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Abstract

A simple consequence of the angular momentum conservation in quantum field theories is that the interference ofs-channel
amplitudes exchanging particles with different spinJ vanishes after complete angular integration. We show that, while this
holds in scattering processes mediated by amassive graviton in quantum gravity, amassless gravitons-channel exchange break
orthogonality when considering its interference with a scalar-particles-channel exchange, whenever all the external state
massive. As a consequence, we find that, in the Einstein theory, unitarity implies that angular momentum is not con
quantum level in the graviton coupling to massive matter fields. This result can be interpreted as a new anomaly,
unknown aspects of the well-known van Dam–Veltman–Zakharov discontinuity.
 2003 Elsevier B.V.

1. Introduction

It is well known that, when considering a massive spin-2 gravitational field in quantum gravity, the lim
vanishing graviton mass is distinct from the prediction of the massless-graviton Einstein theory. In [1,
Dam, Veltman, and Zakharov (vDVZ) stressed this problem considering the leading tree-level approxim
the graviton exchange between matter sources, for a massive graviton coupled to matter ashµνTµν (with Tµν the
conserved energy–momentumtensor andhµν the graviton field). The vDVZ discontinuity is shown to arise from
fact that a massive spin-2 tensor field has five polarization degrees of freedom, while a massless spin-2 gra
simply two. In the massless limit, the massive graviton decomposes into three massless fields with spin-
and spin-0, respectively. The spin-1 vector field has a derivative coupling to the conserved energy–mo
tensor, and its contribution to the one graviton exchange amplitude vanishes. On the other hand, the spin
field is coupled to the trace of the energy–momentum tensor and contributes in general to the scattering a
This scalar component does not decouple even in the massless graviton limit. This gives rise to a discon
the predictions of the massive and massless theory in the lowest tree-level approximation. As a consequen
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Fig. 1. Scatteringp1p2 → p3p4 in thes-channel with a graviton exchange.

massive theory (even in the limit of small masses) the light bending by the Sun and the precession of the
perihelion differ by numerical factors from the predictions of the Einstein theory.

Many papers have elaborated on the possibility to fix this apparent inconsistency of the massive th
different directions [3–8]. For instance, in [3] it is claimed that, if the light bending by the sun is comput
solving the exact space–time metric equation in the presence of a small graviton mass, no discontinuity
the limit of small graviton mass. In fact, the discontinuity could be connected to the use of perturbation the
the metric fluctuations around the flat space–time. More recently, it has been shown that there is not an
discontinuity in the de Sitter space [5] (or in the anti-de Sitter space [6]), where the massless graviton
smooth (see also [7,8] for other solutions).

Here, we present a different class of problems connected to the vDVZ discontinuity. In particular, we
the fact that there are cases where, while the massive theory is well-behaved, a massless graviton giv
inconsistencies. In particular, we show that the massless graviton propagator in the Einstein theory break
momentum selection rules.

Let us consider the tree-level amplitude for the graviton exchange in thes-channel between two on-shell matt
fields (Fig. 1). The two on-shell matter fields enter into the amplitude through the conserved (at the zeroth
hµν ) symmetric energy–momentum tensorsTµν andT ′

αβ , respectively.1

For amassive spin-2 field of momentumk and massmG, one has five independent polarization tensorsεµν(k, σ ),
where the indexσ runs over the polarization states. Summing over all polarizations, one gets [1]

(1)
5∑
σ=1

εµν(k, σ )εαβ(k, σ )= Pmµναβ(k)

with

Pmµναβ(k)=
1

2
(ηµαηνβ + ηµβηνα − ηµνηαβ)− 1

2m2
G

(ηµαkµkβ + ηνβkµkα + ηµβkνkβ + ηναkµkβ)

(2)+ 1

6

(
ηµν + 2

m2
G

kµkν

)(
ηαβ + 2

m2
G

kαkβ

)
.

The projectorPmµναβ is symmetric and traceless in both(µ, ν) and(α,β) indices, and satisfies the transversa
conditionskµPmµναβ = kαPmµναβ = 0.

For a massless graviton, one has just two transverse polarization states(σ = 1,2), that correspond to the helicit
valuesλ= ±2. The sum over polarizations is then [1]

(3)
2∑
σ=1

εµν(k, σ ) εαβ(k, σ )= Pµναβ(k)= 1

2
(ηµαηνβ + ηµβηνα − ηµνηαβ)+ · · · ,

1 In this Letter, indices (µ,ν,α,β) are contracted according to the Minkowski metricηµν = Diag(1,−1,−1,−1).
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where dots stand for terms containing at least one graviton momentum.
In the unitary gauge, the corresponding massive and massless graviton propagators are proportion

projectorsPmµναβ andPµναβ , respectively [1]. However, terms proportional to the graviton momentum in Eqs
and (3) vanish when contracted withTµν in the on-shell matrix elements, due to the conservation of the ene
momentum tensor. For this reason, the tree-level diagram with one graviton exchange in Fig. 1 is gauge i
and the effective massive and massless graviton propagators become [1]

(4)Gmµναβ(k)= i
(1/2)ηµαηνβ + (1/2)ηµβηνα − (1/3)ηµνηαβ

k2 −m2
G + iε ,

(5)Gµναβ(k)= i (1/2)ηµαηνβ + (1/2)ηµβηνα − (1/2)ηµνηαβ
k2 + iε .

As shown in [1], unitarity fixes uniquely the coefficients of the Minkowski metric products in Eqs. (4) and (5
The corresponding on-shells-channel matrix elements will be then, up to some coupling constant,

(6)Am ∼ T µνGmµναβ(k)T ′αβ

and

(7)A∼ T µνGµναβ(k)T ′αβ.

In the limitmG → 0, Eqs. (6) and (7) only differ by the coefficients of theηµνηαβ term in Eqs. (4) and (5). Whe
contracted with the energy–momentum tensors, the latter give terms proportional to the tracesT

µ
µ andT ′α

α , that are
nonvanishing for massive external fields. From this difference, the vDVZ discontinuity arises [1].

Note that the terms in the amplitudes corresponding to theηµνηαβ terms in the graviton propagators can
interpreted as a scalar field exchange amplitude.2

Let us consider now the interference of thes-channel amplitudes exchanging particles of different spiJ
(Fig. 2).

(8)I(i, j)∼A�(J = i)×A(J = j)+ h.c. (j 
= i).
A simple consequence of angular momentum conservation is that, after complete angular integration on
state, this quantity must vanish, that is

(9)
∫
d cosθ dϕ I(i, j)= 0 (j 
= i),

whereθ is the scattering angle andϕ is the azimuthal angle in the center of mass frame. For instance,
straightforward to verify this in gauge theories, looking at the interference of a vector boson exchange
scalar (Higgs boson) particle exchange.

One then expects the same is true for the interference of theJ = 2 and J= 0 amplitudes. On the other hand, w
have seen above that (in the small-mG limit) the massive and massless graviton propagator effectively differ
a scalar field exchange, when the external fields are massive. This extra scalar field component, when in
with a spin-0 exchange amplitude, will give a nonvanishing contribution to

∫
d cosθ dϕ I(2,0). This implies that

the orthogonality condition in Eq. (9) for the interferenceI(2,0) can be verifiedeither for the massive graviton
exchangeor for the massless graviton exchange, butcannot hold in both cases at the same time.

We checked the above statement by an explicit calculation. The result is that the orthogonality cond
Eq. (9) holds for themassive graviton exchange, but not in the Einstein theory!

2 The different coefficients of theηµνηαβ term in the massive and massless graviton propagators is usually interpreted as an extr
field, corresponding to one of the five polarization states of a massive graviton contributing to the massive-graviton amplitude in
mG → 0, as discussed above.
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Fig. 2. Scatteringp1p2 → p3p4 in thes-channel with different spin-J particle exchange.

For a massless graviton and massive external states, one finds

(10)
∫
d cosθ dϕ I(2,0) 
= 0.

In the following, we illustrate this result, by giving the explicit expressions of the above discontinuity fo
scattering of different external states. We will also extend the discussion to the interferences of the gravito
with vector-boson exchange diagrams in thes-channel. As a theoretical framework, we assume the Standard M
minimally coupled to gravity (e.g., as in [9]).

2. The graviton-scalar interference

In the following, we will discuss the interference of the on-shell tree-level scattering amplitudes in thes-channel
mediated by a graviton (J = 2) with either a scalar particle exchange (J = 0) or a vector particle exchange (J = 1),
as in Fig. 2. We consider initial and final states containing either massive fermions or massive vector bos
eachs scattering channel,

(11)a + ā→ b+ b̄,
it is convenient to introduce the dimensionless quantitiesIma,b(2, j) andIa,b(2, j) connected to the interferenc
of the massive and massless graviton amplitudes,Ama,b(J = 2) andAa,b(J = 2), respectively, and the amplitud
mediated by a particle of spinj , Aa,b(J = j), with j = 0,1.

The crucial point is that the two amplitudesAma,b(J = 2) andAa,b(J = 2) depend on the two different (massi
or massless) graviton propagators in Eqs. (4) and (5), respectively.

By settingrj =m2
j /s (with mj =m0 (m1) for the exchange of a scalar (vector) particle of massm0 (m1)) and

rG =m2
G/s, with

√
s the c.m. scattering energy, we define

(12)Ima,b(2, j)≡
M2
P

s
(1− rj )(1− rG)

∑
pol

A�a,b(J = j)×Ama,b(J = 2)+ h.c.,

(13)Ia,b(2, j)≡ M
2
P

s
(1− rj )

∑
pol

A�a,b(J = j)×Aa,b(J = 2)+ h.c.,

whereMP is the reduced Planck mass (see Appendix A), and a sum over all the external particles pola
states is performed.

Note that, by definition, the quantitiesIma,b(2, j) and Ia,b(2, j) depend neither on the masses of partic
exchanged in the propagators nor on the Planck mass.
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Since we are interested into the discontinuity in the massive and massless graviton interferences, it is
define also the quantity∆a,b(2, j),

(14)∆a,b(2, j)≡ Ia,b(2, j)− Ima,b(2, j),

that gives theexcess in the Einstein interferenceIa,b(2, j) with respect to the massive graviton interferen
Ima,b(2, j) (whenj = 0,∆a,b(2, j) will be directly connected to the vDVZ discontinuity).

Following the discussion in the previous section, we now concentrate on the graviton interference with
particle, and express all our results in terms of the massive graviton interferenceIma,b(2,0) and the discontinuity
∆a,b(2,0). In theJ = 0 propagator, we assume as a scalar particle a Higgs boson, coupled as in the standa
(see Appendix A). The following external states are considered:3

(a) the scattering of two electrons into a pair of fermionsf , with f 
= e;
(b) the scattering of two electrons into a pair of gauge vector bosonsW ;
(c) the scattering of twoW ’s into a pair of gauge vector bosonsW ′, withW ′ 
=W .

In the following,ri =m2
i /s, βi =

√
1− 4ri (i = e, f,W,W ′), andλe (λf ) is thee (f ) Yukawa coupling. The

angleθ is the scattering angle of a final particle with given electric charge with respect to the initial parti
same charge, in the c.m. system.

Following the Feynman rules in Appendix A, one then gets4

• e+e− → f f̄

(15)Ime,f (2,0)= −8

3
λeλf β

2
e β

2
f

√
rerf

(
1− 3 cos2 θ

)

and

(16)∆e,f (2,0)= −4

3
λeλf β

2
e β

2
f

√
rerf ,

• e+e− →W+W−

(17)Ime,W (2,0)= −1

3
λegW

√
re

rW
β2
e β

2
W(1+ 6rW )

(
1− 3 cos2 θ

)

and

(18)∆e,W (2,0)= 1

12
λegW

√
re

rW
β2
e

(
3+ β2

W(1− 12rW)
)
,

• W+W− →W ′+W ′−

(19)ImW,W ′ (2,0)= − 1

24

gWgW ′√
rW rW ′

β2
Wβ

2
W ′(1+ 6rW )(1+ 6rW ′)

(
1− 3 cos2 θ

)

and

(20)∆W,W ′(2,0)= − 1

12

gWgW ′√
rW rW ′

β2
Wβ

2
W ′

(
β2
W + 12r2W

)(
β2
W ′ + 12r2W ′

)
.

3 We consider only processes that do not receive contributions fromt (u) channel exchanges.
4 Results in Eqs. (15) and (17) were first obtained in [10], although in a different context.
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Then, in each of the above channels, we have for the graviton-scalar interference in the Einstein theory

(21)Ia,b(2,0)= Ima,b(2,0)+∆a,b(2,0),
with a θ independent discontinuity∆a,b(2,0).

The angular integration
∫
d cosθ of all the massive graviton interferences,Ima,b(2,0), has a vanishing result

(respecting angular momentum selection rules). On the other hand, the angular integration of themassless graviton
interference always gives rise to a nonnull results (for massive external states), that is

(22)

1∫
−1

d cosθ Ia,b(2,0)=
1∫

−1

d cosθ ∆a,b(2,0)= 2∆a,b(2,0) 
= 0,

that is connected to the vDVZ discontinuity.
Note that the results above do not depend on the gauge choice. For instance, in a covariant gauge,

dependence affects the graviton propagators only through momentum dependent terms, that vanish after c
with the energy–momentum tensors.

In Eqs. (15)–(18), the interferences are all vanishing in the massless fermion limit (re,f → 0), due to fermion
chirality. TheJ = 2 amplitude conserves the chirality, while the opposite is true for theJ = 0 scalar channe
Then, in order to get a nonvanishing result for the interference, a chirality flip is needed in the initial/final fe
states, giving rise to the fermion mass factor. In Eqs. (17)–(20), the singularity in the external gauge-bos

(1/
√
rW and 1/

√
r ′W terms) arises from the sum over the gauge bosons polarizations, since longitudinal mo

not decouple in the massless gauge-boson limit.5

From the results above, assuming angular momentum conservation at each interaction vertex, o
conclude that the Einstein graviton propagator behaves as if it was propagating a further scalar degree of
that is coupled to the masses of external states. However, this would be in contrast with unitarity a
conservation of the energy momentum tensor. Indeed, only the spin-2 transverse polarizationsεµν(k, σ ) with
helicities λ = ±2 are effectively exchanged in the massless graviton propagator (see [1] for details). T
the Einstein theory, unitarity implies that angular momentum is not conserved at quantum level in the g
coupling to massive matter fields, even if the total angular momentum is conserved in the scattering proce

We checked the results relative to the fermion–fermion scattering by computing the expansion in te
spherical harmonics (i.e., the angular momentum eigenstates,Yml (θ,ϕ), defined in the Appendix A) of th
scattering amplitudes, for the four-fermion processes

(23)e+(p1, ν1)+ e−(p2, ν2)→ (J = 0,1,2)→ f̄ (p3, ν3)+ f (p4, ν4)

where a virtual particle of spinJ = 0,1,2 is exchanged in thes-channel, andpi andνi (i = 1,2,3,4) stands for
the external particles momenta and helicities, respectively. We will work in the c.m. frame, where the mompi
can be cast in the following form

p1 =
√
s

2
(1,0,0, βe), p2 =

√
s

2
(1,0,0,−βe),

p3 =
√
s

2
(1, βf sinθ cosϕ,βf sinθ sinϕ,βf cosθ),

(24)p4 =
√
s

2
(1,−βf sinθ cosϕ,−βf sinθ sinϕ,−βf cosθ),

5 Note that thes-channel diagram mediated by a scalar particle with external gauge bosons does not exist in the gauge symmetric
only after spontaneous symmetry breaking.
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with ϕ being the azimuthal angle.
In order to express theJ = 0,1,2 helicity amplitudes as a linear combination of the spherical harmo

Yml (θ,ϕ), it is convenient to use the solution of the Dirac equation for the particle (U ) and antiparticle (V ) bispinors
in the momentum space [11]

(25)U(p, ν)=
( √

ε +mων(n)√
ε −m(σ · n)ων(n)

)
, V (p,−ν)=

(√
ε −m(σ · n)ων(n)√
ε +mων(n)

)
,

where the 2-component spinorsων(n) (with ν = ±1) are the eigenstates of the helicity opera
(σ · n)ων(n) = νων(n), and σi are the Pauli matrices. Here,n = p/|p|, wherep is the 3-momentump =
|p|(sinθ cosϕ,sinθ sinϕ,cosθ), andε is the corresponding energy. In polar coordinates,ων(n) can be expresse
as

(26)ω+1(n)=
(
e−i

ϕ
2 cosθ2

ei
ϕ
2 sin θ2

)
, ω−1(n)=

(−e−i ϕ2 sin θ2
ei
ϕ
2 cosθ2

)
.

After some straightforward algebra, theA(J = 0,1,2) helicity amplitudes for the channels in Eq. (23) can be c
in the following form, as a function of the initial and final helicities (νi = ±1),6

(27)A(J = 0)=R0
{
δν1,ν2δν3,ν4ν1ν3 Y0

0

}
,

(28)

A(J = 1)=R1
{
δν1,−ν2δν3,−ν4

(
Y0

1 + √
3ν1ν3Y0

0

) − δν1,−ν2δν3,ν4
(
2
√

2rf ν1ν3Yν11

)
− δν1,ν2δν3,−ν4

(
2
√

2reY−ν1
1

) + δν1,ν2δν3,ν4
(
4ν1ν3

√
rerf Y0

1

)}
,

(29)

Aξ (J = 2)=R2
{
δν1,−ν2δν3,−ν4

(
4Y0

2 + √
5
(
Y0

0 − √
3ν1ν3Y0

1

)) + δν1,−ν2δν3,ν4
(
4
√

6rf ν1ν3Yν12

)
+ δν1,ν2δν3,−ν4

(
4
√

6reY−ν1
2

) + δν1,ν2δν3,ν4
(
8
√
rerf ν1ν3

(
2Y0

2 − √
5(1− 3ξ)Y0

0

))}
,

whereδνi,νj = 1 if νi = νj and zero otherwise,

R0 = √
4π
λeλf

1− r0βeβf , R1 =
√
π

12

geV g
f
V

1− r1 , R2 = − 1

12

√
π

5

(
s

M2
P

)
βeβf

1− rG .

In the Aξ (J = 2) graviton amplitude, the quantityξ parametrizes the vDVZ discontinuity, withξ = 1/3 and
ξ = 1/2 for the massive and massless graviton propagator, respectively. The functionsYml (θ,ϕ) (note that the
relevant ones are reported in Appendix A) satisfy the following normalization condition

(30)

1∫
−1

d cosθ

2π∫
0

dϕ
(
Yml (θ,ϕ)

)�Ym′
l′ (θ,ϕ)= δl,l′δm,m′ .

When considering the interference ofAξ (J = 2) with the scalar exchange amplitudeA(J = 0), only the last
component inY0

0(θ,ϕ) of the graviton amplitude (that is proportional to(1−3ξ)) survives after angular integratio
for equal initial and equal final helicities. Then, the coefficient of this residual component vanishes only in t
of a massive graviton propagator, for whichξ = 1/3. In the Einstein theory (ξ = 1/2), the coefficient does no
vanish, and it is responsible for the nonorthogonality of the graviton and scalar amplitudes.

By summing the graviton-scalar interference obtained starting from the amplitudes in Eqs. (27) and (2
the external particles helicities, one easily recovers the results in Eqs. (15) and (16) obtained by summ
interference over the external polarizations.

On the basis of Eqs. (28) and (29), it is now straightforward to verify that there are not problems with a
momentum selection rules, as far as the interference of the graviton amplitudes and the vector-bosonJ = 1)

6 We do not include the axial coupling in theA(J = 1) amplitude, since the latter does not affect the discontinuity.
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exchange amplitudes are concerned. For the sake of completeness, we present in Appendix B the corre
results forIma,b(2,1) and∆a,b(2,1), for all the external fermion and vector-boson states considered for the gra
scalar interferences.

3. Conclusions

Selection rules for angular momentum conservation have been considered in the framework of quantum
As required by angular momentum conservation, the interferences ofs-channel amplitudes mediated by partic
with different spinsJ = 0,1,2 must vanish after complete angular integration on the final state. We find that,
case of a propagatingmassive graviton, these selection rules are satisfied for any graviton mass. On the co
as a consequence of the vDVZ discontinuity (for which the massless limit of massive gravity is different fr
Einstein theory), the interferences ofJ = 0 andJ = 2 amplitudes do not vanish in themassless gravity, whenever
all the external states are massive. We checked this property in thes-channelp1p2 → p3p4 scatterings, where
initial and final states are either fermions or gauge bosons. We conclude that angular momentum selectio
the quantum gravity of the Einstein theory are broken.

This result could be interpreted in the following way. Assuming angular momentum conservation a
interaction vertex, a massless graviton propagator behaves as if it was carrying a further scalar degree o
coupled to the masses of matter fields with gravitational strength. This extra scalar field would not deco
physical processes, leading to the breaking of angular momentum selection rules.

The latter interpretation would anyhow be in contrast with unitarity and the energy–momentum
conservation, since, in the processes considered, only the spin-2 transverse polarizations (with helicitiesλ = ±2)
are exchanged in the massless graviton propagator.

Then, we conclude that, in the Einstein theory, angular momentum is not conserved at quantum lev
graviton coupling to massive matter fields, even if the total angular momentum is conserved in the sc
process. This effect could be interpreted as a new kind of quantum anomaly. In this regard, themassive quantum
gravity, or even its massless limit, is a better-behaved theory, beinganomaly free.

The present results could be due to the use of perturbation theory around the flat metric. Then, the
of angular momentum selection rules could simply suggest that the standard approach to perturbation
quantum gravity is not completely consistent.

On the other hand, assuming that quantum gravity based on the Einstein theory correctly descr
gravitational interactions, the present breaking of angular momentum selection rules seems to be conn
a new quantum effect that should show up in some physical process. In particular, it couldin principle be measured
by some experiment (although unrealistically at the moment), if the Higgs boson will be discovered.
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Appendix A

Feynman rules

The Feynman rules used in this Letter are the following [9]
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r

l

in
do not
H − f̄ − f = −i λf ,
H −W+

α −W−
β = igWmWgαβ,

Vµ − f̄ − f = i
2

(
g
f

V γµ − gfA γµγ5
)
,

Vµ(q)−W+
α (p

+)−W−
β (p

−)= igW
{
gµα(qβ − p+

β )+ gµβ(p−
α − qα)+ gαβ(p+

µ − p−
µ )

}
,

Gµν − f̄ (k2)− f (k1)= − i

4MP

{
W(f )µν (k1, k2)+W(f )νµ (k1, k2)

}
,

Gµν −W+
α (k1)−W−

β (k2)= − i

MP

{
W
(W)
µναβ(k1, k2)+W(W)νµαβ(k1, k2)

}
,

where

W(f )µν (k1, k2)= γµ(k1ν + k2ν)− ηµν(/k1 + /k2 − 2mf ),

W
(W)
µναβ(k1, k2)=

1

2
ηµν(k2αk1β − ηαβ k1 · k2)+ ηαβk1µk2ν − ηµβk1νk2α + ηµα(ηνβ k1 · k2 − k2νk1β)

+m2
W

(
ηµαηνβ − 1

2
ηµνηαβ

)
.

Above, /p = γ αpα , MP is the reduced Planck mass, defined asM2
P = (8πGN)−1 (whereGN is the Newton

constant), andmf , mW are the fermion, vector-boson masses, respectively.Vµ, H , andGµν are a neutral vecto
gauge boson, Higgs boson and graviton fields, respectively. The momenta in theG–W–W Feynman rule are
entering into the vertex, while inG–f̄ (k2)–f (k1), f (k1)/f̄ (k2) stands for an incoming/outgoing fermionf of
momentak1/k2, respectively.

The corresponding vertices for theW ′ vector boson, are obtained just changinggW → gW ′ andmW →mW ′ .

Spherical harmonics

The spherical harmonicsYml (θ,ϕ) are eigenstates of the angular momentum operatorL̂2 and its projection

on thez axis L̂z, satisfyingL̂2Yml = l(l + 1)Yml and L̂zYml = mYml . Below, we report explicitly the spherica
harmonics entering into Eqs. (27)–(29)

Y0
0(θ,ϕ)=

1√
4π
, Y0

1(θ,ϕ)=
√

3

4π
cosθ, Y±1

1 (θ,ϕ)= ±
√

3

8π
sinθ e±iϕ,

Y0
2(θ,ϕ)=

√
5

16π

(
1− 3 cos2 θ

)
, Y±1

2 (θ,ϕ)= ±
√

15

8π
cosθ sinθ e±iϕ.

Appendix B

In this appendix, we consider the interferences of theJ = 2 andJ = 1 amplitudes, assuming the definitions
Eqs. (12)–(14). Terms arising from the axial-vector coupling of fermions are included, too, although they
give rise to any discontinuity.

• e+e− → f f̄

(B.1)

Ime,f (2,1)= 2geV g
f
V

{
βeβf

(
rf + re

(
1− 4

3
rf

))
cosθ + 1

4
β3
e β

3
f cos3 θ

}
− g

e
Ag
f
A

4
β2
e β

2
f

(
1− 3 cos2 θ

)
,
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assless

ess

ed in a

e

n

and

(B.2)∆e,f (2,1)= −4

3
geV g

f
V βeβf rerf cosθ.

In this case, the discontinuity vanishes after total angular integration, and is proportional torerf ∼m2
em

2
f , since it

is connected to the traces of the energy–momentum tensors of the initial and final states. In the limit of m
fermions, the interference does not vanish. Indeed, contrary to the(J = 0)-channel, the(J = 1)-channel has the
same chirality structure as the(J = 2)-channel, and the(J = 1)–(J = 2) interference survives also in the massl
fermion limit.

The orthogonality in Eq. (B.1) was first noticed in [12], although the corresponding results were obtain
different context and in the massless fermion limit.

• e+e− →W+W−

(B.3)

Ime,W (2,1)= −gWg
e
V

rW

{
βeβW

(
1

4
− 1

3
re + 3

2
rW + 14rerW + 6r2W − 8rer

2
W

)
cosθ

+ β3
e β

3
W

(
−1

4
+ 3

2
rW

)
cos3 θ

}

and

(B.4)∆e,W (2,1)= −gWg
e
V

3rW
βeβWre

(
1− 12r2W

)
cosθ.

In this case the contribution of the fermion axial coupling exactly vanishes. There/rW dependence in th
discontinuity arises from terms proportional to 1/m4

W in the sum over polarizations of the two finalW ’s, combined
with the termsrerW emerging from the vDVZ discontinuity.

• W+W− →W ′+W ′−

(B.5)

ImW,W ′ (2,1)= −gWgW ′

rW rW ′
βWβW ′

{(
− 1

48
+ 7

4
rW − r2W + 45

4
rW rW ′ + 42r2WrW ′ − 12r2Wr

2
W ′

)
cosθ

+ β2
Wβ

2
W ′

(
1

16
+ 9

4
rW rW ′ − 3

4
rW

)
cos3 θ

}
+ (rW ↔ rW ′)

and

(B.6)∆W,W ′(2,1)= gWgW ′

12rW rW ′
βWβW ′

(
1− 12r2W

)(
1− 12r2W ′

)
cosθ.

In the above equations,geV andgeA are the vectorial and axial coupling of fermions to the neutral gauge bosoV ,
andgW andgW ′ are the couplings of the gauge bosonsW± andW ′± to V , respectively (cf. Appendix A).
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