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Abstract

A simple consequence of the angular momentum conservation in quantum field theories is that the interferehaard!
amplitudes exchanging particles with different spimanishes after complete angular integration. We show that, while this rule
holds in scattering processes mediated byassive graviton in quantum gravity, massless gravitons-channel exchange breaks
orthogonality when considering its interference with a scalar-pasticleannel exchange, whenever all the external states are
massive. As a consequence, we find that, in the Einstein theory, unitarity implies that angular momentum is not conserved at
guantum level in the graviton coupling to massive matter fields. This result can be interpreted as a new anomaly, revealing
unknown aspects of the well-known van Dam-\Veltman—Zakharov discontinuity.

0 2003 Elsevier B.VOpen access under CC BY license,

1. Introduction

It is well known that, when considering a massive spin-2 gravitational field in quantum gravity, the limit of
vanishing graviton mass is distinct from the prediction of the massless-graviton Einstein theory. In [1,2], van
Dam, Veltman, and Zakharov (vDVZ) stressed this problem considering the leading tree-level approximation to
the graviton exchange between matter sources, for a massive graviton coupled to migttdh, agwith 7, the
conserved energy—momentum tensor atitdthe graviton field). The vDVZ discontinuity is shown to arise from the
fact that a massive spin-2 tensor field has five polarization degrees of freedom, while a massless spin-2 graviton has
simply two. In the massless limit, the massive graviton decomposes into three massless fields with spin-2, spin-1
and spin-0, respectively. The spin-1 vector field has a derivative coupling to the conserved energy—momentum
tensor, and its contribution to the one graviton exchange amplitude vanishes. On the other hand, the spin-0 scalar
field is coupled to the trace of the energy—momentum tensor and contributes in general to the scattering amplitude.
This scalar component does not decouple even in the massless graviton limit. This gives rise to a discontinuity in
the predictions of the massive and massless theory in the lowest tree-level approximation. As a consequence, in the
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Fig. 1. Scatteringp1 p2 — p3pa in the s-channel with a graviton exchange.

massive theory (even in the limit of small masses) the light bending by the Sun and the precession of the Mercury
perihelion differ by numerical factors from the predictions of the Einstein theory.

Many papers have elaborated on the possibility to fix this apparent inconsistency of the massive theory, in
different directions [3—8]. For instance, in [3] it is claimed that, if the light bending by the sun is computed by
solving the exact space—time metric equation in the presence of a small graviton mass, no discontinuity arises in
the limit of small graviton mass. In fact, the discontinuity could be connected to the use of perturbation theory for
the metric fluctuations around the flat space—time. More recently, it has been shown that there is not any vDVZ
discontinuity in the de Sitter space [5] (or in the anti-de Sitter space [6]), where the massless graviton limit is
smooth (see also [7,8] for other solutions).

Here, we present a different class of problems connected to the vDVZ discontinuity. In particular, we stress
the fact that there are cases where, while the massive theory is well-behaved, a massless graviton gives rise to
inconsistencies. In particular, we show that the massless graviton propagator in the Einstein theory breaks angular
momentum selection rules.

Let us consider the tree-level amplitude for the graviton exchange ift¢thannel between two on-shell matter
fields (Fig. 1). The two on-shell matter fields enter into the amplitude through the conserved (at the zeroth order in
h,) symmetric energy—momentum tensa@fs andTojﬁ, respectively:

For amassive spin-2 field of momenturkh and mass#: ¢, one has five independent polarization tenggrsk, o),
where the index runs over the polarization states. Summing over all polarizations, one gets [1]

5
D vk, 0)eap (ko) = Pyl (k) @

o=1

with

1 1
Plinvaﬁ(k) = E(nuoﬂ?vﬁ + NupNve — nuunaﬂ) - m(nuakukﬂ + nuﬁkuktx + nuﬂkvkﬂ + nvakukﬁ)

G
1 2 2
+ = Nuv + _ka,ku Nap + —Zkakﬂ . (2)
6 mG mG
The projector. /Tvotﬂ is symmetric and traceless in bath, v) and (e, 8) indices, and satisfies the transversality
conditionsk* P;fmﬂ =k* P;fmﬂ =0.

For a massless graviton, one has just two transverse polarization(statek 2), that correspond to the helicity
valuesh = +2. The sum over polarizations is then [1]

2
1
Zeuu(k» U)Eaﬁ(k» 0)= P;wozﬂ(k) = E(nuoﬂ?vﬂ + NupMva — nuvnaﬂ) +--, (3)

o=1

1 |n this Letter, indices, v, «, B) are contracted according to the Minkowski meifjg, = Diag(1, -1, -1, -1).
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where dots stand for terms containing at least one graviton momentum.

In the unitary gauge, the corresponding massive and massless graviton propagators are proportional to the
projectorsP’"Wﬂ and P, respectively [1]. However, terms proportional to the graviton momentum in Egs. (2)
and (3) vanish when contracted with, in the on-shell matrix elements, due to the conservation of the energy-
momentum tensor. For this reason, the tree-level diagram with one graviton exchange in Fig. 1 is gauge invariant,
and the effective massive and massless graviton propagators become [1]

. (1/2)7]/w77vﬂ + (1/2)77/Lﬂ77va - (1/3)77/w77aﬂ

m _
G/waﬁ (k) =i . sz e (4)
1/2 1/2 —(1/2
G vap (k) = i( /2)Nuamnvg + ( /kz)’?—i_uiﬂ:ua 1/ )mwnaﬁ. -

As shown in [1], unitarity fixes uniquely the coefficients of the Minkowski metric products in Eqgs. (4) and (5).
The corresponding on-shellchannel matrix elements will be then, up to some coupling constant,

A" ~ TIWG’;ZW;B (k)T/aﬂ (6)
and
A~TH G s ()T (7)

In the limitmg — 0, Egs. (6) and (7) only differ by the coefficients of thg n.s term in Egs. (4) and (5). When
contracted with the energy—-momentum tensors, the latter give terms proportional to thaffaeet?,,, that are
nonvanishing for massive external fields. From this difference, the vDVZ discontinuity arises [1].

Note that the terms in the amplitudes corresponding tonthey.s terms in the graviton propagators can be
interpreted as a scalar field exchange amplitide.

Let us consider now the interference of thehannel amplitudes exchanging particles of different spin

(Fig. 2).
TG, )~ A*(J =i) x A(J = j) +h.c. (j#i). 8)

A simple consequence of angular momentum conservation is that, after complete angular integration on the final
state, this quantity must vanish, that is

/dcos@ngI(i, D=0 (G #i), ©)

whered is the scattering angle ang is the azimuthal angle in the center of mass frame. For instance, it is
straightforward to verify this in gauge theories, looking at the interference of a vector boson exchange with a
scalar (Higgs boson) particle exchange.

One then expects the same is true for the interference of ta@ and J= 0 amplitudes. On the other hand, we
have seen above that (in the smalf; limit) the massive and massless graviton propagator effectively differs by
a scalar field exchange, when the external fields are massive. This extra scalar field component, when interfering
with a spin-0 exchange amplitude, will give a nonvanishing contributiofid@ost d¢ Z(2, 0). This implies that
the orthogonality condition in Eq. (9) for the interfererit@, 0) can be verifiectither for the massive graviton
exchanger for the massless graviton exchange, ¢annot hold in both cases at the same time.

We checked the above statement by an explicit calculation. The result is that the orthogonality condition in
Eq. (9) holds for thenassive graviton exchange, but not in the Einstein theory!

2 The different coefficients of the,vneps term in the massive and massless graviton propagators is usually interpreted as an extra spin-0
field, corresponding to one of the five polarization states of a massive graviton contributing to the massive-graviton amplitude in the limit
mg — 0, as discussed above.
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Fig. 2. Scatteringp1 p2 — p3pa in thes-channel with different spin- particle exchange.

For a massless graviton and massive external states, one finds

/ dcostdeZ(2,0) 0. (10)

In the following, we illustrate this result, by giving the explicit expressions of the above discontinuity for the
scattering of different external states. We will also extend the discussion to the interferences of the graviton graphs
with vector-boson exchange diagrams in gh&hannel. As a theoretical framework, we assume the Standard Model
minimally coupled to gravity (e.g., asin [9]).

2. Thegraviton-scalar interference

In the following, we will discuss the interference of the on-shell tree-level scattering amplitudesictiaanel
mediated by a graviton/(= 2) with either a scalar particle exchange=£ 0) or a vector particle exchangé & 1),
as in Fig. 2. We consider initial and final states containing either massive fermions or massive vector bosons. For
eachs scattering channel,

a+a—b+b, (11)

it is convenient to introduce the dimensionless quantil'gé§(2 J) andZ, (2, j) connected to the interferences
of the massive and massless graviton amplltudkgg,(J 2) and A, »(J = 2), respectively, and the amplitude
mediated by a particle of spify A, »(J = j), with j =0, 1.

The crucial pointis that the two amplituds@"bu = 2) andA, »(J = 2) depend on the two different (massive
or massless) graviton propagators in Egs. (4) and (5), respectively.

By settingr; = m?/s (with m ; = mg (m1) for the exchange of a scalar (vector) particle of maggm1)) and

rg = mé/s, with /s the c.m. scattering energy, we define

"2, J)——(1—r,)(1—rG)ZA;,,(J—])xA ,(J =2)+hec, (12)
pol
Tap(2, j) = —(1—r,>ZA;b<J—J> x Aap(J =2)+hc, (13)
pol

where Mp is the reduced Planck mass (see Appendix A), and a sum over all the external particles polarization
states is performed.

Note that, by definition, the quantltlég”b(z j) andZ, ,(2, j) depend neither on the masses of particles
exchanged in the propagators nor on the Planck mass.
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Since we are interested into the discontinuity in the massive and massless graviton interferences, it is useful to
define also the quantit, ,(2, j),

Aa,b(Z, ])EZa,b(Z, ])_Zzb(z’ .])7 (14)

that gives theexcess in the Einstein interferenc&, ,(2, j) with respect to the massive graviton interference
7,2, j) (whenj =0, Aq,5(2, j) will be directly connected to the vDVZ discontinuity).
Following the discussion in the previous section, we now concentrate on the graviton interference with a scalar
partlcle and express all our results in terms of the massive graviton interfefgpc2 0) and the discontinuity
Aqp(2,0). IntheJ = 0 propagator, we assume as a scalar particle a Higgs boson, coupled as in the standard model
(see Appendix A). The following external states are considéred:

(a) the scattering of two electrons into a pair of fermighwith f #e;
(b) the scattering of two electrons into a pair of gauge vector boBgns
(c) the scattering of twdV’s into a pair of gauge vector bosoi&, with W’ = W.

In the following,r; = miz/s, Bi=~1—4r (i=e, f, W, W), andx. (Ay) is thee (f) Yukawa coupling. The
angled is the scattering angle of a final particle with given electric charge with respect to the initial particle of
same charge, in the c.m. system.

Following the Feynman rules in Appendix A, one then §ets

ecte = ff

70 (2,0)= —gxex FBZBF /Fer7 (1—3c0$0) (15)
and
Aef(2,0)=— x ohf B2BE Jrery, (16)
o ctem > WHwW-
Iy (2,00 = —%Aegw\/%ﬂfﬂﬁ,(l +6rw)(1—3cogh) (17)
and
8w (@.0)= heew |2 523+ 40~ 1200). (18)
o« WHW™ - WTW~
0 (2,0 = 214%%/%,(“ 6rw) (1 + 6ry) (1 — 3c0€0) (19)
and
Aww@0=— TR B (B + 1275) (B + 127, (20)

3 We consider only processes that do not receive contributions fr@nchannel exchanges.
4 Results in Egs. (15) and (17) were first obtained in [10], although in a different context.
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Then, in each of the above channels, we have for the graviton-scalar interference in the Einstein theory

Za,b(zv O) Zmb(z 0) + Aa b(z O) (21)

with a6 independent discontinuityA, (2, 0).

The angular integratiorf ¢ cos9 of all the massive graviton interferences];’, (2, 0), has a vanishing results
(respecting angular momentum selection rules). On the other hand, the angular integrationassidss graviton
interference always gives rise to a nonnull results (for massive external states), that is

1 1
/dcos@ Tap(2,0) = /dcose Aa.p(2,0)=2A,(2,0) #0, (22)
-1 -1

that is connected to the vDVZ discontinuity.

Note that the results above do not depend on the gauge choice. For instance, in a covariant gauge, the gauge
dependence affects the graviton propagators only through momentum dependentterms, that vanish after contractior
with the energy—momentum tensors.

In Egs. (15)—(18), the interferences are all vanishing in the massless fermiorvlirpit£ 0), due to fermion
chirality. The J = 2 amplitude conserves the chirality, while the opposite is true for/the0 scalar channel.

Then, in order to get a nonvanishing result for the interference, a chirality flip is needed in the initial/final fermion
states, giving rise to the fermion mass factor. In Egs. (17)—(20), the singularity in the external gauge-boson mass

(1//rw and Y, /ry, terms) arises from the sum over the gauge bosons polarizations, since longitudinal modes do

not decouple in the massless gauge-boson fimit.

From the results above, assuming angular momentum conservation at each interaction vertex, one could
conclude that the Einstein graviton propagator behaves as if it was propagating a further scalar degree of freedom
that is coupled to the masses of external states. However, this would be in contrast with unitarity and the
conservation of the energy momentum tensor. Indeed, only the spin-2 transverse polarizatiéns) with
helicities A = £2 are effectively exchanged in the massless graviton propagator (see [1] for details). Then, in
the Einstein theory, unitarity implies that angular momentum is not conserved at quantum level in the graviton
coupling to massive matter fields, even if the total angular momentum is conserved in the scattering process.

We checked the results relative to the fermion—fermion scattering by computing the expansion in terms of
spherical harmonics (i.e., the angular momentum eigenstatéd, ¢), defined in the Appendix A) of the
scattering amplitudes, for the four-fermion processes

e (pr.v) + e (p2,v2) = (J =0,1,2) = f(p3, v3) + f(pa, va) (23)

where a virtual particle of spid =0, 1, 2 is exchanged in the-channel, ang; andv; (i =1, 2, 3, 4) stands for
the external particles momenta and helicities, respectively. We will work in the c.m. frame, where the mpmenta
can be cast in the following form

Vs Vs

P1=7(1,0, 0, Be), P2=7(1’ 0,0, —8e),
p3=-5-(1, By sin6 cosp, B sind sing,  cosv),
pa= =5 (1, =By sind cosp, —B; sinf sing, — B cosH), @)

5 Note that thes-channel diagram mediated by a scalar particle with external gauge bosons does not exist in the gauge symmetric phase, but
only after spontaneous symmetry breaking.
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with ¢ being the azimuthal angle.
In order to express thd = 0, 1, 2 helicity amplitudes as a linear combination of the spherical harmonics

Y7 (0, ¢), itis convenientto use the solution of the Dirac equation for the partic)@(d antiparticle ) bispinors
in the momentum space [11]

_ Je+mwy,(n) _ [ Ve—m(o-nw,(n)
U“””‘(J—e—m(g-a)wv@)’ V(”’_”)‘( JeFmo, @ )

where the 2-component spinors,(n) (with v = £1) are the eigenstates of the helicity operator
(¢ - nwy(n) = vw,(n), ando; are the Pauli matrices. Here,= p/|p|, where p is the 3-momentunp =
|p|(siné cosp, sind sing, cosd), ande is the corresponding energy. In polar coordinaigsy) can be expressed

as

F 9 L9 .

e™'2 cos§ —e~'Zsing

wy1(n) = i2 . p > w-1(n) = P2 0 . (26)
e'zsing e’z cos§

After some straightforward algebra, thigJ =0, 1, 2) helicity amplitudes for the channels in Eq. (23) can be cast
in the following form, as a function of the initial and final helicitieg & +1),8

(25)

A(J = 0) = Ro{8u,up8v5 040113 YO, (27)
AU =D = Rl{8V1s7V28V3»*V4(Yg + \/§V1V3Y8) - 3V1,*V25V3,V4(2V 2ry V1”3Yzl)
— Su0.020u5,—va (2v/2re YT™) + 8up, 058,04 (dv1va/rer s YI) ), (28)

AE(J =2) = Ro{8un,—1p8us, s (AY S+ /B(YS — v/30103Y D)) + 81y —pSug.va (4y/6r 7 v103Y 5E)
+ 8002805, —va (4v/Bre Y53 ™) + 8008050 (B/Ter s v1v3(2Y5 — VB(L - 36)YE)) ), (29)
where8w,vj = 1if v; = v; and zero otherwise,

f
Aehf T g(\f/gv 1 |n s ,Belgf
1_rgPePr V121 2T TVs\m2 )11
In the A% (J = 2) graviton amplitude, the quantity parametrizes the vDVZ discontinuity, with= 1/3 and

& = 1/2 for the massive and massless graviton propagator, respectively. The fun¢tiofisp) (note that the
relevant ones are reported in Appendix A) satisfy the following normalization condition

1 2

/ d cosf / de (Y10, 0)) Y 0, 0) = 8118 (30)
-1 0

Ro=+4n

When considering the interference @f (J = 2) with the scalar exchange amplitudé(J = 0), only the last
component in(g(e, @) of the graviton amplitude (that is proportionaktb— 3¢)) survives after angular integration,

for equal initial and equal final helicities. Then, the coefficient of this residual component vanishes only in the case
of a massive graviton propagator, for whigh=1/3. In the Einstein theory&(= 1/2), the coefficient does not
vanish, and it is responsible for the nonorthogonality of the graviton and scalar amplitudes.

By summing the graviton-scalar interference obtained starting from the amplitudes in Egs. (27) and (29) over
the external particles helicities, one easily recovers the results in Egs. (15) and (16) obtained by summing the
interference over the external polarizations.

On the basis of Egs. (28) and (29), it is now straightforward to verify that there are not problems with angular
momentum selection rules, as far as the interference of the graviton amplitudes and the vectorrbhesn (

6 We do not include the axial coupling in thé&(J = 1) amplitude, since the latter does not affect the discontinuity.
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exchange amplitudes are concerned. For the sake of completeness, we present in Appendix B the corresponding
results forZ)", (2, 1) andA, (2, 1), for all the external fermion and vector-boson states considered for the graviton-
scalar interferences.

3. Conclusions

Selection rules for angular momentum conservation have been considered in the framework of quantum gravity.
As required by angular momentum conservation, the interferencesludnnel amplitudes mediated by particles
with different spins/ = 0, 1, 2 must vanish after complete angular integration on the final state. We find that, in the
case of a propagatingassive graviton, these selection rules are satisfied for any graviton mass. On the contrary,
as a consequence of the vDVZ discontinuity (for which the massless limit of massive gravity is different from the
Einstein theory), the interferences b= 0 andJ = 2 amplitudes do not vanish in timeassless gravity, whenever
all the external states are massive. We checked this property inn¢hannelp; p» — p3ps scatterings, where
initial and final states are either fermions or gauge bosons. We conclude that angular momentum selection rules in
the quantum gravity of the Einstein theory are broken.

This result could be interpreted in the following way. Assuming angular momentum conservation at each
interaction vertex, a massless graviton propagator behaves as if it was carrying a further scalar degree of freedom
coupled to the masses of matter fields with gravitational strength. This extra scalar field would not decouple in
physical processes, leading to the breaking of angular momentum selection rules.

The latter interpretation would anyhow be in contrast with unitarity and the energy—momentum tensor
conservation, since, in the processes considered, only the spin-2 transverse polarizations (with heliciti®s
are exchanged in the massless graviton propagator.

Then, we conclude that, in the Einstein theory, angular momentum is not conserved at quantum level in the
graviton coupling to massive matter fields, even if the total angular momentum is conserved in the scattering
process. This effect could be interpreted as a new kind of quantum anomaly. In this regandsdive quantum
gravity, or even its massless limit, is a better-behaved theory, laeimgaly free.

The present results could be due to the use of perturbation theory around the flat metric. Then, the breaking
of angular momentum selection rules could simply suggest that the standard approach to perturbation theory in
guantum gravity is not completely consistent.

On the other hand, assuming that quantum gravity based on the Einstein theory correctly describes the
gravitational interactions, the present breaking of angular momentum selection rules seems to be connected to
a new quantum effect that should show up in some physical process. In particular, itrcputetiple be measured
by some experiment (although unrealistically at the moment), if the Higgs boson will be discovered.
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Appendix A
Feynman rules

The Feynman rules used in this Letter are the following [9]
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H—f—f=—iky,
H— W; — Wﬁ_ =igwmwgap,

Vu—f—f= —(gvm gl vurs),
V@) = W (pH) = W5 (p7) =igwl{gua(ap — Pg) + 8up (g — do) + 8ap (P — 1)}

— flk2) — f (k) = ‘W{W(f (k. ko) + WD k1, k2))
Guv — Wyl (k1) — Wy (ko) = {Wlitv;ﬂ (k1. k2) + Wi (k. k2) ).

where

W (k1, k2) = yyu(kay + k2v) = njw (k1 + 2 — 2m p),
1
Wvas k1 k2) = St (ko = o k1 k2) + nopkaykay = nyupkaokaa + o (s K1 - k2 = kavkag)

2 _1
+my | Npafvg Znuvnaﬂ .

Above, p = y*p, Mp is the reduced Planck mass, defined)$ = (87 Gy)~! (where Gy is the Newton
constant), anan s, my are the fermion, vector-boson masses, respectiVelyH, andG,,, are a neutral vector
gauge boson, Higgs boson and graviton fields, respectively. The momenta (n-#ieW Feynman rule are
entering into the vertex, while iG—f (k2)—f (k1), f(k1)/ f(k2) stands for an incoming/outgoing fermigh of
momentak1/k2, respectively.

The corresponding vertices for ti#’ vector boson, are obtained just changing— gw andmy — my.

Soherical harmonics
The spherical harmonic¥;" (¢, ¢) are eigenstates of the angular momentum operlé%oand its projection

on thez axis I:z, satisfyinglizY;" =I1(l+ 1Y} and I:ZY;" =mY]". Below, we report explicitly the spherical
harmonics entering into Egs. (27)—(29)

1 3 3 . ;
Y36, 9) = T Y‘}(@,@:,/Ecose, Yf1(9,<p)=i,/§sun9ei’¢,
0 = § +1 15 ; +igp

Appendix B
In this appendix, we consider the interferences of.the 2 andJ = 1 amplitudes, assuming the definitions in

Egs. (12)—(14). Terms arising from the axial-vector coupling of fermions are included, too, although they do not
give rise to any discontinuity.

e cte”— ff

gAgA

BZB7(1—3cos0),
(B.1)

.21 = 2g$g5{ﬂeﬂf(rf +re<l— grf)) cosh + 2426 cos°’9}



198 A. Datta et al / Physics Letters B 579 (2004) 189-199

and

A s (2, 1)=—gg"vg5ﬁeﬂfrerf cosd. (B.2)
In this case, the discontinuity vanishes after total angular integration, and is proportiongl tom§m2 , since it
is connected to the traces of the energy—momentum tensors of the initial and final states. In the limit of massless
fermions, the interference does not vanish. Indeed, contrary t@/tke0)-channel, th&J = 1)-channel has the
same chirality structure as tli¢ = 2)-channel, and thé&J = 1)—(J = 2) interference survives also in the massless
fermion limit.

The orthogonality in Eq. (B.1) was first noticed in [12], although the corresponding results were obtained in a

different context and in the massless fermion limit.

e ¢cte™ > WHwW—

1 3
'y (21 = gwg" {ﬁeﬂw< = Fre+ Srw + Lnrw + 6ra, — 8rer§V) coss

473
+ 383 1 + §r cosH (B.3)
e PW 4 2 w .
and
Aoy (2. 1) = —SW8V VB (1~ 1212)) coss. (B.4)

In this case the contribution of the fermion axial coupling exactly vanishes.rIhgy dependence in the
discontinuity arises from terms proportional tpni‘v‘v in the sum over polarizations of the two fir&l's, combined
with the terms-.ri emerging from the vDVZ discontinuity.

o WHW~ — W *tw'~

1 7 45
T (2, 1) = 508V ﬂwﬂvw{ (_Es W iy o+ A2 ry — 126 rw,> cosp

1 9 3
+ B& B3, (16 + grwrw = er) co§e} + (rw < ) (B.5)

and

Aww(2.1) = %ﬂwﬂw,(l —12:2)(1-12/2,) cosh. (B.6)

In the above equationgy, andg¢ are the vectorial and axial coupling of fermions to the neutral gauge boson
andgw andgy are the couplings of the gauge bosa¥i$ andW’* to V, respectively (cf. Appendix A).
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