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In this paper we prove: (i) If a graph G has a nowhere-zero 6-flow ¢ such that
| Esaa(@)| =3 | E(G)|, then G has a cycle cover in which the sum of the lengths of
the cycles in the cycle cover is at most 3 | E(G)|, where E q(¢)= {ee E(G): gle)
is odd}; (ii) if Tutte’s 3-Flow Conjecture is true, then every bridgeless graph G has
a nowhere-zero 6-flow ¢ such that | E,qq(¢)| =3 | E(G)|. € 1993 Academic Press. Inc.

1. INTRODUCTION

For a graph G, E(G) denotes the set of edges of G. An edge is said to
be contracted if it is removed and its ends are identified. A bridge of G is
an edge whose removal leaves a graph with more components than G. An
even graph is one in which every vertex is of even degree. Sometimes,
we identify a subgraph with its edge set. The symmetric difference of two
even subgraphs Z, and Z,, denoted by Z, ®Z,, is the even subgraph
(Z,VZ,)\(Z,nZ,). The empty set ¢ is regarded as an even subgraph of
every graph.

A cycle cover of a graph G is a collection of cycles of G which covers all
edges of G. Since a graph is even if and only if it has a decomposition into
edge-disjoint cycles, we also regard a cycle cover as a collection of even
subgraphs. The size of a cycle cover is the sum of the lengths of the cycles
in the cover. The problem of finding a cycle cover of small size (a short
cycle cover) has been studied by several authors [2, 8, 15]. The best
known result on this subject is possibly the one by Bermond, Jackson, and
Jaeger [2], and Alon and Tarsi [1], that every bridgeless graph G has a
cycle cover of size at most 3| E(G)|. A different proof of this result can be
found in [4].

A flow in a graph G with an orientation D is an integer-valued function
¢ on E(G) such that, for each vertex v, the sum of ¢(e) over all edges e with
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head v is equal to the sum over all e with tail v. The support of ¢ is defined
by S(¢)={eec E(G):¢(e)#0}. If there is a positive integer k£ such that
—k < g¢le)<k for every ec E(G), then ¢ is called a k-flow, and further-
more, if S(¢)= E(G), then ¢ is called a nowhere-zero k-flow. An excellent
survey on this topic is given by Jaeger [10]. For a flow ¢ in G, we define

Eo44(¢) = {e€ E(G): ge)is odd }
and
Eeen(9)={e€ E(G) : §(e) iseven}.

The following is an equivalent form of the 3-flow conjecture of Tutte (see
unsolved problem 48 of [31]).

Conjecture 1.1. Every 4-edge-connected graph has a nowhere-zero
3-flow.

A theorem of Grétzsch [5] implies that the conjecture is true for planar
graphs. Steinberg and Younger [14] proved that the conjecture is true for
graphs that can be imbedded in the projective plane. Tutte [16] also
conjectured that every bridgeless graph has a nowhere-zero S5-flow.
Seymour [13] proved that every bridgeless graph has a nowhere-zero
6-flow (or see [18]), which improved the 8-flow theorem of Jaeger [9]. In
his proof, Seymour [13] showed that a 3-connected cubic graph G has an
even subgraph F and a 3-flow ¢ such that E(G)\ E(F)< S(¢). In this paper
we show that if Tutte’s 3-Flow Conjecture is true, then we can, in fact,
choose F to be a 2-factor of G, which has an interesting application to the
short cycle cover problem. This motivates the following conjecture.

Conjecture 1.2. Every bridgeless graph G has an even subgraph F and
a 3-flow ¢ such that E(G)\E(F)< S(¢) and | E(F)| = 2| E(G)|.

Suppose that F is an even subgraph of a graph G. If G has a 3-flow ¢
with E(G)\ E(F)< S(¢), then we let f be a 2-flow in G with S(f)=F; it is
casily seen that g=2¢+f is a nowhere-zero 6-flow with E_4,(g)=F.
Conversely, if G has a nowhere-zero 6-flow g with E 44(g)=F, then by a
classical result of Tutte (Lemma 2.1 in the next section), G has a 3-flow ¢
in which @¢(e)=0 only if | g(e)| =3, and thus, only if ¢ € E(F). These show
that Conjecture 1.2 is equivalent to

Conjecture 1.3. Every bridgeless graph G has a nowhere-zero 6-flow g
with [ E,qq(g)l =3 [E(G)].

We shall prove

THEOREM 1.4. If Conjecture 1.1 is true, then Conjecture 1.2 is true.
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THEOREM 1.5. If a graph has a nowhere-zero 6-flow g with | E_ 44(g)| 2
2| E(G)|, then G has a cycle cover of size at most 35 | E(G)|.

Combining Theorems 1.4 and 1.5 and taking into account the fact that
Conjectures 1.2 and 1.3 are equivalent, we have that

THEOREM 1.6. If Tutte’s 3-Flow Conjectue is true, then every bridgeless
graph G has a cycle cover of size at most 3| E(G)].

Related to Conjecture 1.2, the following is a problem suggested by the
referee.

ProBLEM 1.7. Let G be a bridgeless graph. Find the best possible lower
bound on | E(F)|, where F is an even subgraph of G such that G has a
3-flow ¢ with E(G)\E(F)< S(¢).

2. PRELIMINARIES

A basic result on integer flows is the following one due to Tutte ((6.3)
of [17]).

LeEmMa 2.1.  If G has a flow @, then, for any integer k >0, G has a k-flow
@' such that ¢'(e) = ¢le) (mod k) for every e e E(G).

The following is an easy consequence of Lemma 2.1.

LemMa 2.2, Let F< E(G) and let G' be obtained from G by contracting
the edges in F. If G’ has a k-flow ¢', then G has a k-flow ¢ such that
S(¢') = S(4).

A flow in G is always associated with some orientation of G. By changing
signs, one can arrange for two flows in G to have the same orientation. If
¢, and ¢, are two flows in G under the same orientation D, then for any
integers / and m the linear combination ¢ =/¢$, + m¢, is a flow under D.
Let ¢ be a flow in G. A flow fin G is called a sub-flow of ¢ if

(i) f has the same orientation as ¢;
(if) | fle} <ld(e)| and f(e) ¢(e) =0 for every ee E(G),

where the condition f(¢) ¢(e) = 0 simply means that f(e) and ¢(e) have the
same sign. Moreover, if fis a k-flow, then we call f a sub-k-flow of ¢. By
the definition, if f'is a sub-flow of ¢, then ¢ — f is also a sub-flow of ¢. For
technical reasons, we regard the everywhere-zero flow as a sub-2-flow of
any flow. Note that we may make a flow nowhere-negative by changing
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the orientation. The construction of a feasible circulation described in
[7, pp. 51-53] gives the following interesting result (or see [11]).

LEMMA 2.3. Let ¢ be a flow in a graph G and r a real number, r> 1.

Then G has a sub-flow f of ¢ in which f(e)=|¢(e)/r] or [ ¢(e)/r"] for every
edge e € E(G).

By this result, if a graph G has a k-flow ¢, where k> 2, then it has a
sub-2-flow fof ¢ (using r=4k ~1). Since ¢ — f is a sub-(k — 1)-flow of ¢, we
may apply the lemma to ¢ —f using r=k—2 (if k> 3). Repeatedly, we
decompose the k-flow ¢ into (k — 1) sub-2-flows. This is a result found by
Little, Tutte, and Younger {12]. We state it as Lemma 2.4 below.

LEMMA 24.  Every k-flow ¢ is the sum of (k — 1) sub-2-flows of @.

Lemma 2.4 plays a key role in the proof of the next lemma. For a flow
¢ in a graph G, we set

E(¢)={ecE(G):fle)=i} and  E,($)=E(HVE ,(¢)

LEMMA 2.5. Let f be a k-flow in G. Then there is a k-flow ¢ in G such
that S(¢)=S(f) and

k—1
lEi1(¢)|>T(|E+1(f)l+|E¢lk—rn(f)|)-

Proof. By Lemma 2.4, we have that f=Y*" 1., where f, is a sub-2-flow
of /- Let ¢, =kf,—f, 1 <i<k— 1. Since f;(e) and f(e) have the same sign
for each ee E(G), each ¢, is a k-flow in G with the same support as f. Let
ee E(G):if | f(e)| = 1, then there is exactly one j such that | f;(e}| =1, and
so |¢;(e)|=1for all i#j, 1<i<k—1;if | f(e)|=k—1, then for every i,
1<i<k—1,]|f(e)]=1 and so |¢,(e)| = 1. Therefore,

k—1

2 IE@NZ (k=D E (N +k=DIEsu o)

i=1

That is,

k-1
IEc NI+ 2 TE (B2 (k=1 E (O +E L (NN

i=1

Choosing ¢e {f, ¢, .., d_,} with | £, (¢)| maximum,
KIE ()N Z2th—WDWE (NHIE k- (D)

Dividing both sides by k yields the required result. |
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LEMMA 2.6. Let ¢ be a 4-flow in G. Then G contains two even subgraphs
Z, and Z, such that

Z,0Z,=8(¢) and Z,nZy=E,,(¢)

Proof. We apply Lemma 2.3 to ¢ using r =2 to obtain a sub-3-flow f]
and let f'=¢ —f Then £, ,(f)and E,(f’) are two even subgraphs of the
required properties. ||

3. PROOF OF THEOREMS

A graph is called a weighted graph if each edge e is assigned a non-
negative real number w(e), called the weight of e. Let G be a weighted
graph and H a subgraph of G. The weight of H is defined by

w(H)= Y w(e).
ee E(H)
An unweighted graph can be regarded as a weighted graph in which each
edge e is assigned weight w(e) = 1. On the other hand, for a weighted graph
with a weight function w, since the rationals are dense, we may assume that
w Is rational-valued. By multiplying out denominators, we have a weighted
graph in which each edge has an integer weight w’'(e). Replacing each edge
¢ by a path of length w'(e) gives an unweighted graph. By these obser-
vations we see that Theorem 1.4 is equivalent to

THeOREM 3.1.  If Conjecture 1.1 is true, then every bridgeless weighted
graph G has an even subgraph F and a 3-flow ¢ such that E(G)\E(F)< S(¢)
and w(F) = iw(G).

However, sometimes it seems more convenient to work on a weighted
graph than on an unweighted one, in particular, when we use induction to
reduce the size of the graph. This has been seen in [4] and will be seen
again here. Instead of proving Theorem 1.4 directly, we prove Theorem 3.1
first. Before going to the proof, we need the following two observations.

(i) Let G be a loopless, 2-edge-connected graph. If G has a vertex y
of degree more than three, then by a result of Fleischner [6] there are two
edges xy and yz such that deleting xy, yz and joining x and z by a new
edge yield a 2-edge-connected graph. Let G’ be the new graph and assign
to the new edge the weight w(xy)+ w(yz) so that w(G') = w(G). It is clear
that an even subgraph of G’ can be extended to an even subgraph of G
with the same weight and a 3-flow in G’ can be extended to a 3-flow in G
with the same support.
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(i1) If G has a 2-edge-cut {e,, e,}, we let G’ be the graph obtained
by contracting e,. Reassign to e, a new weight w(e,)+ w(e,) so that
w(G') = w(G). Consider an even subgraph F’ of ¢’ and a 3-flow ¢’ in G'.
If e;€ F’, then F'u {e,} is an even subgraph of G with the same weight as
F'; if e, ¢ F', then F’ gives an even subgraph of G with the same set of
edges. Moreover, in either case, the 3-flow ¢’ can be extended to a 3-flow
¢ in G in which ¢(e)=¢'(e) for all ec E(G)\{e,} and dle,)=¢'(e,) or
— ¢'(e,), according to the orientation of e,.

From the above two observations, it follows that

LEMMA 3.2, If G is a counterexample to the statement of Theorem 3.1,
with a minimum number of edges, then G is simple, cubic, and 3-connected.

We are now ready to prove Theorem 3.1.

Proof of Theorem3.1. Suppose, to the contrary, that the theorem is
not true. Let G be a minimum counterexample. Then, by Lemma 3.2, G is
simple, cubic, and 3-connected. As proved in [4], G contains a 2-factor F
with

w(F) = 3iw(G)
such that the graph G’, obtained by contracting each component of F, is
4-e¢dge-connected. If Conjecture 1.1 is true, then G’ has a nowhere-zero
3-flow. By Lemma22, G has a 3-flow ¢ with E(G')< S(¢). But

E(G')= E(G)\E(F), and so F and ¢ have the required properties. This
contradiction proves Theorem 3.1. ||

Now we return to unweighted graphs. The rest of the paper is devoted
to the proof of Theorem 1.5. We first prove the following lemma.

LEMMA 3.3. Ler g be a 6-flow in G. Then there is a 6-flow ¢ in G such
that S(¢)=S(g) and

|Eil(¢)|>%|Eodd(g)|-

Proof. Since E 44(g) is an even subgraph of G, we may define a 2-flow
Jo in G with S(fy) = E,44(g). Applying Lemma 2.1 to the flows g + 2f, and
g — 2f, yields two 6-flows in G, say f, and f,, respectively, in which for
every ee E(G)

Sile)=gle)+2fo(e) (mod 6)  and  f.(e)=g(e)—2f,(e) (mod 6).
It is not difficult to see that

Ei3(fl)UE;t3(f2)=Eil(g)UEiS(g)-
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Adding £, ,(g) to both sides yields
E3(8)VE.5(f1) Y E (/7)) = Equal(g).
Let fe {g, f1,f2} with | E_;(f)| smallest. Then
|E (/) <31 Eoua(8)]-

Since fis a 6-flow in G, by Lemma 2.5 with k=6, there is a 6-flow ¢ in G
such that 5(¢)=S(f) (= S(g)) and
E. BN 23U E DI+ TE (D) =2 Eoaa (N = | E45(SN)
%(\Eodd (N—3 3 1 Ecga(2)]).

Since Eogq(f) = Eoaa(g),
EL 1 (80 2 3G | Eaaa@)) =3 | Ecaa (&)l
This completes the proof of Lemma 3.3. |

Proof of Theorem1.5. Let g be a nowhere-zero 6-flow in G with
| Eoaq(g)) = 2 | E(G)|. It follows from Lemma 3.3 that G has a nowhere-zero
6-flow ¢ such that

|E. (#1235 | Eoua(8) 2 5 | E(G)].

Applying Lemma 2.3 to ¢ with r=2, we have a sub-4-flow of ¢, say ¢,,
such that ¢, (e)=| @(e)/2 | or [ #(e)/27], for every e€ E(G). Set ¢, =¢—¢,.
Then ¢, is also a sub-4-flow of ¢. Let 4= {ecE(G):¢,(e)=0} and
B = {ecE(G):d,(¢) = 0}. Then AnB = and AUB = E_ (¢).

Moreover, |¢,(e){ =1 if ec B and |¢,(¢)| =1 if e€ A. Applying Lemma 2.6
to ¢,, we have two even subgraphs X, and X, such that X, u X, =5(¢,)
and X,nX,=E_,(¢,) Set X;=X,@X,. Then BS X, and {X, X,, X,}

covers each edge of S(¢,)=E(G)— A4 exactly twice. Similarly, ¢, yields
three even subgraphs, say Y,,Y,, and Y;, such that Ac Y, and
{Y,,Y,, Y3} covers each edge of S(¢,)=E(G)— B exactly twice. Let
C,={X,,X,,Y;} and C,={Y,, Y,, X;}. Then both C, and C, are cycle
covers of G. Since

3 3
2 X+ X AYI=21S()]+21S(¢2) =4 | E(G)| -2 4L B|

=4 E(G) -2|E+ (8,
either C, or C, is of size at most

2|E(G)| = |E,($)| <2|E(G)| — 7| E(G)| = 33 | E(G)|.

This completes the proof of Theorem 1.5. §
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