Iterative equations in Banach spaces

Jacek Tabora, Marek Żołdakb,∗

a Institute of Mathematics, Jagiellonian University, Reymonta 4 Street, Kraków 30-059, Poland
b Institute of Mathematics, University of Rzeszów, Rejtana 16A, Rzeszów 35-310, Poland

Received 10 February 2004
Available online 25 September 2004
Submitted by T.D. Benavides

Abstract

Let X be a Banach space, let
\[K(X) := \{ f : X \to X \text{ Lipshitz: } \| f - \text{id} \|_{\sup} < \infty \}, \]
and let $P : K(X) \to K(X)$, $F \in K(X)$. By applying the Banach contraction principle we prove that

if P is sufficiently close (in a certain sense) to the identity then the equation

$Pf = F$

has a unique solution f. As a corollary we obtain results on iterative equations of the types

$\sum_i A_i f^i(x) = F(x)$ or $\sum_i A_i f(\phi_i(x)) = F(x)$

with operator coefficients in Banach spaces.

© 2004 Published by Elsevier Inc.

Keywords: Iterative functional equation; Fixed point method

∗ Corresponding author.
E-mail addresses: tabor@im.uj.edu.pl (J. Tabor), marek_z2@op.pl (M. Żołdak).
1. Introduction

One of the oldest and most important problems of iterative equation is the to find the iterative roots of a given function \(F \),

\[f^n = F. \] \hfill (1)

Its study goes back to N. Abel [1] and Ch. Babbage [5]. For some more recent results and further references on the subject of iterative equations we refer to the monographs [6,7] and to the survey article [3].

The polynomial-like iterative equation

\[\sum_i \alpha_i f^i = F, \]

where \(\sum_i \alpha_i = 1 \) is a natural generalization of (1).

A successful approach to deal with this equation with the use of fixed point method was introduced by W. Zhang in [8] in the year 1987. We would like to quote the main theorem.

Theorem Zh. Let \(F : [a, b] \to [a, b] \), \(F(a) = a \), \(F(b) = b \) be such that there exist \(L, M > 0 \) with

\[L(x_2 - x_1) \leq F(x_2) - F(x_1) \leq M(x_2 - x_1) \quad \text{for} \quad x_1 \leq x_2. \]

Let \(\alpha_1, \ldots, \alpha_n \geq 0 \), \(\alpha_1 > 0 \), be such that \(\sum_{i=1}^n \alpha_i = 1 \). Then the equation

\[\sum_{i=1}^n \alpha_i f^i(x) = F(x) \quad \text{for} \quad x \in [a, b] \] \hfill (2)

has a solution \(f : [a, b] \to [a, b] \), which is an a increasing function Lipschitz with constant \(M/\lambda_1 \).

Since we use its idea we would like to present the sketch of the proof.

Idea of the proof. To solve Eq. (2) it is enough to find a solution to the fixed point problem

\[f = (Gf)^{-1} \circ F, \]

where \(G : f \to \sum_{i=1}^n \alpha_i f^i. \)

We define \(V \) as the set of increasing homeomorphisms of \([a, b]\) with \(\text{lip}(f) \leq M/\alpha_1 \) (lip denotes the Lipschitz constant). Let \(f \in V \). Since \(f \) is increasing we have

\[Gf(y) - Gf(x) \geq \alpha_1(y - x) \quad \text{for} \quad x < y. \] \hfill (3)

This implies that \(Gf \) is increasing (and therefore invertible) and \(\text{lip}((Gf)^{-1}) \leq 1/\alpha_1 \). Consequently \((Gf)^{-1} \circ F\) is increasing as a composition of increasing functions and \(\text{lip}((Gf)^{-1} \circ F) \leq \text{lip}((Gf)^{-1}) \cdot \text{lip}(F) \leq M/\alpha_1 \). This means that \((Gf)^{-1} \circ f \in V\).

By the Arzelà–Ascoli lemma \(V \) is compact in the space of continuous functions with the supremum norm. Schauder’s fixed point theorem applied to the operation \(V \ni f \to (Gf)^{-1} \circ F \in V \) makes the proof complete. \(\square \)
As we see the above proof does not give us uniqueness or continuous dependence of solutions on F or coefficients. If we want to get this we need to apply the Banach contraction principle instead of Schauder’s theorem—however at a cost. Roughly speaking, to obtain that the mapping $f \rightarrow (Gf)^{-1} \circ F$ is a contraction we need to assume that $\text{lip}(F)$ is not big and λ_1 is close to one (see, for example, [9,10]).

Equation (2) can be generalized in many directions. For example, [2] deals with the case of variable coefficients.

In [4] the more dimensional case was treated—the domain of F was a compact convex subset of \mathbb{R}^n. The following paper is a partial generalization of [4]—we assume that the domain is an arbitrary closed (not necessarily convex!) subset of a Banach space, and we allow operator coefficients. The main real “novelty” which allowed this is that instead of working with Lipschitz constant of F we work with Lipschitz constant of $F - \text{id}$ (which is assumed to be small). It causes some additional work but in our opinion is worth the trouble.

2. Fixed-point theorem

As our results are based on the Banach contraction principle we first need to describe the space on which our results will take place.

Let X be a Banach space. For functions $f : S \rightarrow X$, where S is a subset of X, we put

$$\|f\|_{\sup} := \sup_{s \in S} \|f(s)\|,$$
$$k(f) := \text{lip}(f - \text{id}).$$

One can easily notice that $\|\cdot\|_{\sup}$ defines a metric (which can possibly attain $+\infty$) by the formula $d_{\sup}(f, g) := \|f - g\|_{\sup}.$

Let V be a closed subset of X. We define

$$\mathcal{K}(V) := \{f : V \rightarrow X \mid f|_{\partial V} = \text{id}|_{\partial V}, \|f - \text{id}\|_{\sup} < \infty\},$$
$$\mathcal{K}_m(V) := \{f \in \mathcal{K}(V) \mid k(f) \leq m\} \quad \text{for} \ m \geq 0.$$

The space $(\mathcal{K}(V), d_{\sup})$ is complete metric space and $\mathcal{K}_m(V)$ is a closed subset of $\mathcal{K}(V)$.

Now we are ready to present our main tool which we will use further on.

Theorem 1. Let $m \in (0, 1)$ be given. Let $\mathcal{F}, \mathcal{G} : \mathcal{K}_m(V) \rightarrow \mathcal{K}(V)$ be fixed and let

$$K_{\mathcal{F}} := \sup\{k(\mathcal{F} f) : f \in \mathcal{K}_m(V)\},$$
$$K_{\mathcal{G}} := \sup\{k(\mathcal{G} f) : f \in \mathcal{K}_m(V)\}.$$

If

$$\frac{1 + k_{\mathcal{F}}}{1 - k_{\mathcal{G}}} \leq 1 + m,$$
(4)
$$\text{lip}(\mathcal{F}) + \text{lip}(\mathcal{G}) < 1 - k_{\mathcal{G}}.$$
(5)
Then the equation

$$G f(x) = F f(x) \quad \text{for } x \in V$$

has in $K_m(V)$ a unique solution f.

Before proceeding to the proof we first need to show some properties of the space $K(V)$.

Proposition 1. Let $f, g, f_1, g_1 \in K(V)$ and $f_1(V) \subset V$ and $g_1(V) \subset V$.

(i) If $\text{lip}(f) < \infty$ then

$$\|f \circ f_1 - g \circ g_1\|_{\text{sup}} \leq \text{lip}(f) \|f_1 - g_1\|_{\text{sup}} + \|f - g\|_{\text{sup}}.$$

(ii) We assume that f, g are invertible and that $\text{lip}(f^{-1}) < \infty$. Then

$$\|f^{-1} - g^{-1}\|_{\text{sup}} \leq \text{lip}(f^{-1}) \|f - g\|_{\text{sup}}.$$

Proof. (i) We have

$$\|f(f_1(x)) - g(g_1(x))\| \leq \|f(f_1(x)) - f(g_1(x))\| + \|f(g_1(x)) - g(g_1(x))\| \leq \text{lip}(f) \|f_1 - g_1\|_{\text{sup}} + \|f - g\|_{\text{sup}}.$$

(ii) We show the second inequality. We have

$$\|f^{-1} - g^{-1}\|_{\text{sup}} = \|f^{-1} - f^{-1} \circ f \circ g^{-1}\|_{\text{sup}} \leq \text{lip}(f^{-1}) \|g \circ g^{-1} - f \circ g^{-1}\|_{\text{sup}} = \text{lip}(f^{-1}) \|f - g\|_{\text{sup}}.$$

If $q = 1$ then by $\frac{q^n - 1}{q - 1}$ we understand n. The next corollary follows in an easy inductive argument from Proposition 1(i).

Corollary 1. Let $f, g \in K(V)$, $f(V) \subset V$ and $g(V) \subset V$. If $\text{lip}(f) < \infty$ then

$$\|f^n - g^n\|_{\text{sup}} \leq \frac{\text{lip}(f)^n - 1}{\text{lip}(f) - 1} \|f - g\|_{\text{sup}} \quad \text{for } n \in \mathbb{N}.$$

Now we are ready to show some properties of the function k.

Proposition 2.

(i) Let $f, g \in K(V)$, $g(V) \subset V$. Then $f \circ g \in K(V)$ and

$$k(f \circ g) \leq (1 + k(f))(1 + k(g)) - 1.$$

(ii) Let $f \in K(V)$ be such that $k(f) < 1$. Then $f(V) \subset V$.

(iii) Let $f \in K(V)$ be such that $k(f) < 1$. Then $f^{-1} \in K(V)$ and

$$k(f^{-1}) \leq \frac{1}{1 - k(f)} - 1.$$

(6)
Proof. We use the following notation: for $f \in K(V)$ by p_f we denote the mapping $f - \text{id}$.

(i) We have

$$k(f \circ g) = \text{lip}((\text{id} + p_f) \circ (\text{id} + p_g) - \text{id}) = \text{lip}(p_g + p_f \circ (\text{id} + p_g))$$

$$\leq \text{lip}(p_g) + \text{lip}(p_f \circ (\text{id} + p_g)) \leq \text{lip}(p_g) + \text{lip}(p_f) \cdot (1 + \text{lip}(p_g))$$

$$= k(g) + k(f) \cdot (1 + k(g)).$$

Moreover, by Proposition 1 we have

$$\|f \circ g - \text{id}\|_{\sup} \leq \text{lip}(f)\|g - \text{id}\|_{\sup} + \|f - \text{id}\|_{\sup} < \infty.$$

(ii) We consider the case $V \neq X$. Let $x \in V$ be arbitrary and let $x_0 \in \partial V$ be such that

$$\|x - x_0\| \leq \frac{1}{k(f)}d(x, \partial V).$$

Then

$$\|f(x) - x\| = \|(f(x) - x) - (f(x_0) - x_0)\| \leq k(f)\|x - x_0\| \leq d(x, \partial V),$$

which trivially yields that $f(x) \in V$.

(iii) We first show that f is surjective. Let us fix an arbitrary $z \in V$. To show that f is surjective we have to find $x_0 \in V$ such that $x_0 + p_f(x_0) = z$, or in other words that $z - p_f(x_0) = x_0$.

To do so we use Banach fixed point theorem. We prolong p_f on the whole of X by setting $p_f(x) = 0$ for $x \in X \setminus V$. One can easily check that since $f|_{\partial V} = \text{id}|_{\partial V}$ such prolonged p_f is Lipschitz with constant $k(f) \leq m < 1$. Thus the mapping $x \to z - p_f(x)$ is a contraction, and therefore by the Banach contraction principle there exists $x_0 \in X$ such that $x_0 = z - p_f(x_0)$. We show that $x_0 \in V$. If not, then $p_f(x_0) = 0$, and consequently $x_0 = z$, a contradiction since by the assumptions $z \in V$.

Now we deal with injectivity of f. For $x, y \in V$ we have

$$\|f(x) - f(y)\| = \|(\text{id} + p_f)(x) - (\text{id} + p_f)(y)\| \geq \|x - y\| - \text{lip}(p_f)\|x - y\|$$

$$= (1 - k(f))\|x - y\|.$$

Since $k(f) < 1$ this yields that f is injective. It follows that $g := f^{-1}$ is well defined and that

$$\|g(x) - g(y)\| \leq \frac{1}{1 - k(f)}\|x - y\| \quad \text{for} \quad x, y \in V.$$

We estimate $k(f^{-1}) = k(g)$ from above. For $x, y \in V$ we obtain

$$\|p_g(x) - p_g(y)\| = \|p_f(g(x)) - p_f(g(y))\| \leq k(f)\|g(x) - g(y)\|$$

$$\leq \frac{k(f)}{1 - k(f)}\|x - y\|. \quad \Box$$

Remark 1. We would like to explain here the one of the reasons why we work with the constant k instead of only with Lipschitz constant. Looking at the proof of Theorem Zh one sees that it is essential to obtain that the function $Gf = a_0\text{id} + \sum_{i=1}^{n} a_i f^{-1}$ is invertible. In the paper [4] it was done with the use of Brouwer’s theorem—namely an injection f from ball into itself which is identity on the boundary of the ball is automatically a surjection. Since this result does not hold in infinite dimensional Banach spaces we needed
an analogous condition which would ensure the invertibility of \(f \). That is why we arrived at the constant \(k \) (if \(k(f) < 1 \) then \(f \) is invertible, see Proposition 2).

As a direct corollary of the Proposition 2(i) we get

Corollary 2. Let \(f \in \mathcal{K}(V) \). Then
\[
k(f^n) \leq (1 + k(f))^n - 1 \quad \text{for } n \in \mathbb{N}.
\]

Since \(\text{lip}(g) = \text{lip}(\text{id} + (g - \text{id})) \leq 1 + k(g) \) as a consequence of Proposition 2(iii) we obtain

Corollary 3. Let \(f \in \mathcal{K}(V) \) be such that \(k(f) < 1 \). Then \(f^{-1} \in \mathcal{K}(V) \) and
\[
\text{lip}(f^{-1}) \leq \frac{1}{1 - k(f)}.
\]

Now we are ready to present the proof of Theorem 1.

Proof of Theorem 1. By (5), \(k(Gf) < 1 \) for \(f \in \mathcal{K}_m(V) \). Then Proposition 2(iii) yields that the mapping
\[
\mathcal{P} : \mathcal{K}_m(V) \ni f \mapsto (Gf)^{-1} \circ Ff \in \mathcal{K}(V)
\]
is well defined. For \(f \in \mathcal{K}_m(V) \) by Proposition 1 and (4) we obtain
\[
k(\mathcal{P}f) = k((Gf)^{-1} \circ Ff) \leq \frac{1 + kF}{1 - kG} - 1 \leq m.
\]
This means that \(\mathcal{P}(\mathcal{K}_m(V)) \subset \mathcal{K}_m(V) \). We show that \(\mathcal{P} \) is a contraction. Let \(f, g \in \mathcal{K}_m(V) \) be arbitrarily chosen. Then by Proposition 1 and Corollary 3,
\[
\|\mathcal{P}f - \mathcal{P}g\|_{\sup} = \|(Gf)^{-1} \circ Ff - (Gg)^{-1} \circ Fg\|
\leq \frac{1}{1 - kG} \|(Ff - Fg)\|_{\sup} + \|(Gf)^{-1} - (Gg)^{-1}\|_{\sup}
\leq \frac{1}{1 - kG} (\text{lip}(F) + \text{lip}(G)) \cdot \|f - g\|_{\sup},
\]
which by (5) implies that \(\mathcal{P} \) is a contraction. Banach contraction principle makes the proof complete. \(\square \)

We present a direct corollary of Theorem 1 in the case when \(F \) is a constant map.

Corollary 4. Let \(m \in (0, 1) \) be given. Let \(F \in \mathcal{K}_m(V) \) and \(G : \mathcal{K}_m(V) \to \mathcal{K}(V) \) be fixed and let
\[
k_G := \sup\{k(Gf) : f \in \mathcal{K}_m(V)\}.
\]
We assume that
Then the equation
\[Gf \left(f(x) \right) = F(x) \quad \text{for } x \in V \]
has in \(K_m(V) \) a unique solution \(f \).

3. Polynomial-like iterative equation

We present application of the previous section for the polynomial iterative equation.

From now on we use the following convention: given a double sequence \(\{f_k\}_{k \in \mathbb{Z}} \) of functions, by \(\sum_{k \in \mathbb{Z}} f_k \) we understand a limit of the series in the topology of pointwise convergence.

By \(L(X) \) we denote the Banach space of bounded linear operators on \(X \) with the operator norm. We assume that we are given a sequence \(\{A_i\}_{i \in \mathbb{Z}} \subset L(X) \) such that
\[\sum_{i \in \mathbb{Z}} A_i = \text{id}. \]

For \(I \subset \mathbb{Z} \) we define the function \(W_I : [0, 1] \to [0, \infty) \) by the following formula:
\[W_I(r) := \sum_{i < 1, i \in I} \|A_i\| \cdot [(1 - r)^i - 1] + \sum_{i > 1, i \in I} \|A_i\| \cdot [(1 + r)^i - 1]. \]

Theorem 2. Let \(m \in (0, 1) \). Let \(V \) be a nonempty closed subset of a Banach space \(X \) and let \(F \in K(V) \). If
\[(1 + m)(1 - W_Z(m)) > 1 + k(F) \]
then the iterative equation
\[\sum_{i = -\infty}^{\infty} A_i f^i = F \]
has in \(K_m(V) \) a unique solution \(f \).

Proof. We apply Corollary 4. We put
\[Gf := \sum_{i = -\infty}^{\infty} A_i f^{i-1}. \]

We first show that for each \(f \in K_m(V) \) the function \(Gf \) is well defined.

Let \(I \) be a finite subset of \(\mathbb{Z} \) and let \(f, g \in K_m(V) \) be fixed. Then by Proposition 1, Corollaries 1 and 3, we have
\[
\sum_{i \in I} \|A_i(f^{i-1} - g^{i-1})\|_{\sup} \\
\leq \sum_{i < 1, i \in I} \|A_i\| \cdot \|f^{i-1} - g^{i-1}\|_{\sup} + \sum_{i > 1, i \in I} \|A_i\| \cdot \|f^{i-1} - g^{i-1}\|_{\sup} \\
\leq \sum_{i < 1, i \in I} \|A_i\| \cdot \frac{(1/(1-m))^{-(i-1)} - 1}{1/(1-m) - 1} \|f - g\|_{\sup} \\
+ \sum_{i > 1, i \in I} \|A_i\| \cdot \frac{(1 + m)^{i-1} - 1}{1 + m - 1} \|f - g\|_{\sup} \\
= \frac{W_I(m)}{m} \|f - g\|_{\sup}.
\]

Thus we get
\[
\sum_{i \in I} \|A_i(f^{i-1} - g^{i-1})\|_{\sup} \leq \frac{W_I(m)}{m} \cdot \|f - g\|_{\sup}. \tag{10}
\]

Let us fix \(f \in \mathcal{K}_m(V)\) and \(x \in V\). We show that the sum appearing in the definition of \(\mathcal{G}f(x)\) is convergent. By (10) applied to the pair \(f, \text{id}\) and the fact that \(W_I(m)\) is convergent we have
\[
\limsup_{k,n \to \infty} \sum_{k < |i| < n} \|A_i(f^{i-1}(x))\| \\
\leq \limsup_{k,n \to \infty} \sum_{k < |i| < n} \|A_i(f^{i-1}(x) - x)\| + \limsup_{k,n \to \infty} \sum_{k < |i| < n} \|A_i\| \cdot \|x\| \\
\leq \limsup_{k,n \to \infty} \frac{W_{i: k < |i| < n}(m)}{m} \|f - \text{id}\|_{\sup} + 0 = 0,
\]

which means that \(\mathcal{G}f\) is a well-defined function.

Now we show some properties of the mapping \(\mathcal{G}\). For \(f, g \in \mathcal{K}_m(V)\) by (10) we get
\[
\|\mathcal{G}f - \mathcal{G}g\|_{\sup} \leq \frac{W(m)}{m} \|f - g\|_{\sup} \quad \text{for } f, g \in \mathcal{K}_m(V). \tag{11}
\]

If \(g = \text{id}\) then \(\mathcal{G}g = \text{id}\) and therefore this proves that \(\|\mathcal{G}f - \text{id}\|_{\sup} < \infty\), and consequently that \(\mathcal{G}f \in \mathcal{K}(V)\).

Now we direct our attention to (7). By applying Proposition 2 and Corollary 2 we get for \(x, y \in V\),
\[
\|\mathcal{G}(f(x) - x) - \mathcal{G}(f(y) - y)\| \\
\leq \sum_{i < 1} \|A_i\| \|f^{i-1}(x) - f^{i-1}(y)\| \\
+ \sum_{i > 1} \|A_i\| \|f^{i-1}(x) - f^{i-1}(y)\| \\
\leq \sum_{i < 1} \|A_i\| k(f^{i-1})\|x - y\| + \sum_{i > 1} \|A_i\| k(f^{i-1})\|x - y\|
\[\leq \left(\sum_{i<1} \|A_i\| \left[\frac{1 + \frac{k(f)}{1 - k(f)}}{1} \right]^{-(i-1)} - 1 \right) \\
+ \sum_{i>1} \|A_i\| \left(1 + k(f) \right)^{i-1} \|x - y\| \\
= W(k(f)) \|x - y\| \leq W(m) \|x - y\| , \]

and therefore
\[k_G \leq W(m). \tag{12} \]

By (9) this yields that (7) holds.

We prove (8). By (9), (11) and (12) we have
\[\text{lip}(G) \leq \frac{W(m)}{m} \leq \frac{m - k(F)}{m(1 + m)} \leq \frac{m + mk(F)}{m(1 + m)} = \frac{1 + k(F)}{1 + m} \leq 1 - W(m) \leq 1 - K_G. \]

Corollary 4 makes the proof complete. \(\square \)

Example 1. To illustrate our results let us consider the quadratic iterative equation
\[A(f^2(x)) + B(f(x)) + C(x) = F(x) \quad \text{for} \quad x \in V, \tag{13} \]
where \(A, B, C \in \mathcal{L}(X) \), \(A + B + C = \text{id} \) and \(F \in K(V) \). We assume that
\[S := \|A\| + \|C\| < 1. \]

One can check that if \(k(F) \) is small enough, namely if
\[k(F) < \left(\sqrt{1 + S} - \sqrt{2S} \right)^2 \]
then Eq. (13) has in \(K_m(V) \) a unique solution, with \(m = 1 - \frac{\sqrt{2S}}{1 + S} \).

4. Linear iterative equation

Analogously to the previous section we assume that \(\{A_i\}_{i=0,\ldots,\infty} \subset \mathcal{L}(X) \) is a sequence such that
\[\sum_{i=0}^{\infty} A_i = \text{id}. \]

We assume that we are given \(\{\psi_i\}_{i=1,\ldots,\infty} \subset K(V) \) such that \(\psi_i(V) \subset V \). We have the following result.

Theorem 3. Let \(m \in (0, 1) \). Let \(V \) be a nonempty closed subset of a Banach space \(X \) and let \(F \in K(V) \). If
\[C := \frac{1 + m}{1 - m} \sum_{i=1}^{\infty} \|A_i\| \left(1 + k(\psi_i) \right) < \frac{1}{2}, \tag{14} \]
\[C \leq \frac{m - k(f)}{1 + m} + \sum_{i=1}^{\infty} \|A_i\| \tag{15} \]
and
\[\sum_{i=1}^{\infty} \|A_i\| \|\psi_i - \text{id}\|_{\sup} < \infty, \tag{16} \]
then the iterative equation
\[A_0 f(x) + \sum_{i=1}^{\infty} A_i f(\psi_i(x)) = F(x) \]
has in \(K_m(V) \) a unique solution \(f \).

Proof. First we show that for all \(f \in K_m(V) \) and all \(x \in V \)
series
\[\sum_{i=1}^{\infty} A_i \circ f \circ \psi_i \circ f^{-1}(x) \]
is convergent in the space \(X \).

For positive integer \(n \) by Propositions 1 and 2 we have
\[
\left\| \sum_{i>n} A_i f \psi_i f^{-1}(x) \right\|
\leq \left\| \sum_{i>n} A_i f \psi_i f^{-1}(x) - \sum_{i>n} A_i \text{id} \psi_i \text{id}^{-1}(x) \right\| + \left\| \sum_{i>n} A_i \psi_i (x) \right\|
\leq \sum_{i=1}^{\infty} \|A_i\| \left((1 + k(f)) \|f^{-1} - \text{id^{-1}}\|_{\sup} + \|f - \text{id}\|_{\sup} \right) + \sum_{i>n} A_i \psi_i (x)
\leq \sum_{i>n} \|A_i\| \cdot \left(\frac{1 + k(f)}{1 - k(f)} (1 + k(\psi_i)) + 1 \right) \|f - \text{id}\|_{\sup}
+ \left\| \sum_{i>n} A_i(x) \right\| + \sum_{i>n} \|A_i\| \|\psi_i - \text{id}\|_{\sup}
\leq \frac{1 + m}{1 - m} \sum_{i>n} \|A_i\| \left(\frac{1 + k(f)}{1 - k(f)} (1 + k(\psi_i)) + 1 \right) \|f - \text{id}\|_{\sup} + \frac{1 + m}{1 - m} \sum_{i>n} \|A_i\| \|f - \text{id}\|_{\sup}
+ \left\| \sum_{i>n} A_i(x) \right\| + \sum_{i>n} \|A_i\| \|\psi_i - \text{id}\|_{\sup} \to 0
\]
if \(n \to \infty \).

We define the mapping \(G : K_m(V) \to K(V) \) by
\[G f := A_0 + \sum_{i=1}^{\infty} A_i \circ f \circ \psi_i \circ f^{-1}. \]

We need the Lipschitz constant of \(G \). By Propositions 1 and 2 we have for \(f, g \in K_m(V) \),
\[
\|Gf(x) - Gg(x)\| \leq \sum_{i=1}^{\infty} \|A_i\| \cdot \|f(\psi_i(f^{-1}(x))) - g(\psi_i(g^{-1}(x)))\|
\]
\[
\leq \sum_{i=1}^{\infty} \|A_i\| (\text{lip}(f) \text{lip}(\psi_i) \|f^{-1} - g^{-1}\|_{\sup} + \|f - g\|_{\sup})
\]
\[
\leq \sum_{i=1}^{\infty} \|A_i\| \left(\frac{1 + k(f)}{1 - k(f)} (1 + k(\psi_i)) + 1 \right) \|f - g\|_{\sup}.
\]
This yields that
\[
\text{lip}(G) \leq \sum_{i=1}^{\infty} \|A_i\| - \left(\frac{1 + m}{1 - m} (1 + k(\psi_i)) + 1 \right). \tag{17}
\]

Now let \(f \in K_m(V)\). Then \(\|Gf - G(id)\|_{\sup} \leq \text{lip}(G) \|f - id\|_{\sup}\). Since clearly \(G(id) - id\) is bounded, we obtain that \(Gf - id\) is also bounded, and therefore \(Gf \in K(V)\).

Now we deal with \(k_G\). We have
\[
\|Gf(x) - x\| - (Gf(y) - y)\|
\]
\[
= \sum_{i=1}^{\infty} A_i \left[(f(\psi_i(f^{-1}(x))) - x) - (f(\psi_i(f^{-1}(y))) - y) \right]
\]
\[
\leq \sum_{i=1}^{\infty} \|A_i\| \cdot \|f(\psi_i(f^{-1}(x))) - x - f(\psi_i(f^{-1}(y))) + y)\|
\]
\[
\leq \|x - y\| \sum_{i=1}^{\infty} \|A_i\| \cdot \left[\frac{1 + k(f)}{1 - k(f)} (1 + k(\psi_i)) - 1 \right]
\]
\[
\leq \frac{1 + m}{1 - m} \|x - y\| \sum_{i=1}^{\infty} \|A_i\| \|1 + k(\psi_i)\| - \|x - y\| \sum_{i=1}^{\infty} \|A_i\|,
\]
which proves that
\[
k_G \leq \frac{1 + m}{1 - m} \sum_{i=1}^{\infty} (1 + k(\psi_i))\|A_i\| - \sum_{i=1}^{\infty} \|A_i\|. \tag{18}
\]

One can easily verify that (18) and (15) imply (7), (17) and (18) imply (8).

Corollary 4 completes the proof. \(\Box\)

Example 2. Let \(\{A_i\}_{i=0,\ldots,\infty} \subset L(X)\) be such that \(\sum_{i=0}^{\infty} A_i = id\) and let \(\{x_i\}_{i=1,\ldots,\infty} \subset X\) be arbitrary. We assume that
\[
s := \sum_{i=1}^{\infty} \|A_i\| < 0.5.
\]

We put \(m = (s + \sqrt{2s^2 + 2s})/(s + 2)\). If
\[
k(F) < \frac{1}{2} \left(\frac{m - s}{2m} \right) / \left(\frac{1 - m}{1 + m} \right),
\]
then one can check that the equation
\[A_0(x) + \sum_{i=1}^{\infty} A_i f(x + x_i) = F(x) \quad \text{for } x \in X \]
has in \(K_m(V) \) a unique solution \(f \).

References

[8] W. Zhang, Discussion on the iterated equation \(\sum_{i=1}^{n} \lambda_i f^i(x) = F(x) \), Chinese Sci. Bull. 32 (1987) 1444–1451.
[9] W. Zhang, Stability of the solution of the iterated equation \(\sum_{i=1}^{n} \lambda_i f^i(x) = F(x) \), Acta Math. Sci. 8 (1988) 421–442.
[10] W. Zhang, Discussion on the differentiable solutions of the iterated equation \(\sum_{i=1}^{n} \lambda_i f^i(x) = F(x) \), Nonlinear Anal. 15 (1990) 387–398.