[1,0,0,0,0,1,0,0,0,0,2,0,0,0,0] = 256,

�15= 1
4 det Circ15[4,0,0,0,0,0,0,0,0,0,0,0,0,0,0] = 414= 268435456
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and




p15(15,C)

p15(5,C)

p15(3,C)

p15(1,C)


 = 1

15




C(15,15) C(15,5) C(15,3) C(15,1)
C(5,15) C(5,5) C(5,3) C(5,1)
C(3,15) C(3,5) C(3,3) C(3,1)
C(1,15) C(1,5) C(1,3) C(1,1)







�1
�3
�5
�15




= 1

15




8 4 2 1
−4 4 −1 1
−2 −1 2 1
1 −1 −1 1







341
21296
256

268435456


 ,

which gives

p15(m,C) =



17901592 ifm = 0,
17901268 ifm ∈ {3,6,9,12},
17894266 ifm ∈ {5,10},
17894283 ifm ∈ {1,2,4,7,8,11,13,14}.

5. Partitions modulo n with less than t repetitions

WhenC = {0,1,2, . . . , t − 1}, theC-partitions are partitions where less thant repetitions of summands are allowed. In this
section, we give explicit formulas for the number of such partitions and give some examples.

Corollary 12. Let n be a positive integer, m an element ofZ/nZ, a = (m, n), andC = {0,1, . . . , t − 1}. The number of
C-partitions of m inZ/nZ, i.e., the number of partitions of m with less than t repetitions of summands is given by

pn(m, {0,1, . . . , t − 1}) = 1

n

∑
d|n

(d,t)=1

C(a, d)tn/d−1

= 1

n

∑
d|n

(d,t)=1

�(d)�( d
(a,d)

)

�( d
(a,d)

)
tn/d−1.

Proof. Theorem 10 and Proposition 5 show that

t�d =
n−1∏
j=0


t−1∑

k=0

(�n)kdj


 =

n−1∏
j=0


t−1∑

k=0

(�n/d)kj


 .

Using Lemma 4, we see that

�d =
{

td−1 if (t, n/d) = 1,
0 otherwise. �

Example 13. Let us consider the case whenn = q is prime. We haveDq = {1, q} and the above formula becomes

pq(m, {0,1, . . . , t − 1}) =




tq−1−1+q
q if t < q, m = 0,

tq−1−1
q if t < q, m 
= 0,

qq−2 if t = q.

Note that for all possiblet ∈ {2, . . . , q −1} the numbers given by the formula are integers because of Fermat’s little Theorem.
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Corollary 14. Let n be a positive integer, m an element ofZ/nZ, anda = (m, n). The number of partitions of m inZ/nZ in
distinct summands is given by

pn(m, {0,1}) = 1

n

∑
d|n

d:odd

C(a, d)2n/d−1

= 1

n

∑
d|n

d:odd

�(d)�( d
(a,d)

)

�( d
(a,d)

)
2n/d−1.

Example 15. Let n = 2t . In this caseDn = {1,even numbers} and the above formula becomes

p2t (m, {0,1}) = 2n−1

n
= 22

t−t−1 ∀m ∈ Z2t ,

since there is only one term in the sum.
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